Merge branch 'next' into for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "drmP.h"
29 #include "drm.h"
30 #include "i915_drm.h"
31 #include "i915_drv.h"
32 #include <linux/swap.h>
33 #include <linux/pci.h>
34
35 #define I915_GEM_GPU_DOMAINS (~(I915_GEM_DOMAIN_CPU | I915_GEM_DOMAIN_GTT))
36
37 static void i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj);
38 static void i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj);
39 static void i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj);
40 static int i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj,
41 int write);
42 static int i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
43 uint64_t offset,
44 uint64_t size);
45 static void i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj);
46 static int i915_gem_object_wait_rendering(struct drm_gem_object *obj);
47 static int i915_gem_object_bind_to_gtt(struct drm_gem_object *obj,
48 unsigned alignment);
49 static void i915_gem_clear_fence_reg(struct drm_gem_object *obj);
50 static int i915_gem_evict_something(struct drm_device *dev);
51 static int i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
52 struct drm_i915_gem_pwrite *args,
53 struct drm_file *file_priv);
54
55 int i915_gem_do_init(struct drm_device *dev, unsigned long start,
56 unsigned long end)
57 {
58 drm_i915_private_t *dev_priv = dev->dev_private;
59
60 if (start >= end ||
61 (start & (PAGE_SIZE - 1)) != 0 ||
62 (end & (PAGE_SIZE - 1)) != 0) {
63 return -EINVAL;
64 }
65
66 drm_mm_init(&dev_priv->mm.gtt_space, start,
67 end - start);
68
69 dev->gtt_total = (uint32_t) (end - start);
70
71 return 0;
72 }
73
74 int
75 i915_gem_init_ioctl(struct drm_device *dev, void *data,
76 struct drm_file *file_priv)
77 {
78 struct drm_i915_gem_init *args = data;
79 int ret;
80
81 mutex_lock(&dev->struct_mutex);
82 ret = i915_gem_do_init(dev, args->gtt_start, args->gtt_end);
83 mutex_unlock(&dev->struct_mutex);
84
85 return ret;
86 }
87
88 int
89 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
90 struct drm_file *file_priv)
91 {
92 struct drm_i915_gem_get_aperture *args = data;
93
94 if (!(dev->driver->driver_features & DRIVER_GEM))
95 return -ENODEV;
96
97 args->aper_size = dev->gtt_total;
98 args->aper_available_size = (args->aper_size -
99 atomic_read(&dev->pin_memory));
100
101 return 0;
102 }
103
104
105 /**
106 * Creates a new mm object and returns a handle to it.
107 */
108 int
109 i915_gem_create_ioctl(struct drm_device *dev, void *data,
110 struct drm_file *file_priv)
111 {
112 struct drm_i915_gem_create *args = data;
113 struct drm_gem_object *obj;
114 int handle, ret;
115
116 args->size = roundup(args->size, PAGE_SIZE);
117
118 /* Allocate the new object */
119 obj = drm_gem_object_alloc(dev, args->size);
120 if (obj == NULL)
121 return -ENOMEM;
122
123 ret = drm_gem_handle_create(file_priv, obj, &handle);
124 mutex_lock(&dev->struct_mutex);
125 drm_gem_object_handle_unreference(obj);
126 mutex_unlock(&dev->struct_mutex);
127
128 if (ret)
129 return ret;
130
131 args->handle = handle;
132
133 return 0;
134 }
135
136 static inline int
137 fast_shmem_read(struct page **pages,
138 loff_t page_base, int page_offset,
139 char __user *data,
140 int length)
141 {
142 char __iomem *vaddr;
143 int unwritten;
144
145 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
146 if (vaddr == NULL)
147 return -ENOMEM;
148 unwritten = __copy_to_user_inatomic(data, vaddr + page_offset, length);
149 kunmap_atomic(vaddr, KM_USER0);
150
151 if (unwritten)
152 return -EFAULT;
153
154 return 0;
155 }
156
157 static int i915_gem_object_needs_bit17_swizzle(struct drm_gem_object *obj)
158 {
159 drm_i915_private_t *dev_priv = obj->dev->dev_private;
160 struct drm_i915_gem_object *obj_priv = obj->driver_private;
161
162 return dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_9_10_17 &&
163 obj_priv->tiling_mode != I915_TILING_NONE;
164 }
165
166 static inline int
167 slow_shmem_copy(struct page *dst_page,
168 int dst_offset,
169 struct page *src_page,
170 int src_offset,
171 int length)
172 {
173 char *dst_vaddr, *src_vaddr;
174
175 dst_vaddr = kmap_atomic(dst_page, KM_USER0);
176 if (dst_vaddr == NULL)
177 return -ENOMEM;
178
179 src_vaddr = kmap_atomic(src_page, KM_USER1);
180 if (src_vaddr == NULL) {
181 kunmap_atomic(dst_vaddr, KM_USER0);
182 return -ENOMEM;
183 }
184
185 memcpy(dst_vaddr + dst_offset, src_vaddr + src_offset, length);
186
187 kunmap_atomic(src_vaddr, KM_USER1);
188 kunmap_atomic(dst_vaddr, KM_USER0);
189
190 return 0;
191 }
192
193 static inline int
194 slow_shmem_bit17_copy(struct page *gpu_page,
195 int gpu_offset,
196 struct page *cpu_page,
197 int cpu_offset,
198 int length,
199 int is_read)
200 {
201 char *gpu_vaddr, *cpu_vaddr;
202
203 /* Use the unswizzled path if this page isn't affected. */
204 if ((page_to_phys(gpu_page) & (1 << 17)) == 0) {
205 if (is_read)
206 return slow_shmem_copy(cpu_page, cpu_offset,
207 gpu_page, gpu_offset, length);
208 else
209 return slow_shmem_copy(gpu_page, gpu_offset,
210 cpu_page, cpu_offset, length);
211 }
212
213 gpu_vaddr = kmap_atomic(gpu_page, KM_USER0);
214 if (gpu_vaddr == NULL)
215 return -ENOMEM;
216
217 cpu_vaddr = kmap_atomic(cpu_page, KM_USER1);
218 if (cpu_vaddr == NULL) {
219 kunmap_atomic(gpu_vaddr, KM_USER0);
220 return -ENOMEM;
221 }
222
223 /* Copy the data, XORing A6 with A17 (1). The user already knows he's
224 * XORing with the other bits (A9 for Y, A9 and A10 for X)
225 */
226 while (length > 0) {
227 int cacheline_end = ALIGN(gpu_offset + 1, 64);
228 int this_length = min(cacheline_end - gpu_offset, length);
229 int swizzled_gpu_offset = gpu_offset ^ 64;
230
231 if (is_read) {
232 memcpy(cpu_vaddr + cpu_offset,
233 gpu_vaddr + swizzled_gpu_offset,
234 this_length);
235 } else {
236 memcpy(gpu_vaddr + swizzled_gpu_offset,
237 cpu_vaddr + cpu_offset,
238 this_length);
239 }
240 cpu_offset += this_length;
241 gpu_offset += this_length;
242 length -= this_length;
243 }
244
245 kunmap_atomic(cpu_vaddr, KM_USER1);
246 kunmap_atomic(gpu_vaddr, KM_USER0);
247
248 return 0;
249 }
250
251 /**
252 * This is the fast shmem pread path, which attempts to copy_from_user directly
253 * from the backing pages of the object to the user's address space. On a
254 * fault, it fails so we can fall back to i915_gem_shmem_pwrite_slow().
255 */
256 static int
257 i915_gem_shmem_pread_fast(struct drm_device *dev, struct drm_gem_object *obj,
258 struct drm_i915_gem_pread *args,
259 struct drm_file *file_priv)
260 {
261 struct drm_i915_gem_object *obj_priv = obj->driver_private;
262 ssize_t remain;
263 loff_t offset, page_base;
264 char __user *user_data;
265 int page_offset, page_length;
266 int ret;
267
268 user_data = (char __user *) (uintptr_t) args->data_ptr;
269 remain = args->size;
270
271 mutex_lock(&dev->struct_mutex);
272
273 ret = i915_gem_object_get_pages(obj);
274 if (ret != 0)
275 goto fail_unlock;
276
277 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
278 args->size);
279 if (ret != 0)
280 goto fail_put_pages;
281
282 obj_priv = obj->driver_private;
283 offset = args->offset;
284
285 while (remain > 0) {
286 /* Operation in this page
287 *
288 * page_base = page offset within aperture
289 * page_offset = offset within page
290 * page_length = bytes to copy for this page
291 */
292 page_base = (offset & ~(PAGE_SIZE-1));
293 page_offset = offset & (PAGE_SIZE-1);
294 page_length = remain;
295 if ((page_offset + remain) > PAGE_SIZE)
296 page_length = PAGE_SIZE - page_offset;
297
298 ret = fast_shmem_read(obj_priv->pages,
299 page_base, page_offset,
300 user_data, page_length);
301 if (ret)
302 goto fail_put_pages;
303
304 remain -= page_length;
305 user_data += page_length;
306 offset += page_length;
307 }
308
309 fail_put_pages:
310 i915_gem_object_put_pages(obj);
311 fail_unlock:
312 mutex_unlock(&dev->struct_mutex);
313
314 return ret;
315 }
316
317 /**
318 * This is the fallback shmem pread path, which allocates temporary storage
319 * in kernel space to copy_to_user into outside of the struct_mutex, so we
320 * can copy out of the object's backing pages while holding the struct mutex
321 * and not take page faults.
322 */
323 static int
324 i915_gem_shmem_pread_slow(struct drm_device *dev, struct drm_gem_object *obj,
325 struct drm_i915_gem_pread *args,
326 struct drm_file *file_priv)
327 {
328 struct drm_i915_gem_object *obj_priv = obj->driver_private;
329 struct mm_struct *mm = current->mm;
330 struct page **user_pages;
331 ssize_t remain;
332 loff_t offset, pinned_pages, i;
333 loff_t first_data_page, last_data_page, num_pages;
334 int shmem_page_index, shmem_page_offset;
335 int data_page_index, data_page_offset;
336 int page_length;
337 int ret;
338 uint64_t data_ptr = args->data_ptr;
339 int do_bit17_swizzling;
340
341 remain = args->size;
342
343 /* Pin the user pages containing the data. We can't fault while
344 * holding the struct mutex, yet we want to hold it while
345 * dereferencing the user data.
346 */
347 first_data_page = data_ptr / PAGE_SIZE;
348 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
349 num_pages = last_data_page - first_data_page + 1;
350
351 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
352 if (user_pages == NULL)
353 return -ENOMEM;
354
355 down_read(&mm->mmap_sem);
356 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
357 num_pages, 1, 0, user_pages, NULL);
358 up_read(&mm->mmap_sem);
359 if (pinned_pages < num_pages) {
360 ret = -EFAULT;
361 goto fail_put_user_pages;
362 }
363
364 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
365
366 mutex_lock(&dev->struct_mutex);
367
368 ret = i915_gem_object_get_pages(obj);
369 if (ret != 0)
370 goto fail_unlock;
371
372 ret = i915_gem_object_set_cpu_read_domain_range(obj, args->offset,
373 args->size);
374 if (ret != 0)
375 goto fail_put_pages;
376
377 obj_priv = obj->driver_private;
378 offset = args->offset;
379
380 while (remain > 0) {
381 /* Operation in this page
382 *
383 * shmem_page_index = page number within shmem file
384 * shmem_page_offset = offset within page in shmem file
385 * data_page_index = page number in get_user_pages return
386 * data_page_offset = offset with data_page_index page.
387 * page_length = bytes to copy for this page
388 */
389 shmem_page_index = offset / PAGE_SIZE;
390 shmem_page_offset = offset & ~PAGE_MASK;
391 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
392 data_page_offset = data_ptr & ~PAGE_MASK;
393
394 page_length = remain;
395 if ((shmem_page_offset + page_length) > PAGE_SIZE)
396 page_length = PAGE_SIZE - shmem_page_offset;
397 if ((data_page_offset + page_length) > PAGE_SIZE)
398 page_length = PAGE_SIZE - data_page_offset;
399
400 if (do_bit17_swizzling) {
401 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
402 shmem_page_offset,
403 user_pages[data_page_index],
404 data_page_offset,
405 page_length,
406 1);
407 } else {
408 ret = slow_shmem_copy(user_pages[data_page_index],
409 data_page_offset,
410 obj_priv->pages[shmem_page_index],
411 shmem_page_offset,
412 page_length);
413 }
414 if (ret)
415 goto fail_put_pages;
416
417 remain -= page_length;
418 data_ptr += page_length;
419 offset += page_length;
420 }
421
422 fail_put_pages:
423 i915_gem_object_put_pages(obj);
424 fail_unlock:
425 mutex_unlock(&dev->struct_mutex);
426 fail_put_user_pages:
427 for (i = 0; i < pinned_pages; i++) {
428 SetPageDirty(user_pages[i]);
429 page_cache_release(user_pages[i]);
430 }
431 drm_free_large(user_pages);
432
433 return ret;
434 }
435
436 /**
437 * Reads data from the object referenced by handle.
438 *
439 * On error, the contents of *data are undefined.
440 */
441 int
442 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
443 struct drm_file *file_priv)
444 {
445 struct drm_i915_gem_pread *args = data;
446 struct drm_gem_object *obj;
447 struct drm_i915_gem_object *obj_priv;
448 int ret;
449
450 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
451 if (obj == NULL)
452 return -EBADF;
453 obj_priv = obj->driver_private;
454
455 /* Bounds check source.
456 *
457 * XXX: This could use review for overflow issues...
458 */
459 if (args->offset > obj->size || args->size > obj->size ||
460 args->offset + args->size > obj->size) {
461 drm_gem_object_unreference(obj);
462 return -EINVAL;
463 }
464
465 if (i915_gem_object_needs_bit17_swizzle(obj)) {
466 ret = i915_gem_shmem_pread_slow(dev, obj, args, file_priv);
467 } else {
468 ret = i915_gem_shmem_pread_fast(dev, obj, args, file_priv);
469 if (ret != 0)
470 ret = i915_gem_shmem_pread_slow(dev, obj, args,
471 file_priv);
472 }
473
474 drm_gem_object_unreference(obj);
475
476 return ret;
477 }
478
479 /* This is the fast write path which cannot handle
480 * page faults in the source data
481 */
482
483 static inline int
484 fast_user_write(struct io_mapping *mapping,
485 loff_t page_base, int page_offset,
486 char __user *user_data,
487 int length)
488 {
489 char *vaddr_atomic;
490 unsigned long unwritten;
491
492 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
493 unwritten = __copy_from_user_inatomic_nocache(vaddr_atomic + page_offset,
494 user_data, length);
495 io_mapping_unmap_atomic(vaddr_atomic);
496 if (unwritten)
497 return -EFAULT;
498 return 0;
499 }
500
501 /* Here's the write path which can sleep for
502 * page faults
503 */
504
505 static inline int
506 slow_kernel_write(struct io_mapping *mapping,
507 loff_t gtt_base, int gtt_offset,
508 struct page *user_page, int user_offset,
509 int length)
510 {
511 char *src_vaddr, *dst_vaddr;
512 unsigned long unwritten;
513
514 dst_vaddr = io_mapping_map_atomic_wc(mapping, gtt_base);
515 src_vaddr = kmap_atomic(user_page, KM_USER1);
516 unwritten = __copy_from_user_inatomic_nocache(dst_vaddr + gtt_offset,
517 src_vaddr + user_offset,
518 length);
519 kunmap_atomic(src_vaddr, KM_USER1);
520 io_mapping_unmap_atomic(dst_vaddr);
521 if (unwritten)
522 return -EFAULT;
523 return 0;
524 }
525
526 static inline int
527 fast_shmem_write(struct page **pages,
528 loff_t page_base, int page_offset,
529 char __user *data,
530 int length)
531 {
532 char __iomem *vaddr;
533 unsigned long unwritten;
534
535 vaddr = kmap_atomic(pages[page_base >> PAGE_SHIFT], KM_USER0);
536 if (vaddr == NULL)
537 return -ENOMEM;
538 unwritten = __copy_from_user_inatomic(vaddr + page_offset, data, length);
539 kunmap_atomic(vaddr, KM_USER0);
540
541 if (unwritten)
542 return -EFAULT;
543 return 0;
544 }
545
546 /**
547 * This is the fast pwrite path, where we copy the data directly from the
548 * user into the GTT, uncached.
549 */
550 static int
551 i915_gem_gtt_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
552 struct drm_i915_gem_pwrite *args,
553 struct drm_file *file_priv)
554 {
555 struct drm_i915_gem_object *obj_priv = obj->driver_private;
556 drm_i915_private_t *dev_priv = dev->dev_private;
557 ssize_t remain;
558 loff_t offset, page_base;
559 char __user *user_data;
560 int page_offset, page_length;
561 int ret;
562
563 user_data = (char __user *) (uintptr_t) args->data_ptr;
564 remain = args->size;
565 if (!access_ok(VERIFY_READ, user_data, remain))
566 return -EFAULT;
567
568
569 mutex_lock(&dev->struct_mutex);
570 ret = i915_gem_object_pin(obj, 0);
571 if (ret) {
572 mutex_unlock(&dev->struct_mutex);
573 return ret;
574 }
575 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
576 if (ret)
577 goto fail;
578
579 obj_priv = obj->driver_private;
580 offset = obj_priv->gtt_offset + args->offset;
581
582 while (remain > 0) {
583 /* Operation in this page
584 *
585 * page_base = page offset within aperture
586 * page_offset = offset within page
587 * page_length = bytes to copy for this page
588 */
589 page_base = (offset & ~(PAGE_SIZE-1));
590 page_offset = offset & (PAGE_SIZE-1);
591 page_length = remain;
592 if ((page_offset + remain) > PAGE_SIZE)
593 page_length = PAGE_SIZE - page_offset;
594
595 ret = fast_user_write (dev_priv->mm.gtt_mapping, page_base,
596 page_offset, user_data, page_length);
597
598 /* If we get a fault while copying data, then (presumably) our
599 * source page isn't available. Return the error and we'll
600 * retry in the slow path.
601 */
602 if (ret)
603 goto fail;
604
605 remain -= page_length;
606 user_data += page_length;
607 offset += page_length;
608 }
609
610 fail:
611 i915_gem_object_unpin(obj);
612 mutex_unlock(&dev->struct_mutex);
613
614 return ret;
615 }
616
617 /**
618 * This is the fallback GTT pwrite path, which uses get_user_pages to pin
619 * the memory and maps it using kmap_atomic for copying.
620 *
621 * This code resulted in x11perf -rgb10text consuming about 10% more CPU
622 * than using i915_gem_gtt_pwrite_fast on a G45 (32-bit).
623 */
624 static int
625 i915_gem_gtt_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
626 struct drm_i915_gem_pwrite *args,
627 struct drm_file *file_priv)
628 {
629 struct drm_i915_gem_object *obj_priv = obj->driver_private;
630 drm_i915_private_t *dev_priv = dev->dev_private;
631 ssize_t remain;
632 loff_t gtt_page_base, offset;
633 loff_t first_data_page, last_data_page, num_pages;
634 loff_t pinned_pages, i;
635 struct page **user_pages;
636 struct mm_struct *mm = current->mm;
637 int gtt_page_offset, data_page_offset, data_page_index, page_length;
638 int ret;
639 uint64_t data_ptr = args->data_ptr;
640
641 remain = args->size;
642
643 /* Pin the user pages containing the data. We can't fault while
644 * holding the struct mutex, and all of the pwrite implementations
645 * want to hold it while dereferencing the user data.
646 */
647 first_data_page = data_ptr / PAGE_SIZE;
648 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
649 num_pages = last_data_page - first_data_page + 1;
650
651 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
652 if (user_pages == NULL)
653 return -ENOMEM;
654
655 down_read(&mm->mmap_sem);
656 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
657 num_pages, 0, 0, user_pages, NULL);
658 up_read(&mm->mmap_sem);
659 if (pinned_pages < num_pages) {
660 ret = -EFAULT;
661 goto out_unpin_pages;
662 }
663
664 mutex_lock(&dev->struct_mutex);
665 ret = i915_gem_object_pin(obj, 0);
666 if (ret)
667 goto out_unlock;
668
669 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
670 if (ret)
671 goto out_unpin_object;
672
673 obj_priv = obj->driver_private;
674 offset = obj_priv->gtt_offset + args->offset;
675
676 while (remain > 0) {
677 /* Operation in this page
678 *
679 * gtt_page_base = page offset within aperture
680 * gtt_page_offset = offset within page in aperture
681 * data_page_index = page number in get_user_pages return
682 * data_page_offset = offset with data_page_index page.
683 * page_length = bytes to copy for this page
684 */
685 gtt_page_base = offset & PAGE_MASK;
686 gtt_page_offset = offset & ~PAGE_MASK;
687 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
688 data_page_offset = data_ptr & ~PAGE_MASK;
689
690 page_length = remain;
691 if ((gtt_page_offset + page_length) > PAGE_SIZE)
692 page_length = PAGE_SIZE - gtt_page_offset;
693 if ((data_page_offset + page_length) > PAGE_SIZE)
694 page_length = PAGE_SIZE - data_page_offset;
695
696 ret = slow_kernel_write(dev_priv->mm.gtt_mapping,
697 gtt_page_base, gtt_page_offset,
698 user_pages[data_page_index],
699 data_page_offset,
700 page_length);
701
702 /* If we get a fault while copying data, then (presumably) our
703 * source page isn't available. Return the error and we'll
704 * retry in the slow path.
705 */
706 if (ret)
707 goto out_unpin_object;
708
709 remain -= page_length;
710 offset += page_length;
711 data_ptr += page_length;
712 }
713
714 out_unpin_object:
715 i915_gem_object_unpin(obj);
716 out_unlock:
717 mutex_unlock(&dev->struct_mutex);
718 out_unpin_pages:
719 for (i = 0; i < pinned_pages; i++)
720 page_cache_release(user_pages[i]);
721 drm_free_large(user_pages);
722
723 return ret;
724 }
725
726 /**
727 * This is the fast shmem pwrite path, which attempts to directly
728 * copy_from_user into the kmapped pages backing the object.
729 */
730 static int
731 i915_gem_shmem_pwrite_fast(struct drm_device *dev, struct drm_gem_object *obj,
732 struct drm_i915_gem_pwrite *args,
733 struct drm_file *file_priv)
734 {
735 struct drm_i915_gem_object *obj_priv = obj->driver_private;
736 ssize_t remain;
737 loff_t offset, page_base;
738 char __user *user_data;
739 int page_offset, page_length;
740 int ret;
741
742 user_data = (char __user *) (uintptr_t) args->data_ptr;
743 remain = args->size;
744
745 mutex_lock(&dev->struct_mutex);
746
747 ret = i915_gem_object_get_pages(obj);
748 if (ret != 0)
749 goto fail_unlock;
750
751 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
752 if (ret != 0)
753 goto fail_put_pages;
754
755 obj_priv = obj->driver_private;
756 offset = args->offset;
757 obj_priv->dirty = 1;
758
759 while (remain > 0) {
760 /* Operation in this page
761 *
762 * page_base = page offset within aperture
763 * page_offset = offset within page
764 * page_length = bytes to copy for this page
765 */
766 page_base = (offset & ~(PAGE_SIZE-1));
767 page_offset = offset & (PAGE_SIZE-1);
768 page_length = remain;
769 if ((page_offset + remain) > PAGE_SIZE)
770 page_length = PAGE_SIZE - page_offset;
771
772 ret = fast_shmem_write(obj_priv->pages,
773 page_base, page_offset,
774 user_data, page_length);
775 if (ret)
776 goto fail_put_pages;
777
778 remain -= page_length;
779 user_data += page_length;
780 offset += page_length;
781 }
782
783 fail_put_pages:
784 i915_gem_object_put_pages(obj);
785 fail_unlock:
786 mutex_unlock(&dev->struct_mutex);
787
788 return ret;
789 }
790
791 /**
792 * This is the fallback shmem pwrite path, which uses get_user_pages to pin
793 * the memory and maps it using kmap_atomic for copying.
794 *
795 * This avoids taking mmap_sem for faulting on the user's address while the
796 * struct_mutex is held.
797 */
798 static int
799 i915_gem_shmem_pwrite_slow(struct drm_device *dev, struct drm_gem_object *obj,
800 struct drm_i915_gem_pwrite *args,
801 struct drm_file *file_priv)
802 {
803 struct drm_i915_gem_object *obj_priv = obj->driver_private;
804 struct mm_struct *mm = current->mm;
805 struct page **user_pages;
806 ssize_t remain;
807 loff_t offset, pinned_pages, i;
808 loff_t first_data_page, last_data_page, num_pages;
809 int shmem_page_index, shmem_page_offset;
810 int data_page_index, data_page_offset;
811 int page_length;
812 int ret;
813 uint64_t data_ptr = args->data_ptr;
814 int do_bit17_swizzling;
815
816 remain = args->size;
817
818 /* Pin the user pages containing the data. We can't fault while
819 * holding the struct mutex, and all of the pwrite implementations
820 * want to hold it while dereferencing the user data.
821 */
822 first_data_page = data_ptr / PAGE_SIZE;
823 last_data_page = (data_ptr + args->size - 1) / PAGE_SIZE;
824 num_pages = last_data_page - first_data_page + 1;
825
826 user_pages = drm_calloc_large(num_pages, sizeof(struct page *));
827 if (user_pages == NULL)
828 return -ENOMEM;
829
830 down_read(&mm->mmap_sem);
831 pinned_pages = get_user_pages(current, mm, (uintptr_t)args->data_ptr,
832 num_pages, 0, 0, user_pages, NULL);
833 up_read(&mm->mmap_sem);
834 if (pinned_pages < num_pages) {
835 ret = -EFAULT;
836 goto fail_put_user_pages;
837 }
838
839 do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
840
841 mutex_lock(&dev->struct_mutex);
842
843 ret = i915_gem_object_get_pages(obj);
844 if (ret != 0)
845 goto fail_unlock;
846
847 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
848 if (ret != 0)
849 goto fail_put_pages;
850
851 obj_priv = obj->driver_private;
852 offset = args->offset;
853 obj_priv->dirty = 1;
854
855 while (remain > 0) {
856 /* Operation in this page
857 *
858 * shmem_page_index = page number within shmem file
859 * shmem_page_offset = offset within page in shmem file
860 * data_page_index = page number in get_user_pages return
861 * data_page_offset = offset with data_page_index page.
862 * page_length = bytes to copy for this page
863 */
864 shmem_page_index = offset / PAGE_SIZE;
865 shmem_page_offset = offset & ~PAGE_MASK;
866 data_page_index = data_ptr / PAGE_SIZE - first_data_page;
867 data_page_offset = data_ptr & ~PAGE_MASK;
868
869 page_length = remain;
870 if ((shmem_page_offset + page_length) > PAGE_SIZE)
871 page_length = PAGE_SIZE - shmem_page_offset;
872 if ((data_page_offset + page_length) > PAGE_SIZE)
873 page_length = PAGE_SIZE - data_page_offset;
874
875 if (do_bit17_swizzling) {
876 ret = slow_shmem_bit17_copy(obj_priv->pages[shmem_page_index],
877 shmem_page_offset,
878 user_pages[data_page_index],
879 data_page_offset,
880 page_length,
881 0);
882 } else {
883 ret = slow_shmem_copy(obj_priv->pages[shmem_page_index],
884 shmem_page_offset,
885 user_pages[data_page_index],
886 data_page_offset,
887 page_length);
888 }
889 if (ret)
890 goto fail_put_pages;
891
892 remain -= page_length;
893 data_ptr += page_length;
894 offset += page_length;
895 }
896
897 fail_put_pages:
898 i915_gem_object_put_pages(obj);
899 fail_unlock:
900 mutex_unlock(&dev->struct_mutex);
901 fail_put_user_pages:
902 for (i = 0; i < pinned_pages; i++)
903 page_cache_release(user_pages[i]);
904 drm_free_large(user_pages);
905
906 return ret;
907 }
908
909 /**
910 * Writes data to the object referenced by handle.
911 *
912 * On error, the contents of the buffer that were to be modified are undefined.
913 */
914 int
915 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
916 struct drm_file *file_priv)
917 {
918 struct drm_i915_gem_pwrite *args = data;
919 struct drm_gem_object *obj;
920 struct drm_i915_gem_object *obj_priv;
921 int ret = 0;
922
923 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
924 if (obj == NULL)
925 return -EBADF;
926 obj_priv = obj->driver_private;
927
928 /* Bounds check destination.
929 *
930 * XXX: This could use review for overflow issues...
931 */
932 if (args->offset > obj->size || args->size > obj->size ||
933 args->offset + args->size > obj->size) {
934 drm_gem_object_unreference(obj);
935 return -EINVAL;
936 }
937
938 /* We can only do the GTT pwrite on untiled buffers, as otherwise
939 * it would end up going through the fenced access, and we'll get
940 * different detiling behavior between reading and writing.
941 * pread/pwrite currently are reading and writing from the CPU
942 * perspective, requiring manual detiling by the client.
943 */
944 if (obj_priv->phys_obj)
945 ret = i915_gem_phys_pwrite(dev, obj, args, file_priv);
946 else if (obj_priv->tiling_mode == I915_TILING_NONE &&
947 dev->gtt_total != 0) {
948 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file_priv);
949 if (ret == -EFAULT) {
950 ret = i915_gem_gtt_pwrite_slow(dev, obj, args,
951 file_priv);
952 }
953 } else if (i915_gem_object_needs_bit17_swizzle(obj)) {
954 ret = i915_gem_shmem_pwrite_slow(dev, obj, args, file_priv);
955 } else {
956 ret = i915_gem_shmem_pwrite_fast(dev, obj, args, file_priv);
957 if (ret == -EFAULT) {
958 ret = i915_gem_shmem_pwrite_slow(dev, obj, args,
959 file_priv);
960 }
961 }
962
963 #if WATCH_PWRITE
964 if (ret)
965 DRM_INFO("pwrite failed %d\n", ret);
966 #endif
967
968 drm_gem_object_unreference(obj);
969
970 return ret;
971 }
972
973 /**
974 * Called when user space prepares to use an object with the CPU, either
975 * through the mmap ioctl's mapping or a GTT mapping.
976 */
977 int
978 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
979 struct drm_file *file_priv)
980 {
981 struct drm_i915_private *dev_priv = dev->dev_private;
982 struct drm_i915_gem_set_domain *args = data;
983 struct drm_gem_object *obj;
984 uint32_t read_domains = args->read_domains;
985 uint32_t write_domain = args->write_domain;
986 int ret;
987
988 if (!(dev->driver->driver_features & DRIVER_GEM))
989 return -ENODEV;
990
991 /* Only handle setting domains to types used by the CPU. */
992 if (write_domain & I915_GEM_GPU_DOMAINS)
993 return -EINVAL;
994
995 if (read_domains & I915_GEM_GPU_DOMAINS)
996 return -EINVAL;
997
998 /* Having something in the write domain implies it's in the read
999 * domain, and only that read domain. Enforce that in the request.
1000 */
1001 if (write_domain != 0 && read_domains != write_domain)
1002 return -EINVAL;
1003
1004 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1005 if (obj == NULL)
1006 return -EBADF;
1007
1008 mutex_lock(&dev->struct_mutex);
1009 #if WATCH_BUF
1010 DRM_INFO("set_domain_ioctl %p(%zd), %08x %08x\n",
1011 obj, obj->size, read_domains, write_domain);
1012 #endif
1013 if (read_domains & I915_GEM_DOMAIN_GTT) {
1014 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1015
1016 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1017
1018 /* Update the LRU on the fence for the CPU access that's
1019 * about to occur.
1020 */
1021 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
1022 list_move_tail(&obj_priv->fence_list,
1023 &dev_priv->mm.fence_list);
1024 }
1025
1026 /* Silently promote "you're not bound, there was nothing to do"
1027 * to success, since the client was just asking us to
1028 * make sure everything was done.
1029 */
1030 if (ret == -EINVAL)
1031 ret = 0;
1032 } else {
1033 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1034 }
1035
1036 drm_gem_object_unreference(obj);
1037 mutex_unlock(&dev->struct_mutex);
1038 return ret;
1039 }
1040
1041 /**
1042 * Called when user space has done writes to this buffer
1043 */
1044 int
1045 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1046 struct drm_file *file_priv)
1047 {
1048 struct drm_i915_gem_sw_finish *args = data;
1049 struct drm_gem_object *obj;
1050 struct drm_i915_gem_object *obj_priv;
1051 int ret = 0;
1052
1053 if (!(dev->driver->driver_features & DRIVER_GEM))
1054 return -ENODEV;
1055
1056 mutex_lock(&dev->struct_mutex);
1057 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1058 if (obj == NULL) {
1059 mutex_unlock(&dev->struct_mutex);
1060 return -EBADF;
1061 }
1062
1063 #if WATCH_BUF
1064 DRM_INFO("%s: sw_finish %d (%p %zd)\n",
1065 __func__, args->handle, obj, obj->size);
1066 #endif
1067 obj_priv = obj->driver_private;
1068
1069 /* Pinned buffers may be scanout, so flush the cache */
1070 if (obj_priv->pin_count)
1071 i915_gem_object_flush_cpu_write_domain(obj);
1072
1073 drm_gem_object_unreference(obj);
1074 mutex_unlock(&dev->struct_mutex);
1075 return ret;
1076 }
1077
1078 /**
1079 * Maps the contents of an object, returning the address it is mapped
1080 * into.
1081 *
1082 * While the mapping holds a reference on the contents of the object, it doesn't
1083 * imply a ref on the object itself.
1084 */
1085 int
1086 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1087 struct drm_file *file_priv)
1088 {
1089 struct drm_i915_gem_mmap *args = data;
1090 struct drm_gem_object *obj;
1091 loff_t offset;
1092 unsigned long addr;
1093
1094 if (!(dev->driver->driver_features & DRIVER_GEM))
1095 return -ENODEV;
1096
1097 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1098 if (obj == NULL)
1099 return -EBADF;
1100
1101 offset = args->offset;
1102
1103 down_write(&current->mm->mmap_sem);
1104 addr = do_mmap(obj->filp, 0, args->size,
1105 PROT_READ | PROT_WRITE, MAP_SHARED,
1106 args->offset);
1107 up_write(&current->mm->mmap_sem);
1108 mutex_lock(&dev->struct_mutex);
1109 drm_gem_object_unreference(obj);
1110 mutex_unlock(&dev->struct_mutex);
1111 if (IS_ERR((void *)addr))
1112 return addr;
1113
1114 args->addr_ptr = (uint64_t) addr;
1115
1116 return 0;
1117 }
1118
1119 /**
1120 * i915_gem_fault - fault a page into the GTT
1121 * vma: VMA in question
1122 * vmf: fault info
1123 *
1124 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1125 * from userspace. The fault handler takes care of binding the object to
1126 * the GTT (if needed), allocating and programming a fence register (again,
1127 * only if needed based on whether the old reg is still valid or the object
1128 * is tiled) and inserting a new PTE into the faulting process.
1129 *
1130 * Note that the faulting process may involve evicting existing objects
1131 * from the GTT and/or fence registers to make room. So performance may
1132 * suffer if the GTT working set is large or there are few fence registers
1133 * left.
1134 */
1135 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1136 {
1137 struct drm_gem_object *obj = vma->vm_private_data;
1138 struct drm_device *dev = obj->dev;
1139 struct drm_i915_private *dev_priv = dev->dev_private;
1140 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1141 pgoff_t page_offset;
1142 unsigned long pfn;
1143 int ret = 0;
1144 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1145
1146 /* We don't use vmf->pgoff since that has the fake offset */
1147 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1148 PAGE_SHIFT;
1149
1150 /* Now bind it into the GTT if needed */
1151 mutex_lock(&dev->struct_mutex);
1152 if (!obj_priv->gtt_space) {
1153 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1154 if (ret) {
1155 mutex_unlock(&dev->struct_mutex);
1156 return VM_FAULT_SIGBUS;
1157 }
1158
1159 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1160 if (ret) {
1161 mutex_unlock(&dev->struct_mutex);
1162 return VM_FAULT_SIGBUS;
1163 }
1164
1165 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1166 }
1167
1168 /* Need a new fence register? */
1169 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1170 ret = i915_gem_object_get_fence_reg(obj);
1171 if (ret) {
1172 mutex_unlock(&dev->struct_mutex);
1173 return VM_FAULT_SIGBUS;
1174 }
1175 }
1176
1177 pfn = ((dev->agp->base + obj_priv->gtt_offset) >> PAGE_SHIFT) +
1178 page_offset;
1179
1180 /* Finally, remap it using the new GTT offset */
1181 ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1182
1183 mutex_unlock(&dev->struct_mutex);
1184
1185 switch (ret) {
1186 case -ENOMEM:
1187 case -EAGAIN:
1188 return VM_FAULT_OOM;
1189 case -EFAULT:
1190 case -EINVAL:
1191 return VM_FAULT_SIGBUS;
1192 default:
1193 return VM_FAULT_NOPAGE;
1194 }
1195 }
1196
1197 /**
1198 * i915_gem_create_mmap_offset - create a fake mmap offset for an object
1199 * @obj: obj in question
1200 *
1201 * GEM memory mapping works by handing back to userspace a fake mmap offset
1202 * it can use in a subsequent mmap(2) call. The DRM core code then looks
1203 * up the object based on the offset and sets up the various memory mapping
1204 * structures.
1205 *
1206 * This routine allocates and attaches a fake offset for @obj.
1207 */
1208 static int
1209 i915_gem_create_mmap_offset(struct drm_gem_object *obj)
1210 {
1211 struct drm_device *dev = obj->dev;
1212 struct drm_gem_mm *mm = dev->mm_private;
1213 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1214 struct drm_map_list *list;
1215 struct drm_local_map *map;
1216 int ret = 0;
1217
1218 /* Set the object up for mmap'ing */
1219 list = &obj->map_list;
1220 list->map = kzalloc(sizeof(struct drm_map_list), GFP_KERNEL);
1221 if (!list->map)
1222 return -ENOMEM;
1223
1224 map = list->map;
1225 map->type = _DRM_GEM;
1226 map->size = obj->size;
1227 map->handle = obj;
1228
1229 /* Get a DRM GEM mmap offset allocated... */
1230 list->file_offset_node = drm_mm_search_free(&mm->offset_manager,
1231 obj->size / PAGE_SIZE, 0, 0);
1232 if (!list->file_offset_node) {
1233 DRM_ERROR("failed to allocate offset for bo %d\n", obj->name);
1234 ret = -ENOMEM;
1235 goto out_free_list;
1236 }
1237
1238 list->file_offset_node = drm_mm_get_block(list->file_offset_node,
1239 obj->size / PAGE_SIZE, 0);
1240 if (!list->file_offset_node) {
1241 ret = -ENOMEM;
1242 goto out_free_list;
1243 }
1244
1245 list->hash.key = list->file_offset_node->start;
1246 if (drm_ht_insert_item(&mm->offset_hash, &list->hash)) {
1247 DRM_ERROR("failed to add to map hash\n");
1248 goto out_free_mm;
1249 }
1250
1251 /* By now we should be all set, any drm_mmap request on the offset
1252 * below will get to our mmap & fault handler */
1253 obj_priv->mmap_offset = ((uint64_t) list->hash.key) << PAGE_SHIFT;
1254
1255 return 0;
1256
1257 out_free_mm:
1258 drm_mm_put_block(list->file_offset_node);
1259 out_free_list:
1260 kfree(list->map);
1261
1262 return ret;
1263 }
1264
1265 /**
1266 * i915_gem_release_mmap - remove physical page mappings
1267 * @obj: obj in question
1268 *
1269 * Preserve the reservation of the mmaping with the DRM core code, but
1270 * relinquish ownership of the pages back to the system.
1271 *
1272 * It is vital that we remove the page mapping if we have mapped a tiled
1273 * object through the GTT and then lose the fence register due to
1274 * resource pressure. Similarly if the object has been moved out of the
1275 * aperture, than pages mapped into userspace must be revoked. Removing the
1276 * mapping will then trigger a page fault on the next user access, allowing
1277 * fixup by i915_gem_fault().
1278 */
1279 void
1280 i915_gem_release_mmap(struct drm_gem_object *obj)
1281 {
1282 struct drm_device *dev = obj->dev;
1283 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1284
1285 if (dev->dev_mapping)
1286 unmap_mapping_range(dev->dev_mapping,
1287 obj_priv->mmap_offset, obj->size, 1);
1288 }
1289
1290 static void
1291 i915_gem_free_mmap_offset(struct drm_gem_object *obj)
1292 {
1293 struct drm_device *dev = obj->dev;
1294 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1295 struct drm_gem_mm *mm = dev->mm_private;
1296 struct drm_map_list *list;
1297
1298 list = &obj->map_list;
1299 drm_ht_remove_item(&mm->offset_hash, &list->hash);
1300
1301 if (list->file_offset_node) {
1302 drm_mm_put_block(list->file_offset_node);
1303 list->file_offset_node = NULL;
1304 }
1305
1306 if (list->map) {
1307 kfree(list->map);
1308 list->map = NULL;
1309 }
1310
1311 obj_priv->mmap_offset = 0;
1312 }
1313
1314 /**
1315 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1316 * @obj: object to check
1317 *
1318 * Return the required GTT alignment for an object, taking into account
1319 * potential fence register mapping if needed.
1320 */
1321 static uint32_t
1322 i915_gem_get_gtt_alignment(struct drm_gem_object *obj)
1323 {
1324 struct drm_device *dev = obj->dev;
1325 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1326 int start, i;
1327
1328 /*
1329 * Minimum alignment is 4k (GTT page size), but might be greater
1330 * if a fence register is needed for the object.
1331 */
1332 if (IS_I965G(dev) || obj_priv->tiling_mode == I915_TILING_NONE)
1333 return 4096;
1334
1335 /*
1336 * Previous chips need to be aligned to the size of the smallest
1337 * fence register that can contain the object.
1338 */
1339 if (IS_I9XX(dev))
1340 start = 1024*1024;
1341 else
1342 start = 512*1024;
1343
1344 for (i = start; i < obj->size; i <<= 1)
1345 ;
1346
1347 return i;
1348 }
1349
1350 /**
1351 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1352 * @dev: DRM device
1353 * @data: GTT mapping ioctl data
1354 * @file_priv: GEM object info
1355 *
1356 * Simply returns the fake offset to userspace so it can mmap it.
1357 * The mmap call will end up in drm_gem_mmap(), which will set things
1358 * up so we can get faults in the handler above.
1359 *
1360 * The fault handler will take care of binding the object into the GTT
1361 * (since it may have been evicted to make room for something), allocating
1362 * a fence register, and mapping the appropriate aperture address into
1363 * userspace.
1364 */
1365 int
1366 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1367 struct drm_file *file_priv)
1368 {
1369 struct drm_i915_gem_mmap_gtt *args = data;
1370 struct drm_i915_private *dev_priv = dev->dev_private;
1371 struct drm_gem_object *obj;
1372 struct drm_i915_gem_object *obj_priv;
1373 int ret;
1374
1375 if (!(dev->driver->driver_features & DRIVER_GEM))
1376 return -ENODEV;
1377
1378 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
1379 if (obj == NULL)
1380 return -EBADF;
1381
1382 mutex_lock(&dev->struct_mutex);
1383
1384 obj_priv = obj->driver_private;
1385
1386 if (!obj_priv->mmap_offset) {
1387 ret = i915_gem_create_mmap_offset(obj);
1388 if (ret) {
1389 drm_gem_object_unreference(obj);
1390 mutex_unlock(&dev->struct_mutex);
1391 return ret;
1392 }
1393 }
1394
1395 args->offset = obj_priv->mmap_offset;
1396
1397 obj_priv->gtt_alignment = i915_gem_get_gtt_alignment(obj);
1398
1399 /* Make sure the alignment is correct for fence regs etc */
1400 if (obj_priv->agp_mem &&
1401 (obj_priv->gtt_offset & (obj_priv->gtt_alignment - 1))) {
1402 drm_gem_object_unreference(obj);
1403 mutex_unlock(&dev->struct_mutex);
1404 return -EINVAL;
1405 }
1406
1407 /*
1408 * Pull it into the GTT so that we have a page list (makes the
1409 * initial fault faster and any subsequent flushing possible).
1410 */
1411 if (!obj_priv->agp_mem) {
1412 ret = i915_gem_object_bind_to_gtt(obj, obj_priv->gtt_alignment);
1413 if (ret) {
1414 drm_gem_object_unreference(obj);
1415 mutex_unlock(&dev->struct_mutex);
1416 return ret;
1417 }
1418 list_add_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1419 }
1420
1421 drm_gem_object_unreference(obj);
1422 mutex_unlock(&dev->struct_mutex);
1423
1424 return 0;
1425 }
1426
1427 void
1428 i915_gem_object_put_pages(struct drm_gem_object *obj)
1429 {
1430 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1431 int page_count = obj->size / PAGE_SIZE;
1432 int i;
1433
1434 BUG_ON(obj_priv->pages_refcount == 0);
1435
1436 if (--obj_priv->pages_refcount != 0)
1437 return;
1438
1439 if (obj_priv->tiling_mode != I915_TILING_NONE)
1440 i915_gem_object_save_bit_17_swizzle(obj);
1441
1442 for (i = 0; i < page_count; i++)
1443 if (obj_priv->pages[i] != NULL) {
1444 if (obj_priv->dirty)
1445 set_page_dirty(obj_priv->pages[i]);
1446 mark_page_accessed(obj_priv->pages[i]);
1447 page_cache_release(obj_priv->pages[i]);
1448 }
1449 obj_priv->dirty = 0;
1450
1451 drm_free_large(obj_priv->pages);
1452 obj_priv->pages = NULL;
1453 }
1454
1455 static void
1456 i915_gem_object_move_to_active(struct drm_gem_object *obj, uint32_t seqno)
1457 {
1458 struct drm_device *dev = obj->dev;
1459 drm_i915_private_t *dev_priv = dev->dev_private;
1460 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1461
1462 /* Add a reference if we're newly entering the active list. */
1463 if (!obj_priv->active) {
1464 drm_gem_object_reference(obj);
1465 obj_priv->active = 1;
1466 }
1467 /* Move from whatever list we were on to the tail of execution. */
1468 spin_lock(&dev_priv->mm.active_list_lock);
1469 list_move_tail(&obj_priv->list,
1470 &dev_priv->mm.active_list);
1471 spin_unlock(&dev_priv->mm.active_list_lock);
1472 obj_priv->last_rendering_seqno = seqno;
1473 }
1474
1475 static void
1476 i915_gem_object_move_to_flushing(struct drm_gem_object *obj)
1477 {
1478 struct drm_device *dev = obj->dev;
1479 drm_i915_private_t *dev_priv = dev->dev_private;
1480 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1481
1482 BUG_ON(!obj_priv->active);
1483 list_move_tail(&obj_priv->list, &dev_priv->mm.flushing_list);
1484 obj_priv->last_rendering_seqno = 0;
1485 }
1486
1487 static void
1488 i915_gem_object_move_to_inactive(struct drm_gem_object *obj)
1489 {
1490 struct drm_device *dev = obj->dev;
1491 drm_i915_private_t *dev_priv = dev->dev_private;
1492 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1493
1494 i915_verify_inactive(dev, __FILE__, __LINE__);
1495 if (obj_priv->pin_count != 0)
1496 list_del_init(&obj_priv->list);
1497 else
1498 list_move_tail(&obj_priv->list, &dev_priv->mm.inactive_list);
1499
1500 obj_priv->last_rendering_seqno = 0;
1501 if (obj_priv->active) {
1502 obj_priv->active = 0;
1503 drm_gem_object_unreference(obj);
1504 }
1505 i915_verify_inactive(dev, __FILE__, __LINE__);
1506 }
1507
1508 /**
1509 * Creates a new sequence number, emitting a write of it to the status page
1510 * plus an interrupt, which will trigger i915_user_interrupt_handler.
1511 *
1512 * Must be called with struct_lock held.
1513 *
1514 * Returned sequence numbers are nonzero on success.
1515 */
1516 static uint32_t
1517 i915_add_request(struct drm_device *dev, struct drm_file *file_priv,
1518 uint32_t flush_domains)
1519 {
1520 drm_i915_private_t *dev_priv = dev->dev_private;
1521 struct drm_i915_file_private *i915_file_priv = NULL;
1522 struct drm_i915_gem_request *request;
1523 uint32_t seqno;
1524 int was_empty;
1525 RING_LOCALS;
1526
1527 if (file_priv != NULL)
1528 i915_file_priv = file_priv->driver_priv;
1529
1530 request = kzalloc(sizeof(*request), GFP_KERNEL);
1531 if (request == NULL)
1532 return 0;
1533
1534 /* Grab the seqno we're going to make this request be, and bump the
1535 * next (skipping 0 so it can be the reserved no-seqno value).
1536 */
1537 seqno = dev_priv->mm.next_gem_seqno;
1538 dev_priv->mm.next_gem_seqno++;
1539 if (dev_priv->mm.next_gem_seqno == 0)
1540 dev_priv->mm.next_gem_seqno++;
1541
1542 BEGIN_LP_RING(4);
1543 OUT_RING(MI_STORE_DWORD_INDEX);
1544 OUT_RING(I915_GEM_HWS_INDEX << MI_STORE_DWORD_INDEX_SHIFT);
1545 OUT_RING(seqno);
1546
1547 OUT_RING(MI_USER_INTERRUPT);
1548 ADVANCE_LP_RING();
1549
1550 DRM_DEBUG("%d\n", seqno);
1551
1552 request->seqno = seqno;
1553 request->emitted_jiffies = jiffies;
1554 was_empty = list_empty(&dev_priv->mm.request_list);
1555 list_add_tail(&request->list, &dev_priv->mm.request_list);
1556 if (i915_file_priv) {
1557 list_add_tail(&request->client_list,
1558 &i915_file_priv->mm.request_list);
1559 } else {
1560 INIT_LIST_HEAD(&request->client_list);
1561 }
1562
1563 /* Associate any objects on the flushing list matching the write
1564 * domain we're flushing with our flush.
1565 */
1566 if (flush_domains != 0) {
1567 struct drm_i915_gem_object *obj_priv, *next;
1568
1569 list_for_each_entry_safe(obj_priv, next,
1570 &dev_priv->mm.flushing_list, list) {
1571 struct drm_gem_object *obj = obj_priv->obj;
1572
1573 if ((obj->write_domain & flush_domains) ==
1574 obj->write_domain) {
1575 obj->write_domain = 0;
1576 i915_gem_object_move_to_active(obj, seqno);
1577 }
1578 }
1579
1580 }
1581
1582 if (was_empty && !dev_priv->mm.suspended)
1583 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1584 return seqno;
1585 }
1586
1587 /**
1588 * Command execution barrier
1589 *
1590 * Ensures that all commands in the ring are finished
1591 * before signalling the CPU
1592 */
1593 static uint32_t
1594 i915_retire_commands(struct drm_device *dev)
1595 {
1596 drm_i915_private_t *dev_priv = dev->dev_private;
1597 uint32_t cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1598 uint32_t flush_domains = 0;
1599 RING_LOCALS;
1600
1601 /* The sampler always gets flushed on i965 (sigh) */
1602 if (IS_I965G(dev))
1603 flush_domains |= I915_GEM_DOMAIN_SAMPLER;
1604 BEGIN_LP_RING(2);
1605 OUT_RING(cmd);
1606 OUT_RING(0); /* noop */
1607 ADVANCE_LP_RING();
1608 return flush_domains;
1609 }
1610
1611 /**
1612 * Moves buffers associated only with the given active seqno from the active
1613 * to inactive list, potentially freeing them.
1614 */
1615 static void
1616 i915_gem_retire_request(struct drm_device *dev,
1617 struct drm_i915_gem_request *request)
1618 {
1619 drm_i915_private_t *dev_priv = dev->dev_private;
1620
1621 /* Move any buffers on the active list that are no longer referenced
1622 * by the ringbuffer to the flushing/inactive lists as appropriate.
1623 */
1624 spin_lock(&dev_priv->mm.active_list_lock);
1625 while (!list_empty(&dev_priv->mm.active_list)) {
1626 struct drm_gem_object *obj;
1627 struct drm_i915_gem_object *obj_priv;
1628
1629 obj_priv = list_first_entry(&dev_priv->mm.active_list,
1630 struct drm_i915_gem_object,
1631 list);
1632 obj = obj_priv->obj;
1633
1634 /* If the seqno being retired doesn't match the oldest in the
1635 * list, then the oldest in the list must still be newer than
1636 * this seqno.
1637 */
1638 if (obj_priv->last_rendering_seqno != request->seqno)
1639 goto out;
1640
1641 #if WATCH_LRU
1642 DRM_INFO("%s: retire %d moves to inactive list %p\n",
1643 __func__, request->seqno, obj);
1644 #endif
1645
1646 if (obj->write_domain != 0)
1647 i915_gem_object_move_to_flushing(obj);
1648 else {
1649 /* Take a reference on the object so it won't be
1650 * freed while the spinlock is held. The list
1651 * protection for this spinlock is safe when breaking
1652 * the lock like this since the next thing we do
1653 * is just get the head of the list again.
1654 */
1655 drm_gem_object_reference(obj);
1656 i915_gem_object_move_to_inactive(obj);
1657 spin_unlock(&dev_priv->mm.active_list_lock);
1658 drm_gem_object_unreference(obj);
1659 spin_lock(&dev_priv->mm.active_list_lock);
1660 }
1661 }
1662 out:
1663 spin_unlock(&dev_priv->mm.active_list_lock);
1664 }
1665
1666 /**
1667 * Returns true if seq1 is later than seq2.
1668 */
1669 static int
1670 i915_seqno_passed(uint32_t seq1, uint32_t seq2)
1671 {
1672 return (int32_t)(seq1 - seq2) >= 0;
1673 }
1674
1675 uint32_t
1676 i915_get_gem_seqno(struct drm_device *dev)
1677 {
1678 drm_i915_private_t *dev_priv = dev->dev_private;
1679
1680 return READ_HWSP(dev_priv, I915_GEM_HWS_INDEX);
1681 }
1682
1683 /**
1684 * This function clears the request list as sequence numbers are passed.
1685 */
1686 void
1687 i915_gem_retire_requests(struct drm_device *dev)
1688 {
1689 drm_i915_private_t *dev_priv = dev->dev_private;
1690 uint32_t seqno;
1691
1692 if (!dev_priv->hw_status_page)
1693 return;
1694
1695 seqno = i915_get_gem_seqno(dev);
1696
1697 while (!list_empty(&dev_priv->mm.request_list)) {
1698 struct drm_i915_gem_request *request;
1699 uint32_t retiring_seqno;
1700
1701 request = list_first_entry(&dev_priv->mm.request_list,
1702 struct drm_i915_gem_request,
1703 list);
1704 retiring_seqno = request->seqno;
1705
1706 if (i915_seqno_passed(seqno, retiring_seqno) ||
1707 dev_priv->mm.wedged) {
1708 i915_gem_retire_request(dev, request);
1709
1710 list_del(&request->list);
1711 list_del(&request->client_list);
1712 kfree(request);
1713 } else
1714 break;
1715 }
1716 }
1717
1718 void
1719 i915_gem_retire_work_handler(struct work_struct *work)
1720 {
1721 drm_i915_private_t *dev_priv;
1722 struct drm_device *dev;
1723
1724 dev_priv = container_of(work, drm_i915_private_t,
1725 mm.retire_work.work);
1726 dev = dev_priv->dev;
1727
1728 mutex_lock(&dev->struct_mutex);
1729 i915_gem_retire_requests(dev);
1730 if (!dev_priv->mm.suspended &&
1731 !list_empty(&dev_priv->mm.request_list))
1732 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, HZ);
1733 mutex_unlock(&dev->struct_mutex);
1734 }
1735
1736 /**
1737 * Waits for a sequence number to be signaled, and cleans up the
1738 * request and object lists appropriately for that event.
1739 */
1740 static int
1741 i915_wait_request(struct drm_device *dev, uint32_t seqno)
1742 {
1743 drm_i915_private_t *dev_priv = dev->dev_private;
1744 u32 ier;
1745 int ret = 0;
1746
1747 BUG_ON(seqno == 0);
1748
1749 if (!i915_seqno_passed(i915_get_gem_seqno(dev), seqno)) {
1750 if (IS_IGDNG(dev))
1751 ier = I915_READ(DEIER) | I915_READ(GTIER);
1752 else
1753 ier = I915_READ(IER);
1754 if (!ier) {
1755 DRM_ERROR("something (likely vbetool) disabled "
1756 "interrupts, re-enabling\n");
1757 i915_driver_irq_preinstall(dev);
1758 i915_driver_irq_postinstall(dev);
1759 }
1760
1761 dev_priv->mm.waiting_gem_seqno = seqno;
1762 i915_user_irq_get(dev);
1763 ret = wait_event_interruptible(dev_priv->irq_queue,
1764 i915_seqno_passed(i915_get_gem_seqno(dev),
1765 seqno) ||
1766 dev_priv->mm.wedged);
1767 i915_user_irq_put(dev);
1768 dev_priv->mm.waiting_gem_seqno = 0;
1769 }
1770 if (dev_priv->mm.wedged)
1771 ret = -EIO;
1772
1773 if (ret && ret != -ERESTARTSYS)
1774 DRM_ERROR("%s returns %d (awaiting %d at %d)\n",
1775 __func__, ret, seqno, i915_get_gem_seqno(dev));
1776
1777 /* Directly dispatch request retiring. While we have the work queue
1778 * to handle this, the waiter on a request often wants an associated
1779 * buffer to have made it to the inactive list, and we would need
1780 * a separate wait queue to handle that.
1781 */
1782 if (ret == 0)
1783 i915_gem_retire_requests(dev);
1784
1785 return ret;
1786 }
1787
1788 static void
1789 i915_gem_flush(struct drm_device *dev,
1790 uint32_t invalidate_domains,
1791 uint32_t flush_domains)
1792 {
1793 drm_i915_private_t *dev_priv = dev->dev_private;
1794 uint32_t cmd;
1795 RING_LOCALS;
1796
1797 #if WATCH_EXEC
1798 DRM_INFO("%s: invalidate %08x flush %08x\n", __func__,
1799 invalidate_domains, flush_domains);
1800 #endif
1801
1802 if (flush_domains & I915_GEM_DOMAIN_CPU)
1803 drm_agp_chipset_flush(dev);
1804
1805 if ((invalidate_domains | flush_domains) & I915_GEM_GPU_DOMAINS) {
1806 /*
1807 * read/write caches:
1808 *
1809 * I915_GEM_DOMAIN_RENDER is always invalidated, but is
1810 * only flushed if MI_NO_WRITE_FLUSH is unset. On 965, it is
1811 * also flushed at 2d versus 3d pipeline switches.
1812 *
1813 * read-only caches:
1814 *
1815 * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
1816 * MI_READ_FLUSH is set, and is always flushed on 965.
1817 *
1818 * I915_GEM_DOMAIN_COMMAND may not exist?
1819 *
1820 * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
1821 * invalidated when MI_EXE_FLUSH is set.
1822 *
1823 * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
1824 * invalidated with every MI_FLUSH.
1825 *
1826 * TLBs:
1827 *
1828 * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
1829 * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
1830 * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
1831 * are flushed at any MI_FLUSH.
1832 */
1833
1834 cmd = MI_FLUSH | MI_NO_WRITE_FLUSH;
1835 if ((invalidate_domains|flush_domains) &
1836 I915_GEM_DOMAIN_RENDER)
1837 cmd &= ~MI_NO_WRITE_FLUSH;
1838 if (!IS_I965G(dev)) {
1839 /*
1840 * On the 965, the sampler cache always gets flushed
1841 * and this bit is reserved.
1842 */
1843 if (invalidate_domains & I915_GEM_DOMAIN_SAMPLER)
1844 cmd |= MI_READ_FLUSH;
1845 }
1846 if (invalidate_domains & I915_GEM_DOMAIN_INSTRUCTION)
1847 cmd |= MI_EXE_FLUSH;
1848
1849 #if WATCH_EXEC
1850 DRM_INFO("%s: queue flush %08x to ring\n", __func__, cmd);
1851 #endif
1852 BEGIN_LP_RING(2);
1853 OUT_RING(cmd);
1854 OUT_RING(0); /* noop */
1855 ADVANCE_LP_RING();
1856 }
1857 }
1858
1859 /**
1860 * Ensures that all rendering to the object has completed and the object is
1861 * safe to unbind from the GTT or access from the CPU.
1862 */
1863 static int
1864 i915_gem_object_wait_rendering(struct drm_gem_object *obj)
1865 {
1866 struct drm_device *dev = obj->dev;
1867 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1868 int ret;
1869
1870 /* This function only exists to support waiting for existing rendering,
1871 * not for emitting required flushes.
1872 */
1873 BUG_ON((obj->write_domain & I915_GEM_GPU_DOMAINS) != 0);
1874
1875 /* If there is rendering queued on the buffer being evicted, wait for
1876 * it.
1877 */
1878 if (obj_priv->active) {
1879 #if WATCH_BUF
1880 DRM_INFO("%s: object %p wait for seqno %08x\n",
1881 __func__, obj, obj_priv->last_rendering_seqno);
1882 #endif
1883 ret = i915_wait_request(dev, obj_priv->last_rendering_seqno);
1884 if (ret != 0)
1885 return ret;
1886 }
1887
1888 return 0;
1889 }
1890
1891 /**
1892 * Unbinds an object from the GTT aperture.
1893 */
1894 int
1895 i915_gem_object_unbind(struct drm_gem_object *obj)
1896 {
1897 struct drm_device *dev = obj->dev;
1898 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1899 int ret = 0;
1900
1901 #if WATCH_BUF
1902 DRM_INFO("%s:%d %p\n", __func__, __LINE__, obj);
1903 DRM_INFO("gtt_space %p\n", obj_priv->gtt_space);
1904 #endif
1905 if (obj_priv->gtt_space == NULL)
1906 return 0;
1907
1908 if (obj_priv->pin_count != 0) {
1909 DRM_ERROR("Attempting to unbind pinned buffer\n");
1910 return -EINVAL;
1911 }
1912
1913 /* Move the object to the CPU domain to ensure that
1914 * any possible CPU writes while it's not in the GTT
1915 * are flushed when we go to remap it. This will
1916 * also ensure that all pending GPU writes are finished
1917 * before we unbind.
1918 */
1919 ret = i915_gem_object_set_to_cpu_domain(obj, 1);
1920 if (ret) {
1921 if (ret != -ERESTARTSYS)
1922 DRM_ERROR("set_domain failed: %d\n", ret);
1923 return ret;
1924 }
1925
1926 if (obj_priv->agp_mem != NULL) {
1927 drm_unbind_agp(obj_priv->agp_mem);
1928 drm_free_agp(obj_priv->agp_mem, obj->size / PAGE_SIZE);
1929 obj_priv->agp_mem = NULL;
1930 }
1931
1932 BUG_ON(obj_priv->active);
1933
1934 /* blow away mappings if mapped through GTT */
1935 i915_gem_release_mmap(obj);
1936
1937 if (obj_priv->fence_reg != I915_FENCE_REG_NONE)
1938 i915_gem_clear_fence_reg(obj);
1939
1940 i915_gem_object_put_pages(obj);
1941
1942 if (obj_priv->gtt_space) {
1943 atomic_dec(&dev->gtt_count);
1944 atomic_sub(obj->size, &dev->gtt_memory);
1945
1946 drm_mm_put_block(obj_priv->gtt_space);
1947 obj_priv->gtt_space = NULL;
1948 }
1949
1950 /* Remove ourselves from the LRU list if present. */
1951 if (!list_empty(&obj_priv->list))
1952 list_del_init(&obj_priv->list);
1953
1954 return 0;
1955 }
1956
1957 static int
1958 i915_gem_evict_something(struct drm_device *dev)
1959 {
1960 drm_i915_private_t *dev_priv = dev->dev_private;
1961 struct drm_gem_object *obj;
1962 struct drm_i915_gem_object *obj_priv;
1963 int ret = 0;
1964
1965 for (;;) {
1966 /* If there's an inactive buffer available now, grab it
1967 * and be done.
1968 */
1969 if (!list_empty(&dev_priv->mm.inactive_list)) {
1970 obj_priv = list_first_entry(&dev_priv->mm.inactive_list,
1971 struct drm_i915_gem_object,
1972 list);
1973 obj = obj_priv->obj;
1974 BUG_ON(obj_priv->pin_count != 0);
1975 #if WATCH_LRU
1976 DRM_INFO("%s: evicting %p\n", __func__, obj);
1977 #endif
1978 BUG_ON(obj_priv->active);
1979
1980 /* Wait on the rendering and unbind the buffer. */
1981 ret = i915_gem_object_unbind(obj);
1982 break;
1983 }
1984
1985 /* If we didn't get anything, but the ring is still processing
1986 * things, wait for one of those things to finish and hopefully
1987 * leave us a buffer to evict.
1988 */
1989 if (!list_empty(&dev_priv->mm.request_list)) {
1990 struct drm_i915_gem_request *request;
1991
1992 request = list_first_entry(&dev_priv->mm.request_list,
1993 struct drm_i915_gem_request,
1994 list);
1995
1996 ret = i915_wait_request(dev, request->seqno);
1997 if (ret)
1998 break;
1999
2000 /* if waiting caused an object to become inactive,
2001 * then loop around and wait for it. Otherwise, we
2002 * assume that waiting freed and unbound something,
2003 * so there should now be some space in the GTT
2004 */
2005 if (!list_empty(&dev_priv->mm.inactive_list))
2006 continue;
2007 break;
2008 }
2009
2010 /* If we didn't have anything on the request list but there
2011 * are buffers awaiting a flush, emit one and try again.
2012 * When we wait on it, those buffers waiting for that flush
2013 * will get moved to inactive.
2014 */
2015 if (!list_empty(&dev_priv->mm.flushing_list)) {
2016 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
2017 struct drm_i915_gem_object,
2018 list);
2019 obj = obj_priv->obj;
2020
2021 i915_gem_flush(dev,
2022 obj->write_domain,
2023 obj->write_domain);
2024 i915_add_request(dev, NULL, obj->write_domain);
2025
2026 obj = NULL;
2027 continue;
2028 }
2029
2030 DRM_ERROR("inactive empty %d request empty %d "
2031 "flushing empty %d\n",
2032 list_empty(&dev_priv->mm.inactive_list),
2033 list_empty(&dev_priv->mm.request_list),
2034 list_empty(&dev_priv->mm.flushing_list));
2035 /* If we didn't do any of the above, there's nothing to be done
2036 * and we just can't fit it in.
2037 */
2038 return -ENOSPC;
2039 }
2040 return ret;
2041 }
2042
2043 static int
2044 i915_gem_evict_everything(struct drm_device *dev)
2045 {
2046 int ret;
2047
2048 for (;;) {
2049 ret = i915_gem_evict_something(dev);
2050 if (ret != 0)
2051 break;
2052 }
2053 if (ret == -ENOSPC)
2054 return 0;
2055 return ret;
2056 }
2057
2058 int
2059 i915_gem_object_get_pages(struct drm_gem_object *obj)
2060 {
2061 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2062 int page_count, i;
2063 struct address_space *mapping;
2064 struct inode *inode;
2065 struct page *page;
2066 int ret;
2067
2068 if (obj_priv->pages_refcount++ != 0)
2069 return 0;
2070
2071 /* Get the list of pages out of our struct file. They'll be pinned
2072 * at this point until we release them.
2073 */
2074 page_count = obj->size / PAGE_SIZE;
2075 BUG_ON(obj_priv->pages != NULL);
2076 obj_priv->pages = drm_calloc_large(page_count, sizeof(struct page *));
2077 if (obj_priv->pages == NULL) {
2078 DRM_ERROR("Faled to allocate page list\n");
2079 obj_priv->pages_refcount--;
2080 return -ENOMEM;
2081 }
2082
2083 inode = obj->filp->f_path.dentry->d_inode;
2084 mapping = inode->i_mapping;
2085 for (i = 0; i < page_count; i++) {
2086 page = read_mapping_page(mapping, i, NULL);
2087 if (IS_ERR(page)) {
2088 ret = PTR_ERR(page);
2089 DRM_ERROR("read_mapping_page failed: %d\n", ret);
2090 i915_gem_object_put_pages(obj);
2091 return ret;
2092 }
2093 obj_priv->pages[i] = page;
2094 }
2095
2096 if (obj_priv->tiling_mode != I915_TILING_NONE)
2097 i915_gem_object_do_bit_17_swizzle(obj);
2098
2099 return 0;
2100 }
2101
2102 static void i965_write_fence_reg(struct drm_i915_fence_reg *reg)
2103 {
2104 struct drm_gem_object *obj = reg->obj;
2105 struct drm_device *dev = obj->dev;
2106 drm_i915_private_t *dev_priv = dev->dev_private;
2107 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2108 int regnum = obj_priv->fence_reg;
2109 uint64_t val;
2110
2111 val = (uint64_t)((obj_priv->gtt_offset + obj->size - 4096) &
2112 0xfffff000) << 32;
2113 val |= obj_priv->gtt_offset & 0xfffff000;
2114 val |= ((obj_priv->stride / 128) - 1) << I965_FENCE_PITCH_SHIFT;
2115 if (obj_priv->tiling_mode == I915_TILING_Y)
2116 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2117 val |= I965_FENCE_REG_VALID;
2118
2119 I915_WRITE64(FENCE_REG_965_0 + (regnum * 8), val);
2120 }
2121
2122 static void i915_write_fence_reg(struct drm_i915_fence_reg *reg)
2123 {
2124 struct drm_gem_object *obj = reg->obj;
2125 struct drm_device *dev = obj->dev;
2126 drm_i915_private_t *dev_priv = dev->dev_private;
2127 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2128 int regnum = obj_priv->fence_reg;
2129 int tile_width;
2130 uint32_t fence_reg, val;
2131 uint32_t pitch_val;
2132
2133 if ((obj_priv->gtt_offset & ~I915_FENCE_START_MASK) ||
2134 (obj_priv->gtt_offset & (obj->size - 1))) {
2135 WARN(1, "%s: object 0x%08x not 1M or size (0x%zx) aligned\n",
2136 __func__, obj_priv->gtt_offset, obj->size);
2137 return;
2138 }
2139
2140 if (obj_priv->tiling_mode == I915_TILING_Y &&
2141 HAS_128_BYTE_Y_TILING(dev))
2142 tile_width = 128;
2143 else
2144 tile_width = 512;
2145
2146 /* Note: pitch better be a power of two tile widths */
2147 pitch_val = obj_priv->stride / tile_width;
2148 pitch_val = ffs(pitch_val) - 1;
2149
2150 val = obj_priv->gtt_offset;
2151 if (obj_priv->tiling_mode == I915_TILING_Y)
2152 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2153 val |= I915_FENCE_SIZE_BITS(obj->size);
2154 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2155 val |= I830_FENCE_REG_VALID;
2156
2157 if (regnum < 8)
2158 fence_reg = FENCE_REG_830_0 + (regnum * 4);
2159 else
2160 fence_reg = FENCE_REG_945_8 + ((regnum - 8) * 4);
2161 I915_WRITE(fence_reg, val);
2162 }
2163
2164 static void i830_write_fence_reg(struct drm_i915_fence_reg *reg)
2165 {
2166 struct drm_gem_object *obj = reg->obj;
2167 struct drm_device *dev = obj->dev;
2168 drm_i915_private_t *dev_priv = dev->dev_private;
2169 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2170 int regnum = obj_priv->fence_reg;
2171 uint32_t val;
2172 uint32_t pitch_val;
2173 uint32_t fence_size_bits;
2174
2175 if ((obj_priv->gtt_offset & ~I830_FENCE_START_MASK) ||
2176 (obj_priv->gtt_offset & (obj->size - 1))) {
2177 WARN(1, "%s: object 0x%08x not 512K or size aligned\n",
2178 __func__, obj_priv->gtt_offset);
2179 return;
2180 }
2181
2182 pitch_val = obj_priv->stride / 128;
2183 pitch_val = ffs(pitch_val) - 1;
2184 WARN_ON(pitch_val > I830_FENCE_MAX_PITCH_VAL);
2185
2186 val = obj_priv->gtt_offset;
2187 if (obj_priv->tiling_mode == I915_TILING_Y)
2188 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
2189 fence_size_bits = I830_FENCE_SIZE_BITS(obj->size);
2190 WARN_ON(fence_size_bits & ~0x00000f00);
2191 val |= fence_size_bits;
2192 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
2193 val |= I830_FENCE_REG_VALID;
2194
2195 I915_WRITE(FENCE_REG_830_0 + (regnum * 4), val);
2196 }
2197
2198 /**
2199 * i915_gem_object_get_fence_reg - set up a fence reg for an object
2200 * @obj: object to map through a fence reg
2201 *
2202 * When mapping objects through the GTT, userspace wants to be able to write
2203 * to them without having to worry about swizzling if the object is tiled.
2204 *
2205 * This function walks the fence regs looking for a free one for @obj,
2206 * stealing one if it can't find any.
2207 *
2208 * It then sets up the reg based on the object's properties: address, pitch
2209 * and tiling format.
2210 */
2211 int
2212 i915_gem_object_get_fence_reg(struct drm_gem_object *obj)
2213 {
2214 struct drm_device *dev = obj->dev;
2215 struct drm_i915_private *dev_priv = dev->dev_private;
2216 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2217 struct drm_i915_fence_reg *reg = NULL;
2218 struct drm_i915_gem_object *old_obj_priv = NULL;
2219 int i, ret, avail;
2220
2221 /* Just update our place in the LRU if our fence is getting used. */
2222 if (obj_priv->fence_reg != I915_FENCE_REG_NONE) {
2223 list_move_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2224 return 0;
2225 }
2226
2227 switch (obj_priv->tiling_mode) {
2228 case I915_TILING_NONE:
2229 WARN(1, "allocating a fence for non-tiled object?\n");
2230 break;
2231 case I915_TILING_X:
2232 if (!obj_priv->stride)
2233 return -EINVAL;
2234 WARN((obj_priv->stride & (512 - 1)),
2235 "object 0x%08x is X tiled but has non-512B pitch\n",
2236 obj_priv->gtt_offset);
2237 break;
2238 case I915_TILING_Y:
2239 if (!obj_priv->stride)
2240 return -EINVAL;
2241 WARN((obj_priv->stride & (128 - 1)),
2242 "object 0x%08x is Y tiled but has non-128B pitch\n",
2243 obj_priv->gtt_offset);
2244 break;
2245 }
2246
2247 /* First try to find a free reg */
2248 avail = 0;
2249 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
2250 reg = &dev_priv->fence_regs[i];
2251 if (!reg->obj)
2252 break;
2253
2254 old_obj_priv = reg->obj->driver_private;
2255 if (!old_obj_priv->pin_count)
2256 avail++;
2257 }
2258
2259 /* None available, try to steal one or wait for a user to finish */
2260 if (i == dev_priv->num_fence_regs) {
2261 struct drm_gem_object *old_obj = NULL;
2262
2263 if (avail == 0)
2264 return -ENOSPC;
2265
2266 list_for_each_entry(old_obj_priv, &dev_priv->mm.fence_list,
2267 fence_list) {
2268 old_obj = old_obj_priv->obj;
2269
2270 if (old_obj_priv->pin_count)
2271 continue;
2272
2273 /* Take a reference, as otherwise the wait_rendering
2274 * below may cause the object to get freed out from
2275 * under us.
2276 */
2277 drm_gem_object_reference(old_obj);
2278
2279 /* i915 uses fences for GPU access to tiled buffers */
2280 if (IS_I965G(dev) || !old_obj_priv->active)
2281 break;
2282
2283 /* This brings the object to the head of the LRU if it
2284 * had been written to. The only way this should
2285 * result in us waiting longer than the expected
2286 * optimal amount of time is if there was a
2287 * fence-using buffer later that was read-only.
2288 */
2289 i915_gem_object_flush_gpu_write_domain(old_obj);
2290 ret = i915_gem_object_wait_rendering(old_obj);
2291 if (ret != 0) {
2292 drm_gem_object_unreference(old_obj);
2293 return ret;
2294 }
2295
2296 break;
2297 }
2298
2299 /*
2300 * Zap this virtual mapping so we can set up a fence again
2301 * for this object next time we need it.
2302 */
2303 i915_gem_release_mmap(old_obj);
2304
2305 i = old_obj_priv->fence_reg;
2306 reg = &dev_priv->fence_regs[i];
2307
2308 old_obj_priv->fence_reg = I915_FENCE_REG_NONE;
2309 list_del_init(&old_obj_priv->fence_list);
2310
2311 drm_gem_object_unreference(old_obj);
2312 }
2313
2314 obj_priv->fence_reg = i;
2315 list_add_tail(&obj_priv->fence_list, &dev_priv->mm.fence_list);
2316
2317 reg->obj = obj;
2318
2319 if (IS_I965G(dev))
2320 i965_write_fence_reg(reg);
2321 else if (IS_I9XX(dev))
2322 i915_write_fence_reg(reg);
2323 else
2324 i830_write_fence_reg(reg);
2325
2326 return 0;
2327 }
2328
2329 /**
2330 * i915_gem_clear_fence_reg - clear out fence register info
2331 * @obj: object to clear
2332 *
2333 * Zeroes out the fence register itself and clears out the associated
2334 * data structures in dev_priv and obj_priv.
2335 */
2336 static void
2337 i915_gem_clear_fence_reg(struct drm_gem_object *obj)
2338 {
2339 struct drm_device *dev = obj->dev;
2340 drm_i915_private_t *dev_priv = dev->dev_private;
2341 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2342
2343 if (IS_I965G(dev))
2344 I915_WRITE64(FENCE_REG_965_0 + (obj_priv->fence_reg * 8), 0);
2345 else {
2346 uint32_t fence_reg;
2347
2348 if (obj_priv->fence_reg < 8)
2349 fence_reg = FENCE_REG_830_0 + obj_priv->fence_reg * 4;
2350 else
2351 fence_reg = FENCE_REG_945_8 + (obj_priv->fence_reg -
2352 8) * 4;
2353
2354 I915_WRITE(fence_reg, 0);
2355 }
2356
2357 dev_priv->fence_regs[obj_priv->fence_reg].obj = NULL;
2358 obj_priv->fence_reg = I915_FENCE_REG_NONE;
2359 list_del_init(&obj_priv->fence_list);
2360 }
2361
2362 /**
2363 * i915_gem_object_put_fence_reg - waits on outstanding fenced access
2364 * to the buffer to finish, and then resets the fence register.
2365 * @obj: tiled object holding a fence register.
2366 *
2367 * Zeroes out the fence register itself and clears out the associated
2368 * data structures in dev_priv and obj_priv.
2369 */
2370 int
2371 i915_gem_object_put_fence_reg(struct drm_gem_object *obj)
2372 {
2373 struct drm_device *dev = obj->dev;
2374 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2375
2376 if (obj_priv->fence_reg == I915_FENCE_REG_NONE)
2377 return 0;
2378
2379 /* On the i915, GPU access to tiled buffers is via a fence,
2380 * therefore we must wait for any outstanding access to complete
2381 * before clearing the fence.
2382 */
2383 if (!IS_I965G(dev)) {
2384 int ret;
2385
2386 i915_gem_object_flush_gpu_write_domain(obj);
2387 i915_gem_object_flush_gtt_write_domain(obj);
2388 ret = i915_gem_object_wait_rendering(obj);
2389 if (ret != 0)
2390 return ret;
2391 }
2392
2393 i915_gem_clear_fence_reg (obj);
2394
2395 return 0;
2396 }
2397
2398 /**
2399 * Finds free space in the GTT aperture and binds the object there.
2400 */
2401 static int
2402 i915_gem_object_bind_to_gtt(struct drm_gem_object *obj, unsigned alignment)
2403 {
2404 struct drm_device *dev = obj->dev;
2405 drm_i915_private_t *dev_priv = dev->dev_private;
2406 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2407 struct drm_mm_node *free_space;
2408 int page_count, ret;
2409
2410 if (dev_priv->mm.suspended)
2411 return -EBUSY;
2412 if (alignment == 0)
2413 alignment = i915_gem_get_gtt_alignment(obj);
2414 if (alignment & (i915_gem_get_gtt_alignment(obj) - 1)) {
2415 DRM_ERROR("Invalid object alignment requested %u\n", alignment);
2416 return -EINVAL;
2417 }
2418
2419 search_free:
2420 free_space = drm_mm_search_free(&dev_priv->mm.gtt_space,
2421 obj->size, alignment, 0);
2422 if (free_space != NULL) {
2423 obj_priv->gtt_space = drm_mm_get_block(free_space, obj->size,
2424 alignment);
2425 if (obj_priv->gtt_space != NULL) {
2426 obj_priv->gtt_space->private = obj;
2427 obj_priv->gtt_offset = obj_priv->gtt_space->start;
2428 }
2429 }
2430 if (obj_priv->gtt_space == NULL) {
2431 bool lists_empty;
2432
2433 /* If the gtt is empty and we're still having trouble
2434 * fitting our object in, we're out of memory.
2435 */
2436 #if WATCH_LRU
2437 DRM_INFO("%s: GTT full, evicting something\n", __func__);
2438 #endif
2439 spin_lock(&dev_priv->mm.active_list_lock);
2440 lists_empty = (list_empty(&dev_priv->mm.inactive_list) &&
2441 list_empty(&dev_priv->mm.flushing_list) &&
2442 list_empty(&dev_priv->mm.active_list));
2443 spin_unlock(&dev_priv->mm.active_list_lock);
2444 if (lists_empty) {
2445 DRM_ERROR("GTT full, but LRU list empty\n");
2446 return -ENOSPC;
2447 }
2448
2449 ret = i915_gem_evict_something(dev);
2450 if (ret != 0) {
2451 if (ret != -ERESTARTSYS)
2452 DRM_ERROR("Failed to evict a buffer %d\n", ret);
2453 return ret;
2454 }
2455 goto search_free;
2456 }
2457
2458 #if WATCH_BUF
2459 DRM_INFO("Binding object of size %zd at 0x%08x\n",
2460 obj->size, obj_priv->gtt_offset);
2461 #endif
2462 ret = i915_gem_object_get_pages(obj);
2463 if (ret) {
2464 drm_mm_put_block(obj_priv->gtt_space);
2465 obj_priv->gtt_space = NULL;
2466 return ret;
2467 }
2468
2469 page_count = obj->size / PAGE_SIZE;
2470 /* Create an AGP memory structure pointing at our pages, and bind it
2471 * into the GTT.
2472 */
2473 obj_priv->agp_mem = drm_agp_bind_pages(dev,
2474 obj_priv->pages,
2475 page_count,
2476 obj_priv->gtt_offset,
2477 obj_priv->agp_type);
2478 if (obj_priv->agp_mem == NULL) {
2479 i915_gem_object_put_pages(obj);
2480 drm_mm_put_block(obj_priv->gtt_space);
2481 obj_priv->gtt_space = NULL;
2482 return -ENOMEM;
2483 }
2484 atomic_inc(&dev->gtt_count);
2485 atomic_add(obj->size, &dev->gtt_memory);
2486
2487 /* Assert that the object is not currently in any GPU domain. As it
2488 * wasn't in the GTT, there shouldn't be any way it could have been in
2489 * a GPU cache
2490 */
2491 BUG_ON(obj->read_domains & I915_GEM_GPU_DOMAINS);
2492 BUG_ON(obj->write_domain & I915_GEM_GPU_DOMAINS);
2493
2494 return 0;
2495 }
2496
2497 void
2498 i915_gem_clflush_object(struct drm_gem_object *obj)
2499 {
2500 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2501
2502 /* If we don't have a page list set up, then we're not pinned
2503 * to GPU, and we can ignore the cache flush because it'll happen
2504 * again at bind time.
2505 */
2506 if (obj_priv->pages == NULL)
2507 return;
2508
2509 /* XXX: The 865 in particular appears to be weird in how it handles
2510 * cache flushing. We haven't figured it out, but the
2511 * clflush+agp_chipset_flush doesn't appear to successfully get the
2512 * data visible to the PGU, while wbinvd + agp_chipset_flush does.
2513 */
2514 if (IS_I865G(obj->dev)) {
2515 wbinvd();
2516 return;
2517 }
2518
2519 drm_clflush_pages(obj_priv->pages, obj->size / PAGE_SIZE);
2520 }
2521
2522 /** Flushes any GPU write domain for the object if it's dirty. */
2523 static void
2524 i915_gem_object_flush_gpu_write_domain(struct drm_gem_object *obj)
2525 {
2526 struct drm_device *dev = obj->dev;
2527 uint32_t seqno;
2528
2529 if ((obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
2530 return;
2531
2532 /* Queue the GPU write cache flushing we need. */
2533 i915_gem_flush(dev, 0, obj->write_domain);
2534 seqno = i915_add_request(dev, NULL, obj->write_domain);
2535 obj->write_domain = 0;
2536 i915_gem_object_move_to_active(obj, seqno);
2537 }
2538
2539 /** Flushes the GTT write domain for the object if it's dirty. */
2540 static void
2541 i915_gem_object_flush_gtt_write_domain(struct drm_gem_object *obj)
2542 {
2543 if (obj->write_domain != I915_GEM_DOMAIN_GTT)
2544 return;
2545
2546 /* No actual flushing is required for the GTT write domain. Writes
2547 * to it immediately go to main memory as far as we know, so there's
2548 * no chipset flush. It also doesn't land in render cache.
2549 */
2550 obj->write_domain = 0;
2551 }
2552
2553 /** Flushes the CPU write domain for the object if it's dirty. */
2554 static void
2555 i915_gem_object_flush_cpu_write_domain(struct drm_gem_object *obj)
2556 {
2557 struct drm_device *dev = obj->dev;
2558
2559 if (obj->write_domain != I915_GEM_DOMAIN_CPU)
2560 return;
2561
2562 i915_gem_clflush_object(obj);
2563 drm_agp_chipset_flush(dev);
2564 obj->write_domain = 0;
2565 }
2566
2567 /**
2568 * Moves a single object to the GTT read, and possibly write domain.
2569 *
2570 * This function returns when the move is complete, including waiting on
2571 * flushes to occur.
2572 */
2573 int
2574 i915_gem_object_set_to_gtt_domain(struct drm_gem_object *obj, int write)
2575 {
2576 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2577 int ret;
2578
2579 /* Not valid to be called on unbound objects. */
2580 if (obj_priv->gtt_space == NULL)
2581 return -EINVAL;
2582
2583 i915_gem_object_flush_gpu_write_domain(obj);
2584 /* Wait on any GPU rendering and flushing to occur. */
2585 ret = i915_gem_object_wait_rendering(obj);
2586 if (ret != 0)
2587 return ret;
2588
2589 /* If we're writing through the GTT domain, then CPU and GPU caches
2590 * will need to be invalidated at next use.
2591 */
2592 if (write)
2593 obj->read_domains &= I915_GEM_DOMAIN_GTT;
2594
2595 i915_gem_object_flush_cpu_write_domain(obj);
2596
2597 /* It should now be out of any other write domains, and we can update
2598 * the domain values for our changes.
2599 */
2600 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
2601 obj->read_domains |= I915_GEM_DOMAIN_GTT;
2602 if (write) {
2603 obj->write_domain = I915_GEM_DOMAIN_GTT;
2604 obj_priv->dirty = 1;
2605 }
2606
2607 return 0;
2608 }
2609
2610 /**
2611 * Moves a single object to the CPU read, and possibly write domain.
2612 *
2613 * This function returns when the move is complete, including waiting on
2614 * flushes to occur.
2615 */
2616 static int
2617 i915_gem_object_set_to_cpu_domain(struct drm_gem_object *obj, int write)
2618 {
2619 int ret;
2620
2621 i915_gem_object_flush_gpu_write_domain(obj);
2622 /* Wait on any GPU rendering and flushing to occur. */
2623 ret = i915_gem_object_wait_rendering(obj);
2624 if (ret != 0)
2625 return ret;
2626
2627 i915_gem_object_flush_gtt_write_domain(obj);
2628
2629 /* If we have a partially-valid cache of the object in the CPU,
2630 * finish invalidating it and free the per-page flags.
2631 */
2632 i915_gem_object_set_to_full_cpu_read_domain(obj);
2633
2634 /* Flush the CPU cache if it's still invalid. */
2635 if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0) {
2636 i915_gem_clflush_object(obj);
2637
2638 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2639 }
2640
2641 /* It should now be out of any other write domains, and we can update
2642 * the domain values for our changes.
2643 */
2644 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2645
2646 /* If we're writing through the CPU, then the GPU read domains will
2647 * need to be invalidated at next use.
2648 */
2649 if (write) {
2650 obj->read_domains &= I915_GEM_DOMAIN_CPU;
2651 obj->write_domain = I915_GEM_DOMAIN_CPU;
2652 }
2653
2654 return 0;
2655 }
2656
2657 /*
2658 * Set the next domain for the specified object. This
2659 * may not actually perform the necessary flushing/invaliding though,
2660 * as that may want to be batched with other set_domain operations
2661 *
2662 * This is (we hope) the only really tricky part of gem. The goal
2663 * is fairly simple -- track which caches hold bits of the object
2664 * and make sure they remain coherent. A few concrete examples may
2665 * help to explain how it works. For shorthand, we use the notation
2666 * (read_domains, write_domain), e.g. (CPU, CPU) to indicate the
2667 * a pair of read and write domain masks.
2668 *
2669 * Case 1: the batch buffer
2670 *
2671 * 1. Allocated
2672 * 2. Written by CPU
2673 * 3. Mapped to GTT
2674 * 4. Read by GPU
2675 * 5. Unmapped from GTT
2676 * 6. Freed
2677 *
2678 * Let's take these a step at a time
2679 *
2680 * 1. Allocated
2681 * Pages allocated from the kernel may still have
2682 * cache contents, so we set them to (CPU, CPU) always.
2683 * 2. Written by CPU (using pwrite)
2684 * The pwrite function calls set_domain (CPU, CPU) and
2685 * this function does nothing (as nothing changes)
2686 * 3. Mapped by GTT
2687 * This function asserts that the object is not
2688 * currently in any GPU-based read or write domains
2689 * 4. Read by GPU
2690 * i915_gem_execbuffer calls set_domain (COMMAND, 0).
2691 * As write_domain is zero, this function adds in the
2692 * current read domains (CPU+COMMAND, 0).
2693 * flush_domains is set to CPU.
2694 * invalidate_domains is set to COMMAND
2695 * clflush is run to get data out of the CPU caches
2696 * then i915_dev_set_domain calls i915_gem_flush to
2697 * emit an MI_FLUSH and drm_agp_chipset_flush
2698 * 5. Unmapped from GTT
2699 * i915_gem_object_unbind calls set_domain (CPU, CPU)
2700 * flush_domains and invalidate_domains end up both zero
2701 * so no flushing/invalidating happens
2702 * 6. Freed
2703 * yay, done
2704 *
2705 * Case 2: The shared render buffer
2706 *
2707 * 1. Allocated
2708 * 2. Mapped to GTT
2709 * 3. Read/written by GPU
2710 * 4. set_domain to (CPU,CPU)
2711 * 5. Read/written by CPU
2712 * 6. Read/written by GPU
2713 *
2714 * 1. Allocated
2715 * Same as last example, (CPU, CPU)
2716 * 2. Mapped to GTT
2717 * Nothing changes (assertions find that it is not in the GPU)
2718 * 3. Read/written by GPU
2719 * execbuffer calls set_domain (RENDER, RENDER)
2720 * flush_domains gets CPU
2721 * invalidate_domains gets GPU
2722 * clflush (obj)
2723 * MI_FLUSH and drm_agp_chipset_flush
2724 * 4. set_domain (CPU, CPU)
2725 * flush_domains gets GPU
2726 * invalidate_domains gets CPU
2727 * wait_rendering (obj) to make sure all drawing is complete.
2728 * This will include an MI_FLUSH to get the data from GPU
2729 * to memory
2730 * clflush (obj) to invalidate the CPU cache
2731 * Another MI_FLUSH in i915_gem_flush (eliminate this somehow?)
2732 * 5. Read/written by CPU
2733 * cache lines are loaded and dirtied
2734 * 6. Read written by GPU
2735 * Same as last GPU access
2736 *
2737 * Case 3: The constant buffer
2738 *
2739 * 1. Allocated
2740 * 2. Written by CPU
2741 * 3. Read by GPU
2742 * 4. Updated (written) by CPU again
2743 * 5. Read by GPU
2744 *
2745 * 1. Allocated
2746 * (CPU, CPU)
2747 * 2. Written by CPU
2748 * (CPU, CPU)
2749 * 3. Read by GPU
2750 * (CPU+RENDER, 0)
2751 * flush_domains = CPU
2752 * invalidate_domains = RENDER
2753 * clflush (obj)
2754 * MI_FLUSH
2755 * drm_agp_chipset_flush
2756 * 4. Updated (written) by CPU again
2757 * (CPU, CPU)
2758 * flush_domains = 0 (no previous write domain)
2759 * invalidate_domains = 0 (no new read domains)
2760 * 5. Read by GPU
2761 * (CPU+RENDER, 0)
2762 * flush_domains = CPU
2763 * invalidate_domains = RENDER
2764 * clflush (obj)
2765 * MI_FLUSH
2766 * drm_agp_chipset_flush
2767 */
2768 static void
2769 i915_gem_object_set_to_gpu_domain(struct drm_gem_object *obj)
2770 {
2771 struct drm_device *dev = obj->dev;
2772 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2773 uint32_t invalidate_domains = 0;
2774 uint32_t flush_domains = 0;
2775
2776 BUG_ON(obj->pending_read_domains & I915_GEM_DOMAIN_CPU);
2777 BUG_ON(obj->pending_write_domain == I915_GEM_DOMAIN_CPU);
2778
2779 #if WATCH_BUF
2780 DRM_INFO("%s: object %p read %08x -> %08x write %08x -> %08x\n",
2781 __func__, obj,
2782 obj->read_domains, obj->pending_read_domains,
2783 obj->write_domain, obj->pending_write_domain);
2784 #endif
2785 /*
2786 * If the object isn't moving to a new write domain,
2787 * let the object stay in multiple read domains
2788 */
2789 if (obj->pending_write_domain == 0)
2790 obj->pending_read_domains |= obj->read_domains;
2791 else
2792 obj_priv->dirty = 1;
2793
2794 /*
2795 * Flush the current write domain if
2796 * the new read domains don't match. Invalidate
2797 * any read domains which differ from the old
2798 * write domain
2799 */
2800 if (obj->write_domain &&
2801 obj->write_domain != obj->pending_read_domains) {
2802 flush_domains |= obj->write_domain;
2803 invalidate_domains |=
2804 obj->pending_read_domains & ~obj->write_domain;
2805 }
2806 /*
2807 * Invalidate any read caches which may have
2808 * stale data. That is, any new read domains.
2809 */
2810 invalidate_domains |= obj->pending_read_domains & ~obj->read_domains;
2811 if ((flush_domains | invalidate_domains) & I915_GEM_DOMAIN_CPU) {
2812 #if WATCH_BUF
2813 DRM_INFO("%s: CPU domain flush %08x invalidate %08x\n",
2814 __func__, flush_domains, invalidate_domains);
2815 #endif
2816 i915_gem_clflush_object(obj);
2817 }
2818
2819 /* The actual obj->write_domain will be updated with
2820 * pending_write_domain after we emit the accumulated flush for all
2821 * of our domain changes in execbuffers (which clears objects'
2822 * write_domains). So if we have a current write domain that we
2823 * aren't changing, set pending_write_domain to that.
2824 */
2825 if (flush_domains == 0 && obj->pending_write_domain == 0)
2826 obj->pending_write_domain = obj->write_domain;
2827 obj->read_domains = obj->pending_read_domains;
2828
2829 dev->invalidate_domains |= invalidate_domains;
2830 dev->flush_domains |= flush_domains;
2831 #if WATCH_BUF
2832 DRM_INFO("%s: read %08x write %08x invalidate %08x flush %08x\n",
2833 __func__,
2834 obj->read_domains, obj->write_domain,
2835 dev->invalidate_domains, dev->flush_domains);
2836 #endif
2837 }
2838
2839 /**
2840 * Moves the object from a partially CPU read to a full one.
2841 *
2842 * Note that this only resolves i915_gem_object_set_cpu_read_domain_range(),
2843 * and doesn't handle transitioning from !(read_domains & I915_GEM_DOMAIN_CPU).
2844 */
2845 static void
2846 i915_gem_object_set_to_full_cpu_read_domain(struct drm_gem_object *obj)
2847 {
2848 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2849
2850 if (!obj_priv->page_cpu_valid)
2851 return;
2852
2853 /* If we're partially in the CPU read domain, finish moving it in.
2854 */
2855 if (obj->read_domains & I915_GEM_DOMAIN_CPU) {
2856 int i;
2857
2858 for (i = 0; i <= (obj->size - 1) / PAGE_SIZE; i++) {
2859 if (obj_priv->page_cpu_valid[i])
2860 continue;
2861 drm_clflush_pages(obj_priv->pages + i, 1);
2862 }
2863 }
2864
2865 /* Free the page_cpu_valid mappings which are now stale, whether
2866 * or not we've got I915_GEM_DOMAIN_CPU.
2867 */
2868 kfree(obj_priv->page_cpu_valid);
2869 obj_priv->page_cpu_valid = NULL;
2870 }
2871
2872 /**
2873 * Set the CPU read domain on a range of the object.
2874 *
2875 * The object ends up with I915_GEM_DOMAIN_CPU in its read flags although it's
2876 * not entirely valid. The page_cpu_valid member of the object flags which
2877 * pages have been flushed, and will be respected by
2878 * i915_gem_object_set_to_cpu_domain() if it's called on to get a valid mapping
2879 * of the whole object.
2880 *
2881 * This function returns when the move is complete, including waiting on
2882 * flushes to occur.
2883 */
2884 static int
2885 i915_gem_object_set_cpu_read_domain_range(struct drm_gem_object *obj,
2886 uint64_t offset, uint64_t size)
2887 {
2888 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2889 int i, ret;
2890
2891 if (offset == 0 && size == obj->size)
2892 return i915_gem_object_set_to_cpu_domain(obj, 0);
2893
2894 i915_gem_object_flush_gpu_write_domain(obj);
2895 /* Wait on any GPU rendering and flushing to occur. */
2896 ret = i915_gem_object_wait_rendering(obj);
2897 if (ret != 0)
2898 return ret;
2899 i915_gem_object_flush_gtt_write_domain(obj);
2900
2901 /* If we're already fully in the CPU read domain, we're done. */
2902 if (obj_priv->page_cpu_valid == NULL &&
2903 (obj->read_domains & I915_GEM_DOMAIN_CPU) != 0)
2904 return 0;
2905
2906 /* Otherwise, create/clear the per-page CPU read domain flag if we're
2907 * newly adding I915_GEM_DOMAIN_CPU
2908 */
2909 if (obj_priv->page_cpu_valid == NULL) {
2910 obj_priv->page_cpu_valid = kzalloc(obj->size / PAGE_SIZE,
2911 GFP_KERNEL);
2912 if (obj_priv->page_cpu_valid == NULL)
2913 return -ENOMEM;
2914 } else if ((obj->read_domains & I915_GEM_DOMAIN_CPU) == 0)
2915 memset(obj_priv->page_cpu_valid, 0, obj->size / PAGE_SIZE);
2916
2917 /* Flush the cache on any pages that are still invalid from the CPU's
2918 * perspective.
2919 */
2920 for (i = offset / PAGE_SIZE; i <= (offset + size - 1) / PAGE_SIZE;
2921 i++) {
2922 if (obj_priv->page_cpu_valid[i])
2923 continue;
2924
2925 drm_clflush_pages(obj_priv->pages + i, 1);
2926
2927 obj_priv->page_cpu_valid[i] = 1;
2928 }
2929
2930 /* It should now be out of any other write domains, and we can update
2931 * the domain values for our changes.
2932 */
2933 BUG_ON((obj->write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
2934
2935 obj->read_domains |= I915_GEM_DOMAIN_CPU;
2936
2937 return 0;
2938 }
2939
2940 /**
2941 * Pin an object to the GTT and evaluate the relocations landing in it.
2942 */
2943 static int
2944 i915_gem_object_pin_and_relocate(struct drm_gem_object *obj,
2945 struct drm_file *file_priv,
2946 struct drm_i915_gem_exec_object *entry,
2947 struct drm_i915_gem_relocation_entry *relocs)
2948 {
2949 struct drm_device *dev = obj->dev;
2950 drm_i915_private_t *dev_priv = dev->dev_private;
2951 struct drm_i915_gem_object *obj_priv = obj->driver_private;
2952 int i, ret;
2953 void __iomem *reloc_page;
2954
2955 /* Choose the GTT offset for our buffer and put it there. */
2956 ret = i915_gem_object_pin(obj, (uint32_t) entry->alignment);
2957 if (ret)
2958 return ret;
2959
2960 entry->offset = obj_priv->gtt_offset;
2961
2962 /* Apply the relocations, using the GTT aperture to avoid cache
2963 * flushing requirements.
2964 */
2965 for (i = 0; i < entry->relocation_count; i++) {
2966 struct drm_i915_gem_relocation_entry *reloc= &relocs[i];
2967 struct drm_gem_object *target_obj;
2968 struct drm_i915_gem_object *target_obj_priv;
2969 uint32_t reloc_val, reloc_offset;
2970 uint32_t __iomem *reloc_entry;
2971
2972 target_obj = drm_gem_object_lookup(obj->dev, file_priv,
2973 reloc->target_handle);
2974 if (target_obj == NULL) {
2975 i915_gem_object_unpin(obj);
2976 return -EBADF;
2977 }
2978 target_obj_priv = target_obj->driver_private;
2979
2980 /* The target buffer should have appeared before us in the
2981 * exec_object list, so it should have a GTT space bound by now.
2982 */
2983 if (target_obj_priv->gtt_space == NULL) {
2984 DRM_ERROR("No GTT space found for object %d\n",
2985 reloc->target_handle);
2986 drm_gem_object_unreference(target_obj);
2987 i915_gem_object_unpin(obj);
2988 return -EINVAL;
2989 }
2990
2991 if (reloc->offset > obj->size - 4) {
2992 DRM_ERROR("Relocation beyond object bounds: "
2993 "obj %p target %d offset %d size %d.\n",
2994 obj, reloc->target_handle,
2995 (int) reloc->offset, (int) obj->size);
2996 drm_gem_object_unreference(target_obj);
2997 i915_gem_object_unpin(obj);
2998 return -EINVAL;
2999 }
3000 if (reloc->offset & 3) {
3001 DRM_ERROR("Relocation not 4-byte aligned: "
3002 "obj %p target %d offset %d.\n",
3003 obj, reloc->target_handle,
3004 (int) reloc->offset);
3005 drm_gem_object_unreference(target_obj);
3006 i915_gem_object_unpin(obj);
3007 return -EINVAL;
3008 }
3009
3010 if (reloc->write_domain & I915_GEM_DOMAIN_CPU ||
3011 reloc->read_domains & I915_GEM_DOMAIN_CPU) {
3012 DRM_ERROR("reloc with read/write CPU domains: "
3013 "obj %p target %d offset %d "
3014 "read %08x write %08x",
3015 obj, reloc->target_handle,
3016 (int) reloc->offset,
3017 reloc->read_domains,
3018 reloc->write_domain);
3019 drm_gem_object_unreference(target_obj);
3020 i915_gem_object_unpin(obj);
3021 return -EINVAL;
3022 }
3023
3024 if (reloc->write_domain && target_obj->pending_write_domain &&
3025 reloc->write_domain != target_obj->pending_write_domain) {
3026 DRM_ERROR("Write domain conflict: "
3027 "obj %p target %d offset %d "
3028 "new %08x old %08x\n",
3029 obj, reloc->target_handle,
3030 (int) reloc->offset,
3031 reloc->write_domain,
3032 target_obj->pending_write_domain);
3033 drm_gem_object_unreference(target_obj);
3034 i915_gem_object_unpin(obj);
3035 return -EINVAL;
3036 }
3037
3038 #if WATCH_RELOC
3039 DRM_INFO("%s: obj %p offset %08x target %d "
3040 "read %08x write %08x gtt %08x "
3041 "presumed %08x delta %08x\n",
3042 __func__,
3043 obj,
3044 (int) reloc->offset,
3045 (int) reloc->target_handle,
3046 (int) reloc->read_domains,
3047 (int) reloc->write_domain,
3048 (int) target_obj_priv->gtt_offset,
3049 (int) reloc->presumed_offset,
3050 reloc->delta);
3051 #endif
3052
3053 target_obj->pending_read_domains |= reloc->read_domains;
3054 target_obj->pending_write_domain |= reloc->write_domain;
3055
3056 /* If the relocation already has the right value in it, no
3057 * more work needs to be done.
3058 */
3059 if (target_obj_priv->gtt_offset == reloc->presumed_offset) {
3060 drm_gem_object_unreference(target_obj);
3061 continue;
3062 }
3063
3064 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
3065 if (ret != 0) {
3066 drm_gem_object_unreference(target_obj);
3067 i915_gem_object_unpin(obj);
3068 return -EINVAL;
3069 }
3070
3071 /* Map the page containing the relocation we're going to
3072 * perform.
3073 */
3074 reloc_offset = obj_priv->gtt_offset + reloc->offset;
3075 reloc_page = io_mapping_map_atomic_wc(dev_priv->mm.gtt_mapping,
3076 (reloc_offset &
3077 ~(PAGE_SIZE - 1)));
3078 reloc_entry = (uint32_t __iomem *)(reloc_page +
3079 (reloc_offset & (PAGE_SIZE - 1)));
3080 reloc_val = target_obj_priv->gtt_offset + reloc->delta;
3081
3082 #if WATCH_BUF
3083 DRM_INFO("Applied relocation: %p@0x%08x %08x -> %08x\n",
3084 obj, (unsigned int) reloc->offset,
3085 readl(reloc_entry), reloc_val);
3086 #endif
3087 writel(reloc_val, reloc_entry);
3088 io_mapping_unmap_atomic(reloc_page);
3089
3090 /* The updated presumed offset for this entry will be
3091 * copied back out to the user.
3092 */
3093 reloc->presumed_offset = target_obj_priv->gtt_offset;
3094
3095 drm_gem_object_unreference(target_obj);
3096 }
3097
3098 #if WATCH_BUF
3099 if (0)
3100 i915_gem_dump_object(obj, 128, __func__, ~0);
3101 #endif
3102 return 0;
3103 }
3104
3105 /** Dispatch a batchbuffer to the ring
3106 */
3107 static int
3108 i915_dispatch_gem_execbuffer(struct drm_device *dev,
3109 struct drm_i915_gem_execbuffer *exec,
3110 struct drm_clip_rect *cliprects,
3111 uint64_t exec_offset)
3112 {
3113 drm_i915_private_t *dev_priv = dev->dev_private;
3114 int nbox = exec->num_cliprects;
3115 int i = 0, count;
3116 uint32_t exec_start, exec_len;
3117 RING_LOCALS;
3118
3119 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3120 exec_len = (uint32_t) exec->batch_len;
3121
3122 count = nbox ? nbox : 1;
3123
3124 for (i = 0; i < count; i++) {
3125 if (i < nbox) {
3126 int ret = i915_emit_box(dev, cliprects, i,
3127 exec->DR1, exec->DR4);
3128 if (ret)
3129 return ret;
3130 }
3131
3132 if (IS_I830(dev) || IS_845G(dev)) {
3133 BEGIN_LP_RING(4);
3134 OUT_RING(MI_BATCH_BUFFER);
3135 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3136 OUT_RING(exec_start + exec_len - 4);
3137 OUT_RING(0);
3138 ADVANCE_LP_RING();
3139 } else {
3140 BEGIN_LP_RING(2);
3141 if (IS_I965G(dev)) {
3142 OUT_RING(MI_BATCH_BUFFER_START |
3143 (2 << 6) |
3144 MI_BATCH_NON_SECURE_I965);
3145 OUT_RING(exec_start);
3146 } else {
3147 OUT_RING(MI_BATCH_BUFFER_START |
3148 (2 << 6));
3149 OUT_RING(exec_start | MI_BATCH_NON_SECURE);
3150 }
3151 ADVANCE_LP_RING();
3152 }
3153 }
3154
3155 /* XXX breadcrumb */
3156 return 0;
3157 }
3158
3159 /* Throttle our rendering by waiting until the ring has completed our requests
3160 * emitted over 20 msec ago.
3161 *
3162 * Note that if we were to use the current jiffies each time around the loop,
3163 * we wouldn't escape the function with any frames outstanding if the time to
3164 * render a frame was over 20ms.
3165 *
3166 * This should get us reasonable parallelism between CPU and GPU but also
3167 * relatively low latency when blocking on a particular request to finish.
3168 */
3169 static int
3170 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file_priv)
3171 {
3172 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
3173 int ret = 0;
3174 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3175
3176 mutex_lock(&dev->struct_mutex);
3177 while (!list_empty(&i915_file_priv->mm.request_list)) {
3178 struct drm_i915_gem_request *request;
3179
3180 request = list_first_entry(&i915_file_priv->mm.request_list,
3181 struct drm_i915_gem_request,
3182 client_list);
3183
3184 if (time_after_eq(request->emitted_jiffies, recent_enough))
3185 break;
3186
3187 ret = i915_wait_request(dev, request->seqno);
3188 if (ret != 0)
3189 break;
3190 }
3191 mutex_unlock(&dev->struct_mutex);
3192
3193 return ret;
3194 }
3195
3196 static int
3197 i915_gem_get_relocs_from_user(struct drm_i915_gem_exec_object *exec_list,
3198 uint32_t buffer_count,
3199 struct drm_i915_gem_relocation_entry **relocs)
3200 {
3201 uint32_t reloc_count = 0, reloc_index = 0, i;
3202 int ret;
3203
3204 *relocs = NULL;
3205 for (i = 0; i < buffer_count; i++) {
3206 if (reloc_count + exec_list[i].relocation_count < reloc_count)
3207 return -EINVAL;
3208 reloc_count += exec_list[i].relocation_count;
3209 }
3210
3211 *relocs = drm_calloc_large(reloc_count, sizeof(**relocs));
3212 if (*relocs == NULL)
3213 return -ENOMEM;
3214
3215 for (i = 0; i < buffer_count; i++) {
3216 struct drm_i915_gem_relocation_entry __user *user_relocs;
3217
3218 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3219
3220 ret = copy_from_user(&(*relocs)[reloc_index],
3221 user_relocs,
3222 exec_list[i].relocation_count *
3223 sizeof(**relocs));
3224 if (ret != 0) {
3225 drm_free_large(*relocs);
3226 *relocs = NULL;
3227 return -EFAULT;
3228 }
3229
3230 reloc_index += exec_list[i].relocation_count;
3231 }
3232
3233 return 0;
3234 }
3235
3236 static int
3237 i915_gem_put_relocs_to_user(struct drm_i915_gem_exec_object *exec_list,
3238 uint32_t buffer_count,
3239 struct drm_i915_gem_relocation_entry *relocs)
3240 {
3241 uint32_t reloc_count = 0, i;
3242 int ret = 0;
3243
3244 for (i = 0; i < buffer_count; i++) {
3245 struct drm_i915_gem_relocation_entry __user *user_relocs;
3246 int unwritten;
3247
3248 user_relocs = (void __user *)(uintptr_t)exec_list[i].relocs_ptr;
3249
3250 unwritten = copy_to_user(user_relocs,
3251 &relocs[reloc_count],
3252 exec_list[i].relocation_count *
3253 sizeof(*relocs));
3254
3255 if (unwritten) {
3256 ret = -EFAULT;
3257 goto err;
3258 }
3259
3260 reloc_count += exec_list[i].relocation_count;
3261 }
3262
3263 err:
3264 drm_free_large(relocs);
3265
3266 return ret;
3267 }
3268
3269 static int
3270 i915_gem_check_execbuffer (struct drm_i915_gem_execbuffer *exec,
3271 uint64_t exec_offset)
3272 {
3273 uint32_t exec_start, exec_len;
3274
3275 exec_start = (uint32_t) exec_offset + exec->batch_start_offset;
3276 exec_len = (uint32_t) exec->batch_len;
3277
3278 if ((exec_start | exec_len) & 0x7)
3279 return -EINVAL;
3280
3281 if (!exec_start)
3282 return -EINVAL;
3283
3284 return 0;
3285 }
3286
3287 int
3288 i915_gem_execbuffer(struct drm_device *dev, void *data,
3289 struct drm_file *file_priv)
3290 {
3291 drm_i915_private_t *dev_priv = dev->dev_private;
3292 struct drm_i915_gem_execbuffer *args = data;
3293 struct drm_i915_gem_exec_object *exec_list = NULL;
3294 struct drm_gem_object **object_list = NULL;
3295 struct drm_gem_object *batch_obj;
3296 struct drm_i915_gem_object *obj_priv;
3297 struct drm_clip_rect *cliprects = NULL;
3298 struct drm_i915_gem_relocation_entry *relocs;
3299 int ret, ret2, i, pinned = 0;
3300 uint64_t exec_offset;
3301 uint32_t seqno, flush_domains, reloc_index;
3302 int pin_tries;
3303
3304 #if WATCH_EXEC
3305 DRM_INFO("buffers_ptr %d buffer_count %d len %08x\n",
3306 (int) args->buffers_ptr, args->buffer_count, args->batch_len);
3307 #endif
3308
3309 if (args->buffer_count < 1) {
3310 DRM_ERROR("execbuf with %d buffers\n", args->buffer_count);
3311 return -EINVAL;
3312 }
3313 /* Copy in the exec list from userland */
3314 exec_list = drm_calloc_large(sizeof(*exec_list), args->buffer_count);
3315 object_list = drm_calloc_large(sizeof(*object_list), args->buffer_count);
3316 if (exec_list == NULL || object_list == NULL) {
3317 DRM_ERROR("Failed to allocate exec or object list "
3318 "for %d buffers\n",
3319 args->buffer_count);
3320 ret = -ENOMEM;
3321 goto pre_mutex_err;
3322 }
3323 ret = copy_from_user(exec_list,
3324 (struct drm_i915_relocation_entry __user *)
3325 (uintptr_t) args->buffers_ptr,
3326 sizeof(*exec_list) * args->buffer_count);
3327 if (ret != 0) {
3328 DRM_ERROR("copy %d exec entries failed %d\n",
3329 args->buffer_count, ret);
3330 goto pre_mutex_err;
3331 }
3332
3333 if (args->num_cliprects != 0) {
3334 cliprects = kcalloc(args->num_cliprects, sizeof(*cliprects),
3335 GFP_KERNEL);
3336 if (cliprects == NULL)
3337 goto pre_mutex_err;
3338
3339 ret = copy_from_user(cliprects,
3340 (struct drm_clip_rect __user *)
3341 (uintptr_t) args->cliprects_ptr,
3342 sizeof(*cliprects) * args->num_cliprects);
3343 if (ret != 0) {
3344 DRM_ERROR("copy %d cliprects failed: %d\n",
3345 args->num_cliprects, ret);
3346 goto pre_mutex_err;
3347 }
3348 }
3349
3350 ret = i915_gem_get_relocs_from_user(exec_list, args->buffer_count,
3351 &relocs);
3352 if (ret != 0)
3353 goto pre_mutex_err;
3354
3355 mutex_lock(&dev->struct_mutex);
3356
3357 i915_verify_inactive(dev, __FILE__, __LINE__);
3358
3359 if (dev_priv->mm.wedged) {
3360 DRM_ERROR("Execbuf while wedged\n");
3361 mutex_unlock(&dev->struct_mutex);
3362 ret = -EIO;
3363 goto pre_mutex_err;
3364 }
3365
3366 if (dev_priv->mm.suspended) {
3367 DRM_ERROR("Execbuf while VT-switched.\n");
3368 mutex_unlock(&dev->struct_mutex);
3369 ret = -EBUSY;
3370 goto pre_mutex_err;
3371 }
3372
3373 /* Look up object handles */
3374 for (i = 0; i < args->buffer_count; i++) {
3375 object_list[i] = drm_gem_object_lookup(dev, file_priv,
3376 exec_list[i].handle);
3377 if (object_list[i] == NULL) {
3378 DRM_ERROR("Invalid object handle %d at index %d\n",
3379 exec_list[i].handle, i);
3380 ret = -EBADF;
3381 goto err;
3382 }
3383
3384 obj_priv = object_list[i]->driver_private;
3385 if (obj_priv->in_execbuffer) {
3386 DRM_ERROR("Object %p appears more than once in object list\n",
3387 object_list[i]);
3388 ret = -EBADF;
3389 goto err;
3390 }
3391 obj_priv->in_execbuffer = true;
3392 }
3393
3394 /* Pin and relocate */
3395 for (pin_tries = 0; ; pin_tries++) {
3396 ret = 0;
3397 reloc_index = 0;
3398
3399 for (i = 0; i < args->buffer_count; i++) {
3400 object_list[i]->pending_read_domains = 0;
3401 object_list[i]->pending_write_domain = 0;
3402 ret = i915_gem_object_pin_and_relocate(object_list[i],
3403 file_priv,
3404 &exec_list[i],
3405 &relocs[reloc_index]);
3406 if (ret)
3407 break;
3408 pinned = i + 1;
3409 reloc_index += exec_list[i].relocation_count;
3410 }
3411 /* success */
3412 if (ret == 0)
3413 break;
3414
3415 /* error other than GTT full, or we've already tried again */
3416 if (ret != -ENOSPC || pin_tries >= 1) {
3417 if (ret != -ERESTARTSYS)
3418 DRM_ERROR("Failed to pin buffers %d\n", ret);
3419 goto err;
3420 }
3421
3422 /* unpin all of our buffers */
3423 for (i = 0; i < pinned; i++)
3424 i915_gem_object_unpin(object_list[i]);
3425 pinned = 0;
3426
3427 /* evict everyone we can from the aperture */
3428 ret = i915_gem_evict_everything(dev);
3429 if (ret)
3430 goto err;
3431 }
3432
3433 /* Set the pending read domains for the batch buffer to COMMAND */
3434 batch_obj = object_list[args->buffer_count-1];
3435 if (batch_obj->pending_write_domain) {
3436 DRM_ERROR("Attempting to use self-modifying batch buffer\n");
3437 ret = -EINVAL;
3438 goto err;
3439 }
3440 batch_obj->pending_read_domains |= I915_GEM_DOMAIN_COMMAND;
3441
3442 /* Sanity check the batch buffer, prior to moving objects */
3443 exec_offset = exec_list[args->buffer_count - 1].offset;
3444 ret = i915_gem_check_execbuffer (args, exec_offset);
3445 if (ret != 0) {
3446 DRM_ERROR("execbuf with invalid offset/length\n");
3447 goto err;
3448 }
3449
3450 i915_verify_inactive(dev, __FILE__, __LINE__);
3451
3452 /* Zero the global flush/invalidate flags. These
3453 * will be modified as new domains are computed
3454 * for each object
3455 */
3456 dev->invalidate_domains = 0;
3457 dev->flush_domains = 0;
3458
3459 for (i = 0; i < args->buffer_count; i++) {
3460 struct drm_gem_object *obj = object_list[i];
3461
3462 /* Compute new gpu domains and update invalidate/flush */
3463 i915_gem_object_set_to_gpu_domain(obj);
3464 }
3465
3466 i915_verify_inactive(dev, __FILE__, __LINE__);
3467
3468 if (dev->invalidate_domains | dev->flush_domains) {
3469 #if WATCH_EXEC
3470 DRM_INFO("%s: invalidate_domains %08x flush_domains %08x\n",
3471 __func__,
3472 dev->invalidate_domains,
3473 dev->flush_domains);
3474 #endif
3475 i915_gem_flush(dev,
3476 dev->invalidate_domains,
3477 dev->flush_domains);
3478 if (dev->flush_domains)
3479 (void)i915_add_request(dev, file_priv,
3480 dev->flush_domains);
3481 }
3482
3483 for (i = 0; i < args->buffer_count; i++) {
3484 struct drm_gem_object *obj = object_list[i];
3485
3486 obj->write_domain = obj->pending_write_domain;
3487 }
3488
3489 i915_verify_inactive(dev, __FILE__, __LINE__);
3490
3491 #if WATCH_COHERENCY
3492 for (i = 0; i < args->buffer_count; i++) {
3493 i915_gem_object_check_coherency(object_list[i],
3494 exec_list[i].handle);
3495 }
3496 #endif
3497
3498 #if WATCH_EXEC
3499 i915_gem_dump_object(batch_obj,
3500 args->batch_len,
3501 __func__,
3502 ~0);
3503 #endif
3504
3505 /* Exec the batchbuffer */
3506 ret = i915_dispatch_gem_execbuffer(dev, args, cliprects, exec_offset);
3507 if (ret) {
3508 DRM_ERROR("dispatch failed %d\n", ret);
3509 goto err;
3510 }
3511
3512 /*
3513 * Ensure that the commands in the batch buffer are
3514 * finished before the interrupt fires
3515 */
3516 flush_domains = i915_retire_commands(dev);
3517
3518 i915_verify_inactive(dev, __FILE__, __LINE__);
3519
3520 /*
3521 * Get a seqno representing the execution of the current buffer,
3522 * which we can wait on. We would like to mitigate these interrupts,
3523 * likely by only creating seqnos occasionally (so that we have
3524 * *some* interrupts representing completion of buffers that we can
3525 * wait on when trying to clear up gtt space).
3526 */
3527 seqno = i915_add_request(dev, file_priv, flush_domains);
3528 BUG_ON(seqno == 0);
3529 for (i = 0; i < args->buffer_count; i++) {
3530 struct drm_gem_object *obj = object_list[i];
3531
3532 i915_gem_object_move_to_active(obj, seqno);
3533 #if WATCH_LRU
3534 DRM_INFO("%s: move to exec list %p\n", __func__, obj);
3535 #endif
3536 }
3537 #if WATCH_LRU
3538 i915_dump_lru(dev, __func__);
3539 #endif
3540
3541 i915_verify_inactive(dev, __FILE__, __LINE__);
3542
3543 err:
3544 for (i = 0; i < pinned; i++)
3545 i915_gem_object_unpin(object_list[i]);
3546
3547 for (i = 0; i < args->buffer_count; i++) {
3548 if (object_list[i]) {
3549 obj_priv = object_list[i]->driver_private;
3550 obj_priv->in_execbuffer = false;
3551 }
3552 drm_gem_object_unreference(object_list[i]);
3553 }
3554
3555 mutex_unlock(&dev->struct_mutex);
3556
3557 if (!ret) {
3558 /* Copy the new buffer offsets back to the user's exec list. */
3559 ret = copy_to_user((struct drm_i915_relocation_entry __user *)
3560 (uintptr_t) args->buffers_ptr,
3561 exec_list,
3562 sizeof(*exec_list) * args->buffer_count);
3563 if (ret) {
3564 ret = -EFAULT;
3565 DRM_ERROR("failed to copy %d exec entries "
3566 "back to user (%d)\n",
3567 args->buffer_count, ret);
3568 }
3569 }
3570
3571 /* Copy the updated relocations out regardless of current error
3572 * state. Failure to update the relocs would mean that the next
3573 * time userland calls execbuf, it would do so with presumed offset
3574 * state that didn't match the actual object state.
3575 */
3576 ret2 = i915_gem_put_relocs_to_user(exec_list, args->buffer_count,
3577 relocs);
3578 if (ret2 != 0) {
3579 DRM_ERROR("Failed to copy relocations back out: %d\n", ret2);
3580
3581 if (ret == 0)
3582 ret = ret2;
3583 }
3584
3585 pre_mutex_err:
3586 drm_free_large(object_list);
3587 drm_free_large(exec_list);
3588 kfree(cliprects);
3589
3590 return ret;
3591 }
3592
3593 int
3594 i915_gem_object_pin(struct drm_gem_object *obj, uint32_t alignment)
3595 {
3596 struct drm_device *dev = obj->dev;
3597 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3598 int ret;
3599
3600 i915_verify_inactive(dev, __FILE__, __LINE__);
3601 if (obj_priv->gtt_space == NULL) {
3602 ret = i915_gem_object_bind_to_gtt(obj, alignment);
3603 if (ret != 0) {
3604 if (ret != -EBUSY && ret != -ERESTARTSYS)
3605 DRM_ERROR("Failure to bind: %d\n", ret);
3606 return ret;
3607 }
3608 }
3609 /*
3610 * Pre-965 chips need a fence register set up in order to
3611 * properly handle tiled surfaces.
3612 */
3613 if (!IS_I965G(dev) && obj_priv->tiling_mode != I915_TILING_NONE) {
3614 ret = i915_gem_object_get_fence_reg(obj);
3615 if (ret != 0) {
3616 if (ret != -EBUSY && ret != -ERESTARTSYS)
3617 DRM_ERROR("Failure to install fence: %d\n",
3618 ret);
3619 return ret;
3620 }
3621 }
3622 obj_priv->pin_count++;
3623
3624 /* If the object is not active and not pending a flush,
3625 * remove it from the inactive list
3626 */
3627 if (obj_priv->pin_count == 1) {
3628 atomic_inc(&dev->pin_count);
3629 atomic_add(obj->size, &dev->pin_memory);
3630 if (!obj_priv->active &&
3631 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0 &&
3632 !list_empty(&obj_priv->list))
3633 list_del_init(&obj_priv->list);
3634 }
3635 i915_verify_inactive(dev, __FILE__, __LINE__);
3636
3637 return 0;
3638 }
3639
3640 void
3641 i915_gem_object_unpin(struct drm_gem_object *obj)
3642 {
3643 struct drm_device *dev = obj->dev;
3644 drm_i915_private_t *dev_priv = dev->dev_private;
3645 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3646
3647 i915_verify_inactive(dev, __FILE__, __LINE__);
3648 obj_priv->pin_count--;
3649 BUG_ON(obj_priv->pin_count < 0);
3650 BUG_ON(obj_priv->gtt_space == NULL);
3651
3652 /* If the object is no longer pinned, and is
3653 * neither active nor being flushed, then stick it on
3654 * the inactive list
3655 */
3656 if (obj_priv->pin_count == 0) {
3657 if (!obj_priv->active &&
3658 (obj->write_domain & I915_GEM_GPU_DOMAINS) == 0)
3659 list_move_tail(&obj_priv->list,
3660 &dev_priv->mm.inactive_list);
3661 atomic_dec(&dev->pin_count);
3662 atomic_sub(obj->size, &dev->pin_memory);
3663 }
3664 i915_verify_inactive(dev, __FILE__, __LINE__);
3665 }
3666
3667 int
3668 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
3669 struct drm_file *file_priv)
3670 {
3671 struct drm_i915_gem_pin *args = data;
3672 struct drm_gem_object *obj;
3673 struct drm_i915_gem_object *obj_priv;
3674 int ret;
3675
3676 mutex_lock(&dev->struct_mutex);
3677
3678 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3679 if (obj == NULL) {
3680 DRM_ERROR("Bad handle in i915_gem_pin_ioctl(): %d\n",
3681 args->handle);
3682 mutex_unlock(&dev->struct_mutex);
3683 return -EBADF;
3684 }
3685 obj_priv = obj->driver_private;
3686
3687 if (obj_priv->pin_filp != NULL && obj_priv->pin_filp != file_priv) {
3688 DRM_ERROR("Already pinned in i915_gem_pin_ioctl(): %d\n",
3689 args->handle);
3690 drm_gem_object_unreference(obj);
3691 mutex_unlock(&dev->struct_mutex);
3692 return -EINVAL;
3693 }
3694
3695 obj_priv->user_pin_count++;
3696 obj_priv->pin_filp = file_priv;
3697 if (obj_priv->user_pin_count == 1) {
3698 ret = i915_gem_object_pin(obj, args->alignment);
3699 if (ret != 0) {
3700 drm_gem_object_unreference(obj);
3701 mutex_unlock(&dev->struct_mutex);
3702 return ret;
3703 }
3704 }
3705
3706 /* XXX - flush the CPU caches for pinned objects
3707 * as the X server doesn't manage domains yet
3708 */
3709 i915_gem_object_flush_cpu_write_domain(obj);
3710 args->offset = obj_priv->gtt_offset;
3711 drm_gem_object_unreference(obj);
3712 mutex_unlock(&dev->struct_mutex);
3713
3714 return 0;
3715 }
3716
3717 int
3718 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
3719 struct drm_file *file_priv)
3720 {
3721 struct drm_i915_gem_pin *args = data;
3722 struct drm_gem_object *obj;
3723 struct drm_i915_gem_object *obj_priv;
3724
3725 mutex_lock(&dev->struct_mutex);
3726
3727 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3728 if (obj == NULL) {
3729 DRM_ERROR("Bad handle in i915_gem_unpin_ioctl(): %d\n",
3730 args->handle);
3731 mutex_unlock(&dev->struct_mutex);
3732 return -EBADF;
3733 }
3734
3735 obj_priv = obj->driver_private;
3736 if (obj_priv->pin_filp != file_priv) {
3737 DRM_ERROR("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
3738 args->handle);
3739 drm_gem_object_unreference(obj);
3740 mutex_unlock(&dev->struct_mutex);
3741 return -EINVAL;
3742 }
3743 obj_priv->user_pin_count--;
3744 if (obj_priv->user_pin_count == 0) {
3745 obj_priv->pin_filp = NULL;
3746 i915_gem_object_unpin(obj);
3747 }
3748
3749 drm_gem_object_unreference(obj);
3750 mutex_unlock(&dev->struct_mutex);
3751 return 0;
3752 }
3753
3754 int
3755 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
3756 struct drm_file *file_priv)
3757 {
3758 struct drm_i915_gem_busy *args = data;
3759 struct drm_gem_object *obj;
3760 struct drm_i915_gem_object *obj_priv;
3761
3762 obj = drm_gem_object_lookup(dev, file_priv, args->handle);
3763 if (obj == NULL) {
3764 DRM_ERROR("Bad handle in i915_gem_busy_ioctl(): %d\n",
3765 args->handle);
3766 return -EBADF;
3767 }
3768
3769 mutex_lock(&dev->struct_mutex);
3770 /* Update the active list for the hardware's current position.
3771 * Otherwise this only updates on a delayed timer or when irqs are
3772 * actually unmasked, and our working set ends up being larger than
3773 * required.
3774 */
3775 i915_gem_retire_requests(dev);
3776
3777 obj_priv = obj->driver_private;
3778 /* Don't count being on the flushing list against the object being
3779 * done. Otherwise, a buffer left on the flushing list but not getting
3780 * flushed (because nobody's flushing that domain) won't ever return
3781 * unbusy and get reused by libdrm's bo cache. The other expected
3782 * consumer of this interface, OpenGL's occlusion queries, also specs
3783 * that the objects get unbusy "eventually" without any interference.
3784 */
3785 args->busy = obj_priv->active && obj_priv->last_rendering_seqno != 0;
3786
3787 drm_gem_object_unreference(obj);
3788 mutex_unlock(&dev->struct_mutex);
3789 return 0;
3790 }
3791
3792 int
3793 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
3794 struct drm_file *file_priv)
3795 {
3796 return i915_gem_ring_throttle(dev, file_priv);
3797 }
3798
3799 int i915_gem_init_object(struct drm_gem_object *obj)
3800 {
3801 struct drm_i915_gem_object *obj_priv;
3802
3803 obj_priv = kzalloc(sizeof(*obj_priv), GFP_KERNEL);
3804 if (obj_priv == NULL)
3805 return -ENOMEM;
3806
3807 /*
3808 * We've just allocated pages from the kernel,
3809 * so they've just been written by the CPU with
3810 * zeros. They'll need to be clflushed before we
3811 * use them with the GPU.
3812 */
3813 obj->write_domain = I915_GEM_DOMAIN_CPU;
3814 obj->read_domains = I915_GEM_DOMAIN_CPU;
3815
3816 obj_priv->agp_type = AGP_USER_MEMORY;
3817
3818 obj->driver_private = obj_priv;
3819 obj_priv->obj = obj;
3820 obj_priv->fence_reg = I915_FENCE_REG_NONE;
3821 INIT_LIST_HEAD(&obj_priv->list);
3822 INIT_LIST_HEAD(&obj_priv->fence_list);
3823
3824 return 0;
3825 }
3826
3827 void i915_gem_free_object(struct drm_gem_object *obj)
3828 {
3829 struct drm_device *dev = obj->dev;
3830 struct drm_i915_gem_object *obj_priv = obj->driver_private;
3831
3832 while (obj_priv->pin_count > 0)
3833 i915_gem_object_unpin(obj);
3834
3835 if (obj_priv->phys_obj)
3836 i915_gem_detach_phys_object(dev, obj);
3837
3838 i915_gem_object_unbind(obj);
3839
3840 i915_gem_free_mmap_offset(obj);
3841
3842 kfree(obj_priv->page_cpu_valid);
3843 kfree(obj_priv->bit_17);
3844 kfree(obj->driver_private);
3845 }
3846
3847 /** Unbinds all objects that are on the given buffer list. */
3848 static int
3849 i915_gem_evict_from_list(struct drm_device *dev, struct list_head *head)
3850 {
3851 struct drm_gem_object *obj;
3852 struct drm_i915_gem_object *obj_priv;
3853 int ret;
3854
3855 while (!list_empty(head)) {
3856 obj_priv = list_first_entry(head,
3857 struct drm_i915_gem_object,
3858 list);
3859 obj = obj_priv->obj;
3860
3861 if (obj_priv->pin_count != 0) {
3862 DRM_ERROR("Pinned object in unbind list\n");
3863 mutex_unlock(&dev->struct_mutex);
3864 return -EINVAL;
3865 }
3866
3867 ret = i915_gem_object_unbind(obj);
3868 if (ret != 0) {
3869 DRM_ERROR("Error unbinding object in LeaveVT: %d\n",
3870 ret);
3871 mutex_unlock(&dev->struct_mutex);
3872 return ret;
3873 }
3874 }
3875
3876
3877 return 0;
3878 }
3879
3880 int
3881 i915_gem_idle(struct drm_device *dev)
3882 {
3883 drm_i915_private_t *dev_priv = dev->dev_private;
3884 uint32_t seqno, cur_seqno, last_seqno;
3885 int stuck, ret;
3886
3887 mutex_lock(&dev->struct_mutex);
3888
3889 if (dev_priv->mm.suspended || dev_priv->ring.ring_obj == NULL) {
3890 mutex_unlock(&dev->struct_mutex);
3891 return 0;
3892 }
3893
3894 /* Hack! Don't let anybody do execbuf while we don't control the chip.
3895 * We need to replace this with a semaphore, or something.
3896 */
3897 dev_priv->mm.suspended = 1;
3898
3899 /* Cancel the retire work handler, wait for it to finish if running
3900 */
3901 mutex_unlock(&dev->struct_mutex);
3902 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
3903 mutex_lock(&dev->struct_mutex);
3904
3905 i915_kernel_lost_context(dev);
3906
3907 /* Flush the GPU along with all non-CPU write domains
3908 */
3909 i915_gem_flush(dev, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
3910 seqno = i915_add_request(dev, NULL, I915_GEM_GPU_DOMAINS);
3911
3912 if (seqno == 0) {
3913 mutex_unlock(&dev->struct_mutex);
3914 return -ENOMEM;
3915 }
3916
3917 dev_priv->mm.waiting_gem_seqno = seqno;
3918 last_seqno = 0;
3919 stuck = 0;
3920 for (;;) {
3921 cur_seqno = i915_get_gem_seqno(dev);
3922 if (i915_seqno_passed(cur_seqno, seqno))
3923 break;
3924 if (last_seqno == cur_seqno) {
3925 if (stuck++ > 100) {
3926 DRM_ERROR("hardware wedged\n");
3927 dev_priv->mm.wedged = 1;
3928 DRM_WAKEUP(&dev_priv->irq_queue);
3929 break;
3930 }
3931 }
3932 msleep(10);
3933 last_seqno = cur_seqno;
3934 }
3935 dev_priv->mm.waiting_gem_seqno = 0;
3936
3937 i915_gem_retire_requests(dev);
3938
3939 spin_lock(&dev_priv->mm.active_list_lock);
3940 if (!dev_priv->mm.wedged) {
3941 /* Active and flushing should now be empty as we've
3942 * waited for a sequence higher than any pending execbuffer
3943 */
3944 WARN_ON(!list_empty(&dev_priv->mm.active_list));
3945 WARN_ON(!list_empty(&dev_priv->mm.flushing_list));
3946 /* Request should now be empty as we've also waited
3947 * for the last request in the list
3948 */
3949 WARN_ON(!list_empty(&dev_priv->mm.request_list));
3950 }
3951
3952 /* Empty the active and flushing lists to inactive. If there's
3953 * anything left at this point, it means that we're wedged and
3954 * nothing good's going to happen by leaving them there. So strip
3955 * the GPU domains and just stuff them onto inactive.
3956 */
3957 while (!list_empty(&dev_priv->mm.active_list)) {
3958 struct drm_i915_gem_object *obj_priv;
3959
3960 obj_priv = list_first_entry(&dev_priv->mm.active_list,
3961 struct drm_i915_gem_object,
3962 list);
3963 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3964 i915_gem_object_move_to_inactive(obj_priv->obj);
3965 }
3966 spin_unlock(&dev_priv->mm.active_list_lock);
3967
3968 while (!list_empty(&dev_priv->mm.flushing_list)) {
3969 struct drm_i915_gem_object *obj_priv;
3970
3971 obj_priv = list_first_entry(&dev_priv->mm.flushing_list,
3972 struct drm_i915_gem_object,
3973 list);
3974 obj_priv->obj->write_domain &= ~I915_GEM_GPU_DOMAINS;
3975 i915_gem_object_move_to_inactive(obj_priv->obj);
3976 }
3977
3978
3979 /* Move all inactive buffers out of the GTT. */
3980 ret = i915_gem_evict_from_list(dev, &dev_priv->mm.inactive_list);
3981 WARN_ON(!list_empty(&dev_priv->mm.inactive_list));
3982 if (ret) {
3983 mutex_unlock(&dev->struct_mutex);
3984 return ret;
3985 }
3986
3987 i915_gem_cleanup_ringbuffer(dev);
3988 mutex_unlock(&dev->struct_mutex);
3989
3990 return 0;
3991 }
3992
3993 static int
3994 i915_gem_init_hws(struct drm_device *dev)
3995 {
3996 drm_i915_private_t *dev_priv = dev->dev_private;
3997 struct drm_gem_object *obj;
3998 struct drm_i915_gem_object *obj_priv;
3999 int ret;
4000
4001 /* If we need a physical address for the status page, it's already
4002 * initialized at driver load time.
4003 */
4004 if (!I915_NEED_GFX_HWS(dev))
4005 return 0;
4006
4007 obj = drm_gem_object_alloc(dev, 4096);
4008 if (obj == NULL) {
4009 DRM_ERROR("Failed to allocate status page\n");
4010 return -ENOMEM;
4011 }
4012 obj_priv = obj->driver_private;
4013 obj_priv->agp_type = AGP_USER_CACHED_MEMORY;
4014
4015 ret = i915_gem_object_pin(obj, 4096);
4016 if (ret != 0) {
4017 drm_gem_object_unreference(obj);
4018 return ret;
4019 }
4020
4021 dev_priv->status_gfx_addr = obj_priv->gtt_offset;
4022
4023 dev_priv->hw_status_page = kmap(obj_priv->pages[0]);
4024 if (dev_priv->hw_status_page == NULL) {
4025 DRM_ERROR("Failed to map status page.\n");
4026 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4027 i915_gem_object_unpin(obj);
4028 drm_gem_object_unreference(obj);
4029 return -EINVAL;
4030 }
4031 dev_priv->hws_obj = obj;
4032 memset(dev_priv->hw_status_page, 0, PAGE_SIZE);
4033 I915_WRITE(HWS_PGA, dev_priv->status_gfx_addr);
4034 I915_READ(HWS_PGA); /* posting read */
4035 DRM_DEBUG("hws offset: 0x%08x\n", dev_priv->status_gfx_addr);
4036
4037 return 0;
4038 }
4039
4040 static void
4041 i915_gem_cleanup_hws(struct drm_device *dev)
4042 {
4043 drm_i915_private_t *dev_priv = dev->dev_private;
4044 struct drm_gem_object *obj;
4045 struct drm_i915_gem_object *obj_priv;
4046
4047 if (dev_priv->hws_obj == NULL)
4048 return;
4049
4050 obj = dev_priv->hws_obj;
4051 obj_priv = obj->driver_private;
4052
4053 kunmap(obj_priv->pages[0]);
4054 i915_gem_object_unpin(obj);
4055 drm_gem_object_unreference(obj);
4056 dev_priv->hws_obj = NULL;
4057
4058 memset(&dev_priv->hws_map, 0, sizeof(dev_priv->hws_map));
4059 dev_priv->hw_status_page = NULL;
4060
4061 /* Write high address into HWS_PGA when disabling. */
4062 I915_WRITE(HWS_PGA, 0x1ffff000);
4063 }
4064
4065 int
4066 i915_gem_init_ringbuffer(struct drm_device *dev)
4067 {
4068 drm_i915_private_t *dev_priv = dev->dev_private;
4069 struct drm_gem_object *obj;
4070 struct drm_i915_gem_object *obj_priv;
4071 drm_i915_ring_buffer_t *ring = &dev_priv->ring;
4072 int ret;
4073 u32 head;
4074
4075 ret = i915_gem_init_hws(dev);
4076 if (ret != 0)
4077 return ret;
4078
4079 obj = drm_gem_object_alloc(dev, 128 * 1024);
4080 if (obj == NULL) {
4081 DRM_ERROR("Failed to allocate ringbuffer\n");
4082 i915_gem_cleanup_hws(dev);
4083 return -ENOMEM;
4084 }
4085 obj_priv = obj->driver_private;
4086
4087 ret = i915_gem_object_pin(obj, 4096);
4088 if (ret != 0) {
4089 drm_gem_object_unreference(obj);
4090 i915_gem_cleanup_hws(dev);
4091 return ret;
4092 }
4093
4094 /* Set up the kernel mapping for the ring. */
4095 ring->Size = obj->size;
4096 ring->tail_mask = obj->size - 1;
4097
4098 ring->map.offset = dev->agp->base + obj_priv->gtt_offset;
4099 ring->map.size = obj->size;
4100 ring->map.type = 0;
4101 ring->map.flags = 0;
4102 ring->map.mtrr = 0;
4103
4104 drm_core_ioremap_wc(&ring->map, dev);
4105 if (ring->map.handle == NULL) {
4106 DRM_ERROR("Failed to map ringbuffer.\n");
4107 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4108 i915_gem_object_unpin(obj);
4109 drm_gem_object_unreference(obj);
4110 i915_gem_cleanup_hws(dev);
4111 return -EINVAL;
4112 }
4113 ring->ring_obj = obj;
4114 ring->virtual_start = ring->map.handle;
4115
4116 /* Stop the ring if it's running. */
4117 I915_WRITE(PRB0_CTL, 0);
4118 I915_WRITE(PRB0_TAIL, 0);
4119 I915_WRITE(PRB0_HEAD, 0);
4120
4121 /* Initialize the ring. */
4122 I915_WRITE(PRB0_START, obj_priv->gtt_offset);
4123 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4124
4125 /* G45 ring initialization fails to reset head to zero */
4126 if (head != 0) {
4127 DRM_ERROR("Ring head not reset to zero "
4128 "ctl %08x head %08x tail %08x start %08x\n",
4129 I915_READ(PRB0_CTL),
4130 I915_READ(PRB0_HEAD),
4131 I915_READ(PRB0_TAIL),
4132 I915_READ(PRB0_START));
4133 I915_WRITE(PRB0_HEAD, 0);
4134
4135 DRM_ERROR("Ring head forced to zero "
4136 "ctl %08x head %08x tail %08x start %08x\n",
4137 I915_READ(PRB0_CTL),
4138 I915_READ(PRB0_HEAD),
4139 I915_READ(PRB0_TAIL),
4140 I915_READ(PRB0_START));
4141 }
4142
4143 I915_WRITE(PRB0_CTL,
4144 ((obj->size - 4096) & RING_NR_PAGES) |
4145 RING_NO_REPORT |
4146 RING_VALID);
4147
4148 head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4149
4150 /* If the head is still not zero, the ring is dead */
4151 if (head != 0) {
4152 DRM_ERROR("Ring initialization failed "
4153 "ctl %08x head %08x tail %08x start %08x\n",
4154 I915_READ(PRB0_CTL),
4155 I915_READ(PRB0_HEAD),
4156 I915_READ(PRB0_TAIL),
4157 I915_READ(PRB0_START));
4158 return -EIO;
4159 }
4160
4161 /* Update our cache of the ring state */
4162 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4163 i915_kernel_lost_context(dev);
4164 else {
4165 ring->head = I915_READ(PRB0_HEAD) & HEAD_ADDR;
4166 ring->tail = I915_READ(PRB0_TAIL) & TAIL_ADDR;
4167 ring->space = ring->head - (ring->tail + 8);
4168 if (ring->space < 0)
4169 ring->space += ring->Size;
4170 }
4171
4172 return 0;
4173 }
4174
4175 void
4176 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4177 {
4178 drm_i915_private_t *dev_priv = dev->dev_private;
4179
4180 if (dev_priv->ring.ring_obj == NULL)
4181 return;
4182
4183 drm_core_ioremapfree(&dev_priv->ring.map, dev);
4184
4185 i915_gem_object_unpin(dev_priv->ring.ring_obj);
4186 drm_gem_object_unreference(dev_priv->ring.ring_obj);
4187 dev_priv->ring.ring_obj = NULL;
4188 memset(&dev_priv->ring, 0, sizeof(dev_priv->ring));
4189
4190 i915_gem_cleanup_hws(dev);
4191 }
4192
4193 int
4194 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4195 struct drm_file *file_priv)
4196 {
4197 drm_i915_private_t *dev_priv = dev->dev_private;
4198 int ret;
4199
4200 if (drm_core_check_feature(dev, DRIVER_MODESET))
4201 return 0;
4202
4203 if (dev_priv->mm.wedged) {
4204 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4205 dev_priv->mm.wedged = 0;
4206 }
4207
4208 mutex_lock(&dev->struct_mutex);
4209 dev_priv->mm.suspended = 0;
4210
4211 ret = i915_gem_init_ringbuffer(dev);
4212 if (ret != 0) {
4213 mutex_unlock(&dev->struct_mutex);
4214 return ret;
4215 }
4216
4217 spin_lock(&dev_priv->mm.active_list_lock);
4218 BUG_ON(!list_empty(&dev_priv->mm.active_list));
4219 spin_unlock(&dev_priv->mm.active_list_lock);
4220
4221 BUG_ON(!list_empty(&dev_priv->mm.flushing_list));
4222 BUG_ON(!list_empty(&dev_priv->mm.inactive_list));
4223 BUG_ON(!list_empty(&dev_priv->mm.request_list));
4224 mutex_unlock(&dev->struct_mutex);
4225
4226 drm_irq_install(dev);
4227
4228 return 0;
4229 }
4230
4231 int
4232 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4233 struct drm_file *file_priv)
4234 {
4235 if (drm_core_check_feature(dev, DRIVER_MODESET))
4236 return 0;
4237
4238 drm_irq_uninstall(dev);
4239 return i915_gem_idle(dev);
4240 }
4241
4242 void
4243 i915_gem_lastclose(struct drm_device *dev)
4244 {
4245 int ret;
4246
4247 if (drm_core_check_feature(dev, DRIVER_MODESET))
4248 return;
4249
4250 ret = i915_gem_idle(dev);
4251 if (ret)
4252 DRM_ERROR("failed to idle hardware: %d\n", ret);
4253 }
4254
4255 void
4256 i915_gem_load(struct drm_device *dev)
4257 {
4258 int i;
4259 drm_i915_private_t *dev_priv = dev->dev_private;
4260
4261 spin_lock_init(&dev_priv->mm.active_list_lock);
4262 INIT_LIST_HEAD(&dev_priv->mm.active_list);
4263 INIT_LIST_HEAD(&dev_priv->mm.flushing_list);
4264 INIT_LIST_HEAD(&dev_priv->mm.inactive_list);
4265 INIT_LIST_HEAD(&dev_priv->mm.request_list);
4266 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4267 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4268 i915_gem_retire_work_handler);
4269 dev_priv->mm.next_gem_seqno = 1;
4270
4271 /* Old X drivers will take 0-2 for front, back, depth buffers */
4272 dev_priv->fence_reg_start = 3;
4273
4274 if (IS_I965G(dev) || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4275 dev_priv->num_fence_regs = 16;
4276 else
4277 dev_priv->num_fence_regs = 8;
4278
4279 /* Initialize fence registers to zero */
4280 if (IS_I965G(dev)) {
4281 for (i = 0; i < 16; i++)
4282 I915_WRITE64(FENCE_REG_965_0 + (i * 8), 0);
4283 } else {
4284 for (i = 0; i < 8; i++)
4285 I915_WRITE(FENCE_REG_830_0 + (i * 4), 0);
4286 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4287 for (i = 0; i < 8; i++)
4288 I915_WRITE(FENCE_REG_945_8 + (i * 4), 0);
4289 }
4290
4291 i915_gem_detect_bit_6_swizzle(dev);
4292 }
4293
4294 /*
4295 * Create a physically contiguous memory object for this object
4296 * e.g. for cursor + overlay regs
4297 */
4298 int i915_gem_init_phys_object(struct drm_device *dev,
4299 int id, int size)
4300 {
4301 drm_i915_private_t *dev_priv = dev->dev_private;
4302 struct drm_i915_gem_phys_object *phys_obj;
4303 int ret;
4304
4305 if (dev_priv->mm.phys_objs[id - 1] || !size)
4306 return 0;
4307
4308 phys_obj = kzalloc(sizeof(struct drm_i915_gem_phys_object), GFP_KERNEL);
4309 if (!phys_obj)
4310 return -ENOMEM;
4311
4312 phys_obj->id = id;
4313
4314 phys_obj->handle = drm_pci_alloc(dev, size, 0, 0xffffffff);
4315 if (!phys_obj->handle) {
4316 ret = -ENOMEM;
4317 goto kfree_obj;
4318 }
4319 #ifdef CONFIG_X86
4320 set_memory_wc((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4321 #endif
4322
4323 dev_priv->mm.phys_objs[id - 1] = phys_obj;
4324
4325 return 0;
4326 kfree_obj:
4327 kfree(phys_obj);
4328 return ret;
4329 }
4330
4331 void i915_gem_free_phys_object(struct drm_device *dev, int id)
4332 {
4333 drm_i915_private_t *dev_priv = dev->dev_private;
4334 struct drm_i915_gem_phys_object *phys_obj;
4335
4336 if (!dev_priv->mm.phys_objs[id - 1])
4337 return;
4338
4339 phys_obj = dev_priv->mm.phys_objs[id - 1];
4340 if (phys_obj->cur_obj) {
4341 i915_gem_detach_phys_object(dev, phys_obj->cur_obj);
4342 }
4343
4344 #ifdef CONFIG_X86
4345 set_memory_wb((unsigned long)phys_obj->handle->vaddr, phys_obj->handle->size / PAGE_SIZE);
4346 #endif
4347 drm_pci_free(dev, phys_obj->handle);
4348 kfree(phys_obj);
4349 dev_priv->mm.phys_objs[id - 1] = NULL;
4350 }
4351
4352 void i915_gem_free_all_phys_object(struct drm_device *dev)
4353 {
4354 int i;
4355
4356 for (i = I915_GEM_PHYS_CURSOR_0; i <= I915_MAX_PHYS_OBJECT; i++)
4357 i915_gem_free_phys_object(dev, i);
4358 }
4359
4360 void i915_gem_detach_phys_object(struct drm_device *dev,
4361 struct drm_gem_object *obj)
4362 {
4363 struct drm_i915_gem_object *obj_priv;
4364 int i;
4365 int ret;
4366 int page_count;
4367
4368 obj_priv = obj->driver_private;
4369 if (!obj_priv->phys_obj)
4370 return;
4371
4372 ret = i915_gem_object_get_pages(obj);
4373 if (ret)
4374 goto out;
4375
4376 page_count = obj->size / PAGE_SIZE;
4377
4378 for (i = 0; i < page_count; i++) {
4379 char *dst = kmap_atomic(obj_priv->pages[i], KM_USER0);
4380 char *src = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4381
4382 memcpy(dst, src, PAGE_SIZE);
4383 kunmap_atomic(dst, KM_USER0);
4384 }
4385 drm_clflush_pages(obj_priv->pages, page_count);
4386 drm_agp_chipset_flush(dev);
4387
4388 i915_gem_object_put_pages(obj);
4389 out:
4390 obj_priv->phys_obj->cur_obj = NULL;
4391 obj_priv->phys_obj = NULL;
4392 }
4393
4394 int
4395 i915_gem_attach_phys_object(struct drm_device *dev,
4396 struct drm_gem_object *obj, int id)
4397 {
4398 drm_i915_private_t *dev_priv = dev->dev_private;
4399 struct drm_i915_gem_object *obj_priv;
4400 int ret = 0;
4401 int page_count;
4402 int i;
4403
4404 if (id > I915_MAX_PHYS_OBJECT)
4405 return -EINVAL;
4406
4407 obj_priv = obj->driver_private;
4408
4409 if (obj_priv->phys_obj) {
4410 if (obj_priv->phys_obj->id == id)
4411 return 0;
4412 i915_gem_detach_phys_object(dev, obj);
4413 }
4414
4415
4416 /* create a new object */
4417 if (!dev_priv->mm.phys_objs[id - 1]) {
4418 ret = i915_gem_init_phys_object(dev, id,
4419 obj->size);
4420 if (ret) {
4421 DRM_ERROR("failed to init phys object %d size: %zu\n", id, obj->size);
4422 goto out;
4423 }
4424 }
4425
4426 /* bind to the object */
4427 obj_priv->phys_obj = dev_priv->mm.phys_objs[id - 1];
4428 obj_priv->phys_obj->cur_obj = obj;
4429
4430 ret = i915_gem_object_get_pages(obj);
4431 if (ret) {
4432 DRM_ERROR("failed to get page list\n");
4433 goto out;
4434 }
4435
4436 page_count = obj->size / PAGE_SIZE;
4437
4438 for (i = 0; i < page_count; i++) {
4439 char *src = kmap_atomic(obj_priv->pages[i], KM_USER0);
4440 char *dst = obj_priv->phys_obj->handle->vaddr + (i * PAGE_SIZE);
4441
4442 memcpy(dst, src, PAGE_SIZE);
4443 kunmap_atomic(src, KM_USER0);
4444 }
4445
4446 i915_gem_object_put_pages(obj);
4447
4448 return 0;
4449 out:
4450 return ret;
4451 }
4452
4453 static int
4454 i915_gem_phys_pwrite(struct drm_device *dev, struct drm_gem_object *obj,
4455 struct drm_i915_gem_pwrite *args,
4456 struct drm_file *file_priv)
4457 {
4458 struct drm_i915_gem_object *obj_priv = obj->driver_private;
4459 void *obj_addr;
4460 int ret;
4461 char __user *user_data;
4462
4463 user_data = (char __user *) (uintptr_t) args->data_ptr;
4464 obj_addr = obj_priv->phys_obj->handle->vaddr + args->offset;
4465
4466 DRM_DEBUG("obj_addr %p, %lld\n", obj_addr, args->size);
4467 ret = copy_from_user(obj_addr, user_data, args->size);
4468 if (ret)
4469 return -EFAULT;
4470
4471 drm_agp_chipset_flush(dev);
4472 return 0;
4473 }
4474
4475 void i915_gem_release(struct drm_device * dev, struct drm_file *file_priv)
4476 {
4477 struct drm_i915_file_private *i915_file_priv = file_priv->driver_priv;
4478
4479 /* Clean up our request list when the client is going away, so that
4480 * later retire_requests won't dereference our soon-to-be-gone
4481 * file_priv.
4482 */
4483 mutex_lock(&dev->struct_mutex);
4484 while (!list_empty(&i915_file_priv->mm.request_list))
4485 list_del_init(i915_file_priv->mm.request_list.next);
4486 mutex_unlock(&dev->struct_mutex);
4487 }