Merge tag 'drm-intel-next-2014-04-16' of git://anongit.freedesktop.org/drm-intel...
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/shmem_fs.h>
35 #include <linux/slab.h>
36 #include <linux/swap.h>
37 #include <linux/pci.h>
38 #include <linux/dma-buf.h>
39
40 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
41 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
42 bool force);
43 static __must_check int
44 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
45 bool readonly);
46 static int i915_gem_phys_pwrite(struct drm_device *dev,
47 struct drm_i915_gem_object *obj,
48 struct drm_i915_gem_pwrite *args,
49 struct drm_file *file);
50
51 static void i915_gem_write_fence(struct drm_device *dev, int reg,
52 struct drm_i915_gem_object *obj);
53 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
54 struct drm_i915_fence_reg *fence,
55 bool enable);
56
57 static unsigned long i915_gem_inactive_count(struct shrinker *shrinker,
58 struct shrink_control *sc);
59 static unsigned long i915_gem_inactive_scan(struct shrinker *shrinker,
60 struct shrink_control *sc);
61 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
62 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
63 static void i915_gem_object_truncate(struct drm_i915_gem_object *obj);
64 static void i915_gem_retire_requests_ring(struct intel_ring_buffer *ring);
65
66 static bool cpu_cache_is_coherent(struct drm_device *dev,
67 enum i915_cache_level level)
68 {
69 return HAS_LLC(dev) || level != I915_CACHE_NONE;
70 }
71
72 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
73 {
74 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
75 return true;
76
77 return obj->pin_display;
78 }
79
80 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
81 {
82 if (obj->tiling_mode)
83 i915_gem_release_mmap(obj);
84
85 /* As we do not have an associated fence register, we will force
86 * a tiling change if we ever need to acquire one.
87 */
88 obj->fence_dirty = false;
89 obj->fence_reg = I915_FENCE_REG_NONE;
90 }
91
92 /* some bookkeeping */
93 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
94 size_t size)
95 {
96 spin_lock(&dev_priv->mm.object_stat_lock);
97 dev_priv->mm.object_count++;
98 dev_priv->mm.object_memory += size;
99 spin_unlock(&dev_priv->mm.object_stat_lock);
100 }
101
102 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103 size_t size)
104 {
105 spin_lock(&dev_priv->mm.object_stat_lock);
106 dev_priv->mm.object_count--;
107 dev_priv->mm.object_memory -= size;
108 spin_unlock(&dev_priv->mm.object_stat_lock);
109 }
110
111 static int
112 i915_gem_wait_for_error(struct i915_gpu_error *error)
113 {
114 int ret;
115
116 #define EXIT_COND (!i915_reset_in_progress(error) || \
117 i915_terminally_wedged(error))
118 if (EXIT_COND)
119 return 0;
120
121 /*
122 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
123 * userspace. If it takes that long something really bad is going on and
124 * we should simply try to bail out and fail as gracefully as possible.
125 */
126 ret = wait_event_interruptible_timeout(error->reset_queue,
127 EXIT_COND,
128 10*HZ);
129 if (ret == 0) {
130 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
131 return -EIO;
132 } else if (ret < 0) {
133 return ret;
134 }
135 #undef EXIT_COND
136
137 return 0;
138 }
139
140 int i915_mutex_lock_interruptible(struct drm_device *dev)
141 {
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 int ret;
144
145 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
146 if (ret)
147 return ret;
148
149 ret = mutex_lock_interruptible(&dev->struct_mutex);
150 if (ret)
151 return ret;
152
153 WARN_ON(i915_verify_lists(dev));
154 return 0;
155 }
156
157 static inline bool
158 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
159 {
160 return i915_gem_obj_bound_any(obj) && !obj->active;
161 }
162
163 int
164 i915_gem_init_ioctl(struct drm_device *dev, void *data,
165 struct drm_file *file)
166 {
167 struct drm_i915_private *dev_priv = dev->dev_private;
168 struct drm_i915_gem_init *args = data;
169
170 if (drm_core_check_feature(dev, DRIVER_MODESET))
171 return -ENODEV;
172
173 if (args->gtt_start >= args->gtt_end ||
174 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
175 return -EINVAL;
176
177 /* GEM with user mode setting was never supported on ilk and later. */
178 if (INTEL_INFO(dev)->gen >= 5)
179 return -ENODEV;
180
181 mutex_lock(&dev->struct_mutex);
182 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
183 args->gtt_end);
184 dev_priv->gtt.mappable_end = args->gtt_end;
185 mutex_unlock(&dev->struct_mutex);
186
187 return 0;
188 }
189
190 int
191 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
192 struct drm_file *file)
193 {
194 struct drm_i915_private *dev_priv = dev->dev_private;
195 struct drm_i915_gem_get_aperture *args = data;
196 struct drm_i915_gem_object *obj;
197 size_t pinned;
198
199 pinned = 0;
200 mutex_lock(&dev->struct_mutex);
201 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
202 if (i915_gem_obj_is_pinned(obj))
203 pinned += i915_gem_obj_ggtt_size(obj);
204 mutex_unlock(&dev->struct_mutex);
205
206 args->aper_size = dev_priv->gtt.base.total;
207 args->aper_available_size = args->aper_size - pinned;
208
209 return 0;
210 }
211
212 void *i915_gem_object_alloc(struct drm_device *dev)
213 {
214 struct drm_i915_private *dev_priv = dev->dev_private;
215 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
216 }
217
218 void i915_gem_object_free(struct drm_i915_gem_object *obj)
219 {
220 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
221 kmem_cache_free(dev_priv->slab, obj);
222 }
223
224 static int
225 i915_gem_create(struct drm_file *file,
226 struct drm_device *dev,
227 uint64_t size,
228 uint32_t *handle_p)
229 {
230 struct drm_i915_gem_object *obj;
231 int ret;
232 u32 handle;
233
234 size = roundup(size, PAGE_SIZE);
235 if (size == 0)
236 return -EINVAL;
237
238 /* Allocate the new object */
239 obj = i915_gem_alloc_object(dev, size);
240 if (obj == NULL)
241 return -ENOMEM;
242
243 ret = drm_gem_handle_create(file, &obj->base, &handle);
244 /* drop reference from allocate - handle holds it now */
245 drm_gem_object_unreference_unlocked(&obj->base);
246 if (ret)
247 return ret;
248
249 *handle_p = handle;
250 return 0;
251 }
252
253 int
254 i915_gem_dumb_create(struct drm_file *file,
255 struct drm_device *dev,
256 struct drm_mode_create_dumb *args)
257 {
258 /* have to work out size/pitch and return them */
259 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
260 args->size = args->pitch * args->height;
261 return i915_gem_create(file, dev,
262 args->size, &args->handle);
263 }
264
265 /**
266 * Creates a new mm object and returns a handle to it.
267 */
268 int
269 i915_gem_create_ioctl(struct drm_device *dev, void *data,
270 struct drm_file *file)
271 {
272 struct drm_i915_gem_create *args = data;
273
274 return i915_gem_create(file, dev,
275 args->size, &args->handle);
276 }
277
278 static inline int
279 __copy_to_user_swizzled(char __user *cpu_vaddr,
280 const char *gpu_vaddr, int gpu_offset,
281 int length)
282 {
283 int ret, cpu_offset = 0;
284
285 while (length > 0) {
286 int cacheline_end = ALIGN(gpu_offset + 1, 64);
287 int this_length = min(cacheline_end - gpu_offset, length);
288 int swizzled_gpu_offset = gpu_offset ^ 64;
289
290 ret = __copy_to_user(cpu_vaddr + cpu_offset,
291 gpu_vaddr + swizzled_gpu_offset,
292 this_length);
293 if (ret)
294 return ret + length;
295
296 cpu_offset += this_length;
297 gpu_offset += this_length;
298 length -= this_length;
299 }
300
301 return 0;
302 }
303
304 static inline int
305 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
306 const char __user *cpu_vaddr,
307 int length)
308 {
309 int ret, cpu_offset = 0;
310
311 while (length > 0) {
312 int cacheline_end = ALIGN(gpu_offset + 1, 64);
313 int this_length = min(cacheline_end - gpu_offset, length);
314 int swizzled_gpu_offset = gpu_offset ^ 64;
315
316 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
317 cpu_vaddr + cpu_offset,
318 this_length);
319 if (ret)
320 return ret + length;
321
322 cpu_offset += this_length;
323 gpu_offset += this_length;
324 length -= this_length;
325 }
326
327 return 0;
328 }
329
330 /*
331 * Pins the specified object's pages and synchronizes the object with
332 * GPU accesses. Sets needs_clflush to non-zero if the caller should
333 * flush the object from the CPU cache.
334 */
335 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
336 int *needs_clflush)
337 {
338 int ret;
339
340 *needs_clflush = 0;
341
342 if (!obj->base.filp)
343 return -EINVAL;
344
345 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
346 /* If we're not in the cpu read domain, set ourself into the gtt
347 * read domain and manually flush cachelines (if required). This
348 * optimizes for the case when the gpu will dirty the data
349 * anyway again before the next pread happens. */
350 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
351 obj->cache_level);
352 ret = i915_gem_object_wait_rendering(obj, true);
353 if (ret)
354 return ret;
355 }
356
357 ret = i915_gem_object_get_pages(obj);
358 if (ret)
359 return ret;
360
361 i915_gem_object_pin_pages(obj);
362
363 return ret;
364 }
365
366 /* Per-page copy function for the shmem pread fastpath.
367 * Flushes invalid cachelines before reading the target if
368 * needs_clflush is set. */
369 static int
370 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
371 char __user *user_data,
372 bool page_do_bit17_swizzling, bool needs_clflush)
373 {
374 char *vaddr;
375 int ret;
376
377 if (unlikely(page_do_bit17_swizzling))
378 return -EINVAL;
379
380 vaddr = kmap_atomic(page);
381 if (needs_clflush)
382 drm_clflush_virt_range(vaddr + shmem_page_offset,
383 page_length);
384 ret = __copy_to_user_inatomic(user_data,
385 vaddr + shmem_page_offset,
386 page_length);
387 kunmap_atomic(vaddr);
388
389 return ret ? -EFAULT : 0;
390 }
391
392 static void
393 shmem_clflush_swizzled_range(char *addr, unsigned long length,
394 bool swizzled)
395 {
396 if (unlikely(swizzled)) {
397 unsigned long start = (unsigned long) addr;
398 unsigned long end = (unsigned long) addr + length;
399
400 /* For swizzling simply ensure that we always flush both
401 * channels. Lame, but simple and it works. Swizzled
402 * pwrite/pread is far from a hotpath - current userspace
403 * doesn't use it at all. */
404 start = round_down(start, 128);
405 end = round_up(end, 128);
406
407 drm_clflush_virt_range((void *)start, end - start);
408 } else {
409 drm_clflush_virt_range(addr, length);
410 }
411
412 }
413
414 /* Only difference to the fast-path function is that this can handle bit17
415 * and uses non-atomic copy and kmap functions. */
416 static int
417 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
418 char __user *user_data,
419 bool page_do_bit17_swizzling, bool needs_clflush)
420 {
421 char *vaddr;
422 int ret;
423
424 vaddr = kmap(page);
425 if (needs_clflush)
426 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
427 page_length,
428 page_do_bit17_swizzling);
429
430 if (page_do_bit17_swizzling)
431 ret = __copy_to_user_swizzled(user_data,
432 vaddr, shmem_page_offset,
433 page_length);
434 else
435 ret = __copy_to_user(user_data,
436 vaddr + shmem_page_offset,
437 page_length);
438 kunmap(page);
439
440 return ret ? - EFAULT : 0;
441 }
442
443 static int
444 i915_gem_shmem_pread(struct drm_device *dev,
445 struct drm_i915_gem_object *obj,
446 struct drm_i915_gem_pread *args,
447 struct drm_file *file)
448 {
449 char __user *user_data;
450 ssize_t remain;
451 loff_t offset;
452 int shmem_page_offset, page_length, ret = 0;
453 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
454 int prefaulted = 0;
455 int needs_clflush = 0;
456 struct sg_page_iter sg_iter;
457
458 user_data = to_user_ptr(args->data_ptr);
459 remain = args->size;
460
461 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
462
463 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
464 if (ret)
465 return ret;
466
467 offset = args->offset;
468
469 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
470 offset >> PAGE_SHIFT) {
471 struct page *page = sg_page_iter_page(&sg_iter);
472
473 if (remain <= 0)
474 break;
475
476 /* Operation in this page
477 *
478 * shmem_page_offset = offset within page in shmem file
479 * page_length = bytes to copy for this page
480 */
481 shmem_page_offset = offset_in_page(offset);
482 page_length = remain;
483 if ((shmem_page_offset + page_length) > PAGE_SIZE)
484 page_length = PAGE_SIZE - shmem_page_offset;
485
486 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
487 (page_to_phys(page) & (1 << 17)) != 0;
488
489 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
490 user_data, page_do_bit17_swizzling,
491 needs_clflush);
492 if (ret == 0)
493 goto next_page;
494
495 mutex_unlock(&dev->struct_mutex);
496
497 if (likely(!i915.prefault_disable) && !prefaulted) {
498 ret = fault_in_multipages_writeable(user_data, remain);
499 /* Userspace is tricking us, but we've already clobbered
500 * its pages with the prefault and promised to write the
501 * data up to the first fault. Hence ignore any errors
502 * and just continue. */
503 (void)ret;
504 prefaulted = 1;
505 }
506
507 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
508 user_data, page_do_bit17_swizzling,
509 needs_clflush);
510
511 mutex_lock(&dev->struct_mutex);
512
513 if (ret)
514 goto out;
515
516 next_page:
517 remain -= page_length;
518 user_data += page_length;
519 offset += page_length;
520 }
521
522 out:
523 i915_gem_object_unpin_pages(obj);
524
525 return ret;
526 }
527
528 /**
529 * Reads data from the object referenced by handle.
530 *
531 * On error, the contents of *data are undefined.
532 */
533 int
534 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
535 struct drm_file *file)
536 {
537 struct drm_i915_gem_pread *args = data;
538 struct drm_i915_gem_object *obj;
539 int ret = 0;
540
541 if (args->size == 0)
542 return 0;
543
544 if (!access_ok(VERIFY_WRITE,
545 to_user_ptr(args->data_ptr),
546 args->size))
547 return -EFAULT;
548
549 ret = i915_mutex_lock_interruptible(dev);
550 if (ret)
551 return ret;
552
553 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
554 if (&obj->base == NULL) {
555 ret = -ENOENT;
556 goto unlock;
557 }
558
559 /* Bounds check source. */
560 if (args->offset > obj->base.size ||
561 args->size > obj->base.size - args->offset) {
562 ret = -EINVAL;
563 goto out;
564 }
565
566 /* prime objects have no backing filp to GEM pread/pwrite
567 * pages from.
568 */
569 if (!obj->base.filp) {
570 ret = -EINVAL;
571 goto out;
572 }
573
574 trace_i915_gem_object_pread(obj, args->offset, args->size);
575
576 ret = i915_gem_shmem_pread(dev, obj, args, file);
577
578 out:
579 drm_gem_object_unreference(&obj->base);
580 unlock:
581 mutex_unlock(&dev->struct_mutex);
582 return ret;
583 }
584
585 /* This is the fast write path which cannot handle
586 * page faults in the source data
587 */
588
589 static inline int
590 fast_user_write(struct io_mapping *mapping,
591 loff_t page_base, int page_offset,
592 char __user *user_data,
593 int length)
594 {
595 void __iomem *vaddr_atomic;
596 void *vaddr;
597 unsigned long unwritten;
598
599 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
600 /* We can use the cpu mem copy function because this is X86. */
601 vaddr = (void __force*)vaddr_atomic + page_offset;
602 unwritten = __copy_from_user_inatomic_nocache(vaddr,
603 user_data, length);
604 io_mapping_unmap_atomic(vaddr_atomic);
605 return unwritten;
606 }
607
608 /**
609 * This is the fast pwrite path, where we copy the data directly from the
610 * user into the GTT, uncached.
611 */
612 static int
613 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
614 struct drm_i915_gem_object *obj,
615 struct drm_i915_gem_pwrite *args,
616 struct drm_file *file)
617 {
618 struct drm_i915_private *dev_priv = dev->dev_private;
619 ssize_t remain;
620 loff_t offset, page_base;
621 char __user *user_data;
622 int page_offset, page_length, ret;
623
624 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
625 if (ret)
626 goto out;
627
628 ret = i915_gem_object_set_to_gtt_domain(obj, true);
629 if (ret)
630 goto out_unpin;
631
632 ret = i915_gem_object_put_fence(obj);
633 if (ret)
634 goto out_unpin;
635
636 user_data = to_user_ptr(args->data_ptr);
637 remain = args->size;
638
639 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
640
641 while (remain > 0) {
642 /* Operation in this page
643 *
644 * page_base = page offset within aperture
645 * page_offset = offset within page
646 * page_length = bytes to copy for this page
647 */
648 page_base = offset & PAGE_MASK;
649 page_offset = offset_in_page(offset);
650 page_length = remain;
651 if ((page_offset + remain) > PAGE_SIZE)
652 page_length = PAGE_SIZE - page_offset;
653
654 /* If we get a fault while copying data, then (presumably) our
655 * source page isn't available. Return the error and we'll
656 * retry in the slow path.
657 */
658 if (fast_user_write(dev_priv->gtt.mappable, page_base,
659 page_offset, user_data, page_length)) {
660 ret = -EFAULT;
661 goto out_unpin;
662 }
663
664 remain -= page_length;
665 user_data += page_length;
666 offset += page_length;
667 }
668
669 out_unpin:
670 i915_gem_object_ggtt_unpin(obj);
671 out:
672 return ret;
673 }
674
675 /* Per-page copy function for the shmem pwrite fastpath.
676 * Flushes invalid cachelines before writing to the target if
677 * needs_clflush_before is set and flushes out any written cachelines after
678 * writing if needs_clflush is set. */
679 static int
680 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
681 char __user *user_data,
682 bool page_do_bit17_swizzling,
683 bool needs_clflush_before,
684 bool needs_clflush_after)
685 {
686 char *vaddr;
687 int ret;
688
689 if (unlikely(page_do_bit17_swizzling))
690 return -EINVAL;
691
692 vaddr = kmap_atomic(page);
693 if (needs_clflush_before)
694 drm_clflush_virt_range(vaddr + shmem_page_offset,
695 page_length);
696 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
697 user_data, page_length);
698 if (needs_clflush_after)
699 drm_clflush_virt_range(vaddr + shmem_page_offset,
700 page_length);
701 kunmap_atomic(vaddr);
702
703 return ret ? -EFAULT : 0;
704 }
705
706 /* Only difference to the fast-path function is that this can handle bit17
707 * and uses non-atomic copy and kmap functions. */
708 static int
709 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
710 char __user *user_data,
711 bool page_do_bit17_swizzling,
712 bool needs_clflush_before,
713 bool needs_clflush_after)
714 {
715 char *vaddr;
716 int ret;
717
718 vaddr = kmap(page);
719 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
720 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
721 page_length,
722 page_do_bit17_swizzling);
723 if (page_do_bit17_swizzling)
724 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
725 user_data,
726 page_length);
727 else
728 ret = __copy_from_user(vaddr + shmem_page_offset,
729 user_data,
730 page_length);
731 if (needs_clflush_after)
732 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
733 page_length,
734 page_do_bit17_swizzling);
735 kunmap(page);
736
737 return ret ? -EFAULT : 0;
738 }
739
740 static int
741 i915_gem_shmem_pwrite(struct drm_device *dev,
742 struct drm_i915_gem_object *obj,
743 struct drm_i915_gem_pwrite *args,
744 struct drm_file *file)
745 {
746 ssize_t remain;
747 loff_t offset;
748 char __user *user_data;
749 int shmem_page_offset, page_length, ret = 0;
750 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
751 int hit_slowpath = 0;
752 int needs_clflush_after = 0;
753 int needs_clflush_before = 0;
754 struct sg_page_iter sg_iter;
755
756 user_data = to_user_ptr(args->data_ptr);
757 remain = args->size;
758
759 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
760
761 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
762 /* If we're not in the cpu write domain, set ourself into the gtt
763 * write domain and manually flush cachelines (if required). This
764 * optimizes for the case when the gpu will use the data
765 * right away and we therefore have to clflush anyway. */
766 needs_clflush_after = cpu_write_needs_clflush(obj);
767 ret = i915_gem_object_wait_rendering(obj, false);
768 if (ret)
769 return ret;
770 }
771 /* Same trick applies to invalidate partially written cachelines read
772 * before writing. */
773 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
774 needs_clflush_before =
775 !cpu_cache_is_coherent(dev, obj->cache_level);
776
777 ret = i915_gem_object_get_pages(obj);
778 if (ret)
779 return ret;
780
781 i915_gem_object_pin_pages(obj);
782
783 offset = args->offset;
784 obj->dirty = 1;
785
786 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
787 offset >> PAGE_SHIFT) {
788 struct page *page = sg_page_iter_page(&sg_iter);
789 int partial_cacheline_write;
790
791 if (remain <= 0)
792 break;
793
794 /* Operation in this page
795 *
796 * shmem_page_offset = offset within page in shmem file
797 * page_length = bytes to copy for this page
798 */
799 shmem_page_offset = offset_in_page(offset);
800
801 page_length = remain;
802 if ((shmem_page_offset + page_length) > PAGE_SIZE)
803 page_length = PAGE_SIZE - shmem_page_offset;
804
805 /* If we don't overwrite a cacheline completely we need to be
806 * careful to have up-to-date data by first clflushing. Don't
807 * overcomplicate things and flush the entire patch. */
808 partial_cacheline_write = needs_clflush_before &&
809 ((shmem_page_offset | page_length)
810 & (boot_cpu_data.x86_clflush_size - 1));
811
812 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
813 (page_to_phys(page) & (1 << 17)) != 0;
814
815 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
816 user_data, page_do_bit17_swizzling,
817 partial_cacheline_write,
818 needs_clflush_after);
819 if (ret == 0)
820 goto next_page;
821
822 hit_slowpath = 1;
823 mutex_unlock(&dev->struct_mutex);
824 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
825 user_data, page_do_bit17_swizzling,
826 partial_cacheline_write,
827 needs_clflush_after);
828
829 mutex_lock(&dev->struct_mutex);
830
831 if (ret)
832 goto out;
833
834 next_page:
835 remain -= page_length;
836 user_data += page_length;
837 offset += page_length;
838 }
839
840 out:
841 i915_gem_object_unpin_pages(obj);
842
843 if (hit_slowpath) {
844 /*
845 * Fixup: Flush cpu caches in case we didn't flush the dirty
846 * cachelines in-line while writing and the object moved
847 * out of the cpu write domain while we've dropped the lock.
848 */
849 if (!needs_clflush_after &&
850 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
851 if (i915_gem_clflush_object(obj, obj->pin_display))
852 i915_gem_chipset_flush(dev);
853 }
854 }
855
856 if (needs_clflush_after)
857 i915_gem_chipset_flush(dev);
858
859 return ret;
860 }
861
862 /**
863 * Writes data to the object referenced by handle.
864 *
865 * On error, the contents of the buffer that were to be modified are undefined.
866 */
867 int
868 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
869 struct drm_file *file)
870 {
871 struct drm_i915_gem_pwrite *args = data;
872 struct drm_i915_gem_object *obj;
873 int ret;
874
875 if (args->size == 0)
876 return 0;
877
878 if (!access_ok(VERIFY_READ,
879 to_user_ptr(args->data_ptr),
880 args->size))
881 return -EFAULT;
882
883 if (likely(!i915.prefault_disable)) {
884 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
885 args->size);
886 if (ret)
887 return -EFAULT;
888 }
889
890 ret = i915_mutex_lock_interruptible(dev);
891 if (ret)
892 return ret;
893
894 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
895 if (&obj->base == NULL) {
896 ret = -ENOENT;
897 goto unlock;
898 }
899
900 /* Bounds check destination. */
901 if (args->offset > obj->base.size ||
902 args->size > obj->base.size - args->offset) {
903 ret = -EINVAL;
904 goto out;
905 }
906
907 /* prime objects have no backing filp to GEM pread/pwrite
908 * pages from.
909 */
910 if (!obj->base.filp) {
911 ret = -EINVAL;
912 goto out;
913 }
914
915 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
916
917 ret = -EFAULT;
918 /* We can only do the GTT pwrite on untiled buffers, as otherwise
919 * it would end up going through the fenced access, and we'll get
920 * different detiling behavior between reading and writing.
921 * pread/pwrite currently are reading and writing from the CPU
922 * perspective, requiring manual detiling by the client.
923 */
924 if (obj->phys_obj) {
925 ret = i915_gem_phys_pwrite(dev, obj, args, file);
926 goto out;
927 }
928
929 if (obj->tiling_mode == I915_TILING_NONE &&
930 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
931 cpu_write_needs_clflush(obj)) {
932 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
933 /* Note that the gtt paths might fail with non-page-backed user
934 * pointers (e.g. gtt mappings when moving data between
935 * textures). Fallback to the shmem path in that case. */
936 }
937
938 if (ret == -EFAULT || ret == -ENOSPC)
939 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
940
941 out:
942 drm_gem_object_unreference(&obj->base);
943 unlock:
944 mutex_unlock(&dev->struct_mutex);
945 return ret;
946 }
947
948 int
949 i915_gem_check_wedge(struct i915_gpu_error *error,
950 bool interruptible)
951 {
952 if (i915_reset_in_progress(error)) {
953 /* Non-interruptible callers can't handle -EAGAIN, hence return
954 * -EIO unconditionally for these. */
955 if (!interruptible)
956 return -EIO;
957
958 /* Recovery complete, but the reset failed ... */
959 if (i915_terminally_wedged(error))
960 return -EIO;
961
962 return -EAGAIN;
963 }
964
965 return 0;
966 }
967
968 /*
969 * Compare seqno against outstanding lazy request. Emit a request if they are
970 * equal.
971 */
972 static int
973 i915_gem_check_olr(struct intel_ring_buffer *ring, u32 seqno)
974 {
975 int ret;
976
977 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
978
979 ret = 0;
980 if (seqno == ring->outstanding_lazy_seqno)
981 ret = i915_add_request(ring, NULL);
982
983 return ret;
984 }
985
986 static void fake_irq(unsigned long data)
987 {
988 wake_up_process((struct task_struct *)data);
989 }
990
991 static bool missed_irq(struct drm_i915_private *dev_priv,
992 struct intel_ring_buffer *ring)
993 {
994 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
995 }
996
997 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
998 {
999 if (file_priv == NULL)
1000 return true;
1001
1002 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1003 }
1004
1005 /**
1006 * __wait_seqno - wait until execution of seqno has finished
1007 * @ring: the ring expected to report seqno
1008 * @seqno: duh!
1009 * @reset_counter: reset sequence associated with the given seqno
1010 * @interruptible: do an interruptible wait (normally yes)
1011 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1012 *
1013 * Note: It is of utmost importance that the passed in seqno and reset_counter
1014 * values have been read by the caller in an smp safe manner. Where read-side
1015 * locks are involved, it is sufficient to read the reset_counter before
1016 * unlocking the lock that protects the seqno. For lockless tricks, the
1017 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1018 * inserted.
1019 *
1020 * Returns 0 if the seqno was found within the alloted time. Else returns the
1021 * errno with remaining time filled in timeout argument.
1022 */
1023 static int __wait_seqno(struct intel_ring_buffer *ring, u32 seqno,
1024 unsigned reset_counter,
1025 bool interruptible,
1026 struct timespec *timeout,
1027 struct drm_i915_file_private *file_priv)
1028 {
1029 struct drm_device *dev = ring->dev;
1030 struct drm_i915_private *dev_priv = dev->dev_private;
1031 const bool irq_test_in_progress =
1032 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1033 struct timespec before, now;
1034 DEFINE_WAIT(wait);
1035 unsigned long timeout_expire;
1036 int ret;
1037
1038 WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
1039
1040 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1041 return 0;
1042
1043 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1044
1045 if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1046 gen6_rps_boost(dev_priv);
1047 if (file_priv)
1048 mod_delayed_work(dev_priv->wq,
1049 &file_priv->mm.idle_work,
1050 msecs_to_jiffies(100));
1051 }
1052
1053 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1054 return -ENODEV;
1055
1056 /* Record current time in case interrupted by signal, or wedged */
1057 trace_i915_gem_request_wait_begin(ring, seqno);
1058 getrawmonotonic(&before);
1059 for (;;) {
1060 struct timer_list timer;
1061
1062 prepare_to_wait(&ring->irq_queue, &wait,
1063 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1064
1065 /* We need to check whether any gpu reset happened in between
1066 * the caller grabbing the seqno and now ... */
1067 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1068 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1069 * is truely gone. */
1070 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1071 if (ret == 0)
1072 ret = -EAGAIN;
1073 break;
1074 }
1075
1076 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1077 ret = 0;
1078 break;
1079 }
1080
1081 if (interruptible && signal_pending(current)) {
1082 ret = -ERESTARTSYS;
1083 break;
1084 }
1085
1086 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1087 ret = -ETIME;
1088 break;
1089 }
1090
1091 timer.function = NULL;
1092 if (timeout || missed_irq(dev_priv, ring)) {
1093 unsigned long expire;
1094
1095 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1096 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1097 mod_timer(&timer, expire);
1098 }
1099
1100 io_schedule();
1101
1102 if (timer.function) {
1103 del_singleshot_timer_sync(&timer);
1104 destroy_timer_on_stack(&timer);
1105 }
1106 }
1107 getrawmonotonic(&now);
1108 trace_i915_gem_request_wait_end(ring, seqno);
1109
1110 if (!irq_test_in_progress)
1111 ring->irq_put(ring);
1112
1113 finish_wait(&ring->irq_queue, &wait);
1114
1115 if (timeout) {
1116 struct timespec sleep_time = timespec_sub(now, before);
1117 *timeout = timespec_sub(*timeout, sleep_time);
1118 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1119 set_normalized_timespec(timeout, 0, 0);
1120 }
1121
1122 return ret;
1123 }
1124
1125 /**
1126 * Waits for a sequence number to be signaled, and cleans up the
1127 * request and object lists appropriately for that event.
1128 */
1129 int
1130 i915_wait_seqno(struct intel_ring_buffer *ring, uint32_t seqno)
1131 {
1132 struct drm_device *dev = ring->dev;
1133 struct drm_i915_private *dev_priv = dev->dev_private;
1134 bool interruptible = dev_priv->mm.interruptible;
1135 int ret;
1136
1137 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1138 BUG_ON(seqno == 0);
1139
1140 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1141 if (ret)
1142 return ret;
1143
1144 ret = i915_gem_check_olr(ring, seqno);
1145 if (ret)
1146 return ret;
1147
1148 return __wait_seqno(ring, seqno,
1149 atomic_read(&dev_priv->gpu_error.reset_counter),
1150 interruptible, NULL, NULL);
1151 }
1152
1153 static int
1154 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1155 struct intel_ring_buffer *ring)
1156 {
1157 i915_gem_retire_requests_ring(ring);
1158
1159 /* Manually manage the write flush as we may have not yet
1160 * retired the buffer.
1161 *
1162 * Note that the last_write_seqno is always the earlier of
1163 * the two (read/write) seqno, so if we haved successfully waited,
1164 * we know we have passed the last write.
1165 */
1166 obj->last_write_seqno = 0;
1167 obj->base.write_domain &= ~I915_GEM_GPU_DOMAINS;
1168
1169 return 0;
1170 }
1171
1172 /**
1173 * Ensures that all rendering to the object has completed and the object is
1174 * safe to unbind from the GTT or access from the CPU.
1175 */
1176 static __must_check int
1177 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1178 bool readonly)
1179 {
1180 struct intel_ring_buffer *ring = obj->ring;
1181 u32 seqno;
1182 int ret;
1183
1184 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1185 if (seqno == 0)
1186 return 0;
1187
1188 ret = i915_wait_seqno(ring, seqno);
1189 if (ret)
1190 return ret;
1191
1192 return i915_gem_object_wait_rendering__tail(obj, ring);
1193 }
1194
1195 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1196 * as the object state may change during this call.
1197 */
1198 static __must_check int
1199 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1200 struct drm_i915_file_private *file_priv,
1201 bool readonly)
1202 {
1203 struct drm_device *dev = obj->base.dev;
1204 struct drm_i915_private *dev_priv = dev->dev_private;
1205 struct intel_ring_buffer *ring = obj->ring;
1206 unsigned reset_counter;
1207 u32 seqno;
1208 int ret;
1209
1210 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1211 BUG_ON(!dev_priv->mm.interruptible);
1212
1213 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1214 if (seqno == 0)
1215 return 0;
1216
1217 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1218 if (ret)
1219 return ret;
1220
1221 ret = i915_gem_check_olr(ring, seqno);
1222 if (ret)
1223 return ret;
1224
1225 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1226 mutex_unlock(&dev->struct_mutex);
1227 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1228 mutex_lock(&dev->struct_mutex);
1229 if (ret)
1230 return ret;
1231
1232 return i915_gem_object_wait_rendering__tail(obj, ring);
1233 }
1234
1235 /**
1236 * Called when user space prepares to use an object with the CPU, either
1237 * through the mmap ioctl's mapping or a GTT mapping.
1238 */
1239 int
1240 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1241 struct drm_file *file)
1242 {
1243 struct drm_i915_gem_set_domain *args = data;
1244 struct drm_i915_gem_object *obj;
1245 uint32_t read_domains = args->read_domains;
1246 uint32_t write_domain = args->write_domain;
1247 int ret;
1248
1249 /* Only handle setting domains to types used by the CPU. */
1250 if (write_domain & I915_GEM_GPU_DOMAINS)
1251 return -EINVAL;
1252
1253 if (read_domains & I915_GEM_GPU_DOMAINS)
1254 return -EINVAL;
1255
1256 /* Having something in the write domain implies it's in the read
1257 * domain, and only that read domain. Enforce that in the request.
1258 */
1259 if (write_domain != 0 && read_domains != write_domain)
1260 return -EINVAL;
1261
1262 ret = i915_mutex_lock_interruptible(dev);
1263 if (ret)
1264 return ret;
1265
1266 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1267 if (&obj->base == NULL) {
1268 ret = -ENOENT;
1269 goto unlock;
1270 }
1271
1272 /* Try to flush the object off the GPU without holding the lock.
1273 * We will repeat the flush holding the lock in the normal manner
1274 * to catch cases where we are gazumped.
1275 */
1276 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1277 file->driver_priv,
1278 !write_domain);
1279 if (ret)
1280 goto unref;
1281
1282 if (read_domains & I915_GEM_DOMAIN_GTT) {
1283 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1284
1285 /* Silently promote "you're not bound, there was nothing to do"
1286 * to success, since the client was just asking us to
1287 * make sure everything was done.
1288 */
1289 if (ret == -EINVAL)
1290 ret = 0;
1291 } else {
1292 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1293 }
1294
1295 unref:
1296 drm_gem_object_unreference(&obj->base);
1297 unlock:
1298 mutex_unlock(&dev->struct_mutex);
1299 return ret;
1300 }
1301
1302 /**
1303 * Called when user space has done writes to this buffer
1304 */
1305 int
1306 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1307 struct drm_file *file)
1308 {
1309 struct drm_i915_gem_sw_finish *args = data;
1310 struct drm_i915_gem_object *obj;
1311 int ret = 0;
1312
1313 ret = i915_mutex_lock_interruptible(dev);
1314 if (ret)
1315 return ret;
1316
1317 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1318 if (&obj->base == NULL) {
1319 ret = -ENOENT;
1320 goto unlock;
1321 }
1322
1323 /* Pinned buffers may be scanout, so flush the cache */
1324 if (obj->pin_display)
1325 i915_gem_object_flush_cpu_write_domain(obj, true);
1326
1327 drm_gem_object_unreference(&obj->base);
1328 unlock:
1329 mutex_unlock(&dev->struct_mutex);
1330 return ret;
1331 }
1332
1333 /**
1334 * Maps the contents of an object, returning the address it is mapped
1335 * into.
1336 *
1337 * While the mapping holds a reference on the contents of the object, it doesn't
1338 * imply a ref on the object itself.
1339 */
1340 int
1341 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1342 struct drm_file *file)
1343 {
1344 struct drm_i915_gem_mmap *args = data;
1345 struct drm_gem_object *obj;
1346 unsigned long addr;
1347
1348 obj = drm_gem_object_lookup(dev, file, args->handle);
1349 if (obj == NULL)
1350 return -ENOENT;
1351
1352 /* prime objects have no backing filp to GEM mmap
1353 * pages from.
1354 */
1355 if (!obj->filp) {
1356 drm_gem_object_unreference_unlocked(obj);
1357 return -EINVAL;
1358 }
1359
1360 addr = vm_mmap(obj->filp, 0, args->size,
1361 PROT_READ | PROT_WRITE, MAP_SHARED,
1362 args->offset);
1363 drm_gem_object_unreference_unlocked(obj);
1364 if (IS_ERR((void *)addr))
1365 return addr;
1366
1367 args->addr_ptr = (uint64_t) addr;
1368
1369 return 0;
1370 }
1371
1372 /**
1373 * i915_gem_fault - fault a page into the GTT
1374 * vma: VMA in question
1375 * vmf: fault info
1376 *
1377 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1378 * from userspace. The fault handler takes care of binding the object to
1379 * the GTT (if needed), allocating and programming a fence register (again,
1380 * only if needed based on whether the old reg is still valid or the object
1381 * is tiled) and inserting a new PTE into the faulting process.
1382 *
1383 * Note that the faulting process may involve evicting existing objects
1384 * from the GTT and/or fence registers to make room. So performance may
1385 * suffer if the GTT working set is large or there are few fence registers
1386 * left.
1387 */
1388 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1389 {
1390 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1391 struct drm_device *dev = obj->base.dev;
1392 struct drm_i915_private *dev_priv = dev->dev_private;
1393 pgoff_t page_offset;
1394 unsigned long pfn;
1395 int ret = 0;
1396 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1397
1398 intel_runtime_pm_get(dev_priv);
1399
1400 /* We don't use vmf->pgoff since that has the fake offset */
1401 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1402 PAGE_SHIFT;
1403
1404 ret = i915_mutex_lock_interruptible(dev);
1405 if (ret)
1406 goto out;
1407
1408 trace_i915_gem_object_fault(obj, page_offset, true, write);
1409
1410 /* Try to flush the object off the GPU first without holding the lock.
1411 * Upon reacquiring the lock, we will perform our sanity checks and then
1412 * repeat the flush holding the lock in the normal manner to catch cases
1413 * where we are gazumped.
1414 */
1415 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1416 if (ret)
1417 goto unlock;
1418
1419 /* Access to snoopable pages through the GTT is incoherent. */
1420 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1421 ret = -EINVAL;
1422 goto unlock;
1423 }
1424
1425 /* Now bind it into the GTT if needed */
1426 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1427 if (ret)
1428 goto unlock;
1429
1430 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1431 if (ret)
1432 goto unpin;
1433
1434 ret = i915_gem_object_get_fence(obj);
1435 if (ret)
1436 goto unpin;
1437
1438 obj->fault_mappable = true;
1439
1440 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1441 pfn >>= PAGE_SHIFT;
1442 pfn += page_offset;
1443
1444 /* Finally, remap it using the new GTT offset */
1445 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1446 unpin:
1447 i915_gem_object_ggtt_unpin(obj);
1448 unlock:
1449 mutex_unlock(&dev->struct_mutex);
1450 out:
1451 switch (ret) {
1452 case -EIO:
1453 /* If this -EIO is due to a gpu hang, give the reset code a
1454 * chance to clean up the mess. Otherwise return the proper
1455 * SIGBUS. */
1456 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1457 ret = VM_FAULT_SIGBUS;
1458 break;
1459 }
1460 case -EAGAIN:
1461 /*
1462 * EAGAIN means the gpu is hung and we'll wait for the error
1463 * handler to reset everything when re-faulting in
1464 * i915_mutex_lock_interruptible.
1465 */
1466 case 0:
1467 case -ERESTARTSYS:
1468 case -EINTR:
1469 case -EBUSY:
1470 /*
1471 * EBUSY is ok: this just means that another thread
1472 * already did the job.
1473 */
1474 ret = VM_FAULT_NOPAGE;
1475 break;
1476 case -ENOMEM:
1477 ret = VM_FAULT_OOM;
1478 break;
1479 case -ENOSPC:
1480 case -EFAULT:
1481 ret = VM_FAULT_SIGBUS;
1482 break;
1483 default:
1484 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1485 ret = VM_FAULT_SIGBUS;
1486 break;
1487 }
1488
1489 intel_runtime_pm_put(dev_priv);
1490 return ret;
1491 }
1492
1493 void i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1494 {
1495 struct i915_vma *vma;
1496
1497 /*
1498 * Only the global gtt is relevant for gtt memory mappings, so restrict
1499 * list traversal to objects bound into the global address space. Note
1500 * that the active list should be empty, but better safe than sorry.
1501 */
1502 WARN_ON(!list_empty(&dev_priv->gtt.base.active_list));
1503 list_for_each_entry(vma, &dev_priv->gtt.base.active_list, mm_list)
1504 i915_gem_release_mmap(vma->obj);
1505 list_for_each_entry(vma, &dev_priv->gtt.base.inactive_list, mm_list)
1506 i915_gem_release_mmap(vma->obj);
1507 }
1508
1509 /**
1510 * i915_gem_release_mmap - remove physical page mappings
1511 * @obj: obj in question
1512 *
1513 * Preserve the reservation of the mmapping with the DRM core code, but
1514 * relinquish ownership of the pages back to the system.
1515 *
1516 * It is vital that we remove the page mapping if we have mapped a tiled
1517 * object through the GTT and then lose the fence register due to
1518 * resource pressure. Similarly if the object has been moved out of the
1519 * aperture, than pages mapped into userspace must be revoked. Removing the
1520 * mapping will then trigger a page fault on the next user access, allowing
1521 * fixup by i915_gem_fault().
1522 */
1523 void
1524 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1525 {
1526 if (!obj->fault_mappable)
1527 return;
1528
1529 drm_vma_node_unmap(&obj->base.vma_node,
1530 obj->base.dev->anon_inode->i_mapping);
1531 obj->fault_mappable = false;
1532 }
1533
1534 uint32_t
1535 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1536 {
1537 uint32_t gtt_size;
1538
1539 if (INTEL_INFO(dev)->gen >= 4 ||
1540 tiling_mode == I915_TILING_NONE)
1541 return size;
1542
1543 /* Previous chips need a power-of-two fence region when tiling */
1544 if (INTEL_INFO(dev)->gen == 3)
1545 gtt_size = 1024*1024;
1546 else
1547 gtt_size = 512*1024;
1548
1549 while (gtt_size < size)
1550 gtt_size <<= 1;
1551
1552 return gtt_size;
1553 }
1554
1555 /**
1556 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1557 * @obj: object to check
1558 *
1559 * Return the required GTT alignment for an object, taking into account
1560 * potential fence register mapping.
1561 */
1562 uint32_t
1563 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1564 int tiling_mode, bool fenced)
1565 {
1566 /*
1567 * Minimum alignment is 4k (GTT page size), but might be greater
1568 * if a fence register is needed for the object.
1569 */
1570 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1571 tiling_mode == I915_TILING_NONE)
1572 return 4096;
1573
1574 /*
1575 * Previous chips need to be aligned to the size of the smallest
1576 * fence register that can contain the object.
1577 */
1578 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1579 }
1580
1581 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1582 {
1583 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1584 int ret;
1585
1586 if (drm_vma_node_has_offset(&obj->base.vma_node))
1587 return 0;
1588
1589 dev_priv->mm.shrinker_no_lock_stealing = true;
1590
1591 ret = drm_gem_create_mmap_offset(&obj->base);
1592 if (ret != -ENOSPC)
1593 goto out;
1594
1595 /* Badly fragmented mmap space? The only way we can recover
1596 * space is by destroying unwanted objects. We can't randomly release
1597 * mmap_offsets as userspace expects them to be persistent for the
1598 * lifetime of the objects. The closest we can is to release the
1599 * offsets on purgeable objects by truncating it and marking it purged,
1600 * which prevents userspace from ever using that object again.
1601 */
1602 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1603 ret = drm_gem_create_mmap_offset(&obj->base);
1604 if (ret != -ENOSPC)
1605 goto out;
1606
1607 i915_gem_shrink_all(dev_priv);
1608 ret = drm_gem_create_mmap_offset(&obj->base);
1609 out:
1610 dev_priv->mm.shrinker_no_lock_stealing = false;
1611
1612 return ret;
1613 }
1614
1615 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1616 {
1617 drm_gem_free_mmap_offset(&obj->base);
1618 }
1619
1620 int
1621 i915_gem_mmap_gtt(struct drm_file *file,
1622 struct drm_device *dev,
1623 uint32_t handle,
1624 uint64_t *offset)
1625 {
1626 struct drm_i915_private *dev_priv = dev->dev_private;
1627 struct drm_i915_gem_object *obj;
1628 int ret;
1629
1630 ret = i915_mutex_lock_interruptible(dev);
1631 if (ret)
1632 return ret;
1633
1634 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1635 if (&obj->base == NULL) {
1636 ret = -ENOENT;
1637 goto unlock;
1638 }
1639
1640 if (obj->base.size > dev_priv->gtt.mappable_end) {
1641 ret = -E2BIG;
1642 goto out;
1643 }
1644
1645 if (obj->madv != I915_MADV_WILLNEED) {
1646 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1647 ret = -EFAULT;
1648 goto out;
1649 }
1650
1651 ret = i915_gem_object_create_mmap_offset(obj);
1652 if (ret)
1653 goto out;
1654
1655 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1656
1657 out:
1658 drm_gem_object_unreference(&obj->base);
1659 unlock:
1660 mutex_unlock(&dev->struct_mutex);
1661 return ret;
1662 }
1663
1664 /**
1665 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1666 * @dev: DRM device
1667 * @data: GTT mapping ioctl data
1668 * @file: GEM object info
1669 *
1670 * Simply returns the fake offset to userspace so it can mmap it.
1671 * The mmap call will end up in drm_gem_mmap(), which will set things
1672 * up so we can get faults in the handler above.
1673 *
1674 * The fault handler will take care of binding the object into the GTT
1675 * (since it may have been evicted to make room for something), allocating
1676 * a fence register, and mapping the appropriate aperture address into
1677 * userspace.
1678 */
1679 int
1680 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1681 struct drm_file *file)
1682 {
1683 struct drm_i915_gem_mmap_gtt *args = data;
1684
1685 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1686 }
1687
1688 /* Immediately discard the backing storage */
1689 static void
1690 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1691 {
1692 struct inode *inode;
1693
1694 i915_gem_object_free_mmap_offset(obj);
1695
1696 if (obj->base.filp == NULL)
1697 return;
1698
1699 /* Our goal here is to return as much of the memory as
1700 * is possible back to the system as we are called from OOM.
1701 * To do this we must instruct the shmfs to drop all of its
1702 * backing pages, *now*.
1703 */
1704 inode = file_inode(obj->base.filp);
1705 shmem_truncate_range(inode, 0, (loff_t)-1);
1706
1707 obj->madv = __I915_MADV_PURGED;
1708 }
1709
1710 static inline int
1711 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1712 {
1713 return obj->madv == I915_MADV_DONTNEED;
1714 }
1715
1716 static void
1717 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1718 {
1719 struct sg_page_iter sg_iter;
1720 int ret;
1721
1722 BUG_ON(obj->madv == __I915_MADV_PURGED);
1723
1724 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1725 if (ret) {
1726 /* In the event of a disaster, abandon all caches and
1727 * hope for the best.
1728 */
1729 WARN_ON(ret != -EIO);
1730 i915_gem_clflush_object(obj, true);
1731 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1732 }
1733
1734 if (i915_gem_object_needs_bit17_swizzle(obj))
1735 i915_gem_object_save_bit_17_swizzle(obj);
1736
1737 if (obj->madv == I915_MADV_DONTNEED)
1738 obj->dirty = 0;
1739
1740 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1741 struct page *page = sg_page_iter_page(&sg_iter);
1742
1743 if (obj->dirty)
1744 set_page_dirty(page);
1745
1746 if (obj->madv == I915_MADV_WILLNEED)
1747 mark_page_accessed(page);
1748
1749 page_cache_release(page);
1750 }
1751 obj->dirty = 0;
1752
1753 sg_free_table(obj->pages);
1754 kfree(obj->pages);
1755 }
1756
1757 int
1758 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1759 {
1760 const struct drm_i915_gem_object_ops *ops = obj->ops;
1761
1762 if (obj->pages == NULL)
1763 return 0;
1764
1765 if (obj->pages_pin_count)
1766 return -EBUSY;
1767
1768 BUG_ON(i915_gem_obj_bound_any(obj));
1769
1770 /* ->put_pages might need to allocate memory for the bit17 swizzle
1771 * array, hence protect them from being reaped by removing them from gtt
1772 * lists early. */
1773 list_del(&obj->global_list);
1774
1775 ops->put_pages(obj);
1776 obj->pages = NULL;
1777
1778 if (i915_gem_object_is_purgeable(obj))
1779 i915_gem_object_truncate(obj);
1780
1781 return 0;
1782 }
1783
1784 static unsigned long
1785 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1786 bool purgeable_only)
1787 {
1788 struct list_head still_bound_list;
1789 struct drm_i915_gem_object *obj, *next;
1790 unsigned long count = 0;
1791
1792 list_for_each_entry_safe(obj, next,
1793 &dev_priv->mm.unbound_list,
1794 global_list) {
1795 if ((i915_gem_object_is_purgeable(obj) || !purgeable_only) &&
1796 i915_gem_object_put_pages(obj) == 0) {
1797 count += obj->base.size >> PAGE_SHIFT;
1798 if (count >= target)
1799 return count;
1800 }
1801 }
1802
1803 /*
1804 * As we may completely rewrite the bound list whilst unbinding
1805 * (due to retiring requests) we have to strictly process only
1806 * one element of the list at the time, and recheck the list
1807 * on every iteration.
1808 */
1809 INIT_LIST_HEAD(&still_bound_list);
1810 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1811 struct i915_vma *vma, *v;
1812
1813 obj = list_first_entry(&dev_priv->mm.bound_list,
1814 typeof(*obj), global_list);
1815 list_move_tail(&obj->global_list, &still_bound_list);
1816
1817 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1818 continue;
1819
1820 /*
1821 * Hold a reference whilst we unbind this object, as we may
1822 * end up waiting for and retiring requests. This might
1823 * release the final reference (held by the active list)
1824 * and result in the object being freed from under us.
1825 * in this object being freed.
1826 *
1827 * Note 1: Shrinking the bound list is special since only active
1828 * (and hence bound objects) can contain such limbo objects, so
1829 * we don't need special tricks for shrinking the unbound list.
1830 * The only other place where we have to be careful with active
1831 * objects suddenly disappearing due to retiring requests is the
1832 * eviction code.
1833 *
1834 * Note 2: Even though the bound list doesn't hold a reference
1835 * to the object we can safely grab one here: The final object
1836 * unreferencing and the bound_list are both protected by the
1837 * dev->struct_mutex and so we won't ever be able to observe an
1838 * object on the bound_list with a reference count equals 0.
1839 */
1840 drm_gem_object_reference(&obj->base);
1841
1842 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1843 if (i915_vma_unbind(vma))
1844 break;
1845
1846 if (i915_gem_object_put_pages(obj) == 0)
1847 count += obj->base.size >> PAGE_SHIFT;
1848
1849 drm_gem_object_unreference(&obj->base);
1850 }
1851 list_splice(&still_bound_list, &dev_priv->mm.bound_list);
1852
1853 return count;
1854 }
1855
1856 static unsigned long
1857 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1858 {
1859 return __i915_gem_shrink(dev_priv, target, true);
1860 }
1861
1862 static unsigned long
1863 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1864 {
1865 struct drm_i915_gem_object *obj, *next;
1866 long freed = 0;
1867
1868 i915_gem_evict_everything(dev_priv->dev);
1869
1870 list_for_each_entry_safe(obj, next, &dev_priv->mm.unbound_list,
1871 global_list) {
1872 if (i915_gem_object_put_pages(obj) == 0)
1873 freed += obj->base.size >> PAGE_SHIFT;
1874 }
1875 return freed;
1876 }
1877
1878 static int
1879 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
1880 {
1881 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1882 int page_count, i;
1883 struct address_space *mapping;
1884 struct sg_table *st;
1885 struct scatterlist *sg;
1886 struct sg_page_iter sg_iter;
1887 struct page *page;
1888 unsigned long last_pfn = 0; /* suppress gcc warning */
1889 gfp_t gfp;
1890
1891 /* Assert that the object is not currently in any GPU domain. As it
1892 * wasn't in the GTT, there shouldn't be any way it could have been in
1893 * a GPU cache
1894 */
1895 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
1896 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
1897
1898 st = kmalloc(sizeof(*st), GFP_KERNEL);
1899 if (st == NULL)
1900 return -ENOMEM;
1901
1902 page_count = obj->base.size / PAGE_SIZE;
1903 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
1904 kfree(st);
1905 return -ENOMEM;
1906 }
1907
1908 /* Get the list of pages out of our struct file. They'll be pinned
1909 * at this point until we release them.
1910 *
1911 * Fail silently without starting the shrinker
1912 */
1913 mapping = file_inode(obj->base.filp)->i_mapping;
1914 gfp = mapping_gfp_mask(mapping);
1915 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1916 gfp &= ~(__GFP_IO | __GFP_WAIT);
1917 sg = st->sgl;
1918 st->nents = 0;
1919 for (i = 0; i < page_count; i++) {
1920 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1921 if (IS_ERR(page)) {
1922 i915_gem_purge(dev_priv, page_count);
1923 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1924 }
1925 if (IS_ERR(page)) {
1926 /* We've tried hard to allocate the memory by reaping
1927 * our own buffer, now let the real VM do its job and
1928 * go down in flames if truly OOM.
1929 */
1930 gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
1931 gfp |= __GFP_IO | __GFP_WAIT;
1932
1933 i915_gem_shrink_all(dev_priv);
1934 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
1935 if (IS_ERR(page))
1936 goto err_pages;
1937
1938 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
1939 gfp &= ~(__GFP_IO | __GFP_WAIT);
1940 }
1941 #ifdef CONFIG_SWIOTLB
1942 if (swiotlb_nr_tbl()) {
1943 st->nents++;
1944 sg_set_page(sg, page, PAGE_SIZE, 0);
1945 sg = sg_next(sg);
1946 continue;
1947 }
1948 #endif
1949 if (!i || page_to_pfn(page) != last_pfn + 1) {
1950 if (i)
1951 sg = sg_next(sg);
1952 st->nents++;
1953 sg_set_page(sg, page, PAGE_SIZE, 0);
1954 } else {
1955 sg->length += PAGE_SIZE;
1956 }
1957 last_pfn = page_to_pfn(page);
1958
1959 /* Check that the i965g/gm workaround works. */
1960 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
1961 }
1962 #ifdef CONFIG_SWIOTLB
1963 if (!swiotlb_nr_tbl())
1964 #endif
1965 sg_mark_end(sg);
1966 obj->pages = st;
1967
1968 if (i915_gem_object_needs_bit17_swizzle(obj))
1969 i915_gem_object_do_bit_17_swizzle(obj);
1970
1971 return 0;
1972
1973 err_pages:
1974 sg_mark_end(sg);
1975 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
1976 page_cache_release(sg_page_iter_page(&sg_iter));
1977 sg_free_table(st);
1978 kfree(st);
1979 return PTR_ERR(page);
1980 }
1981
1982 /* Ensure that the associated pages are gathered from the backing storage
1983 * and pinned into our object. i915_gem_object_get_pages() may be called
1984 * multiple times before they are released by a single call to
1985 * i915_gem_object_put_pages() - once the pages are no longer referenced
1986 * either as a result of memory pressure (reaping pages under the shrinker)
1987 * or as the object is itself released.
1988 */
1989 int
1990 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
1991 {
1992 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1993 const struct drm_i915_gem_object_ops *ops = obj->ops;
1994 int ret;
1995
1996 if (obj->pages)
1997 return 0;
1998
1999 if (obj->madv != I915_MADV_WILLNEED) {
2000 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2001 return -EFAULT;
2002 }
2003
2004 BUG_ON(obj->pages_pin_count);
2005
2006 ret = ops->get_pages(obj);
2007 if (ret)
2008 return ret;
2009
2010 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2011 return 0;
2012 }
2013
2014 static void
2015 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2016 struct intel_ring_buffer *ring)
2017 {
2018 struct drm_device *dev = obj->base.dev;
2019 struct drm_i915_private *dev_priv = dev->dev_private;
2020 u32 seqno = intel_ring_get_seqno(ring);
2021
2022 BUG_ON(ring == NULL);
2023 if (obj->ring != ring && obj->last_write_seqno) {
2024 /* Keep the seqno relative to the current ring */
2025 obj->last_write_seqno = seqno;
2026 }
2027 obj->ring = ring;
2028
2029 /* Add a reference if we're newly entering the active list. */
2030 if (!obj->active) {
2031 drm_gem_object_reference(&obj->base);
2032 obj->active = 1;
2033 }
2034
2035 list_move_tail(&obj->ring_list, &ring->active_list);
2036
2037 obj->last_read_seqno = seqno;
2038
2039 if (obj->fenced_gpu_access) {
2040 obj->last_fenced_seqno = seqno;
2041
2042 /* Bump MRU to take account of the delayed flush */
2043 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2044 struct drm_i915_fence_reg *reg;
2045
2046 reg = &dev_priv->fence_regs[obj->fence_reg];
2047 list_move_tail(&reg->lru_list,
2048 &dev_priv->mm.fence_list);
2049 }
2050 }
2051 }
2052
2053 void i915_vma_move_to_active(struct i915_vma *vma,
2054 struct intel_ring_buffer *ring)
2055 {
2056 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2057 return i915_gem_object_move_to_active(vma->obj, ring);
2058 }
2059
2060 static void
2061 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2062 {
2063 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2064 struct i915_address_space *vm;
2065 struct i915_vma *vma;
2066
2067 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2068 BUG_ON(!obj->active);
2069
2070 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2071 vma = i915_gem_obj_to_vma(obj, vm);
2072 if (vma && !list_empty(&vma->mm_list))
2073 list_move_tail(&vma->mm_list, &vm->inactive_list);
2074 }
2075
2076 list_del_init(&obj->ring_list);
2077 obj->ring = NULL;
2078
2079 obj->last_read_seqno = 0;
2080 obj->last_write_seqno = 0;
2081 obj->base.write_domain = 0;
2082
2083 obj->last_fenced_seqno = 0;
2084 obj->fenced_gpu_access = false;
2085
2086 obj->active = 0;
2087 drm_gem_object_unreference(&obj->base);
2088
2089 WARN_ON(i915_verify_lists(dev));
2090 }
2091
2092 static int
2093 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2094 {
2095 struct drm_i915_private *dev_priv = dev->dev_private;
2096 struct intel_ring_buffer *ring;
2097 int ret, i, j;
2098
2099 /* Carefully retire all requests without writing to the rings */
2100 for_each_ring(ring, dev_priv, i) {
2101 ret = intel_ring_idle(ring);
2102 if (ret)
2103 return ret;
2104 }
2105 i915_gem_retire_requests(dev);
2106
2107 /* Finally reset hw state */
2108 for_each_ring(ring, dev_priv, i) {
2109 intel_ring_init_seqno(ring, seqno);
2110
2111 for (j = 0; j < ARRAY_SIZE(ring->sync_seqno); j++)
2112 ring->sync_seqno[j] = 0;
2113 }
2114
2115 return 0;
2116 }
2117
2118 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2119 {
2120 struct drm_i915_private *dev_priv = dev->dev_private;
2121 int ret;
2122
2123 if (seqno == 0)
2124 return -EINVAL;
2125
2126 /* HWS page needs to be set less than what we
2127 * will inject to ring
2128 */
2129 ret = i915_gem_init_seqno(dev, seqno - 1);
2130 if (ret)
2131 return ret;
2132
2133 /* Carefully set the last_seqno value so that wrap
2134 * detection still works
2135 */
2136 dev_priv->next_seqno = seqno;
2137 dev_priv->last_seqno = seqno - 1;
2138 if (dev_priv->last_seqno == 0)
2139 dev_priv->last_seqno--;
2140
2141 return 0;
2142 }
2143
2144 int
2145 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2146 {
2147 struct drm_i915_private *dev_priv = dev->dev_private;
2148
2149 /* reserve 0 for non-seqno */
2150 if (dev_priv->next_seqno == 0) {
2151 int ret = i915_gem_init_seqno(dev, 0);
2152 if (ret)
2153 return ret;
2154
2155 dev_priv->next_seqno = 1;
2156 }
2157
2158 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2159 return 0;
2160 }
2161
2162 int __i915_add_request(struct intel_ring_buffer *ring,
2163 struct drm_file *file,
2164 struct drm_i915_gem_object *obj,
2165 u32 *out_seqno)
2166 {
2167 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2168 struct drm_i915_gem_request *request;
2169 u32 request_ring_position, request_start;
2170 int ret;
2171
2172 request_start = intel_ring_get_tail(ring);
2173 /*
2174 * Emit any outstanding flushes - execbuf can fail to emit the flush
2175 * after having emitted the batchbuffer command. Hence we need to fix
2176 * things up similar to emitting the lazy request. The difference here
2177 * is that the flush _must_ happen before the next request, no matter
2178 * what.
2179 */
2180 ret = intel_ring_flush_all_caches(ring);
2181 if (ret)
2182 return ret;
2183
2184 request = ring->preallocated_lazy_request;
2185 if (WARN_ON(request == NULL))
2186 return -ENOMEM;
2187
2188 /* Record the position of the start of the request so that
2189 * should we detect the updated seqno part-way through the
2190 * GPU processing the request, we never over-estimate the
2191 * position of the head.
2192 */
2193 request_ring_position = intel_ring_get_tail(ring);
2194
2195 ret = ring->add_request(ring);
2196 if (ret)
2197 return ret;
2198
2199 request->seqno = intel_ring_get_seqno(ring);
2200 request->ring = ring;
2201 request->head = request_start;
2202 request->tail = request_ring_position;
2203
2204 /* Whilst this request exists, batch_obj will be on the
2205 * active_list, and so will hold the active reference. Only when this
2206 * request is retired will the the batch_obj be moved onto the
2207 * inactive_list and lose its active reference. Hence we do not need
2208 * to explicitly hold another reference here.
2209 */
2210 request->batch_obj = obj;
2211
2212 /* Hold a reference to the current context so that we can inspect
2213 * it later in case a hangcheck error event fires.
2214 */
2215 request->ctx = ring->last_context;
2216 if (request->ctx)
2217 i915_gem_context_reference(request->ctx);
2218
2219 request->emitted_jiffies = jiffies;
2220 list_add_tail(&request->list, &ring->request_list);
2221 request->file_priv = NULL;
2222
2223 if (file) {
2224 struct drm_i915_file_private *file_priv = file->driver_priv;
2225
2226 spin_lock(&file_priv->mm.lock);
2227 request->file_priv = file_priv;
2228 list_add_tail(&request->client_list,
2229 &file_priv->mm.request_list);
2230 spin_unlock(&file_priv->mm.lock);
2231 }
2232
2233 trace_i915_gem_request_add(ring, request->seqno);
2234 ring->outstanding_lazy_seqno = 0;
2235 ring->preallocated_lazy_request = NULL;
2236
2237 if (!dev_priv->ums.mm_suspended) {
2238 i915_queue_hangcheck(ring->dev);
2239
2240 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2241 queue_delayed_work(dev_priv->wq,
2242 &dev_priv->mm.retire_work,
2243 round_jiffies_up_relative(HZ));
2244 intel_mark_busy(dev_priv->dev);
2245 }
2246
2247 if (out_seqno)
2248 *out_seqno = request->seqno;
2249 return 0;
2250 }
2251
2252 static inline void
2253 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2254 {
2255 struct drm_i915_file_private *file_priv = request->file_priv;
2256
2257 if (!file_priv)
2258 return;
2259
2260 spin_lock(&file_priv->mm.lock);
2261 list_del(&request->client_list);
2262 request->file_priv = NULL;
2263 spin_unlock(&file_priv->mm.lock);
2264 }
2265
2266 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2267 const struct i915_hw_context *ctx)
2268 {
2269 unsigned long elapsed;
2270
2271 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2272
2273 if (ctx->hang_stats.banned)
2274 return true;
2275
2276 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2277 if (!i915_gem_context_is_default(ctx)) {
2278 DRM_DEBUG("context hanging too fast, banning!\n");
2279 return true;
2280 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2281 if (i915_stop_ring_allow_warn(dev_priv))
2282 DRM_ERROR("gpu hanging too fast, banning!\n");
2283 return true;
2284 }
2285 }
2286
2287 return false;
2288 }
2289
2290 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2291 struct i915_hw_context *ctx,
2292 const bool guilty)
2293 {
2294 struct i915_ctx_hang_stats *hs;
2295
2296 if (WARN_ON(!ctx))
2297 return;
2298
2299 hs = &ctx->hang_stats;
2300
2301 if (guilty) {
2302 hs->banned = i915_context_is_banned(dev_priv, ctx);
2303 hs->batch_active++;
2304 hs->guilty_ts = get_seconds();
2305 } else {
2306 hs->batch_pending++;
2307 }
2308 }
2309
2310 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2311 {
2312 list_del(&request->list);
2313 i915_gem_request_remove_from_client(request);
2314
2315 if (request->ctx)
2316 i915_gem_context_unreference(request->ctx);
2317
2318 kfree(request);
2319 }
2320
2321 struct drm_i915_gem_request *
2322 i915_gem_find_active_request(struct intel_ring_buffer *ring)
2323 {
2324 struct drm_i915_gem_request *request;
2325 u32 completed_seqno;
2326
2327 completed_seqno = ring->get_seqno(ring, false);
2328
2329 list_for_each_entry(request, &ring->request_list, list) {
2330 if (i915_seqno_passed(completed_seqno, request->seqno))
2331 continue;
2332
2333 return request;
2334 }
2335
2336 return NULL;
2337 }
2338
2339 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2340 struct intel_ring_buffer *ring)
2341 {
2342 struct drm_i915_gem_request *request;
2343 bool ring_hung;
2344
2345 request = i915_gem_find_active_request(ring);
2346
2347 if (request == NULL)
2348 return;
2349
2350 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2351
2352 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2353
2354 list_for_each_entry_continue(request, &ring->request_list, list)
2355 i915_set_reset_status(dev_priv, request->ctx, false);
2356 }
2357
2358 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2359 struct intel_ring_buffer *ring)
2360 {
2361 while (!list_empty(&ring->active_list)) {
2362 struct drm_i915_gem_object *obj;
2363
2364 obj = list_first_entry(&ring->active_list,
2365 struct drm_i915_gem_object,
2366 ring_list);
2367
2368 i915_gem_object_move_to_inactive(obj);
2369 }
2370
2371 /*
2372 * We must free the requests after all the corresponding objects have
2373 * been moved off active lists. Which is the same order as the normal
2374 * retire_requests function does. This is important if object hold
2375 * implicit references on things like e.g. ppgtt address spaces through
2376 * the request.
2377 */
2378 while (!list_empty(&ring->request_list)) {
2379 struct drm_i915_gem_request *request;
2380
2381 request = list_first_entry(&ring->request_list,
2382 struct drm_i915_gem_request,
2383 list);
2384
2385 i915_gem_free_request(request);
2386 }
2387 }
2388
2389 void i915_gem_restore_fences(struct drm_device *dev)
2390 {
2391 struct drm_i915_private *dev_priv = dev->dev_private;
2392 int i;
2393
2394 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2395 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2396
2397 /*
2398 * Commit delayed tiling changes if we have an object still
2399 * attached to the fence, otherwise just clear the fence.
2400 */
2401 if (reg->obj) {
2402 i915_gem_object_update_fence(reg->obj, reg,
2403 reg->obj->tiling_mode);
2404 } else {
2405 i915_gem_write_fence(dev, i, NULL);
2406 }
2407 }
2408 }
2409
2410 void i915_gem_reset(struct drm_device *dev)
2411 {
2412 struct drm_i915_private *dev_priv = dev->dev_private;
2413 struct intel_ring_buffer *ring;
2414 int i;
2415
2416 /*
2417 * Before we free the objects from the requests, we need to inspect
2418 * them for finding the guilty party. As the requests only borrow
2419 * their reference to the objects, the inspection must be done first.
2420 */
2421 for_each_ring(ring, dev_priv, i)
2422 i915_gem_reset_ring_status(dev_priv, ring);
2423
2424 for_each_ring(ring, dev_priv, i)
2425 i915_gem_reset_ring_cleanup(dev_priv, ring);
2426
2427 i915_gem_cleanup_ringbuffer(dev);
2428
2429 i915_gem_context_reset(dev);
2430
2431 i915_gem_restore_fences(dev);
2432 }
2433
2434 /**
2435 * This function clears the request list as sequence numbers are passed.
2436 */
2437 static void
2438 i915_gem_retire_requests_ring(struct intel_ring_buffer *ring)
2439 {
2440 uint32_t seqno;
2441
2442 if (list_empty(&ring->request_list))
2443 return;
2444
2445 WARN_ON(i915_verify_lists(ring->dev));
2446
2447 seqno = ring->get_seqno(ring, true);
2448
2449 /* Move any buffers on the active list that are no longer referenced
2450 * by the ringbuffer to the flushing/inactive lists as appropriate,
2451 * before we free the context associated with the requests.
2452 */
2453 while (!list_empty(&ring->active_list)) {
2454 struct drm_i915_gem_object *obj;
2455
2456 obj = list_first_entry(&ring->active_list,
2457 struct drm_i915_gem_object,
2458 ring_list);
2459
2460 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2461 break;
2462
2463 i915_gem_object_move_to_inactive(obj);
2464 }
2465
2466
2467 while (!list_empty(&ring->request_list)) {
2468 struct drm_i915_gem_request *request;
2469
2470 request = list_first_entry(&ring->request_list,
2471 struct drm_i915_gem_request,
2472 list);
2473
2474 if (!i915_seqno_passed(seqno, request->seqno))
2475 break;
2476
2477 trace_i915_gem_request_retire(ring, request->seqno);
2478 /* We know the GPU must have read the request to have
2479 * sent us the seqno + interrupt, so use the position
2480 * of tail of the request to update the last known position
2481 * of the GPU head.
2482 */
2483 ring->last_retired_head = request->tail;
2484
2485 i915_gem_free_request(request);
2486 }
2487
2488 if (unlikely(ring->trace_irq_seqno &&
2489 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2490 ring->irq_put(ring);
2491 ring->trace_irq_seqno = 0;
2492 }
2493
2494 WARN_ON(i915_verify_lists(ring->dev));
2495 }
2496
2497 bool
2498 i915_gem_retire_requests(struct drm_device *dev)
2499 {
2500 struct drm_i915_private *dev_priv = dev->dev_private;
2501 struct intel_ring_buffer *ring;
2502 bool idle = true;
2503 int i;
2504
2505 for_each_ring(ring, dev_priv, i) {
2506 i915_gem_retire_requests_ring(ring);
2507 idle &= list_empty(&ring->request_list);
2508 }
2509
2510 if (idle)
2511 mod_delayed_work(dev_priv->wq,
2512 &dev_priv->mm.idle_work,
2513 msecs_to_jiffies(100));
2514
2515 return idle;
2516 }
2517
2518 static void
2519 i915_gem_retire_work_handler(struct work_struct *work)
2520 {
2521 struct drm_i915_private *dev_priv =
2522 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2523 struct drm_device *dev = dev_priv->dev;
2524 bool idle;
2525
2526 /* Come back later if the device is busy... */
2527 idle = false;
2528 if (mutex_trylock(&dev->struct_mutex)) {
2529 idle = i915_gem_retire_requests(dev);
2530 mutex_unlock(&dev->struct_mutex);
2531 }
2532 if (!idle)
2533 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2534 round_jiffies_up_relative(HZ));
2535 }
2536
2537 static void
2538 i915_gem_idle_work_handler(struct work_struct *work)
2539 {
2540 struct drm_i915_private *dev_priv =
2541 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2542
2543 intel_mark_idle(dev_priv->dev);
2544 }
2545
2546 /**
2547 * Ensures that an object will eventually get non-busy by flushing any required
2548 * write domains, emitting any outstanding lazy request and retiring and
2549 * completed requests.
2550 */
2551 static int
2552 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2553 {
2554 int ret;
2555
2556 if (obj->active) {
2557 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2558 if (ret)
2559 return ret;
2560
2561 i915_gem_retire_requests_ring(obj->ring);
2562 }
2563
2564 return 0;
2565 }
2566
2567 /**
2568 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2569 * @DRM_IOCTL_ARGS: standard ioctl arguments
2570 *
2571 * Returns 0 if successful, else an error is returned with the remaining time in
2572 * the timeout parameter.
2573 * -ETIME: object is still busy after timeout
2574 * -ERESTARTSYS: signal interrupted the wait
2575 * -ENONENT: object doesn't exist
2576 * Also possible, but rare:
2577 * -EAGAIN: GPU wedged
2578 * -ENOMEM: damn
2579 * -ENODEV: Internal IRQ fail
2580 * -E?: The add request failed
2581 *
2582 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2583 * non-zero timeout parameter the wait ioctl will wait for the given number of
2584 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2585 * without holding struct_mutex the object may become re-busied before this
2586 * function completes. A similar but shorter * race condition exists in the busy
2587 * ioctl
2588 */
2589 int
2590 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2591 {
2592 struct drm_i915_private *dev_priv = dev->dev_private;
2593 struct drm_i915_gem_wait *args = data;
2594 struct drm_i915_gem_object *obj;
2595 struct intel_ring_buffer *ring = NULL;
2596 struct timespec timeout_stack, *timeout = NULL;
2597 unsigned reset_counter;
2598 u32 seqno = 0;
2599 int ret = 0;
2600
2601 if (args->timeout_ns >= 0) {
2602 timeout_stack = ns_to_timespec(args->timeout_ns);
2603 timeout = &timeout_stack;
2604 }
2605
2606 ret = i915_mutex_lock_interruptible(dev);
2607 if (ret)
2608 return ret;
2609
2610 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2611 if (&obj->base == NULL) {
2612 mutex_unlock(&dev->struct_mutex);
2613 return -ENOENT;
2614 }
2615
2616 /* Need to make sure the object gets inactive eventually. */
2617 ret = i915_gem_object_flush_active(obj);
2618 if (ret)
2619 goto out;
2620
2621 if (obj->active) {
2622 seqno = obj->last_read_seqno;
2623 ring = obj->ring;
2624 }
2625
2626 if (seqno == 0)
2627 goto out;
2628
2629 /* Do this after OLR check to make sure we make forward progress polling
2630 * on this IOCTL with a 0 timeout (like busy ioctl)
2631 */
2632 if (!args->timeout_ns) {
2633 ret = -ETIME;
2634 goto out;
2635 }
2636
2637 drm_gem_object_unreference(&obj->base);
2638 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2639 mutex_unlock(&dev->struct_mutex);
2640
2641 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2642 if (timeout)
2643 args->timeout_ns = timespec_to_ns(timeout);
2644 return ret;
2645
2646 out:
2647 drm_gem_object_unreference(&obj->base);
2648 mutex_unlock(&dev->struct_mutex);
2649 return ret;
2650 }
2651
2652 /**
2653 * i915_gem_object_sync - sync an object to a ring.
2654 *
2655 * @obj: object which may be in use on another ring.
2656 * @to: ring we wish to use the object on. May be NULL.
2657 *
2658 * This code is meant to abstract object synchronization with the GPU.
2659 * Calling with NULL implies synchronizing the object with the CPU
2660 * rather than a particular GPU ring.
2661 *
2662 * Returns 0 if successful, else propagates up the lower layer error.
2663 */
2664 int
2665 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2666 struct intel_ring_buffer *to)
2667 {
2668 struct intel_ring_buffer *from = obj->ring;
2669 u32 seqno;
2670 int ret, idx;
2671
2672 if (from == NULL || to == from)
2673 return 0;
2674
2675 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2676 return i915_gem_object_wait_rendering(obj, false);
2677
2678 idx = intel_ring_sync_index(from, to);
2679
2680 seqno = obj->last_read_seqno;
2681 if (seqno <= from->sync_seqno[idx])
2682 return 0;
2683
2684 ret = i915_gem_check_olr(obj->ring, seqno);
2685 if (ret)
2686 return ret;
2687
2688 trace_i915_gem_ring_sync_to(from, to, seqno);
2689 ret = to->sync_to(to, from, seqno);
2690 if (!ret)
2691 /* We use last_read_seqno because sync_to()
2692 * might have just caused seqno wrap under
2693 * the radar.
2694 */
2695 from->sync_seqno[idx] = obj->last_read_seqno;
2696
2697 return ret;
2698 }
2699
2700 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2701 {
2702 u32 old_write_domain, old_read_domains;
2703
2704 /* Force a pagefault for domain tracking on next user access */
2705 i915_gem_release_mmap(obj);
2706
2707 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2708 return;
2709
2710 /* Wait for any direct GTT access to complete */
2711 mb();
2712
2713 old_read_domains = obj->base.read_domains;
2714 old_write_domain = obj->base.write_domain;
2715
2716 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2717 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2718
2719 trace_i915_gem_object_change_domain(obj,
2720 old_read_domains,
2721 old_write_domain);
2722 }
2723
2724 int i915_vma_unbind(struct i915_vma *vma)
2725 {
2726 struct drm_i915_gem_object *obj = vma->obj;
2727 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2728 int ret;
2729
2730 if (list_empty(&vma->vma_link))
2731 return 0;
2732
2733 if (!drm_mm_node_allocated(&vma->node)) {
2734 i915_gem_vma_destroy(vma);
2735 return 0;
2736 }
2737
2738 if (vma->pin_count)
2739 return -EBUSY;
2740
2741 BUG_ON(obj->pages == NULL);
2742
2743 ret = i915_gem_object_finish_gpu(obj);
2744 if (ret)
2745 return ret;
2746 /* Continue on if we fail due to EIO, the GPU is hung so we
2747 * should be safe and we need to cleanup or else we might
2748 * cause memory corruption through use-after-free.
2749 */
2750
2751 i915_gem_object_finish_gtt(obj);
2752
2753 /* release the fence reg _after_ flushing */
2754 ret = i915_gem_object_put_fence(obj);
2755 if (ret)
2756 return ret;
2757
2758 trace_i915_vma_unbind(vma);
2759
2760 vma->unbind_vma(vma);
2761
2762 i915_gem_gtt_finish_object(obj);
2763
2764 list_del_init(&vma->mm_list);
2765 /* Avoid an unnecessary call to unbind on rebind. */
2766 if (i915_is_ggtt(vma->vm))
2767 obj->map_and_fenceable = true;
2768
2769 drm_mm_remove_node(&vma->node);
2770 i915_gem_vma_destroy(vma);
2771
2772 /* Since the unbound list is global, only move to that list if
2773 * no more VMAs exist. */
2774 if (list_empty(&obj->vma_list))
2775 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2776
2777 /* And finally now the object is completely decoupled from this vma,
2778 * we can drop its hold on the backing storage and allow it to be
2779 * reaped by the shrinker.
2780 */
2781 i915_gem_object_unpin_pages(obj);
2782
2783 return 0;
2784 }
2785
2786 int i915_gpu_idle(struct drm_device *dev)
2787 {
2788 struct drm_i915_private *dev_priv = dev->dev_private;
2789 struct intel_ring_buffer *ring;
2790 int ret, i;
2791
2792 /* Flush everything onto the inactive list. */
2793 for_each_ring(ring, dev_priv, i) {
2794 ret = i915_switch_context(ring, ring->default_context);
2795 if (ret)
2796 return ret;
2797
2798 ret = intel_ring_idle(ring);
2799 if (ret)
2800 return ret;
2801 }
2802
2803 return 0;
2804 }
2805
2806 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2807 struct drm_i915_gem_object *obj)
2808 {
2809 struct drm_i915_private *dev_priv = dev->dev_private;
2810 int fence_reg;
2811 int fence_pitch_shift;
2812
2813 if (INTEL_INFO(dev)->gen >= 6) {
2814 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2815 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2816 } else {
2817 fence_reg = FENCE_REG_965_0;
2818 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2819 }
2820
2821 fence_reg += reg * 8;
2822
2823 /* To w/a incoherency with non-atomic 64-bit register updates,
2824 * we split the 64-bit update into two 32-bit writes. In order
2825 * for a partial fence not to be evaluated between writes, we
2826 * precede the update with write to turn off the fence register,
2827 * and only enable the fence as the last step.
2828 *
2829 * For extra levels of paranoia, we make sure each step lands
2830 * before applying the next step.
2831 */
2832 I915_WRITE(fence_reg, 0);
2833 POSTING_READ(fence_reg);
2834
2835 if (obj) {
2836 u32 size = i915_gem_obj_ggtt_size(obj);
2837 uint64_t val;
2838
2839 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2840 0xfffff000) << 32;
2841 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2842 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2843 if (obj->tiling_mode == I915_TILING_Y)
2844 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2845 val |= I965_FENCE_REG_VALID;
2846
2847 I915_WRITE(fence_reg + 4, val >> 32);
2848 POSTING_READ(fence_reg + 4);
2849
2850 I915_WRITE(fence_reg + 0, val);
2851 POSTING_READ(fence_reg);
2852 } else {
2853 I915_WRITE(fence_reg + 4, 0);
2854 POSTING_READ(fence_reg + 4);
2855 }
2856 }
2857
2858 static void i915_write_fence_reg(struct drm_device *dev, int reg,
2859 struct drm_i915_gem_object *obj)
2860 {
2861 struct drm_i915_private *dev_priv = dev->dev_private;
2862 u32 val;
2863
2864 if (obj) {
2865 u32 size = i915_gem_obj_ggtt_size(obj);
2866 int pitch_val;
2867 int tile_width;
2868
2869 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
2870 (size & -size) != size ||
2871 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2872 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
2873 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
2874
2875 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
2876 tile_width = 128;
2877 else
2878 tile_width = 512;
2879
2880 /* Note: pitch better be a power of two tile widths */
2881 pitch_val = obj->stride / tile_width;
2882 pitch_val = ffs(pitch_val) - 1;
2883
2884 val = i915_gem_obj_ggtt_offset(obj);
2885 if (obj->tiling_mode == I915_TILING_Y)
2886 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2887 val |= I915_FENCE_SIZE_BITS(size);
2888 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2889 val |= I830_FENCE_REG_VALID;
2890 } else
2891 val = 0;
2892
2893 if (reg < 8)
2894 reg = FENCE_REG_830_0 + reg * 4;
2895 else
2896 reg = FENCE_REG_945_8 + (reg - 8) * 4;
2897
2898 I915_WRITE(reg, val);
2899 POSTING_READ(reg);
2900 }
2901
2902 static void i830_write_fence_reg(struct drm_device *dev, int reg,
2903 struct drm_i915_gem_object *obj)
2904 {
2905 struct drm_i915_private *dev_priv = dev->dev_private;
2906 uint32_t val;
2907
2908 if (obj) {
2909 u32 size = i915_gem_obj_ggtt_size(obj);
2910 uint32_t pitch_val;
2911
2912 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
2913 (size & -size) != size ||
2914 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
2915 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
2916 i915_gem_obj_ggtt_offset(obj), size);
2917
2918 pitch_val = obj->stride / 128;
2919 pitch_val = ffs(pitch_val) - 1;
2920
2921 val = i915_gem_obj_ggtt_offset(obj);
2922 if (obj->tiling_mode == I915_TILING_Y)
2923 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2924 val |= I830_FENCE_SIZE_BITS(size);
2925 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2926 val |= I830_FENCE_REG_VALID;
2927 } else
2928 val = 0;
2929
2930 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
2931 POSTING_READ(FENCE_REG_830_0 + reg * 4);
2932 }
2933
2934 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
2935 {
2936 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
2937 }
2938
2939 static void i915_gem_write_fence(struct drm_device *dev, int reg,
2940 struct drm_i915_gem_object *obj)
2941 {
2942 struct drm_i915_private *dev_priv = dev->dev_private;
2943
2944 /* Ensure that all CPU reads are completed before installing a fence
2945 * and all writes before removing the fence.
2946 */
2947 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
2948 mb();
2949
2950 WARN(obj && (!obj->stride || !obj->tiling_mode),
2951 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
2952 obj->stride, obj->tiling_mode);
2953
2954 switch (INTEL_INFO(dev)->gen) {
2955 case 8:
2956 case 7:
2957 case 6:
2958 case 5:
2959 case 4: i965_write_fence_reg(dev, reg, obj); break;
2960 case 3: i915_write_fence_reg(dev, reg, obj); break;
2961 case 2: i830_write_fence_reg(dev, reg, obj); break;
2962 default: BUG();
2963 }
2964
2965 /* And similarly be paranoid that no direct access to this region
2966 * is reordered to before the fence is installed.
2967 */
2968 if (i915_gem_object_needs_mb(obj))
2969 mb();
2970 }
2971
2972 static inline int fence_number(struct drm_i915_private *dev_priv,
2973 struct drm_i915_fence_reg *fence)
2974 {
2975 return fence - dev_priv->fence_regs;
2976 }
2977
2978 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
2979 struct drm_i915_fence_reg *fence,
2980 bool enable)
2981 {
2982 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2983 int reg = fence_number(dev_priv, fence);
2984
2985 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
2986
2987 if (enable) {
2988 obj->fence_reg = reg;
2989 fence->obj = obj;
2990 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
2991 } else {
2992 obj->fence_reg = I915_FENCE_REG_NONE;
2993 fence->obj = NULL;
2994 list_del_init(&fence->lru_list);
2995 }
2996 obj->fence_dirty = false;
2997 }
2998
2999 static int
3000 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3001 {
3002 if (obj->last_fenced_seqno) {
3003 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3004 if (ret)
3005 return ret;
3006
3007 obj->last_fenced_seqno = 0;
3008 }
3009
3010 obj->fenced_gpu_access = false;
3011 return 0;
3012 }
3013
3014 int
3015 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3016 {
3017 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3018 struct drm_i915_fence_reg *fence;
3019 int ret;
3020
3021 ret = i915_gem_object_wait_fence(obj);
3022 if (ret)
3023 return ret;
3024
3025 if (obj->fence_reg == I915_FENCE_REG_NONE)
3026 return 0;
3027
3028 fence = &dev_priv->fence_regs[obj->fence_reg];
3029
3030 i915_gem_object_fence_lost(obj);
3031 i915_gem_object_update_fence(obj, fence, false);
3032
3033 return 0;
3034 }
3035
3036 static struct drm_i915_fence_reg *
3037 i915_find_fence_reg(struct drm_device *dev)
3038 {
3039 struct drm_i915_private *dev_priv = dev->dev_private;
3040 struct drm_i915_fence_reg *reg, *avail;
3041 int i;
3042
3043 /* First try to find a free reg */
3044 avail = NULL;
3045 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3046 reg = &dev_priv->fence_regs[i];
3047 if (!reg->obj)
3048 return reg;
3049
3050 if (!reg->pin_count)
3051 avail = reg;
3052 }
3053
3054 if (avail == NULL)
3055 goto deadlock;
3056
3057 /* None available, try to steal one or wait for a user to finish */
3058 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3059 if (reg->pin_count)
3060 continue;
3061
3062 return reg;
3063 }
3064
3065 deadlock:
3066 /* Wait for completion of pending flips which consume fences */
3067 if (intel_has_pending_fb_unpin(dev))
3068 return ERR_PTR(-EAGAIN);
3069
3070 return ERR_PTR(-EDEADLK);
3071 }
3072
3073 /**
3074 * i915_gem_object_get_fence - set up fencing for an object
3075 * @obj: object to map through a fence reg
3076 *
3077 * When mapping objects through the GTT, userspace wants to be able to write
3078 * to them without having to worry about swizzling if the object is tiled.
3079 * This function walks the fence regs looking for a free one for @obj,
3080 * stealing one if it can't find any.
3081 *
3082 * It then sets up the reg based on the object's properties: address, pitch
3083 * and tiling format.
3084 *
3085 * For an untiled surface, this removes any existing fence.
3086 */
3087 int
3088 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3089 {
3090 struct drm_device *dev = obj->base.dev;
3091 struct drm_i915_private *dev_priv = dev->dev_private;
3092 bool enable = obj->tiling_mode != I915_TILING_NONE;
3093 struct drm_i915_fence_reg *reg;
3094 int ret;
3095
3096 /* Have we updated the tiling parameters upon the object and so
3097 * will need to serialise the write to the associated fence register?
3098 */
3099 if (obj->fence_dirty) {
3100 ret = i915_gem_object_wait_fence(obj);
3101 if (ret)
3102 return ret;
3103 }
3104
3105 /* Just update our place in the LRU if our fence is getting reused. */
3106 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3107 reg = &dev_priv->fence_regs[obj->fence_reg];
3108 if (!obj->fence_dirty) {
3109 list_move_tail(&reg->lru_list,
3110 &dev_priv->mm.fence_list);
3111 return 0;
3112 }
3113 } else if (enable) {
3114 reg = i915_find_fence_reg(dev);
3115 if (IS_ERR(reg))
3116 return PTR_ERR(reg);
3117
3118 if (reg->obj) {
3119 struct drm_i915_gem_object *old = reg->obj;
3120
3121 ret = i915_gem_object_wait_fence(old);
3122 if (ret)
3123 return ret;
3124
3125 i915_gem_object_fence_lost(old);
3126 }
3127 } else
3128 return 0;
3129
3130 i915_gem_object_update_fence(obj, reg, enable);
3131
3132 return 0;
3133 }
3134
3135 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3136 struct drm_mm_node *gtt_space,
3137 unsigned long cache_level)
3138 {
3139 struct drm_mm_node *other;
3140
3141 /* On non-LLC machines we have to be careful when putting differing
3142 * types of snoopable memory together to avoid the prefetcher
3143 * crossing memory domains and dying.
3144 */
3145 if (HAS_LLC(dev))
3146 return true;
3147
3148 if (!drm_mm_node_allocated(gtt_space))
3149 return true;
3150
3151 if (list_empty(&gtt_space->node_list))
3152 return true;
3153
3154 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3155 if (other->allocated && !other->hole_follows && other->color != cache_level)
3156 return false;
3157
3158 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3159 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3160 return false;
3161
3162 return true;
3163 }
3164
3165 static void i915_gem_verify_gtt(struct drm_device *dev)
3166 {
3167 #if WATCH_GTT
3168 struct drm_i915_private *dev_priv = dev->dev_private;
3169 struct drm_i915_gem_object *obj;
3170 int err = 0;
3171
3172 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3173 if (obj->gtt_space == NULL) {
3174 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3175 err++;
3176 continue;
3177 }
3178
3179 if (obj->cache_level != obj->gtt_space->color) {
3180 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3181 i915_gem_obj_ggtt_offset(obj),
3182 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3183 obj->cache_level,
3184 obj->gtt_space->color);
3185 err++;
3186 continue;
3187 }
3188
3189 if (!i915_gem_valid_gtt_space(dev,
3190 obj->gtt_space,
3191 obj->cache_level)) {
3192 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3193 i915_gem_obj_ggtt_offset(obj),
3194 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3195 obj->cache_level);
3196 err++;
3197 continue;
3198 }
3199 }
3200
3201 WARN_ON(err);
3202 #endif
3203 }
3204
3205 /**
3206 * Finds free space in the GTT aperture and binds the object there.
3207 */
3208 static struct i915_vma *
3209 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3210 struct i915_address_space *vm,
3211 unsigned alignment,
3212 unsigned flags)
3213 {
3214 struct drm_device *dev = obj->base.dev;
3215 struct drm_i915_private *dev_priv = dev->dev_private;
3216 u32 size, fence_size, fence_alignment, unfenced_alignment;
3217 size_t gtt_max =
3218 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3219 struct i915_vma *vma;
3220 int ret;
3221
3222 fence_size = i915_gem_get_gtt_size(dev,
3223 obj->base.size,
3224 obj->tiling_mode);
3225 fence_alignment = i915_gem_get_gtt_alignment(dev,
3226 obj->base.size,
3227 obj->tiling_mode, true);
3228 unfenced_alignment =
3229 i915_gem_get_gtt_alignment(dev,
3230 obj->base.size,
3231 obj->tiling_mode, false);
3232
3233 if (alignment == 0)
3234 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3235 unfenced_alignment;
3236 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3237 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3238 return ERR_PTR(-EINVAL);
3239 }
3240
3241 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3242
3243 /* If the object is bigger than the entire aperture, reject it early
3244 * before evicting everything in a vain attempt to find space.
3245 */
3246 if (obj->base.size > gtt_max) {
3247 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%zu\n",
3248 obj->base.size,
3249 flags & PIN_MAPPABLE ? "mappable" : "total",
3250 gtt_max);
3251 return ERR_PTR(-E2BIG);
3252 }
3253
3254 ret = i915_gem_object_get_pages(obj);
3255 if (ret)
3256 return ERR_PTR(ret);
3257
3258 i915_gem_object_pin_pages(obj);
3259
3260 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3261 if (IS_ERR(vma))
3262 goto err_unpin;
3263
3264 search_free:
3265 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3266 size, alignment,
3267 obj->cache_level, 0, gtt_max,
3268 DRM_MM_SEARCH_DEFAULT,
3269 DRM_MM_CREATE_DEFAULT);
3270 if (ret) {
3271 ret = i915_gem_evict_something(dev, vm, size, alignment,
3272 obj->cache_level, flags);
3273 if (ret == 0)
3274 goto search_free;
3275
3276 goto err_free_vma;
3277 }
3278 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3279 obj->cache_level))) {
3280 ret = -EINVAL;
3281 goto err_remove_node;
3282 }
3283
3284 ret = i915_gem_gtt_prepare_object(obj);
3285 if (ret)
3286 goto err_remove_node;
3287
3288 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3289 list_add_tail(&vma->mm_list, &vm->inactive_list);
3290
3291 if (i915_is_ggtt(vm)) {
3292 bool mappable, fenceable;
3293
3294 fenceable = (vma->node.size == fence_size &&
3295 (vma->node.start & (fence_alignment - 1)) == 0);
3296
3297 mappable = (vma->node.start + obj->base.size <=
3298 dev_priv->gtt.mappable_end);
3299
3300 obj->map_and_fenceable = mappable && fenceable;
3301 }
3302
3303 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3304
3305 trace_i915_vma_bind(vma, flags);
3306 vma->bind_vma(vma, obj->cache_level,
3307 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3308
3309 i915_gem_verify_gtt(dev);
3310 return vma;
3311
3312 err_remove_node:
3313 drm_mm_remove_node(&vma->node);
3314 err_free_vma:
3315 i915_gem_vma_destroy(vma);
3316 vma = ERR_PTR(ret);
3317 err_unpin:
3318 i915_gem_object_unpin_pages(obj);
3319 return vma;
3320 }
3321
3322 bool
3323 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3324 bool force)
3325 {
3326 /* If we don't have a page list set up, then we're not pinned
3327 * to GPU, and we can ignore the cache flush because it'll happen
3328 * again at bind time.
3329 */
3330 if (obj->pages == NULL)
3331 return false;
3332
3333 /*
3334 * Stolen memory is always coherent with the GPU as it is explicitly
3335 * marked as wc by the system, or the system is cache-coherent.
3336 */
3337 if (obj->stolen)
3338 return false;
3339
3340 /* If the GPU is snooping the contents of the CPU cache,
3341 * we do not need to manually clear the CPU cache lines. However,
3342 * the caches are only snooped when the render cache is
3343 * flushed/invalidated. As we always have to emit invalidations
3344 * and flushes when moving into and out of the RENDER domain, correct
3345 * snooping behaviour occurs naturally as the result of our domain
3346 * tracking.
3347 */
3348 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3349 return false;
3350
3351 trace_i915_gem_object_clflush(obj);
3352 drm_clflush_sg(obj->pages);
3353
3354 return true;
3355 }
3356
3357 /** Flushes the GTT write domain for the object if it's dirty. */
3358 static void
3359 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3360 {
3361 uint32_t old_write_domain;
3362
3363 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3364 return;
3365
3366 /* No actual flushing is required for the GTT write domain. Writes
3367 * to it immediately go to main memory as far as we know, so there's
3368 * no chipset flush. It also doesn't land in render cache.
3369 *
3370 * However, we do have to enforce the order so that all writes through
3371 * the GTT land before any writes to the device, such as updates to
3372 * the GATT itself.
3373 */
3374 wmb();
3375
3376 old_write_domain = obj->base.write_domain;
3377 obj->base.write_domain = 0;
3378
3379 trace_i915_gem_object_change_domain(obj,
3380 obj->base.read_domains,
3381 old_write_domain);
3382 }
3383
3384 /** Flushes the CPU write domain for the object if it's dirty. */
3385 static void
3386 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3387 bool force)
3388 {
3389 uint32_t old_write_domain;
3390
3391 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3392 return;
3393
3394 if (i915_gem_clflush_object(obj, force))
3395 i915_gem_chipset_flush(obj->base.dev);
3396
3397 old_write_domain = obj->base.write_domain;
3398 obj->base.write_domain = 0;
3399
3400 trace_i915_gem_object_change_domain(obj,
3401 obj->base.read_domains,
3402 old_write_domain);
3403 }
3404
3405 /**
3406 * Moves a single object to the GTT read, and possibly write domain.
3407 *
3408 * This function returns when the move is complete, including waiting on
3409 * flushes to occur.
3410 */
3411 int
3412 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3413 {
3414 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3415 uint32_t old_write_domain, old_read_domains;
3416 int ret;
3417
3418 /* Not valid to be called on unbound objects. */
3419 if (!i915_gem_obj_bound_any(obj))
3420 return -EINVAL;
3421
3422 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3423 return 0;
3424
3425 ret = i915_gem_object_wait_rendering(obj, !write);
3426 if (ret)
3427 return ret;
3428
3429 i915_gem_object_flush_cpu_write_domain(obj, false);
3430
3431 /* Serialise direct access to this object with the barriers for
3432 * coherent writes from the GPU, by effectively invalidating the
3433 * GTT domain upon first access.
3434 */
3435 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3436 mb();
3437
3438 old_write_domain = obj->base.write_domain;
3439 old_read_domains = obj->base.read_domains;
3440
3441 /* It should now be out of any other write domains, and we can update
3442 * the domain values for our changes.
3443 */
3444 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3445 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3446 if (write) {
3447 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3448 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3449 obj->dirty = 1;
3450 }
3451
3452 trace_i915_gem_object_change_domain(obj,
3453 old_read_domains,
3454 old_write_domain);
3455
3456 /* And bump the LRU for this access */
3457 if (i915_gem_object_is_inactive(obj)) {
3458 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3459 if (vma)
3460 list_move_tail(&vma->mm_list,
3461 &dev_priv->gtt.base.inactive_list);
3462
3463 }
3464
3465 return 0;
3466 }
3467
3468 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3469 enum i915_cache_level cache_level)
3470 {
3471 struct drm_device *dev = obj->base.dev;
3472 struct i915_vma *vma, *next;
3473 int ret;
3474
3475 if (obj->cache_level == cache_level)
3476 return 0;
3477
3478 if (i915_gem_obj_is_pinned(obj)) {
3479 DRM_DEBUG("can not change the cache level of pinned objects\n");
3480 return -EBUSY;
3481 }
3482
3483 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3484 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3485 ret = i915_vma_unbind(vma);
3486 if (ret)
3487 return ret;
3488 }
3489 }
3490
3491 if (i915_gem_obj_bound_any(obj)) {
3492 ret = i915_gem_object_finish_gpu(obj);
3493 if (ret)
3494 return ret;
3495
3496 i915_gem_object_finish_gtt(obj);
3497
3498 /* Before SandyBridge, you could not use tiling or fence
3499 * registers with snooped memory, so relinquish any fences
3500 * currently pointing to our region in the aperture.
3501 */
3502 if (INTEL_INFO(dev)->gen < 6) {
3503 ret = i915_gem_object_put_fence(obj);
3504 if (ret)
3505 return ret;
3506 }
3507
3508 list_for_each_entry(vma, &obj->vma_list, vma_link)
3509 if (drm_mm_node_allocated(&vma->node))
3510 vma->bind_vma(vma, cache_level,
3511 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3512 }
3513
3514 list_for_each_entry(vma, &obj->vma_list, vma_link)
3515 vma->node.color = cache_level;
3516 obj->cache_level = cache_level;
3517
3518 if (cpu_write_needs_clflush(obj)) {
3519 u32 old_read_domains, old_write_domain;
3520
3521 /* If we're coming from LLC cached, then we haven't
3522 * actually been tracking whether the data is in the
3523 * CPU cache or not, since we only allow one bit set
3524 * in obj->write_domain and have been skipping the clflushes.
3525 * Just set it to the CPU cache for now.
3526 */
3527 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3528
3529 old_read_domains = obj->base.read_domains;
3530 old_write_domain = obj->base.write_domain;
3531
3532 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3533 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3534
3535 trace_i915_gem_object_change_domain(obj,
3536 old_read_domains,
3537 old_write_domain);
3538 }
3539
3540 i915_gem_verify_gtt(dev);
3541 return 0;
3542 }
3543
3544 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3545 struct drm_file *file)
3546 {
3547 struct drm_i915_gem_caching *args = data;
3548 struct drm_i915_gem_object *obj;
3549 int ret;
3550
3551 ret = i915_mutex_lock_interruptible(dev);
3552 if (ret)
3553 return ret;
3554
3555 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3556 if (&obj->base == NULL) {
3557 ret = -ENOENT;
3558 goto unlock;
3559 }
3560
3561 switch (obj->cache_level) {
3562 case I915_CACHE_LLC:
3563 case I915_CACHE_L3_LLC:
3564 args->caching = I915_CACHING_CACHED;
3565 break;
3566
3567 case I915_CACHE_WT:
3568 args->caching = I915_CACHING_DISPLAY;
3569 break;
3570
3571 default:
3572 args->caching = I915_CACHING_NONE;
3573 break;
3574 }
3575
3576 drm_gem_object_unreference(&obj->base);
3577 unlock:
3578 mutex_unlock(&dev->struct_mutex);
3579 return ret;
3580 }
3581
3582 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3583 struct drm_file *file)
3584 {
3585 struct drm_i915_gem_caching *args = data;
3586 struct drm_i915_gem_object *obj;
3587 enum i915_cache_level level;
3588 int ret;
3589
3590 switch (args->caching) {
3591 case I915_CACHING_NONE:
3592 level = I915_CACHE_NONE;
3593 break;
3594 case I915_CACHING_CACHED:
3595 level = I915_CACHE_LLC;
3596 break;
3597 case I915_CACHING_DISPLAY:
3598 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3599 break;
3600 default:
3601 return -EINVAL;
3602 }
3603
3604 ret = i915_mutex_lock_interruptible(dev);
3605 if (ret)
3606 return ret;
3607
3608 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3609 if (&obj->base == NULL) {
3610 ret = -ENOENT;
3611 goto unlock;
3612 }
3613
3614 ret = i915_gem_object_set_cache_level(obj, level);
3615
3616 drm_gem_object_unreference(&obj->base);
3617 unlock:
3618 mutex_unlock(&dev->struct_mutex);
3619 return ret;
3620 }
3621
3622 static bool is_pin_display(struct drm_i915_gem_object *obj)
3623 {
3624 /* There are 3 sources that pin objects:
3625 * 1. The display engine (scanouts, sprites, cursors);
3626 * 2. Reservations for execbuffer;
3627 * 3. The user.
3628 *
3629 * We can ignore reservations as we hold the struct_mutex and
3630 * are only called outside of the reservation path. The user
3631 * can only increment pin_count once, and so if after
3632 * subtracting the potential reference by the user, any pin_count
3633 * remains, it must be due to another use by the display engine.
3634 */
3635 return i915_gem_obj_to_ggtt(obj)->pin_count - !!obj->user_pin_count;
3636 }
3637
3638 /*
3639 * Prepare buffer for display plane (scanout, cursors, etc).
3640 * Can be called from an uninterruptible phase (modesetting) and allows
3641 * any flushes to be pipelined (for pageflips).
3642 */
3643 int
3644 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3645 u32 alignment,
3646 struct intel_ring_buffer *pipelined)
3647 {
3648 u32 old_read_domains, old_write_domain;
3649 int ret;
3650
3651 if (pipelined != obj->ring) {
3652 ret = i915_gem_object_sync(obj, pipelined);
3653 if (ret)
3654 return ret;
3655 }
3656
3657 /* Mark the pin_display early so that we account for the
3658 * display coherency whilst setting up the cache domains.
3659 */
3660 obj->pin_display = true;
3661
3662 /* The display engine is not coherent with the LLC cache on gen6. As
3663 * a result, we make sure that the pinning that is about to occur is
3664 * done with uncached PTEs. This is lowest common denominator for all
3665 * chipsets.
3666 *
3667 * However for gen6+, we could do better by using the GFDT bit instead
3668 * of uncaching, which would allow us to flush all the LLC-cached data
3669 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3670 */
3671 ret = i915_gem_object_set_cache_level(obj,
3672 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3673 if (ret)
3674 goto err_unpin_display;
3675
3676 /* As the user may map the buffer once pinned in the display plane
3677 * (e.g. libkms for the bootup splash), we have to ensure that we
3678 * always use map_and_fenceable for all scanout buffers.
3679 */
3680 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3681 if (ret)
3682 goto err_unpin_display;
3683
3684 i915_gem_object_flush_cpu_write_domain(obj, true);
3685
3686 old_write_domain = obj->base.write_domain;
3687 old_read_domains = obj->base.read_domains;
3688
3689 /* It should now be out of any other write domains, and we can update
3690 * the domain values for our changes.
3691 */
3692 obj->base.write_domain = 0;
3693 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3694
3695 trace_i915_gem_object_change_domain(obj,
3696 old_read_domains,
3697 old_write_domain);
3698
3699 return 0;
3700
3701 err_unpin_display:
3702 obj->pin_display = is_pin_display(obj);
3703 return ret;
3704 }
3705
3706 void
3707 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3708 {
3709 i915_gem_object_ggtt_unpin(obj);
3710 obj->pin_display = is_pin_display(obj);
3711 }
3712
3713 int
3714 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3715 {
3716 int ret;
3717
3718 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3719 return 0;
3720
3721 ret = i915_gem_object_wait_rendering(obj, false);
3722 if (ret)
3723 return ret;
3724
3725 /* Ensure that we invalidate the GPU's caches and TLBs. */
3726 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3727 return 0;
3728 }
3729
3730 /**
3731 * Moves a single object to the CPU read, and possibly write domain.
3732 *
3733 * This function returns when the move is complete, including waiting on
3734 * flushes to occur.
3735 */
3736 int
3737 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3738 {
3739 uint32_t old_write_domain, old_read_domains;
3740 int ret;
3741
3742 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3743 return 0;
3744
3745 ret = i915_gem_object_wait_rendering(obj, !write);
3746 if (ret)
3747 return ret;
3748
3749 i915_gem_object_flush_gtt_write_domain(obj);
3750
3751 old_write_domain = obj->base.write_domain;
3752 old_read_domains = obj->base.read_domains;
3753
3754 /* Flush the CPU cache if it's still invalid. */
3755 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3756 i915_gem_clflush_object(obj, false);
3757
3758 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3759 }
3760
3761 /* It should now be out of any other write domains, and we can update
3762 * the domain values for our changes.
3763 */
3764 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3765
3766 /* If we're writing through the CPU, then the GPU read domains will
3767 * need to be invalidated at next use.
3768 */
3769 if (write) {
3770 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3771 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3772 }
3773
3774 trace_i915_gem_object_change_domain(obj,
3775 old_read_domains,
3776 old_write_domain);
3777
3778 return 0;
3779 }
3780
3781 /* Throttle our rendering by waiting until the ring has completed our requests
3782 * emitted over 20 msec ago.
3783 *
3784 * Note that if we were to use the current jiffies each time around the loop,
3785 * we wouldn't escape the function with any frames outstanding if the time to
3786 * render a frame was over 20ms.
3787 *
3788 * This should get us reasonable parallelism between CPU and GPU but also
3789 * relatively low latency when blocking on a particular request to finish.
3790 */
3791 static int
3792 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3793 {
3794 struct drm_i915_private *dev_priv = dev->dev_private;
3795 struct drm_i915_file_private *file_priv = file->driver_priv;
3796 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3797 struct drm_i915_gem_request *request;
3798 struct intel_ring_buffer *ring = NULL;
3799 unsigned reset_counter;
3800 u32 seqno = 0;
3801 int ret;
3802
3803 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3804 if (ret)
3805 return ret;
3806
3807 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3808 if (ret)
3809 return ret;
3810
3811 spin_lock(&file_priv->mm.lock);
3812 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3813 if (time_after_eq(request->emitted_jiffies, recent_enough))
3814 break;
3815
3816 ring = request->ring;
3817 seqno = request->seqno;
3818 }
3819 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
3820 spin_unlock(&file_priv->mm.lock);
3821
3822 if (seqno == 0)
3823 return 0;
3824
3825 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
3826 if (ret == 0)
3827 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
3828
3829 return ret;
3830 }
3831
3832 int
3833 i915_gem_object_pin(struct drm_i915_gem_object *obj,
3834 struct i915_address_space *vm,
3835 uint32_t alignment,
3836 unsigned flags)
3837 {
3838 struct i915_vma *vma;
3839 int ret;
3840
3841 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
3842 return -EINVAL;
3843
3844 vma = i915_gem_obj_to_vma(obj, vm);
3845 if (vma) {
3846 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
3847 return -EBUSY;
3848
3849 if ((alignment &&
3850 vma->node.start & (alignment - 1)) ||
3851 (flags & PIN_MAPPABLE && !obj->map_and_fenceable)) {
3852 WARN(vma->pin_count,
3853 "bo is already pinned with incorrect alignment:"
3854 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
3855 " obj->map_and_fenceable=%d\n",
3856 i915_gem_obj_offset(obj, vm), alignment,
3857 flags & PIN_MAPPABLE,
3858 obj->map_and_fenceable);
3859 ret = i915_vma_unbind(vma);
3860 if (ret)
3861 return ret;
3862
3863 vma = NULL;
3864 }
3865 }
3866
3867 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
3868 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
3869 if (IS_ERR(vma))
3870 return PTR_ERR(vma);
3871 }
3872
3873 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
3874 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
3875
3876 vma->pin_count++;
3877 if (flags & PIN_MAPPABLE)
3878 obj->pin_mappable |= true;
3879
3880 return 0;
3881 }
3882
3883 void
3884 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
3885 {
3886 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3887
3888 BUG_ON(!vma);
3889 BUG_ON(vma->pin_count == 0);
3890 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
3891
3892 if (--vma->pin_count == 0)
3893 obj->pin_mappable = false;
3894 }
3895
3896 int
3897 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3898 struct drm_file *file)
3899 {
3900 struct drm_i915_gem_pin *args = data;
3901 struct drm_i915_gem_object *obj;
3902 int ret;
3903
3904 if (INTEL_INFO(dev)->gen >= 6)
3905 return -ENODEV;
3906
3907 ret = i915_mutex_lock_interruptible(dev);
3908 if (ret)
3909 return ret;
3910
3911 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3912 if (&obj->base == NULL) {
3913 ret = -ENOENT;
3914 goto unlock;
3915 }
3916
3917 if (obj->madv != I915_MADV_WILLNEED) {
3918 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
3919 ret = -EFAULT;
3920 goto out;
3921 }
3922
3923 if (obj->pin_filp != NULL && obj->pin_filp != file) {
3924 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
3925 args->handle);
3926 ret = -EINVAL;
3927 goto out;
3928 }
3929
3930 if (obj->user_pin_count == ULONG_MAX) {
3931 ret = -EBUSY;
3932 goto out;
3933 }
3934
3935 if (obj->user_pin_count == 0) {
3936 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
3937 if (ret)
3938 goto out;
3939 }
3940
3941 obj->user_pin_count++;
3942 obj->pin_filp = file;
3943
3944 args->offset = i915_gem_obj_ggtt_offset(obj);
3945 out:
3946 drm_gem_object_unreference(&obj->base);
3947 unlock:
3948 mutex_unlock(&dev->struct_mutex);
3949 return ret;
3950 }
3951
3952 int
3953 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3954 struct drm_file *file)
3955 {
3956 struct drm_i915_gem_pin *args = data;
3957 struct drm_i915_gem_object *obj;
3958 int ret;
3959
3960 ret = i915_mutex_lock_interruptible(dev);
3961 if (ret)
3962 return ret;
3963
3964 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3965 if (&obj->base == NULL) {
3966 ret = -ENOENT;
3967 goto unlock;
3968 }
3969
3970 if (obj->pin_filp != file) {
3971 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3972 args->handle);
3973 ret = -EINVAL;
3974 goto out;
3975 }
3976 obj->user_pin_count--;
3977 if (obj->user_pin_count == 0) {
3978 obj->pin_filp = NULL;
3979 i915_gem_object_ggtt_unpin(obj);
3980 }
3981
3982 out:
3983 drm_gem_object_unreference(&obj->base);
3984 unlock:
3985 mutex_unlock(&dev->struct_mutex);
3986 return ret;
3987 }
3988
3989 int
3990 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3991 struct drm_file *file)
3992 {
3993 struct drm_i915_gem_busy *args = data;
3994 struct drm_i915_gem_object *obj;
3995 int ret;
3996
3997 ret = i915_mutex_lock_interruptible(dev);
3998 if (ret)
3999 return ret;
4000
4001 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4002 if (&obj->base == NULL) {
4003 ret = -ENOENT;
4004 goto unlock;
4005 }
4006
4007 /* Count all active objects as busy, even if they are currently not used
4008 * by the gpu. Users of this interface expect objects to eventually
4009 * become non-busy without any further actions, therefore emit any
4010 * necessary flushes here.
4011 */
4012 ret = i915_gem_object_flush_active(obj);
4013
4014 args->busy = obj->active;
4015 if (obj->ring) {
4016 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4017 args->busy |= intel_ring_flag(obj->ring) << 16;
4018 }
4019
4020 drm_gem_object_unreference(&obj->base);
4021 unlock:
4022 mutex_unlock(&dev->struct_mutex);
4023 return ret;
4024 }
4025
4026 int
4027 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4028 struct drm_file *file_priv)
4029 {
4030 return i915_gem_ring_throttle(dev, file_priv);
4031 }
4032
4033 int
4034 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4035 struct drm_file *file_priv)
4036 {
4037 struct drm_i915_gem_madvise *args = data;
4038 struct drm_i915_gem_object *obj;
4039 int ret;
4040
4041 switch (args->madv) {
4042 case I915_MADV_DONTNEED:
4043 case I915_MADV_WILLNEED:
4044 break;
4045 default:
4046 return -EINVAL;
4047 }
4048
4049 ret = i915_mutex_lock_interruptible(dev);
4050 if (ret)
4051 return ret;
4052
4053 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4054 if (&obj->base == NULL) {
4055 ret = -ENOENT;
4056 goto unlock;
4057 }
4058
4059 if (i915_gem_obj_is_pinned(obj)) {
4060 ret = -EINVAL;
4061 goto out;
4062 }
4063
4064 if (obj->madv != __I915_MADV_PURGED)
4065 obj->madv = args->madv;
4066
4067 /* if the object is no longer attached, discard its backing storage */
4068 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4069 i915_gem_object_truncate(obj);
4070
4071 args->retained = obj->madv != __I915_MADV_PURGED;
4072
4073 out:
4074 drm_gem_object_unreference(&obj->base);
4075 unlock:
4076 mutex_unlock(&dev->struct_mutex);
4077 return ret;
4078 }
4079
4080 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4081 const struct drm_i915_gem_object_ops *ops)
4082 {
4083 INIT_LIST_HEAD(&obj->global_list);
4084 INIT_LIST_HEAD(&obj->ring_list);
4085 INIT_LIST_HEAD(&obj->obj_exec_link);
4086 INIT_LIST_HEAD(&obj->vma_list);
4087
4088 obj->ops = ops;
4089
4090 obj->fence_reg = I915_FENCE_REG_NONE;
4091 obj->madv = I915_MADV_WILLNEED;
4092 /* Avoid an unnecessary call to unbind on the first bind. */
4093 obj->map_and_fenceable = true;
4094
4095 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4096 }
4097
4098 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4099 .get_pages = i915_gem_object_get_pages_gtt,
4100 .put_pages = i915_gem_object_put_pages_gtt,
4101 };
4102
4103 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4104 size_t size)
4105 {
4106 struct drm_i915_gem_object *obj;
4107 struct address_space *mapping;
4108 gfp_t mask;
4109
4110 obj = i915_gem_object_alloc(dev);
4111 if (obj == NULL)
4112 return NULL;
4113
4114 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4115 i915_gem_object_free(obj);
4116 return NULL;
4117 }
4118
4119 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4120 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4121 /* 965gm cannot relocate objects above 4GiB. */
4122 mask &= ~__GFP_HIGHMEM;
4123 mask |= __GFP_DMA32;
4124 }
4125
4126 mapping = file_inode(obj->base.filp)->i_mapping;
4127 mapping_set_gfp_mask(mapping, mask);
4128
4129 i915_gem_object_init(obj, &i915_gem_object_ops);
4130
4131 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4132 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4133
4134 if (HAS_LLC(dev)) {
4135 /* On some devices, we can have the GPU use the LLC (the CPU
4136 * cache) for about a 10% performance improvement
4137 * compared to uncached. Graphics requests other than
4138 * display scanout are coherent with the CPU in
4139 * accessing this cache. This means in this mode we
4140 * don't need to clflush on the CPU side, and on the
4141 * GPU side we only need to flush internal caches to
4142 * get data visible to the CPU.
4143 *
4144 * However, we maintain the display planes as UC, and so
4145 * need to rebind when first used as such.
4146 */
4147 obj->cache_level = I915_CACHE_LLC;
4148 } else
4149 obj->cache_level = I915_CACHE_NONE;
4150
4151 trace_i915_gem_object_create(obj);
4152
4153 return obj;
4154 }
4155
4156 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4157 {
4158 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4159 struct drm_device *dev = obj->base.dev;
4160 struct drm_i915_private *dev_priv = dev->dev_private;
4161 struct i915_vma *vma, *next;
4162
4163 intel_runtime_pm_get(dev_priv);
4164
4165 trace_i915_gem_object_destroy(obj);
4166
4167 if (obj->phys_obj)
4168 i915_gem_detach_phys_object(dev, obj);
4169
4170 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4171 int ret;
4172
4173 vma->pin_count = 0;
4174 ret = i915_vma_unbind(vma);
4175 if (WARN_ON(ret == -ERESTARTSYS)) {
4176 bool was_interruptible;
4177
4178 was_interruptible = dev_priv->mm.interruptible;
4179 dev_priv->mm.interruptible = false;
4180
4181 WARN_ON(i915_vma_unbind(vma));
4182
4183 dev_priv->mm.interruptible = was_interruptible;
4184 }
4185 }
4186
4187 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4188 * before progressing. */
4189 if (obj->stolen)
4190 i915_gem_object_unpin_pages(obj);
4191
4192 if (WARN_ON(obj->pages_pin_count))
4193 obj->pages_pin_count = 0;
4194 i915_gem_object_put_pages(obj);
4195 i915_gem_object_free_mmap_offset(obj);
4196 i915_gem_object_release_stolen(obj);
4197
4198 BUG_ON(obj->pages);
4199
4200 if (obj->base.import_attach)
4201 drm_prime_gem_destroy(&obj->base, NULL);
4202
4203 drm_gem_object_release(&obj->base);
4204 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4205
4206 kfree(obj->bit_17);
4207 i915_gem_object_free(obj);
4208
4209 intel_runtime_pm_put(dev_priv);
4210 }
4211
4212 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4213 struct i915_address_space *vm)
4214 {
4215 struct i915_vma *vma;
4216 list_for_each_entry(vma, &obj->vma_list, vma_link)
4217 if (vma->vm == vm)
4218 return vma;
4219
4220 return NULL;
4221 }
4222
4223 void i915_gem_vma_destroy(struct i915_vma *vma)
4224 {
4225 WARN_ON(vma->node.allocated);
4226
4227 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4228 if (!list_empty(&vma->exec_list))
4229 return;
4230
4231 list_del(&vma->vma_link);
4232
4233 kfree(vma);
4234 }
4235
4236 int
4237 i915_gem_suspend(struct drm_device *dev)
4238 {
4239 struct drm_i915_private *dev_priv = dev->dev_private;
4240 int ret = 0;
4241
4242 mutex_lock(&dev->struct_mutex);
4243 if (dev_priv->ums.mm_suspended)
4244 goto err;
4245
4246 ret = i915_gpu_idle(dev);
4247 if (ret)
4248 goto err;
4249
4250 i915_gem_retire_requests(dev);
4251
4252 /* Under UMS, be paranoid and evict. */
4253 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4254 i915_gem_evict_everything(dev);
4255
4256 i915_kernel_lost_context(dev);
4257 i915_gem_cleanup_ringbuffer(dev);
4258
4259 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4260 * We need to replace this with a semaphore, or something.
4261 * And not confound ums.mm_suspended!
4262 */
4263 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4264 DRIVER_MODESET);
4265 mutex_unlock(&dev->struct_mutex);
4266
4267 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4268 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4269 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4270
4271 return 0;
4272
4273 err:
4274 mutex_unlock(&dev->struct_mutex);
4275 return ret;
4276 }
4277
4278 int i915_gem_l3_remap(struct intel_ring_buffer *ring, int slice)
4279 {
4280 struct drm_device *dev = ring->dev;
4281 struct drm_i915_private *dev_priv = dev->dev_private;
4282 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4283 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4284 int i, ret;
4285
4286 if (!HAS_L3_DPF(dev) || !remap_info)
4287 return 0;
4288
4289 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4290 if (ret)
4291 return ret;
4292
4293 /*
4294 * Note: We do not worry about the concurrent register cacheline hang
4295 * here because no other code should access these registers other than
4296 * at initialization time.
4297 */
4298 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4299 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4300 intel_ring_emit(ring, reg_base + i);
4301 intel_ring_emit(ring, remap_info[i/4]);
4302 }
4303
4304 intel_ring_advance(ring);
4305
4306 return ret;
4307 }
4308
4309 void i915_gem_init_swizzling(struct drm_device *dev)
4310 {
4311 struct drm_i915_private *dev_priv = dev->dev_private;
4312
4313 if (INTEL_INFO(dev)->gen < 5 ||
4314 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4315 return;
4316
4317 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4318 DISP_TILE_SURFACE_SWIZZLING);
4319
4320 if (IS_GEN5(dev))
4321 return;
4322
4323 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4324 if (IS_GEN6(dev))
4325 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4326 else if (IS_GEN7(dev))
4327 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4328 else if (IS_GEN8(dev))
4329 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4330 else
4331 BUG();
4332 }
4333
4334 static bool
4335 intel_enable_blt(struct drm_device *dev)
4336 {
4337 if (!HAS_BLT(dev))
4338 return false;
4339
4340 /* The blitter was dysfunctional on early prototypes */
4341 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4342 DRM_INFO("BLT not supported on this pre-production hardware;"
4343 " graphics performance will be degraded.\n");
4344 return false;
4345 }
4346
4347 return true;
4348 }
4349
4350 static int i915_gem_init_rings(struct drm_device *dev)
4351 {
4352 struct drm_i915_private *dev_priv = dev->dev_private;
4353 int ret;
4354
4355 ret = intel_init_render_ring_buffer(dev);
4356 if (ret)
4357 return ret;
4358
4359 if (HAS_BSD(dev)) {
4360 ret = intel_init_bsd_ring_buffer(dev);
4361 if (ret)
4362 goto cleanup_render_ring;
4363 }
4364
4365 if (intel_enable_blt(dev)) {
4366 ret = intel_init_blt_ring_buffer(dev);
4367 if (ret)
4368 goto cleanup_bsd_ring;
4369 }
4370
4371 if (HAS_VEBOX(dev)) {
4372 ret = intel_init_vebox_ring_buffer(dev);
4373 if (ret)
4374 goto cleanup_blt_ring;
4375 }
4376
4377
4378 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4379 if (ret)
4380 goto cleanup_vebox_ring;
4381
4382 return 0;
4383
4384 cleanup_vebox_ring:
4385 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4386 cleanup_blt_ring:
4387 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4388 cleanup_bsd_ring:
4389 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4390 cleanup_render_ring:
4391 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4392
4393 return ret;
4394 }
4395
4396 int
4397 i915_gem_init_hw(struct drm_device *dev)
4398 {
4399 struct drm_i915_private *dev_priv = dev->dev_private;
4400 int ret, i;
4401
4402 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4403 return -EIO;
4404
4405 if (dev_priv->ellc_size)
4406 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4407
4408 if (IS_HASWELL(dev))
4409 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4410 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4411
4412 if (HAS_PCH_NOP(dev)) {
4413 if (IS_IVYBRIDGE(dev)) {
4414 u32 temp = I915_READ(GEN7_MSG_CTL);
4415 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4416 I915_WRITE(GEN7_MSG_CTL, temp);
4417 } else if (INTEL_INFO(dev)->gen >= 7) {
4418 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4419 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4420 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4421 }
4422 }
4423
4424 i915_gem_init_swizzling(dev);
4425
4426 ret = i915_gem_init_rings(dev);
4427 if (ret)
4428 return ret;
4429
4430 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4431 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4432
4433 /*
4434 * XXX: Contexts should only be initialized once. Doing a switch to the
4435 * default context switch however is something we'd like to do after
4436 * reset or thaw (the latter may not actually be necessary for HW, but
4437 * goes with our code better). Context switching requires rings (for
4438 * the do_switch), but before enabling PPGTT. So don't move this.
4439 */
4440 ret = i915_gem_context_enable(dev_priv);
4441 if (ret) {
4442 DRM_ERROR("Context enable failed %d\n", ret);
4443 goto err_out;
4444 }
4445
4446 return 0;
4447
4448 err_out:
4449 i915_gem_cleanup_ringbuffer(dev);
4450 return ret;
4451 }
4452
4453 int i915_gem_init(struct drm_device *dev)
4454 {
4455 struct drm_i915_private *dev_priv = dev->dev_private;
4456 int ret;
4457
4458 mutex_lock(&dev->struct_mutex);
4459
4460 if (IS_VALLEYVIEW(dev)) {
4461 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4462 I915_WRITE(VLV_GTLC_WAKE_CTRL, 1);
4463 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) & 1) == 1, 10))
4464 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4465 }
4466
4467 i915_gem_init_global_gtt(dev);
4468
4469 ret = i915_gem_context_init(dev);
4470 if (ret) {
4471 mutex_unlock(&dev->struct_mutex);
4472 return ret;
4473 }
4474
4475 ret = i915_gem_init_hw(dev);
4476 mutex_unlock(&dev->struct_mutex);
4477 if (ret) {
4478 WARN_ON(dev_priv->mm.aliasing_ppgtt);
4479 i915_gem_context_fini(dev);
4480 drm_mm_takedown(&dev_priv->gtt.base.mm);
4481 return ret;
4482 }
4483
4484 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4485 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4486 dev_priv->dri1.allow_batchbuffer = 1;
4487 return 0;
4488 }
4489
4490 void
4491 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4492 {
4493 struct drm_i915_private *dev_priv = dev->dev_private;
4494 struct intel_ring_buffer *ring;
4495 int i;
4496
4497 for_each_ring(ring, dev_priv, i)
4498 intel_cleanup_ring_buffer(ring);
4499 }
4500
4501 int
4502 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4503 struct drm_file *file_priv)
4504 {
4505 struct drm_i915_private *dev_priv = dev->dev_private;
4506 int ret;
4507
4508 if (drm_core_check_feature(dev, DRIVER_MODESET))
4509 return 0;
4510
4511 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4512 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4513 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4514 }
4515
4516 mutex_lock(&dev->struct_mutex);
4517 dev_priv->ums.mm_suspended = 0;
4518
4519 ret = i915_gem_init_hw(dev);
4520 if (ret != 0) {
4521 mutex_unlock(&dev->struct_mutex);
4522 return ret;
4523 }
4524
4525 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4526 mutex_unlock(&dev->struct_mutex);
4527
4528 ret = drm_irq_install(dev);
4529 if (ret)
4530 goto cleanup_ringbuffer;
4531
4532 return 0;
4533
4534 cleanup_ringbuffer:
4535 mutex_lock(&dev->struct_mutex);
4536 i915_gem_cleanup_ringbuffer(dev);
4537 dev_priv->ums.mm_suspended = 1;
4538 mutex_unlock(&dev->struct_mutex);
4539
4540 return ret;
4541 }
4542
4543 int
4544 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4545 struct drm_file *file_priv)
4546 {
4547 if (drm_core_check_feature(dev, DRIVER_MODESET))
4548 return 0;
4549
4550 drm_irq_uninstall(dev);
4551
4552 return i915_gem_suspend(dev);
4553 }
4554
4555 void
4556 i915_gem_lastclose(struct drm_device *dev)
4557 {
4558 int ret;
4559
4560 if (drm_core_check_feature(dev, DRIVER_MODESET))
4561 return;
4562
4563 ret = i915_gem_suspend(dev);
4564 if (ret)
4565 DRM_ERROR("failed to idle hardware: %d\n", ret);
4566 }
4567
4568 static void
4569 init_ring_lists(struct intel_ring_buffer *ring)
4570 {
4571 INIT_LIST_HEAD(&ring->active_list);
4572 INIT_LIST_HEAD(&ring->request_list);
4573 }
4574
4575 void i915_init_vm(struct drm_i915_private *dev_priv,
4576 struct i915_address_space *vm)
4577 {
4578 if (!i915_is_ggtt(vm))
4579 drm_mm_init(&vm->mm, vm->start, vm->total);
4580 vm->dev = dev_priv->dev;
4581 INIT_LIST_HEAD(&vm->active_list);
4582 INIT_LIST_HEAD(&vm->inactive_list);
4583 INIT_LIST_HEAD(&vm->global_link);
4584 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4585 }
4586
4587 void
4588 i915_gem_load(struct drm_device *dev)
4589 {
4590 struct drm_i915_private *dev_priv = dev->dev_private;
4591 int i;
4592
4593 dev_priv->slab =
4594 kmem_cache_create("i915_gem_object",
4595 sizeof(struct drm_i915_gem_object), 0,
4596 SLAB_HWCACHE_ALIGN,
4597 NULL);
4598
4599 INIT_LIST_HEAD(&dev_priv->vm_list);
4600 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4601
4602 INIT_LIST_HEAD(&dev_priv->context_list);
4603 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4604 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4605 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4606 for (i = 0; i < I915_NUM_RINGS; i++)
4607 init_ring_lists(&dev_priv->ring[i]);
4608 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4609 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4610 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4611 i915_gem_retire_work_handler);
4612 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4613 i915_gem_idle_work_handler);
4614 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4615
4616 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4617 if (IS_GEN3(dev)) {
4618 I915_WRITE(MI_ARB_STATE,
4619 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4620 }
4621
4622 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4623
4624 /* Old X drivers will take 0-2 for front, back, depth buffers */
4625 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4626 dev_priv->fence_reg_start = 3;
4627
4628 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4629 dev_priv->num_fence_regs = 32;
4630 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4631 dev_priv->num_fence_regs = 16;
4632 else
4633 dev_priv->num_fence_regs = 8;
4634
4635 /* Initialize fence registers to zero */
4636 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4637 i915_gem_restore_fences(dev);
4638
4639 i915_gem_detect_bit_6_swizzle(dev);
4640 init_waitqueue_head(&dev_priv->pending_flip_queue);
4641
4642 dev_priv->mm.interruptible = true;
4643
4644 dev_priv->mm.inactive_shrinker.scan_objects = i915_gem_inactive_scan;
4645 dev_priv->mm.inactive_shrinker.count_objects = i915_gem_inactive_count;
4646 dev_priv->mm.inactive_shrinker.seeks = DEFAULT_SEEKS;
4647 register_shrinker(&dev_priv->mm.inactive_shrinker);
4648 }
4649
4650 /*
4651 * Create a physically contiguous memory object for this object
4652 * e.g. for cursor + overlay regs
4653 */
4654 static int i915_gem_init_phys_object(struct drm_device *dev,
4655 int id, int size, int align)
4656 {
4657 struct drm_i915_private *dev_priv = dev->dev_private;
4658 struct drm_i915_gem_phys_object *phys_obj;
4659 int ret;
4660
4661 if (dev_priv->mm.phys_objs[id - 1] || !size)
4662 return 0;
4663
4664 phys_obj = kzalloc(sizeof(*phys_obj), GFP_KERNEL);
4665 if (!phys_obj)
4666 return -ENOMEM;
4667
4668 phys_obj->id = id;
4669
4670 phys_obj->handle = drm_pci_alloc(dev, size, align);
4671 if (!phys_obj->handle) {
4672 ret = -ENOMEM;
4673 goto kfree_obj;
4674 }
4675 #ifdef CONFIG_X86
4676 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4677 #endif
4678
4679 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4680
4681 return 0;
4682 kfree_obj:
4683 kfree(phys_obj);
4684 return ret;
4685 }
4686
4687 static void i915_gem_free_phys_object(struct drm_device *dev, int id)
4688 {
4689 struct drm_i915_private *dev_priv = dev->dev_private;
4690 struct drm_i915_gem_phys_object *phys_obj;
4691
4692 if (!dev_priv->mm.phys_objs[id - 1])
4693 return;
4694
4695 phys_obj = dev_priv->mm.phys_objs[id - 1];
4696 if (phys_obj->cur_obj) {
4697 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4698 }
4699
4700 #ifdef CONFIG_X86
4701 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4702 #endif
4703 drm_pci_free(dev, phys_obj->handle);
4704 kfree(phys_obj);
4705 dev_priv->mm.phys_objs[id - 1] = NULL;
4706 }
4707
4708 void i915_gem_free_all_phys_object(struct drm_device *dev)
4709 {
4710 int i;
4711
4712 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4713 i915_gem_free_phys_object(dev, i);
4714 }
4715
4716 void i915_gem_detach_phys_object(struct drm_device *dev,
4717 struct drm_i915_gem_object *obj)
4718 {
4719 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4720 char *vaddr;
4721 int i;
4722 int page_count;
4723
4724 if (!obj->phys_obj)
4725 return;
4726 vaddr = obj->phys_obj->handle->vaddr;
4727
4728 page_count = obj->base.size / PAGE_SIZE;
4729 for (i = 0; i < page_count; i++) {
4730 struct page *page = shmem_read_mapping_page(mapping, i);
4731 if (!IS_ERR(page)) {
4732 char *dst = kmap_atomic(page);
4733 memcpy(dst, vaddr + i*PAGE_SIZE, PAGE_SIZE);
4734 kunmap_atomic(dst);
4735
4736 drm_clflush_pages(&page, 1);
4737
4738 set_page_dirty(page);
4739 mark_page_accessed(page);
4740 page_cache_release(page);
4741 }
4742 }
4743 i915_gem_chipset_flush(dev);
4744
4745 obj->phys_obj->cur_obj = NULL;
4746 obj->phys_obj = NULL;
4747 }
4748
4749 int
4750 i915_gem_attach_phys_object(struct drm_device *dev,
4751 struct drm_i915_gem_object *obj,
4752 int id,
4753 int align)
4754 {
4755 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
4756 struct drm_i915_private *dev_priv = dev->dev_private;
4757 int ret = 0;
4758 int page_count;
4759 int i;
4760
4761 if (id > I915_MAX_PHYS_OBJECT)
4762 return -EINVAL;
4763
4764 if (obj->phys_obj) {
4765 if (obj->phys_obj->id == id)
4766 return 0;
4767 i915_gem_detach_phys_object(dev, obj);
4768 }
4769
4770 /* create a new object */
4771 if (!dev_priv->mm.phys_objs[id - 1]) {
4772 ret = i915_gem_init_phys_object(dev, id,
4773 obj->base.size, align);
4774 if (ret) {
4775 DRM_ERROR("failed to init phys object %d size: %zu\n",
4776 id, obj->base.size);
4777 return ret;
4778 }
4779 }
4780
4781 /* bind to the object */
4782 obj->phys_obj = dev_priv->mm.phys_objs[id - 1];
4783 obj->phys_obj->cur_obj = obj;
4784
4785 page_count = obj->base.size / PAGE_SIZE;
4786
4787 for (i = 0; i < page_count; i++) {
4788 struct page *page;
4789 char *dst, *src;
4790
4791 page = shmem_read_mapping_page(mapping, i);
4792 if (IS_ERR(page))
4793 return PTR_ERR(page);
4794
4795 src = kmap_atomic(page);
4796 dst = obj->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4797 memcpy(dst, src, PAGE_SIZE);
4798 kunmap_atomic(src);
4799
4800 mark_page_accessed(page);
4801 page_cache_release(page);
4802 }
4803
4804 return 0;
4805 }
4806
4807 static int
4808 i915_gem_phys_pwrite(struct drm_device *dev,
4809 struct drm_i915_gem_object *obj,
4810 struct drm_i915_gem_pwrite *args,
4811 struct drm_file *file_priv)
4812 {
4813 void *vaddr = obj->phys_obj->handle->vaddr + args->offset;
4814 char __user *user_data = to_user_ptr(args->data_ptr);
4815
4816 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
4817 unsigned long unwritten;
4818
4819 /* The physical object once assigned is fixed for the lifetime
4820 * of the obj, so we can safely drop the lock and continue
4821 * to access vaddr.
4822 */
4823 mutex_unlock(&dev->struct_mutex);
4824 unwritten = copy_from_user(vaddr, user_data, args->size);
4825 mutex_lock(&dev->struct_mutex);
4826 if (unwritten)
4827 return -EFAULT;
4828 }
4829
4830 i915_gem_chipset_flush(dev);
4831 return 0;
4832 }
4833
4834 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4835 {
4836 struct drm_i915_file_private *file_priv = file->driver_priv;
4837
4838 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4839
4840 /* Clean up our request list when the client is going away, so that
4841 * later retire_requests won't dereference our soon-to-be-gone
4842 * file_priv.
4843 */
4844 spin_lock(&file_priv->mm.lock);
4845 while (!list_empty(&file_priv->mm.request_list)) {
4846 struct drm_i915_gem_request *request;
4847
4848 request = list_first_entry(&file_priv->mm.request_list,
4849 struct drm_i915_gem_request,
4850 client_list);
4851 list_del(&request->client_list);
4852 request->file_priv = NULL;
4853 }
4854 spin_unlock(&file_priv->mm.lock);
4855 }
4856
4857 static void
4858 i915_gem_file_idle_work_handler(struct work_struct *work)
4859 {
4860 struct drm_i915_file_private *file_priv =
4861 container_of(work, typeof(*file_priv), mm.idle_work.work);
4862
4863 atomic_set(&file_priv->rps_wait_boost, false);
4864 }
4865
4866 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4867 {
4868 struct drm_i915_file_private *file_priv;
4869 int ret;
4870
4871 DRM_DEBUG_DRIVER("\n");
4872
4873 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4874 if (!file_priv)
4875 return -ENOMEM;
4876
4877 file->driver_priv = file_priv;
4878 file_priv->dev_priv = dev->dev_private;
4879 file_priv->file = file;
4880
4881 spin_lock_init(&file_priv->mm.lock);
4882 INIT_LIST_HEAD(&file_priv->mm.request_list);
4883 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4884 i915_gem_file_idle_work_handler);
4885
4886 ret = i915_gem_context_open(dev, file);
4887 if (ret)
4888 kfree(file_priv);
4889
4890 return ret;
4891 }
4892
4893 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4894 {
4895 if (!mutex_is_locked(mutex))
4896 return false;
4897
4898 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
4899 return mutex->owner == task;
4900 #else
4901 /* Since UP may be pre-empted, we cannot assume that we own the lock */
4902 return false;
4903 #endif
4904 }
4905
4906 static unsigned long
4907 i915_gem_inactive_count(struct shrinker *shrinker, struct shrink_control *sc)
4908 {
4909 struct drm_i915_private *dev_priv =
4910 container_of(shrinker,
4911 struct drm_i915_private,
4912 mm.inactive_shrinker);
4913 struct drm_device *dev = dev_priv->dev;
4914 struct drm_i915_gem_object *obj;
4915 bool unlock = true;
4916 unsigned long count;
4917
4918 if (!mutex_trylock(&dev->struct_mutex)) {
4919 if (!mutex_is_locked_by(&dev->struct_mutex, current))
4920 return 0;
4921
4922 if (dev_priv->mm.shrinker_no_lock_stealing)
4923 return 0;
4924
4925 unlock = false;
4926 }
4927
4928 count = 0;
4929 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
4930 if (obj->pages_pin_count == 0)
4931 count += obj->base.size >> PAGE_SHIFT;
4932
4933 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
4934 if (obj->active)
4935 continue;
4936
4937 if (!i915_gem_obj_is_pinned(obj) && obj->pages_pin_count == 0)
4938 count += obj->base.size >> PAGE_SHIFT;
4939 }
4940
4941 if (unlock)
4942 mutex_unlock(&dev->struct_mutex);
4943
4944 return count;
4945 }
4946
4947 /* All the new VM stuff */
4948 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
4949 struct i915_address_space *vm)
4950 {
4951 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4952 struct i915_vma *vma;
4953
4954 if (!dev_priv->mm.aliasing_ppgtt ||
4955 vm == &dev_priv->mm.aliasing_ppgtt->base)
4956 vm = &dev_priv->gtt.base;
4957
4958 BUG_ON(list_empty(&o->vma_list));
4959 list_for_each_entry(vma, &o->vma_list, vma_link) {
4960 if (vma->vm == vm)
4961 return vma->node.start;
4962
4963 }
4964 return -1;
4965 }
4966
4967 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
4968 struct i915_address_space *vm)
4969 {
4970 struct i915_vma *vma;
4971
4972 list_for_each_entry(vma, &o->vma_list, vma_link)
4973 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
4974 return true;
4975
4976 return false;
4977 }
4978
4979 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
4980 {
4981 struct i915_vma *vma;
4982
4983 list_for_each_entry(vma, &o->vma_list, vma_link)
4984 if (drm_mm_node_allocated(&vma->node))
4985 return true;
4986
4987 return false;
4988 }
4989
4990 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
4991 struct i915_address_space *vm)
4992 {
4993 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
4994 struct i915_vma *vma;
4995
4996 if (!dev_priv->mm.aliasing_ppgtt ||
4997 vm == &dev_priv->mm.aliasing_ppgtt->base)
4998 vm = &dev_priv->gtt.base;
4999
5000 BUG_ON(list_empty(&o->vma_list));
5001
5002 list_for_each_entry(vma, &o->vma_list, vma_link)
5003 if (vma->vm == vm)
5004 return vma->node.size;
5005
5006 return 0;
5007 }
5008
5009 static unsigned long
5010 i915_gem_inactive_scan(struct shrinker *shrinker, struct shrink_control *sc)
5011 {
5012 struct drm_i915_private *dev_priv =
5013 container_of(shrinker,
5014 struct drm_i915_private,
5015 mm.inactive_shrinker);
5016 struct drm_device *dev = dev_priv->dev;
5017 unsigned long freed;
5018 bool unlock = true;
5019
5020 if (!mutex_trylock(&dev->struct_mutex)) {
5021 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5022 return SHRINK_STOP;
5023
5024 if (dev_priv->mm.shrinker_no_lock_stealing)
5025 return SHRINK_STOP;
5026
5027 unlock = false;
5028 }
5029
5030 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5031 if (freed < sc->nr_to_scan)
5032 freed += __i915_gem_shrink(dev_priv,
5033 sc->nr_to_scan - freed,
5034 false);
5035 if (freed < sc->nr_to_scan)
5036 freed += i915_gem_shrink_all(dev_priv);
5037
5038 if (unlock)
5039 mutex_unlock(&dev->struct_mutex);
5040
5041 return freed;
5042 }
5043
5044 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5045 {
5046 struct i915_vma *vma;
5047
5048 if (WARN_ON(list_empty(&obj->vma_list)))
5049 return NULL;
5050
5051 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5052 if (vma->vm != obj_to_ggtt(obj))
5053 return NULL;
5054
5055 return vma;
5056 }