6c2f0b886eb09d1d18ef72b093cf83c7a1555c4a
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2 * Copyright © 2008 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43 bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46 bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51 struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53 struct drm_i915_fence_reg *fence,
54 bool enable);
55
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57 struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59 struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61 unsigned long event,
62 void *ptr);
63 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
64 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
65
66 static bool cpu_cache_is_coherent(struct drm_device *dev,
67 enum i915_cache_level level)
68 {
69 return HAS_LLC(dev) || level != I915_CACHE_NONE;
70 }
71
72 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
73 {
74 if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
75 return true;
76
77 return obj->pin_display;
78 }
79
80 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
81 {
82 if (obj->tiling_mode)
83 i915_gem_release_mmap(obj);
84
85 /* As we do not have an associated fence register, we will force
86 * a tiling change if we ever need to acquire one.
87 */
88 obj->fence_dirty = false;
89 obj->fence_reg = I915_FENCE_REG_NONE;
90 }
91
92 /* some bookkeeping */
93 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
94 size_t size)
95 {
96 spin_lock(&dev_priv->mm.object_stat_lock);
97 dev_priv->mm.object_count++;
98 dev_priv->mm.object_memory += size;
99 spin_unlock(&dev_priv->mm.object_stat_lock);
100 }
101
102 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103 size_t size)
104 {
105 spin_lock(&dev_priv->mm.object_stat_lock);
106 dev_priv->mm.object_count--;
107 dev_priv->mm.object_memory -= size;
108 spin_unlock(&dev_priv->mm.object_stat_lock);
109 }
110
111 static int
112 i915_gem_wait_for_error(struct i915_gpu_error *error)
113 {
114 int ret;
115
116 #define EXIT_COND (!i915_reset_in_progress(error) || \
117 i915_terminally_wedged(error))
118 if (EXIT_COND)
119 return 0;
120
121 /*
122 * Only wait 10 seconds for the gpu reset to complete to avoid hanging
123 * userspace. If it takes that long something really bad is going on and
124 * we should simply try to bail out and fail as gracefully as possible.
125 */
126 ret = wait_event_interruptible_timeout(error->reset_queue,
127 EXIT_COND,
128 10*HZ);
129 if (ret == 0) {
130 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
131 return -EIO;
132 } else if (ret < 0) {
133 return ret;
134 }
135 #undef EXIT_COND
136
137 return 0;
138 }
139
140 int i915_mutex_lock_interruptible(struct drm_device *dev)
141 {
142 struct drm_i915_private *dev_priv = dev->dev_private;
143 int ret;
144
145 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
146 if (ret)
147 return ret;
148
149 ret = mutex_lock_interruptible(&dev->struct_mutex);
150 if (ret)
151 return ret;
152
153 WARN_ON(i915_verify_lists(dev));
154 return 0;
155 }
156
157 static inline bool
158 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
159 {
160 return i915_gem_obj_bound_any(obj) && !obj->active;
161 }
162
163 int
164 i915_gem_init_ioctl(struct drm_device *dev, void *data,
165 struct drm_file *file)
166 {
167 struct drm_i915_private *dev_priv = dev->dev_private;
168 struct drm_i915_gem_init *args = data;
169
170 if (drm_core_check_feature(dev, DRIVER_MODESET))
171 return -ENODEV;
172
173 if (args->gtt_start >= args->gtt_end ||
174 (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
175 return -EINVAL;
176
177 /* GEM with user mode setting was never supported on ilk and later. */
178 if (INTEL_INFO(dev)->gen >= 5)
179 return -ENODEV;
180
181 mutex_lock(&dev->struct_mutex);
182 i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
183 args->gtt_end);
184 dev_priv->gtt.mappable_end = args->gtt_end;
185 mutex_unlock(&dev->struct_mutex);
186
187 return 0;
188 }
189
190 int
191 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
192 struct drm_file *file)
193 {
194 struct drm_i915_private *dev_priv = dev->dev_private;
195 struct drm_i915_gem_get_aperture *args = data;
196 struct drm_i915_gem_object *obj;
197 size_t pinned;
198
199 pinned = 0;
200 mutex_lock(&dev->struct_mutex);
201 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
202 if (i915_gem_obj_is_pinned(obj))
203 pinned += i915_gem_obj_ggtt_size(obj);
204 mutex_unlock(&dev->struct_mutex);
205
206 args->aper_size = dev_priv->gtt.base.total;
207 args->aper_available_size = args->aper_size - pinned;
208
209 return 0;
210 }
211
212 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
213 {
214 drm_dma_handle_t *phys = obj->phys_handle;
215
216 if (!phys)
217 return;
218
219 if (obj->madv == I915_MADV_WILLNEED) {
220 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
221 char *vaddr = phys->vaddr;
222 int i;
223
224 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
225 struct page *page = shmem_read_mapping_page(mapping, i);
226 if (!IS_ERR(page)) {
227 char *dst = kmap_atomic(page);
228 memcpy(dst, vaddr, PAGE_SIZE);
229 drm_clflush_virt_range(dst, PAGE_SIZE);
230 kunmap_atomic(dst);
231
232 set_page_dirty(page);
233 mark_page_accessed(page);
234 page_cache_release(page);
235 }
236 vaddr += PAGE_SIZE;
237 }
238 i915_gem_chipset_flush(obj->base.dev);
239 }
240
241 #ifdef CONFIG_X86
242 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
243 #endif
244 drm_pci_free(obj->base.dev, phys);
245 obj->phys_handle = NULL;
246 }
247
248 int
249 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
250 int align)
251 {
252 drm_dma_handle_t *phys;
253 struct address_space *mapping;
254 char *vaddr;
255 int i;
256
257 if (obj->phys_handle) {
258 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
259 return -EBUSY;
260
261 return 0;
262 }
263
264 if (obj->madv != I915_MADV_WILLNEED)
265 return -EFAULT;
266
267 if (obj->base.filp == NULL)
268 return -EINVAL;
269
270 /* create a new object */
271 phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
272 if (!phys)
273 return -ENOMEM;
274
275 vaddr = phys->vaddr;
276 #ifdef CONFIG_X86
277 set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
278 #endif
279 mapping = file_inode(obj->base.filp)->i_mapping;
280 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
281 struct page *page;
282 char *src;
283
284 page = shmem_read_mapping_page(mapping, i);
285 if (IS_ERR(page)) {
286 #ifdef CONFIG_X86
287 set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
288 #endif
289 drm_pci_free(obj->base.dev, phys);
290 return PTR_ERR(page);
291 }
292
293 src = kmap_atomic(page);
294 memcpy(vaddr, src, PAGE_SIZE);
295 kunmap_atomic(src);
296
297 mark_page_accessed(page);
298 page_cache_release(page);
299
300 vaddr += PAGE_SIZE;
301 }
302
303 obj->phys_handle = phys;
304 return 0;
305 }
306
307 static int
308 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
309 struct drm_i915_gem_pwrite *args,
310 struct drm_file *file_priv)
311 {
312 struct drm_device *dev = obj->base.dev;
313 void *vaddr = obj->phys_handle->vaddr + args->offset;
314 char __user *user_data = to_user_ptr(args->data_ptr);
315
316 if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
317 unsigned long unwritten;
318
319 /* The physical object once assigned is fixed for the lifetime
320 * of the obj, so we can safely drop the lock and continue
321 * to access vaddr.
322 */
323 mutex_unlock(&dev->struct_mutex);
324 unwritten = copy_from_user(vaddr, user_data, args->size);
325 mutex_lock(&dev->struct_mutex);
326 if (unwritten)
327 return -EFAULT;
328 }
329
330 i915_gem_chipset_flush(dev);
331 return 0;
332 }
333
334 void *i915_gem_object_alloc(struct drm_device *dev)
335 {
336 struct drm_i915_private *dev_priv = dev->dev_private;
337 return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
338 }
339
340 void i915_gem_object_free(struct drm_i915_gem_object *obj)
341 {
342 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
343 kmem_cache_free(dev_priv->slab, obj);
344 }
345
346 static int
347 i915_gem_create(struct drm_file *file,
348 struct drm_device *dev,
349 uint64_t size,
350 uint32_t *handle_p)
351 {
352 struct drm_i915_gem_object *obj;
353 int ret;
354 u32 handle;
355
356 size = roundup(size, PAGE_SIZE);
357 if (size == 0)
358 return -EINVAL;
359
360 /* Allocate the new object */
361 obj = i915_gem_alloc_object(dev, size);
362 if (obj == NULL)
363 return -ENOMEM;
364
365 ret = drm_gem_handle_create(file, &obj->base, &handle);
366 /* drop reference from allocate - handle holds it now */
367 drm_gem_object_unreference_unlocked(&obj->base);
368 if (ret)
369 return ret;
370
371 *handle_p = handle;
372 return 0;
373 }
374
375 int
376 i915_gem_dumb_create(struct drm_file *file,
377 struct drm_device *dev,
378 struct drm_mode_create_dumb *args)
379 {
380 /* have to work out size/pitch and return them */
381 args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
382 args->size = args->pitch * args->height;
383 return i915_gem_create(file, dev,
384 args->size, &args->handle);
385 }
386
387 /**
388 * Creates a new mm object and returns a handle to it.
389 */
390 int
391 i915_gem_create_ioctl(struct drm_device *dev, void *data,
392 struct drm_file *file)
393 {
394 struct drm_i915_gem_create *args = data;
395
396 return i915_gem_create(file, dev,
397 args->size, &args->handle);
398 }
399
400 static inline int
401 __copy_to_user_swizzled(char __user *cpu_vaddr,
402 const char *gpu_vaddr, int gpu_offset,
403 int length)
404 {
405 int ret, cpu_offset = 0;
406
407 while (length > 0) {
408 int cacheline_end = ALIGN(gpu_offset + 1, 64);
409 int this_length = min(cacheline_end - gpu_offset, length);
410 int swizzled_gpu_offset = gpu_offset ^ 64;
411
412 ret = __copy_to_user(cpu_vaddr + cpu_offset,
413 gpu_vaddr + swizzled_gpu_offset,
414 this_length);
415 if (ret)
416 return ret + length;
417
418 cpu_offset += this_length;
419 gpu_offset += this_length;
420 length -= this_length;
421 }
422
423 return 0;
424 }
425
426 static inline int
427 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
428 const char __user *cpu_vaddr,
429 int length)
430 {
431 int ret, cpu_offset = 0;
432
433 while (length > 0) {
434 int cacheline_end = ALIGN(gpu_offset + 1, 64);
435 int this_length = min(cacheline_end - gpu_offset, length);
436 int swizzled_gpu_offset = gpu_offset ^ 64;
437
438 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
439 cpu_vaddr + cpu_offset,
440 this_length);
441 if (ret)
442 return ret + length;
443
444 cpu_offset += this_length;
445 gpu_offset += this_length;
446 length -= this_length;
447 }
448
449 return 0;
450 }
451
452 /*
453 * Pins the specified object's pages and synchronizes the object with
454 * GPU accesses. Sets needs_clflush to non-zero if the caller should
455 * flush the object from the CPU cache.
456 */
457 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
458 int *needs_clflush)
459 {
460 int ret;
461
462 *needs_clflush = 0;
463
464 if (!obj->base.filp)
465 return -EINVAL;
466
467 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
468 /* If we're not in the cpu read domain, set ourself into the gtt
469 * read domain and manually flush cachelines (if required). This
470 * optimizes for the case when the gpu will dirty the data
471 * anyway again before the next pread happens. */
472 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
473 obj->cache_level);
474 ret = i915_gem_object_wait_rendering(obj, true);
475 if (ret)
476 return ret;
477
478 i915_gem_object_retire(obj);
479 }
480
481 ret = i915_gem_object_get_pages(obj);
482 if (ret)
483 return ret;
484
485 i915_gem_object_pin_pages(obj);
486
487 return ret;
488 }
489
490 /* Per-page copy function for the shmem pread fastpath.
491 * Flushes invalid cachelines before reading the target if
492 * needs_clflush is set. */
493 static int
494 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
495 char __user *user_data,
496 bool page_do_bit17_swizzling, bool needs_clflush)
497 {
498 char *vaddr;
499 int ret;
500
501 if (unlikely(page_do_bit17_swizzling))
502 return -EINVAL;
503
504 vaddr = kmap_atomic(page);
505 if (needs_clflush)
506 drm_clflush_virt_range(vaddr + shmem_page_offset,
507 page_length);
508 ret = __copy_to_user_inatomic(user_data,
509 vaddr + shmem_page_offset,
510 page_length);
511 kunmap_atomic(vaddr);
512
513 return ret ? -EFAULT : 0;
514 }
515
516 static void
517 shmem_clflush_swizzled_range(char *addr, unsigned long length,
518 bool swizzled)
519 {
520 if (unlikely(swizzled)) {
521 unsigned long start = (unsigned long) addr;
522 unsigned long end = (unsigned long) addr + length;
523
524 /* For swizzling simply ensure that we always flush both
525 * channels. Lame, but simple and it works. Swizzled
526 * pwrite/pread is far from a hotpath - current userspace
527 * doesn't use it at all. */
528 start = round_down(start, 128);
529 end = round_up(end, 128);
530
531 drm_clflush_virt_range((void *)start, end - start);
532 } else {
533 drm_clflush_virt_range(addr, length);
534 }
535
536 }
537
538 /* Only difference to the fast-path function is that this can handle bit17
539 * and uses non-atomic copy and kmap functions. */
540 static int
541 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
542 char __user *user_data,
543 bool page_do_bit17_swizzling, bool needs_clflush)
544 {
545 char *vaddr;
546 int ret;
547
548 vaddr = kmap(page);
549 if (needs_clflush)
550 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
551 page_length,
552 page_do_bit17_swizzling);
553
554 if (page_do_bit17_swizzling)
555 ret = __copy_to_user_swizzled(user_data,
556 vaddr, shmem_page_offset,
557 page_length);
558 else
559 ret = __copy_to_user(user_data,
560 vaddr + shmem_page_offset,
561 page_length);
562 kunmap(page);
563
564 return ret ? - EFAULT : 0;
565 }
566
567 static int
568 i915_gem_shmem_pread(struct drm_device *dev,
569 struct drm_i915_gem_object *obj,
570 struct drm_i915_gem_pread *args,
571 struct drm_file *file)
572 {
573 char __user *user_data;
574 ssize_t remain;
575 loff_t offset;
576 int shmem_page_offset, page_length, ret = 0;
577 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
578 int prefaulted = 0;
579 int needs_clflush = 0;
580 struct sg_page_iter sg_iter;
581
582 user_data = to_user_ptr(args->data_ptr);
583 remain = args->size;
584
585 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
586
587 ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
588 if (ret)
589 return ret;
590
591 offset = args->offset;
592
593 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
594 offset >> PAGE_SHIFT) {
595 struct page *page = sg_page_iter_page(&sg_iter);
596
597 if (remain <= 0)
598 break;
599
600 /* Operation in this page
601 *
602 * shmem_page_offset = offset within page in shmem file
603 * page_length = bytes to copy for this page
604 */
605 shmem_page_offset = offset_in_page(offset);
606 page_length = remain;
607 if ((shmem_page_offset + page_length) > PAGE_SIZE)
608 page_length = PAGE_SIZE - shmem_page_offset;
609
610 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
611 (page_to_phys(page) & (1 << 17)) != 0;
612
613 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
614 user_data, page_do_bit17_swizzling,
615 needs_clflush);
616 if (ret == 0)
617 goto next_page;
618
619 mutex_unlock(&dev->struct_mutex);
620
621 if (likely(!i915.prefault_disable) && !prefaulted) {
622 ret = fault_in_multipages_writeable(user_data, remain);
623 /* Userspace is tricking us, but we've already clobbered
624 * its pages with the prefault and promised to write the
625 * data up to the first fault. Hence ignore any errors
626 * and just continue. */
627 (void)ret;
628 prefaulted = 1;
629 }
630
631 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
632 user_data, page_do_bit17_swizzling,
633 needs_clflush);
634
635 mutex_lock(&dev->struct_mutex);
636
637 if (ret)
638 goto out;
639
640 next_page:
641 remain -= page_length;
642 user_data += page_length;
643 offset += page_length;
644 }
645
646 out:
647 i915_gem_object_unpin_pages(obj);
648
649 return ret;
650 }
651
652 /**
653 * Reads data from the object referenced by handle.
654 *
655 * On error, the contents of *data are undefined.
656 */
657 int
658 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
659 struct drm_file *file)
660 {
661 struct drm_i915_gem_pread *args = data;
662 struct drm_i915_gem_object *obj;
663 int ret = 0;
664
665 if (args->size == 0)
666 return 0;
667
668 if (!access_ok(VERIFY_WRITE,
669 to_user_ptr(args->data_ptr),
670 args->size))
671 return -EFAULT;
672
673 ret = i915_mutex_lock_interruptible(dev);
674 if (ret)
675 return ret;
676
677 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
678 if (&obj->base == NULL) {
679 ret = -ENOENT;
680 goto unlock;
681 }
682
683 /* Bounds check source. */
684 if (args->offset > obj->base.size ||
685 args->size > obj->base.size - args->offset) {
686 ret = -EINVAL;
687 goto out;
688 }
689
690 /* prime objects have no backing filp to GEM pread/pwrite
691 * pages from.
692 */
693 if (!obj->base.filp) {
694 ret = -EINVAL;
695 goto out;
696 }
697
698 trace_i915_gem_object_pread(obj, args->offset, args->size);
699
700 ret = i915_gem_shmem_pread(dev, obj, args, file);
701
702 out:
703 drm_gem_object_unreference(&obj->base);
704 unlock:
705 mutex_unlock(&dev->struct_mutex);
706 return ret;
707 }
708
709 /* This is the fast write path which cannot handle
710 * page faults in the source data
711 */
712
713 static inline int
714 fast_user_write(struct io_mapping *mapping,
715 loff_t page_base, int page_offset,
716 char __user *user_data,
717 int length)
718 {
719 void __iomem *vaddr_atomic;
720 void *vaddr;
721 unsigned long unwritten;
722
723 vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
724 /* We can use the cpu mem copy function because this is X86. */
725 vaddr = (void __force*)vaddr_atomic + page_offset;
726 unwritten = __copy_from_user_inatomic_nocache(vaddr,
727 user_data, length);
728 io_mapping_unmap_atomic(vaddr_atomic);
729 return unwritten;
730 }
731
732 /**
733 * This is the fast pwrite path, where we copy the data directly from the
734 * user into the GTT, uncached.
735 */
736 static int
737 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
738 struct drm_i915_gem_object *obj,
739 struct drm_i915_gem_pwrite *args,
740 struct drm_file *file)
741 {
742 struct drm_i915_private *dev_priv = dev->dev_private;
743 ssize_t remain;
744 loff_t offset, page_base;
745 char __user *user_data;
746 int page_offset, page_length, ret;
747
748 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
749 if (ret)
750 goto out;
751
752 ret = i915_gem_object_set_to_gtt_domain(obj, true);
753 if (ret)
754 goto out_unpin;
755
756 ret = i915_gem_object_put_fence(obj);
757 if (ret)
758 goto out_unpin;
759
760 user_data = to_user_ptr(args->data_ptr);
761 remain = args->size;
762
763 offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
764
765 while (remain > 0) {
766 /* Operation in this page
767 *
768 * page_base = page offset within aperture
769 * page_offset = offset within page
770 * page_length = bytes to copy for this page
771 */
772 page_base = offset & PAGE_MASK;
773 page_offset = offset_in_page(offset);
774 page_length = remain;
775 if ((page_offset + remain) > PAGE_SIZE)
776 page_length = PAGE_SIZE - page_offset;
777
778 /* If we get a fault while copying data, then (presumably) our
779 * source page isn't available. Return the error and we'll
780 * retry in the slow path.
781 */
782 if (fast_user_write(dev_priv->gtt.mappable, page_base,
783 page_offset, user_data, page_length)) {
784 ret = -EFAULT;
785 goto out_unpin;
786 }
787
788 remain -= page_length;
789 user_data += page_length;
790 offset += page_length;
791 }
792
793 out_unpin:
794 i915_gem_object_ggtt_unpin(obj);
795 out:
796 return ret;
797 }
798
799 /* Per-page copy function for the shmem pwrite fastpath.
800 * Flushes invalid cachelines before writing to the target if
801 * needs_clflush_before is set and flushes out any written cachelines after
802 * writing if needs_clflush is set. */
803 static int
804 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
805 char __user *user_data,
806 bool page_do_bit17_swizzling,
807 bool needs_clflush_before,
808 bool needs_clflush_after)
809 {
810 char *vaddr;
811 int ret;
812
813 if (unlikely(page_do_bit17_swizzling))
814 return -EINVAL;
815
816 vaddr = kmap_atomic(page);
817 if (needs_clflush_before)
818 drm_clflush_virt_range(vaddr + shmem_page_offset,
819 page_length);
820 ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
821 user_data, page_length);
822 if (needs_clflush_after)
823 drm_clflush_virt_range(vaddr + shmem_page_offset,
824 page_length);
825 kunmap_atomic(vaddr);
826
827 return ret ? -EFAULT : 0;
828 }
829
830 /* Only difference to the fast-path function is that this can handle bit17
831 * and uses non-atomic copy and kmap functions. */
832 static int
833 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
834 char __user *user_data,
835 bool page_do_bit17_swizzling,
836 bool needs_clflush_before,
837 bool needs_clflush_after)
838 {
839 char *vaddr;
840 int ret;
841
842 vaddr = kmap(page);
843 if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
844 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
845 page_length,
846 page_do_bit17_swizzling);
847 if (page_do_bit17_swizzling)
848 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
849 user_data,
850 page_length);
851 else
852 ret = __copy_from_user(vaddr + shmem_page_offset,
853 user_data,
854 page_length);
855 if (needs_clflush_after)
856 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
857 page_length,
858 page_do_bit17_swizzling);
859 kunmap(page);
860
861 return ret ? -EFAULT : 0;
862 }
863
864 static int
865 i915_gem_shmem_pwrite(struct drm_device *dev,
866 struct drm_i915_gem_object *obj,
867 struct drm_i915_gem_pwrite *args,
868 struct drm_file *file)
869 {
870 ssize_t remain;
871 loff_t offset;
872 char __user *user_data;
873 int shmem_page_offset, page_length, ret = 0;
874 int obj_do_bit17_swizzling, page_do_bit17_swizzling;
875 int hit_slowpath = 0;
876 int needs_clflush_after = 0;
877 int needs_clflush_before = 0;
878 struct sg_page_iter sg_iter;
879
880 user_data = to_user_ptr(args->data_ptr);
881 remain = args->size;
882
883 obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
884
885 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
886 /* If we're not in the cpu write domain, set ourself into the gtt
887 * write domain and manually flush cachelines (if required). This
888 * optimizes for the case when the gpu will use the data
889 * right away and we therefore have to clflush anyway. */
890 needs_clflush_after = cpu_write_needs_clflush(obj);
891 ret = i915_gem_object_wait_rendering(obj, false);
892 if (ret)
893 return ret;
894
895 i915_gem_object_retire(obj);
896 }
897 /* Same trick applies to invalidate partially written cachelines read
898 * before writing. */
899 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
900 needs_clflush_before =
901 !cpu_cache_is_coherent(dev, obj->cache_level);
902
903 ret = i915_gem_object_get_pages(obj);
904 if (ret)
905 return ret;
906
907 i915_gem_object_pin_pages(obj);
908
909 offset = args->offset;
910 obj->dirty = 1;
911
912 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
913 offset >> PAGE_SHIFT) {
914 struct page *page = sg_page_iter_page(&sg_iter);
915 int partial_cacheline_write;
916
917 if (remain <= 0)
918 break;
919
920 /* Operation in this page
921 *
922 * shmem_page_offset = offset within page in shmem file
923 * page_length = bytes to copy for this page
924 */
925 shmem_page_offset = offset_in_page(offset);
926
927 page_length = remain;
928 if ((shmem_page_offset + page_length) > PAGE_SIZE)
929 page_length = PAGE_SIZE - shmem_page_offset;
930
931 /* If we don't overwrite a cacheline completely we need to be
932 * careful to have up-to-date data by first clflushing. Don't
933 * overcomplicate things and flush the entire patch. */
934 partial_cacheline_write = needs_clflush_before &&
935 ((shmem_page_offset | page_length)
936 & (boot_cpu_data.x86_clflush_size - 1));
937
938 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
939 (page_to_phys(page) & (1 << 17)) != 0;
940
941 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
942 user_data, page_do_bit17_swizzling,
943 partial_cacheline_write,
944 needs_clflush_after);
945 if (ret == 0)
946 goto next_page;
947
948 hit_slowpath = 1;
949 mutex_unlock(&dev->struct_mutex);
950 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
951 user_data, page_do_bit17_swizzling,
952 partial_cacheline_write,
953 needs_clflush_after);
954
955 mutex_lock(&dev->struct_mutex);
956
957 if (ret)
958 goto out;
959
960 next_page:
961 remain -= page_length;
962 user_data += page_length;
963 offset += page_length;
964 }
965
966 out:
967 i915_gem_object_unpin_pages(obj);
968
969 if (hit_slowpath) {
970 /*
971 * Fixup: Flush cpu caches in case we didn't flush the dirty
972 * cachelines in-line while writing and the object moved
973 * out of the cpu write domain while we've dropped the lock.
974 */
975 if (!needs_clflush_after &&
976 obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
977 if (i915_gem_clflush_object(obj, obj->pin_display))
978 i915_gem_chipset_flush(dev);
979 }
980 }
981
982 if (needs_clflush_after)
983 i915_gem_chipset_flush(dev);
984
985 return ret;
986 }
987
988 /**
989 * Writes data to the object referenced by handle.
990 *
991 * On error, the contents of the buffer that were to be modified are undefined.
992 */
993 int
994 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
995 struct drm_file *file)
996 {
997 struct drm_i915_gem_pwrite *args = data;
998 struct drm_i915_gem_object *obj;
999 int ret;
1000
1001 if (args->size == 0)
1002 return 0;
1003
1004 if (!access_ok(VERIFY_READ,
1005 to_user_ptr(args->data_ptr),
1006 args->size))
1007 return -EFAULT;
1008
1009 if (likely(!i915.prefault_disable)) {
1010 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1011 args->size);
1012 if (ret)
1013 return -EFAULT;
1014 }
1015
1016 ret = i915_mutex_lock_interruptible(dev);
1017 if (ret)
1018 return ret;
1019
1020 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1021 if (&obj->base == NULL) {
1022 ret = -ENOENT;
1023 goto unlock;
1024 }
1025
1026 /* Bounds check destination. */
1027 if (args->offset > obj->base.size ||
1028 args->size > obj->base.size - args->offset) {
1029 ret = -EINVAL;
1030 goto out;
1031 }
1032
1033 /* prime objects have no backing filp to GEM pread/pwrite
1034 * pages from.
1035 */
1036 if (!obj->base.filp) {
1037 ret = -EINVAL;
1038 goto out;
1039 }
1040
1041 trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1042
1043 ret = -EFAULT;
1044 /* We can only do the GTT pwrite on untiled buffers, as otherwise
1045 * it would end up going through the fenced access, and we'll get
1046 * different detiling behavior between reading and writing.
1047 * pread/pwrite currently are reading and writing from the CPU
1048 * perspective, requiring manual detiling by the client.
1049 */
1050 if (obj->phys_handle) {
1051 ret = i915_gem_phys_pwrite(obj, args, file);
1052 goto out;
1053 }
1054
1055 if (obj->tiling_mode == I915_TILING_NONE &&
1056 obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1057 cpu_write_needs_clflush(obj)) {
1058 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1059 /* Note that the gtt paths might fail with non-page-backed user
1060 * pointers (e.g. gtt mappings when moving data between
1061 * textures). Fallback to the shmem path in that case. */
1062 }
1063
1064 if (ret == -EFAULT || ret == -ENOSPC)
1065 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1066
1067 out:
1068 drm_gem_object_unreference(&obj->base);
1069 unlock:
1070 mutex_unlock(&dev->struct_mutex);
1071 return ret;
1072 }
1073
1074 int
1075 i915_gem_check_wedge(struct i915_gpu_error *error,
1076 bool interruptible)
1077 {
1078 if (i915_reset_in_progress(error)) {
1079 /* Non-interruptible callers can't handle -EAGAIN, hence return
1080 * -EIO unconditionally for these. */
1081 if (!interruptible)
1082 return -EIO;
1083
1084 /* Recovery complete, but the reset failed ... */
1085 if (i915_terminally_wedged(error))
1086 return -EIO;
1087
1088 return -EAGAIN;
1089 }
1090
1091 return 0;
1092 }
1093
1094 /*
1095 * Compare seqno against outstanding lazy request. Emit a request if they are
1096 * equal.
1097 */
1098 int
1099 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1100 {
1101 int ret;
1102
1103 BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1104
1105 ret = 0;
1106 if (seqno == ring->outstanding_lazy_seqno)
1107 ret = i915_add_request(ring, NULL);
1108
1109 return ret;
1110 }
1111
1112 static void fake_irq(unsigned long data)
1113 {
1114 wake_up_process((struct task_struct *)data);
1115 }
1116
1117 static bool missed_irq(struct drm_i915_private *dev_priv,
1118 struct intel_engine_cs *ring)
1119 {
1120 return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1121 }
1122
1123 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1124 {
1125 if (file_priv == NULL)
1126 return true;
1127
1128 return !atomic_xchg(&file_priv->rps_wait_boost, true);
1129 }
1130
1131 /**
1132 * __wait_seqno - wait until execution of seqno has finished
1133 * @ring: the ring expected to report seqno
1134 * @seqno: duh!
1135 * @reset_counter: reset sequence associated with the given seqno
1136 * @interruptible: do an interruptible wait (normally yes)
1137 * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1138 *
1139 * Note: It is of utmost importance that the passed in seqno and reset_counter
1140 * values have been read by the caller in an smp safe manner. Where read-side
1141 * locks are involved, it is sufficient to read the reset_counter before
1142 * unlocking the lock that protects the seqno. For lockless tricks, the
1143 * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1144 * inserted.
1145 *
1146 * Returns 0 if the seqno was found within the alloted time. Else returns the
1147 * errno with remaining time filled in timeout argument.
1148 */
1149 static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1150 unsigned reset_counter,
1151 bool interruptible,
1152 struct timespec *timeout,
1153 struct drm_i915_file_private *file_priv)
1154 {
1155 struct drm_device *dev = ring->dev;
1156 struct drm_i915_private *dev_priv = dev->dev_private;
1157 const bool irq_test_in_progress =
1158 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1159 struct timespec before, now;
1160 DEFINE_WAIT(wait);
1161 unsigned long timeout_expire;
1162 int ret;
1163
1164 WARN(!intel_irqs_enabled(dev_priv), "IRQs disabled");
1165
1166 if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1167 return 0;
1168
1169 timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1170
1171 if (INTEL_INFO(dev)->gen >= 6 && ring->id == RCS && can_wait_boost(file_priv)) {
1172 gen6_rps_boost(dev_priv);
1173 if (file_priv)
1174 mod_delayed_work(dev_priv->wq,
1175 &file_priv->mm.idle_work,
1176 msecs_to_jiffies(100));
1177 }
1178
1179 if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1180 return -ENODEV;
1181
1182 /* Record current time in case interrupted by signal, or wedged */
1183 trace_i915_gem_request_wait_begin(ring, seqno);
1184 getrawmonotonic(&before);
1185 for (;;) {
1186 struct timer_list timer;
1187
1188 prepare_to_wait(&ring->irq_queue, &wait,
1189 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1190
1191 /* We need to check whether any gpu reset happened in between
1192 * the caller grabbing the seqno and now ... */
1193 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1194 /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1195 * is truely gone. */
1196 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1197 if (ret == 0)
1198 ret = -EAGAIN;
1199 break;
1200 }
1201
1202 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1203 ret = 0;
1204 break;
1205 }
1206
1207 if (interruptible && signal_pending(current)) {
1208 ret = -ERESTARTSYS;
1209 break;
1210 }
1211
1212 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1213 ret = -ETIME;
1214 break;
1215 }
1216
1217 timer.function = NULL;
1218 if (timeout || missed_irq(dev_priv, ring)) {
1219 unsigned long expire;
1220
1221 setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1222 expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1223 mod_timer(&timer, expire);
1224 }
1225
1226 io_schedule();
1227
1228 if (timer.function) {
1229 del_singleshot_timer_sync(&timer);
1230 destroy_timer_on_stack(&timer);
1231 }
1232 }
1233 getrawmonotonic(&now);
1234 trace_i915_gem_request_wait_end(ring, seqno);
1235
1236 if (!irq_test_in_progress)
1237 ring->irq_put(ring);
1238
1239 finish_wait(&ring->irq_queue, &wait);
1240
1241 if (timeout) {
1242 struct timespec sleep_time = timespec_sub(now, before);
1243 *timeout = timespec_sub(*timeout, sleep_time);
1244 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1245 set_normalized_timespec(timeout, 0, 0);
1246 }
1247
1248 return ret;
1249 }
1250
1251 /**
1252 * Waits for a sequence number to be signaled, and cleans up the
1253 * request and object lists appropriately for that event.
1254 */
1255 int
1256 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1257 {
1258 struct drm_device *dev = ring->dev;
1259 struct drm_i915_private *dev_priv = dev->dev_private;
1260 bool interruptible = dev_priv->mm.interruptible;
1261 int ret;
1262
1263 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1264 BUG_ON(seqno == 0);
1265
1266 ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1267 if (ret)
1268 return ret;
1269
1270 ret = i915_gem_check_olr(ring, seqno);
1271 if (ret)
1272 return ret;
1273
1274 return __wait_seqno(ring, seqno,
1275 atomic_read(&dev_priv->gpu_error.reset_counter),
1276 interruptible, NULL, NULL);
1277 }
1278
1279 static int
1280 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1281 struct intel_engine_cs *ring)
1282 {
1283 if (!obj->active)
1284 return 0;
1285
1286 /* Manually manage the write flush as we may have not yet
1287 * retired the buffer.
1288 *
1289 * Note that the last_write_seqno is always the earlier of
1290 * the two (read/write) seqno, so if we haved successfully waited,
1291 * we know we have passed the last write.
1292 */
1293 obj->last_write_seqno = 0;
1294
1295 return 0;
1296 }
1297
1298 /**
1299 * Ensures that all rendering to the object has completed and the object is
1300 * safe to unbind from the GTT or access from the CPU.
1301 */
1302 static __must_check int
1303 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1304 bool readonly)
1305 {
1306 struct intel_engine_cs *ring = obj->ring;
1307 u32 seqno;
1308 int ret;
1309
1310 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1311 if (seqno == 0)
1312 return 0;
1313
1314 ret = i915_wait_seqno(ring, seqno);
1315 if (ret)
1316 return ret;
1317
1318 return i915_gem_object_wait_rendering__tail(obj, ring);
1319 }
1320
1321 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1322 * as the object state may change during this call.
1323 */
1324 static __must_check int
1325 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1326 struct drm_i915_file_private *file_priv,
1327 bool readonly)
1328 {
1329 struct drm_device *dev = obj->base.dev;
1330 struct drm_i915_private *dev_priv = dev->dev_private;
1331 struct intel_engine_cs *ring = obj->ring;
1332 unsigned reset_counter;
1333 u32 seqno;
1334 int ret;
1335
1336 BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1337 BUG_ON(!dev_priv->mm.interruptible);
1338
1339 seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1340 if (seqno == 0)
1341 return 0;
1342
1343 ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1344 if (ret)
1345 return ret;
1346
1347 ret = i915_gem_check_olr(ring, seqno);
1348 if (ret)
1349 return ret;
1350
1351 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1352 mutex_unlock(&dev->struct_mutex);
1353 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1354 mutex_lock(&dev->struct_mutex);
1355 if (ret)
1356 return ret;
1357
1358 return i915_gem_object_wait_rendering__tail(obj, ring);
1359 }
1360
1361 /**
1362 * Called when user space prepares to use an object with the CPU, either
1363 * through the mmap ioctl's mapping or a GTT mapping.
1364 */
1365 int
1366 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1367 struct drm_file *file)
1368 {
1369 struct drm_i915_gem_set_domain *args = data;
1370 struct drm_i915_gem_object *obj;
1371 uint32_t read_domains = args->read_domains;
1372 uint32_t write_domain = args->write_domain;
1373 int ret;
1374
1375 /* Only handle setting domains to types used by the CPU. */
1376 if (write_domain & I915_GEM_GPU_DOMAINS)
1377 return -EINVAL;
1378
1379 if (read_domains & I915_GEM_GPU_DOMAINS)
1380 return -EINVAL;
1381
1382 /* Having something in the write domain implies it's in the read
1383 * domain, and only that read domain. Enforce that in the request.
1384 */
1385 if (write_domain != 0 && read_domains != write_domain)
1386 return -EINVAL;
1387
1388 ret = i915_mutex_lock_interruptible(dev);
1389 if (ret)
1390 return ret;
1391
1392 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1393 if (&obj->base == NULL) {
1394 ret = -ENOENT;
1395 goto unlock;
1396 }
1397
1398 /* Try to flush the object off the GPU without holding the lock.
1399 * We will repeat the flush holding the lock in the normal manner
1400 * to catch cases where we are gazumped.
1401 */
1402 ret = i915_gem_object_wait_rendering__nonblocking(obj,
1403 file->driver_priv,
1404 !write_domain);
1405 if (ret)
1406 goto unref;
1407
1408 if (read_domains & I915_GEM_DOMAIN_GTT) {
1409 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1410
1411 /* Silently promote "you're not bound, there was nothing to do"
1412 * to success, since the client was just asking us to
1413 * make sure everything was done.
1414 */
1415 if (ret == -EINVAL)
1416 ret = 0;
1417 } else {
1418 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1419 }
1420
1421 unref:
1422 drm_gem_object_unreference(&obj->base);
1423 unlock:
1424 mutex_unlock(&dev->struct_mutex);
1425 return ret;
1426 }
1427
1428 /**
1429 * Called when user space has done writes to this buffer
1430 */
1431 int
1432 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1433 struct drm_file *file)
1434 {
1435 struct drm_i915_gem_sw_finish *args = data;
1436 struct drm_i915_gem_object *obj;
1437 int ret = 0;
1438
1439 ret = i915_mutex_lock_interruptible(dev);
1440 if (ret)
1441 return ret;
1442
1443 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1444 if (&obj->base == NULL) {
1445 ret = -ENOENT;
1446 goto unlock;
1447 }
1448
1449 /* Pinned buffers may be scanout, so flush the cache */
1450 if (obj->pin_display)
1451 i915_gem_object_flush_cpu_write_domain(obj, true);
1452
1453 drm_gem_object_unreference(&obj->base);
1454 unlock:
1455 mutex_unlock(&dev->struct_mutex);
1456 return ret;
1457 }
1458
1459 /**
1460 * Maps the contents of an object, returning the address it is mapped
1461 * into.
1462 *
1463 * While the mapping holds a reference on the contents of the object, it doesn't
1464 * imply a ref on the object itself.
1465 */
1466 int
1467 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1468 struct drm_file *file)
1469 {
1470 struct drm_i915_gem_mmap *args = data;
1471 struct drm_gem_object *obj;
1472 unsigned long addr;
1473
1474 obj = drm_gem_object_lookup(dev, file, args->handle);
1475 if (obj == NULL)
1476 return -ENOENT;
1477
1478 /* prime objects have no backing filp to GEM mmap
1479 * pages from.
1480 */
1481 if (!obj->filp) {
1482 drm_gem_object_unreference_unlocked(obj);
1483 return -EINVAL;
1484 }
1485
1486 addr = vm_mmap(obj->filp, 0, args->size,
1487 PROT_READ | PROT_WRITE, MAP_SHARED,
1488 args->offset);
1489 drm_gem_object_unreference_unlocked(obj);
1490 if (IS_ERR((void *)addr))
1491 return addr;
1492
1493 args->addr_ptr = (uint64_t) addr;
1494
1495 return 0;
1496 }
1497
1498 /**
1499 * i915_gem_fault - fault a page into the GTT
1500 * vma: VMA in question
1501 * vmf: fault info
1502 *
1503 * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1504 * from userspace. The fault handler takes care of binding the object to
1505 * the GTT (if needed), allocating and programming a fence register (again,
1506 * only if needed based on whether the old reg is still valid or the object
1507 * is tiled) and inserting a new PTE into the faulting process.
1508 *
1509 * Note that the faulting process may involve evicting existing objects
1510 * from the GTT and/or fence registers to make room. So performance may
1511 * suffer if the GTT working set is large or there are few fence registers
1512 * left.
1513 */
1514 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1515 {
1516 struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1517 struct drm_device *dev = obj->base.dev;
1518 struct drm_i915_private *dev_priv = dev->dev_private;
1519 pgoff_t page_offset;
1520 unsigned long pfn;
1521 int ret = 0;
1522 bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1523
1524 intel_runtime_pm_get(dev_priv);
1525
1526 /* We don't use vmf->pgoff since that has the fake offset */
1527 page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1528 PAGE_SHIFT;
1529
1530 ret = i915_mutex_lock_interruptible(dev);
1531 if (ret)
1532 goto out;
1533
1534 trace_i915_gem_object_fault(obj, page_offset, true, write);
1535
1536 /* Try to flush the object off the GPU first without holding the lock.
1537 * Upon reacquiring the lock, we will perform our sanity checks and then
1538 * repeat the flush holding the lock in the normal manner to catch cases
1539 * where we are gazumped.
1540 */
1541 ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1542 if (ret)
1543 goto unlock;
1544
1545 /* Access to snoopable pages through the GTT is incoherent. */
1546 if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1547 ret = -EFAULT;
1548 goto unlock;
1549 }
1550
1551 /* Now bind it into the GTT if needed */
1552 ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1553 if (ret)
1554 goto unlock;
1555
1556 ret = i915_gem_object_set_to_gtt_domain(obj, write);
1557 if (ret)
1558 goto unpin;
1559
1560 ret = i915_gem_object_get_fence(obj);
1561 if (ret)
1562 goto unpin;
1563
1564 /* Finally, remap it using the new GTT offset */
1565 pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1566 pfn >>= PAGE_SHIFT;
1567
1568 if (!obj->fault_mappable) {
1569 unsigned long size = min_t(unsigned long,
1570 vma->vm_end - vma->vm_start,
1571 obj->base.size);
1572 int i;
1573
1574 for (i = 0; i < size >> PAGE_SHIFT; i++) {
1575 ret = vm_insert_pfn(vma,
1576 (unsigned long)vma->vm_start + i * PAGE_SIZE,
1577 pfn + i);
1578 if (ret)
1579 break;
1580 }
1581
1582 obj->fault_mappable = true;
1583 } else
1584 ret = vm_insert_pfn(vma,
1585 (unsigned long)vmf->virtual_address,
1586 pfn + page_offset);
1587 unpin:
1588 i915_gem_object_ggtt_unpin(obj);
1589 unlock:
1590 mutex_unlock(&dev->struct_mutex);
1591 out:
1592 switch (ret) {
1593 case -EIO:
1594 /* If this -EIO is due to a gpu hang, give the reset code a
1595 * chance to clean up the mess. Otherwise return the proper
1596 * SIGBUS. */
1597 if (i915_terminally_wedged(&dev_priv->gpu_error)) {
1598 ret = VM_FAULT_SIGBUS;
1599 break;
1600 }
1601 case -EAGAIN:
1602 /*
1603 * EAGAIN means the gpu is hung and we'll wait for the error
1604 * handler to reset everything when re-faulting in
1605 * i915_mutex_lock_interruptible.
1606 */
1607 case 0:
1608 case -ERESTARTSYS:
1609 case -EINTR:
1610 case -EBUSY:
1611 /*
1612 * EBUSY is ok: this just means that another thread
1613 * already did the job.
1614 */
1615 ret = VM_FAULT_NOPAGE;
1616 break;
1617 case -ENOMEM:
1618 ret = VM_FAULT_OOM;
1619 break;
1620 case -ENOSPC:
1621 case -EFAULT:
1622 ret = VM_FAULT_SIGBUS;
1623 break;
1624 default:
1625 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1626 ret = VM_FAULT_SIGBUS;
1627 break;
1628 }
1629
1630 intel_runtime_pm_put(dev_priv);
1631 return ret;
1632 }
1633
1634 /**
1635 * i915_gem_release_mmap - remove physical page mappings
1636 * @obj: obj in question
1637 *
1638 * Preserve the reservation of the mmapping with the DRM core code, but
1639 * relinquish ownership of the pages back to the system.
1640 *
1641 * It is vital that we remove the page mapping if we have mapped a tiled
1642 * object through the GTT and then lose the fence register due to
1643 * resource pressure. Similarly if the object has been moved out of the
1644 * aperture, than pages mapped into userspace must be revoked. Removing the
1645 * mapping will then trigger a page fault on the next user access, allowing
1646 * fixup by i915_gem_fault().
1647 */
1648 void
1649 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1650 {
1651 if (!obj->fault_mappable)
1652 return;
1653
1654 drm_vma_node_unmap(&obj->base.vma_node,
1655 obj->base.dev->anon_inode->i_mapping);
1656 obj->fault_mappable = false;
1657 }
1658
1659 void
1660 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1661 {
1662 struct drm_i915_gem_object *obj;
1663
1664 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1665 i915_gem_release_mmap(obj);
1666 }
1667
1668 uint32_t
1669 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1670 {
1671 uint32_t gtt_size;
1672
1673 if (INTEL_INFO(dev)->gen >= 4 ||
1674 tiling_mode == I915_TILING_NONE)
1675 return size;
1676
1677 /* Previous chips need a power-of-two fence region when tiling */
1678 if (INTEL_INFO(dev)->gen == 3)
1679 gtt_size = 1024*1024;
1680 else
1681 gtt_size = 512*1024;
1682
1683 while (gtt_size < size)
1684 gtt_size <<= 1;
1685
1686 return gtt_size;
1687 }
1688
1689 /**
1690 * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1691 * @obj: object to check
1692 *
1693 * Return the required GTT alignment for an object, taking into account
1694 * potential fence register mapping.
1695 */
1696 uint32_t
1697 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1698 int tiling_mode, bool fenced)
1699 {
1700 /*
1701 * Minimum alignment is 4k (GTT page size), but might be greater
1702 * if a fence register is needed for the object.
1703 */
1704 if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1705 tiling_mode == I915_TILING_NONE)
1706 return 4096;
1707
1708 /*
1709 * Previous chips need to be aligned to the size of the smallest
1710 * fence register that can contain the object.
1711 */
1712 return i915_gem_get_gtt_size(dev, size, tiling_mode);
1713 }
1714
1715 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1716 {
1717 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1718 int ret;
1719
1720 if (drm_vma_node_has_offset(&obj->base.vma_node))
1721 return 0;
1722
1723 dev_priv->mm.shrinker_no_lock_stealing = true;
1724
1725 ret = drm_gem_create_mmap_offset(&obj->base);
1726 if (ret != -ENOSPC)
1727 goto out;
1728
1729 /* Badly fragmented mmap space? The only way we can recover
1730 * space is by destroying unwanted objects. We can't randomly release
1731 * mmap_offsets as userspace expects them to be persistent for the
1732 * lifetime of the objects. The closest we can is to release the
1733 * offsets on purgeable objects by truncating it and marking it purged,
1734 * which prevents userspace from ever using that object again.
1735 */
1736 i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1737 ret = drm_gem_create_mmap_offset(&obj->base);
1738 if (ret != -ENOSPC)
1739 goto out;
1740
1741 i915_gem_shrink_all(dev_priv);
1742 ret = drm_gem_create_mmap_offset(&obj->base);
1743 out:
1744 dev_priv->mm.shrinker_no_lock_stealing = false;
1745
1746 return ret;
1747 }
1748
1749 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1750 {
1751 drm_gem_free_mmap_offset(&obj->base);
1752 }
1753
1754 int
1755 i915_gem_mmap_gtt(struct drm_file *file,
1756 struct drm_device *dev,
1757 uint32_t handle,
1758 uint64_t *offset)
1759 {
1760 struct drm_i915_private *dev_priv = dev->dev_private;
1761 struct drm_i915_gem_object *obj;
1762 int ret;
1763
1764 ret = i915_mutex_lock_interruptible(dev);
1765 if (ret)
1766 return ret;
1767
1768 obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1769 if (&obj->base == NULL) {
1770 ret = -ENOENT;
1771 goto unlock;
1772 }
1773
1774 if (obj->base.size > dev_priv->gtt.mappable_end) {
1775 ret = -E2BIG;
1776 goto out;
1777 }
1778
1779 if (obj->madv != I915_MADV_WILLNEED) {
1780 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1781 ret = -EFAULT;
1782 goto out;
1783 }
1784
1785 ret = i915_gem_object_create_mmap_offset(obj);
1786 if (ret)
1787 goto out;
1788
1789 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1790
1791 out:
1792 drm_gem_object_unreference(&obj->base);
1793 unlock:
1794 mutex_unlock(&dev->struct_mutex);
1795 return ret;
1796 }
1797
1798 /**
1799 * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1800 * @dev: DRM device
1801 * @data: GTT mapping ioctl data
1802 * @file: GEM object info
1803 *
1804 * Simply returns the fake offset to userspace so it can mmap it.
1805 * The mmap call will end up in drm_gem_mmap(), which will set things
1806 * up so we can get faults in the handler above.
1807 *
1808 * The fault handler will take care of binding the object into the GTT
1809 * (since it may have been evicted to make room for something), allocating
1810 * a fence register, and mapping the appropriate aperture address into
1811 * userspace.
1812 */
1813 int
1814 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1815 struct drm_file *file)
1816 {
1817 struct drm_i915_gem_mmap_gtt *args = data;
1818
1819 return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1820 }
1821
1822 static inline int
1823 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1824 {
1825 return obj->madv == I915_MADV_DONTNEED;
1826 }
1827
1828 /* Immediately discard the backing storage */
1829 static void
1830 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1831 {
1832 i915_gem_object_free_mmap_offset(obj);
1833
1834 if (obj->base.filp == NULL)
1835 return;
1836
1837 /* Our goal here is to return as much of the memory as
1838 * is possible back to the system as we are called from OOM.
1839 * To do this we must instruct the shmfs to drop all of its
1840 * backing pages, *now*.
1841 */
1842 shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1843 obj->madv = __I915_MADV_PURGED;
1844 }
1845
1846 /* Try to discard unwanted pages */
1847 static void
1848 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1849 {
1850 struct address_space *mapping;
1851
1852 switch (obj->madv) {
1853 case I915_MADV_DONTNEED:
1854 i915_gem_object_truncate(obj);
1855 case __I915_MADV_PURGED:
1856 return;
1857 }
1858
1859 if (obj->base.filp == NULL)
1860 return;
1861
1862 mapping = file_inode(obj->base.filp)->i_mapping,
1863 invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1864 }
1865
1866 static void
1867 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1868 {
1869 struct sg_page_iter sg_iter;
1870 int ret;
1871
1872 BUG_ON(obj->madv == __I915_MADV_PURGED);
1873
1874 ret = i915_gem_object_set_to_cpu_domain(obj, true);
1875 if (ret) {
1876 /* In the event of a disaster, abandon all caches and
1877 * hope for the best.
1878 */
1879 WARN_ON(ret != -EIO);
1880 i915_gem_clflush_object(obj, true);
1881 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1882 }
1883
1884 if (i915_gem_object_needs_bit17_swizzle(obj))
1885 i915_gem_object_save_bit_17_swizzle(obj);
1886
1887 if (obj->madv == I915_MADV_DONTNEED)
1888 obj->dirty = 0;
1889
1890 for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1891 struct page *page = sg_page_iter_page(&sg_iter);
1892
1893 if (obj->dirty)
1894 set_page_dirty(page);
1895
1896 if (obj->madv == I915_MADV_WILLNEED)
1897 mark_page_accessed(page);
1898
1899 page_cache_release(page);
1900 }
1901 obj->dirty = 0;
1902
1903 sg_free_table(obj->pages);
1904 kfree(obj->pages);
1905 }
1906
1907 int
1908 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1909 {
1910 const struct drm_i915_gem_object_ops *ops = obj->ops;
1911
1912 if (obj->pages == NULL)
1913 return 0;
1914
1915 if (obj->pages_pin_count)
1916 return -EBUSY;
1917
1918 BUG_ON(i915_gem_obj_bound_any(obj));
1919
1920 /* ->put_pages might need to allocate memory for the bit17 swizzle
1921 * array, hence protect them from being reaped by removing them from gtt
1922 * lists early. */
1923 list_del(&obj->global_list);
1924
1925 ops->put_pages(obj);
1926 obj->pages = NULL;
1927
1928 i915_gem_object_invalidate(obj);
1929
1930 return 0;
1931 }
1932
1933 static unsigned long
1934 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1935 bool purgeable_only)
1936 {
1937 struct list_head still_in_list;
1938 struct drm_i915_gem_object *obj;
1939 unsigned long count = 0;
1940
1941 /*
1942 * As we may completely rewrite the (un)bound list whilst unbinding
1943 * (due to retiring requests) we have to strictly process only
1944 * one element of the list at the time, and recheck the list
1945 * on every iteration.
1946 *
1947 * In particular, we must hold a reference whilst removing the
1948 * object as we may end up waiting for and/or retiring the objects.
1949 * This might release the final reference (held by the active list)
1950 * and result in the object being freed from under us. This is
1951 * similar to the precautions the eviction code must take whilst
1952 * removing objects.
1953 *
1954 * Also note that although these lists do not hold a reference to
1955 * the object we can safely grab one here: The final object
1956 * unreferencing and the bound_list are both protected by the
1957 * dev->struct_mutex and so we won't ever be able to observe an
1958 * object on the bound_list with a reference count equals 0.
1959 */
1960 INIT_LIST_HEAD(&still_in_list);
1961 while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
1962 obj = list_first_entry(&dev_priv->mm.unbound_list,
1963 typeof(*obj), global_list);
1964 list_move_tail(&obj->global_list, &still_in_list);
1965
1966 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1967 continue;
1968
1969 drm_gem_object_reference(&obj->base);
1970
1971 if (i915_gem_object_put_pages(obj) == 0)
1972 count += obj->base.size >> PAGE_SHIFT;
1973
1974 drm_gem_object_unreference(&obj->base);
1975 }
1976 list_splice(&still_in_list, &dev_priv->mm.unbound_list);
1977
1978 INIT_LIST_HEAD(&still_in_list);
1979 while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1980 struct i915_vma *vma, *v;
1981
1982 obj = list_first_entry(&dev_priv->mm.bound_list,
1983 typeof(*obj), global_list);
1984 list_move_tail(&obj->global_list, &still_in_list);
1985
1986 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1987 continue;
1988
1989 drm_gem_object_reference(&obj->base);
1990
1991 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1992 if (i915_vma_unbind(vma))
1993 break;
1994
1995 if (i915_gem_object_put_pages(obj) == 0)
1996 count += obj->base.size >> PAGE_SHIFT;
1997
1998 drm_gem_object_unreference(&obj->base);
1999 }
2000 list_splice(&still_in_list, &dev_priv->mm.bound_list);
2001
2002 return count;
2003 }
2004
2005 static unsigned long
2006 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
2007 {
2008 return __i915_gem_shrink(dev_priv, target, true);
2009 }
2010
2011 static unsigned long
2012 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
2013 {
2014 i915_gem_evict_everything(dev_priv->dev);
2015 return __i915_gem_shrink(dev_priv, LONG_MAX, false);
2016 }
2017
2018 static int
2019 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2020 {
2021 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2022 int page_count, i;
2023 struct address_space *mapping;
2024 struct sg_table *st;
2025 struct scatterlist *sg;
2026 struct sg_page_iter sg_iter;
2027 struct page *page;
2028 unsigned long last_pfn = 0; /* suppress gcc warning */
2029 gfp_t gfp;
2030
2031 /* Assert that the object is not currently in any GPU domain. As it
2032 * wasn't in the GTT, there shouldn't be any way it could have been in
2033 * a GPU cache
2034 */
2035 BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2036 BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2037
2038 st = kmalloc(sizeof(*st), GFP_KERNEL);
2039 if (st == NULL)
2040 return -ENOMEM;
2041
2042 page_count = obj->base.size / PAGE_SIZE;
2043 if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2044 kfree(st);
2045 return -ENOMEM;
2046 }
2047
2048 /* Get the list of pages out of our struct file. They'll be pinned
2049 * at this point until we release them.
2050 *
2051 * Fail silently without starting the shrinker
2052 */
2053 mapping = file_inode(obj->base.filp)->i_mapping;
2054 gfp = mapping_gfp_mask(mapping);
2055 gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2056 gfp &= ~(__GFP_IO | __GFP_WAIT);
2057 sg = st->sgl;
2058 st->nents = 0;
2059 for (i = 0; i < page_count; i++) {
2060 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2061 if (IS_ERR(page)) {
2062 i915_gem_purge(dev_priv, page_count);
2063 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2064 }
2065 if (IS_ERR(page)) {
2066 /* We've tried hard to allocate the memory by reaping
2067 * our own buffer, now let the real VM do its job and
2068 * go down in flames if truly OOM.
2069 */
2070 i915_gem_shrink_all(dev_priv);
2071 page = shmem_read_mapping_page(mapping, i);
2072 if (IS_ERR(page))
2073 goto err_pages;
2074 }
2075 #ifdef CONFIG_SWIOTLB
2076 if (swiotlb_nr_tbl()) {
2077 st->nents++;
2078 sg_set_page(sg, page, PAGE_SIZE, 0);
2079 sg = sg_next(sg);
2080 continue;
2081 }
2082 #endif
2083 if (!i || page_to_pfn(page) != last_pfn + 1) {
2084 if (i)
2085 sg = sg_next(sg);
2086 st->nents++;
2087 sg_set_page(sg, page, PAGE_SIZE, 0);
2088 } else {
2089 sg->length += PAGE_SIZE;
2090 }
2091 last_pfn = page_to_pfn(page);
2092
2093 /* Check that the i965g/gm workaround works. */
2094 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2095 }
2096 #ifdef CONFIG_SWIOTLB
2097 if (!swiotlb_nr_tbl())
2098 #endif
2099 sg_mark_end(sg);
2100 obj->pages = st;
2101
2102 if (i915_gem_object_needs_bit17_swizzle(obj))
2103 i915_gem_object_do_bit_17_swizzle(obj);
2104
2105 return 0;
2106
2107 err_pages:
2108 sg_mark_end(sg);
2109 for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2110 page_cache_release(sg_page_iter_page(&sg_iter));
2111 sg_free_table(st);
2112 kfree(st);
2113
2114 /* shmemfs first checks if there is enough memory to allocate the page
2115 * and reports ENOSPC should there be insufficient, along with the usual
2116 * ENOMEM for a genuine allocation failure.
2117 *
2118 * We use ENOSPC in our driver to mean that we have run out of aperture
2119 * space and so want to translate the error from shmemfs back to our
2120 * usual understanding of ENOMEM.
2121 */
2122 if (PTR_ERR(page) == -ENOSPC)
2123 return -ENOMEM;
2124 else
2125 return PTR_ERR(page);
2126 }
2127
2128 /* Ensure that the associated pages are gathered from the backing storage
2129 * and pinned into our object. i915_gem_object_get_pages() may be called
2130 * multiple times before they are released by a single call to
2131 * i915_gem_object_put_pages() - once the pages are no longer referenced
2132 * either as a result of memory pressure (reaping pages under the shrinker)
2133 * or as the object is itself released.
2134 */
2135 int
2136 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2137 {
2138 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2139 const struct drm_i915_gem_object_ops *ops = obj->ops;
2140 int ret;
2141
2142 if (obj->pages)
2143 return 0;
2144
2145 if (obj->madv != I915_MADV_WILLNEED) {
2146 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2147 return -EFAULT;
2148 }
2149
2150 BUG_ON(obj->pages_pin_count);
2151
2152 ret = ops->get_pages(obj);
2153 if (ret)
2154 return ret;
2155
2156 list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2157 return 0;
2158 }
2159
2160 static void
2161 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2162 struct intel_engine_cs *ring)
2163 {
2164 u32 seqno = intel_ring_get_seqno(ring);
2165
2166 BUG_ON(ring == NULL);
2167 if (obj->ring != ring && obj->last_write_seqno) {
2168 /* Keep the seqno relative to the current ring */
2169 obj->last_write_seqno = seqno;
2170 }
2171 obj->ring = ring;
2172
2173 /* Add a reference if we're newly entering the active list. */
2174 if (!obj->active) {
2175 drm_gem_object_reference(&obj->base);
2176 obj->active = 1;
2177 }
2178
2179 list_move_tail(&obj->ring_list, &ring->active_list);
2180
2181 obj->last_read_seqno = seqno;
2182 }
2183
2184 void i915_vma_move_to_active(struct i915_vma *vma,
2185 struct intel_engine_cs *ring)
2186 {
2187 list_move_tail(&vma->mm_list, &vma->vm->active_list);
2188 return i915_gem_object_move_to_active(vma->obj, ring);
2189 }
2190
2191 static void
2192 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2193 {
2194 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2195 struct i915_address_space *vm;
2196 struct i915_vma *vma;
2197
2198 BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2199 BUG_ON(!obj->active);
2200
2201 list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2202 vma = i915_gem_obj_to_vma(obj, vm);
2203 if (vma && !list_empty(&vma->mm_list))
2204 list_move_tail(&vma->mm_list, &vm->inactive_list);
2205 }
2206
2207 intel_fb_obj_flush(obj, true);
2208
2209 list_del_init(&obj->ring_list);
2210 obj->ring = NULL;
2211
2212 obj->last_read_seqno = 0;
2213 obj->last_write_seqno = 0;
2214 obj->base.write_domain = 0;
2215
2216 obj->last_fenced_seqno = 0;
2217
2218 obj->active = 0;
2219 drm_gem_object_unreference(&obj->base);
2220
2221 WARN_ON(i915_verify_lists(dev));
2222 }
2223
2224 static void
2225 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2226 {
2227 struct intel_engine_cs *ring = obj->ring;
2228
2229 if (ring == NULL)
2230 return;
2231
2232 if (i915_seqno_passed(ring->get_seqno(ring, true),
2233 obj->last_read_seqno))
2234 i915_gem_object_move_to_inactive(obj);
2235 }
2236
2237 static int
2238 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2239 {
2240 struct drm_i915_private *dev_priv = dev->dev_private;
2241 struct intel_engine_cs *ring;
2242 int ret, i, j;
2243
2244 /* Carefully retire all requests without writing to the rings */
2245 for_each_ring(ring, dev_priv, i) {
2246 ret = intel_ring_idle(ring);
2247 if (ret)
2248 return ret;
2249 }
2250 i915_gem_retire_requests(dev);
2251
2252 /* Finally reset hw state */
2253 for_each_ring(ring, dev_priv, i) {
2254 intel_ring_init_seqno(ring, seqno);
2255
2256 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2257 ring->semaphore.sync_seqno[j] = 0;
2258 }
2259
2260 return 0;
2261 }
2262
2263 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2264 {
2265 struct drm_i915_private *dev_priv = dev->dev_private;
2266 int ret;
2267
2268 if (seqno == 0)
2269 return -EINVAL;
2270
2271 /* HWS page needs to be set less than what we
2272 * will inject to ring
2273 */
2274 ret = i915_gem_init_seqno(dev, seqno - 1);
2275 if (ret)
2276 return ret;
2277
2278 /* Carefully set the last_seqno value so that wrap
2279 * detection still works
2280 */
2281 dev_priv->next_seqno = seqno;
2282 dev_priv->last_seqno = seqno - 1;
2283 if (dev_priv->last_seqno == 0)
2284 dev_priv->last_seqno--;
2285
2286 return 0;
2287 }
2288
2289 int
2290 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2291 {
2292 struct drm_i915_private *dev_priv = dev->dev_private;
2293
2294 /* reserve 0 for non-seqno */
2295 if (dev_priv->next_seqno == 0) {
2296 int ret = i915_gem_init_seqno(dev, 0);
2297 if (ret)
2298 return ret;
2299
2300 dev_priv->next_seqno = 1;
2301 }
2302
2303 *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2304 return 0;
2305 }
2306
2307 int __i915_add_request(struct intel_engine_cs *ring,
2308 struct drm_file *file,
2309 struct drm_i915_gem_object *obj,
2310 u32 *out_seqno)
2311 {
2312 struct drm_i915_private *dev_priv = ring->dev->dev_private;
2313 struct drm_i915_gem_request *request;
2314 u32 request_ring_position, request_start;
2315 int ret;
2316
2317 request_start = intel_ring_get_tail(ring->buffer);
2318 /*
2319 * Emit any outstanding flushes - execbuf can fail to emit the flush
2320 * after having emitted the batchbuffer command. Hence we need to fix
2321 * things up similar to emitting the lazy request. The difference here
2322 * is that the flush _must_ happen before the next request, no matter
2323 * what.
2324 */
2325 ret = intel_ring_flush_all_caches(ring);
2326 if (ret)
2327 return ret;
2328
2329 request = ring->preallocated_lazy_request;
2330 if (WARN_ON(request == NULL))
2331 return -ENOMEM;
2332
2333 /* Record the position of the start of the request so that
2334 * should we detect the updated seqno part-way through the
2335 * GPU processing the request, we never over-estimate the
2336 * position of the head.
2337 */
2338 request_ring_position = intel_ring_get_tail(ring->buffer);
2339
2340 ret = ring->add_request(ring);
2341 if (ret)
2342 return ret;
2343
2344 request->seqno = intel_ring_get_seqno(ring);
2345 request->ring = ring;
2346 request->head = request_start;
2347 request->tail = request_ring_position;
2348
2349 /* Whilst this request exists, batch_obj will be on the
2350 * active_list, and so will hold the active reference. Only when this
2351 * request is retired will the the batch_obj be moved onto the
2352 * inactive_list and lose its active reference. Hence we do not need
2353 * to explicitly hold another reference here.
2354 */
2355 request->batch_obj = obj;
2356
2357 /* Hold a reference to the current context so that we can inspect
2358 * it later in case a hangcheck error event fires.
2359 */
2360 request->ctx = ring->last_context;
2361 if (request->ctx)
2362 i915_gem_context_reference(request->ctx);
2363
2364 request->emitted_jiffies = jiffies;
2365 list_add_tail(&request->list, &ring->request_list);
2366 request->file_priv = NULL;
2367
2368 if (file) {
2369 struct drm_i915_file_private *file_priv = file->driver_priv;
2370
2371 spin_lock(&file_priv->mm.lock);
2372 request->file_priv = file_priv;
2373 list_add_tail(&request->client_list,
2374 &file_priv->mm.request_list);
2375 spin_unlock(&file_priv->mm.lock);
2376 }
2377
2378 trace_i915_gem_request_add(ring, request->seqno);
2379 ring->outstanding_lazy_seqno = 0;
2380 ring->preallocated_lazy_request = NULL;
2381
2382 if (!dev_priv->ums.mm_suspended) {
2383 i915_queue_hangcheck(ring->dev);
2384
2385 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2386 queue_delayed_work(dev_priv->wq,
2387 &dev_priv->mm.retire_work,
2388 round_jiffies_up_relative(HZ));
2389 intel_mark_busy(dev_priv->dev);
2390 }
2391
2392 if (out_seqno)
2393 *out_seqno = request->seqno;
2394 return 0;
2395 }
2396
2397 static inline void
2398 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2399 {
2400 struct drm_i915_file_private *file_priv = request->file_priv;
2401
2402 if (!file_priv)
2403 return;
2404
2405 spin_lock(&file_priv->mm.lock);
2406 list_del(&request->client_list);
2407 request->file_priv = NULL;
2408 spin_unlock(&file_priv->mm.lock);
2409 }
2410
2411 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2412 const struct intel_context *ctx)
2413 {
2414 unsigned long elapsed;
2415
2416 elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2417
2418 if (ctx->hang_stats.banned)
2419 return true;
2420
2421 if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2422 if (!i915_gem_context_is_default(ctx)) {
2423 DRM_DEBUG("context hanging too fast, banning!\n");
2424 return true;
2425 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2426 if (i915_stop_ring_allow_warn(dev_priv))
2427 DRM_ERROR("gpu hanging too fast, banning!\n");
2428 return true;
2429 }
2430 }
2431
2432 return false;
2433 }
2434
2435 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2436 struct intel_context *ctx,
2437 const bool guilty)
2438 {
2439 struct i915_ctx_hang_stats *hs;
2440
2441 if (WARN_ON(!ctx))
2442 return;
2443
2444 hs = &ctx->hang_stats;
2445
2446 if (guilty) {
2447 hs->banned = i915_context_is_banned(dev_priv, ctx);
2448 hs->batch_active++;
2449 hs->guilty_ts = get_seconds();
2450 } else {
2451 hs->batch_pending++;
2452 }
2453 }
2454
2455 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2456 {
2457 list_del(&request->list);
2458 i915_gem_request_remove_from_client(request);
2459
2460 if (request->ctx)
2461 i915_gem_context_unreference(request->ctx);
2462
2463 kfree(request);
2464 }
2465
2466 struct drm_i915_gem_request *
2467 i915_gem_find_active_request(struct intel_engine_cs *ring)
2468 {
2469 struct drm_i915_gem_request *request;
2470 u32 completed_seqno;
2471
2472 completed_seqno = ring->get_seqno(ring, false);
2473
2474 list_for_each_entry(request, &ring->request_list, list) {
2475 if (i915_seqno_passed(completed_seqno, request->seqno))
2476 continue;
2477
2478 return request;
2479 }
2480
2481 return NULL;
2482 }
2483
2484 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2485 struct intel_engine_cs *ring)
2486 {
2487 struct drm_i915_gem_request *request;
2488 bool ring_hung;
2489
2490 request = i915_gem_find_active_request(ring);
2491
2492 if (request == NULL)
2493 return;
2494
2495 ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2496
2497 i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2498
2499 list_for_each_entry_continue(request, &ring->request_list, list)
2500 i915_set_reset_status(dev_priv, request->ctx, false);
2501 }
2502
2503 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2504 struct intel_engine_cs *ring)
2505 {
2506 while (!list_empty(&ring->active_list)) {
2507 struct drm_i915_gem_object *obj;
2508
2509 obj = list_first_entry(&ring->active_list,
2510 struct drm_i915_gem_object,
2511 ring_list);
2512
2513 i915_gem_object_move_to_inactive(obj);
2514 }
2515
2516 /*
2517 * We must free the requests after all the corresponding objects have
2518 * been moved off active lists. Which is the same order as the normal
2519 * retire_requests function does. This is important if object hold
2520 * implicit references on things like e.g. ppgtt address spaces through
2521 * the request.
2522 */
2523 while (!list_empty(&ring->request_list)) {
2524 struct drm_i915_gem_request *request;
2525
2526 request = list_first_entry(&ring->request_list,
2527 struct drm_i915_gem_request,
2528 list);
2529
2530 i915_gem_free_request(request);
2531 }
2532
2533 /* These may not have been flush before the reset, do so now */
2534 kfree(ring->preallocated_lazy_request);
2535 ring->preallocated_lazy_request = NULL;
2536 ring->outstanding_lazy_seqno = 0;
2537 }
2538
2539 void i915_gem_restore_fences(struct drm_device *dev)
2540 {
2541 struct drm_i915_private *dev_priv = dev->dev_private;
2542 int i;
2543
2544 for (i = 0; i < dev_priv->num_fence_regs; i++) {
2545 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2546
2547 /*
2548 * Commit delayed tiling changes if we have an object still
2549 * attached to the fence, otherwise just clear the fence.
2550 */
2551 if (reg->obj) {
2552 i915_gem_object_update_fence(reg->obj, reg,
2553 reg->obj->tiling_mode);
2554 } else {
2555 i915_gem_write_fence(dev, i, NULL);
2556 }
2557 }
2558 }
2559
2560 void i915_gem_reset(struct drm_device *dev)
2561 {
2562 struct drm_i915_private *dev_priv = dev->dev_private;
2563 struct intel_engine_cs *ring;
2564 int i;
2565
2566 /*
2567 * Before we free the objects from the requests, we need to inspect
2568 * them for finding the guilty party. As the requests only borrow
2569 * their reference to the objects, the inspection must be done first.
2570 */
2571 for_each_ring(ring, dev_priv, i)
2572 i915_gem_reset_ring_status(dev_priv, ring);
2573
2574 for_each_ring(ring, dev_priv, i)
2575 i915_gem_reset_ring_cleanup(dev_priv, ring);
2576
2577 i915_gem_context_reset(dev);
2578
2579 i915_gem_restore_fences(dev);
2580 }
2581
2582 /**
2583 * This function clears the request list as sequence numbers are passed.
2584 */
2585 void
2586 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2587 {
2588 uint32_t seqno;
2589
2590 if (list_empty(&ring->request_list))
2591 return;
2592
2593 WARN_ON(i915_verify_lists(ring->dev));
2594
2595 seqno = ring->get_seqno(ring, true);
2596
2597 /* Move any buffers on the active list that are no longer referenced
2598 * by the ringbuffer to the flushing/inactive lists as appropriate,
2599 * before we free the context associated with the requests.
2600 */
2601 while (!list_empty(&ring->active_list)) {
2602 struct drm_i915_gem_object *obj;
2603
2604 obj = list_first_entry(&ring->active_list,
2605 struct drm_i915_gem_object,
2606 ring_list);
2607
2608 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2609 break;
2610
2611 i915_gem_object_move_to_inactive(obj);
2612 }
2613
2614
2615 while (!list_empty(&ring->request_list)) {
2616 struct drm_i915_gem_request *request;
2617
2618 request = list_first_entry(&ring->request_list,
2619 struct drm_i915_gem_request,
2620 list);
2621
2622 if (!i915_seqno_passed(seqno, request->seqno))
2623 break;
2624
2625 trace_i915_gem_request_retire(ring, request->seqno);
2626 /* We know the GPU must have read the request to have
2627 * sent us the seqno + interrupt, so use the position
2628 * of tail of the request to update the last known position
2629 * of the GPU head.
2630 */
2631 ring->buffer->last_retired_head = request->tail;
2632
2633 i915_gem_free_request(request);
2634 }
2635
2636 if (unlikely(ring->trace_irq_seqno &&
2637 i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2638 ring->irq_put(ring);
2639 ring->trace_irq_seqno = 0;
2640 }
2641
2642 WARN_ON(i915_verify_lists(ring->dev));
2643 }
2644
2645 bool
2646 i915_gem_retire_requests(struct drm_device *dev)
2647 {
2648 struct drm_i915_private *dev_priv = dev->dev_private;
2649 struct intel_engine_cs *ring;
2650 bool idle = true;
2651 int i;
2652
2653 for_each_ring(ring, dev_priv, i) {
2654 i915_gem_retire_requests_ring(ring);
2655 idle &= list_empty(&ring->request_list);
2656 }
2657
2658 if (idle)
2659 mod_delayed_work(dev_priv->wq,
2660 &dev_priv->mm.idle_work,
2661 msecs_to_jiffies(100));
2662
2663 return idle;
2664 }
2665
2666 static void
2667 i915_gem_retire_work_handler(struct work_struct *work)
2668 {
2669 struct drm_i915_private *dev_priv =
2670 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2671 struct drm_device *dev = dev_priv->dev;
2672 bool idle;
2673
2674 /* Come back later if the device is busy... */
2675 idle = false;
2676 if (mutex_trylock(&dev->struct_mutex)) {
2677 idle = i915_gem_retire_requests(dev);
2678 mutex_unlock(&dev->struct_mutex);
2679 }
2680 if (!idle)
2681 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2682 round_jiffies_up_relative(HZ));
2683 }
2684
2685 static void
2686 i915_gem_idle_work_handler(struct work_struct *work)
2687 {
2688 struct drm_i915_private *dev_priv =
2689 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2690
2691 intel_mark_idle(dev_priv->dev);
2692 }
2693
2694 /**
2695 * Ensures that an object will eventually get non-busy by flushing any required
2696 * write domains, emitting any outstanding lazy request and retiring and
2697 * completed requests.
2698 */
2699 static int
2700 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2701 {
2702 int ret;
2703
2704 if (obj->active) {
2705 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2706 if (ret)
2707 return ret;
2708
2709 i915_gem_retire_requests_ring(obj->ring);
2710 }
2711
2712 return 0;
2713 }
2714
2715 /**
2716 * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2717 * @DRM_IOCTL_ARGS: standard ioctl arguments
2718 *
2719 * Returns 0 if successful, else an error is returned with the remaining time in
2720 * the timeout parameter.
2721 * -ETIME: object is still busy after timeout
2722 * -ERESTARTSYS: signal interrupted the wait
2723 * -ENONENT: object doesn't exist
2724 * Also possible, but rare:
2725 * -EAGAIN: GPU wedged
2726 * -ENOMEM: damn
2727 * -ENODEV: Internal IRQ fail
2728 * -E?: The add request failed
2729 *
2730 * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2731 * non-zero timeout parameter the wait ioctl will wait for the given number of
2732 * nanoseconds on an object becoming unbusy. Since the wait itself does so
2733 * without holding struct_mutex the object may become re-busied before this
2734 * function completes. A similar but shorter * race condition exists in the busy
2735 * ioctl
2736 */
2737 int
2738 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2739 {
2740 struct drm_i915_private *dev_priv = dev->dev_private;
2741 struct drm_i915_gem_wait *args = data;
2742 struct drm_i915_gem_object *obj;
2743 struct intel_engine_cs *ring = NULL;
2744 struct timespec timeout_stack, *timeout = NULL;
2745 unsigned reset_counter;
2746 u32 seqno = 0;
2747 int ret = 0;
2748
2749 if (args->timeout_ns >= 0) {
2750 timeout_stack = ns_to_timespec(args->timeout_ns);
2751 timeout = &timeout_stack;
2752 }
2753
2754 ret = i915_mutex_lock_interruptible(dev);
2755 if (ret)
2756 return ret;
2757
2758 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2759 if (&obj->base == NULL) {
2760 mutex_unlock(&dev->struct_mutex);
2761 return -ENOENT;
2762 }
2763
2764 /* Need to make sure the object gets inactive eventually. */
2765 ret = i915_gem_object_flush_active(obj);
2766 if (ret)
2767 goto out;
2768
2769 if (obj->active) {
2770 seqno = obj->last_read_seqno;
2771 ring = obj->ring;
2772 }
2773
2774 if (seqno == 0)
2775 goto out;
2776
2777 /* Do this after OLR check to make sure we make forward progress polling
2778 * on this IOCTL with a 0 timeout (like busy ioctl)
2779 */
2780 if (!args->timeout_ns) {
2781 ret = -ETIME;
2782 goto out;
2783 }
2784
2785 drm_gem_object_unreference(&obj->base);
2786 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2787 mutex_unlock(&dev->struct_mutex);
2788
2789 ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2790 if (timeout)
2791 args->timeout_ns = timespec_to_ns(timeout);
2792 return ret;
2793
2794 out:
2795 drm_gem_object_unreference(&obj->base);
2796 mutex_unlock(&dev->struct_mutex);
2797 return ret;
2798 }
2799
2800 /**
2801 * i915_gem_object_sync - sync an object to a ring.
2802 *
2803 * @obj: object which may be in use on another ring.
2804 * @to: ring we wish to use the object on. May be NULL.
2805 *
2806 * This code is meant to abstract object synchronization with the GPU.
2807 * Calling with NULL implies synchronizing the object with the CPU
2808 * rather than a particular GPU ring.
2809 *
2810 * Returns 0 if successful, else propagates up the lower layer error.
2811 */
2812 int
2813 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2814 struct intel_engine_cs *to)
2815 {
2816 struct intel_engine_cs *from = obj->ring;
2817 u32 seqno;
2818 int ret, idx;
2819
2820 if (from == NULL || to == from)
2821 return 0;
2822
2823 if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2824 return i915_gem_object_wait_rendering(obj, false);
2825
2826 idx = intel_ring_sync_index(from, to);
2827
2828 seqno = obj->last_read_seqno;
2829 /* Optimization: Avoid semaphore sync when we are sure we already
2830 * waited for an object with higher seqno */
2831 if (seqno <= from->semaphore.sync_seqno[idx])
2832 return 0;
2833
2834 ret = i915_gem_check_olr(obj->ring, seqno);
2835 if (ret)
2836 return ret;
2837
2838 trace_i915_gem_ring_sync_to(from, to, seqno);
2839 ret = to->semaphore.sync_to(to, from, seqno);
2840 if (!ret)
2841 /* We use last_read_seqno because sync_to()
2842 * might have just caused seqno wrap under
2843 * the radar.
2844 */
2845 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2846
2847 return ret;
2848 }
2849
2850 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2851 {
2852 u32 old_write_domain, old_read_domains;
2853
2854 /* Force a pagefault for domain tracking on next user access */
2855 i915_gem_release_mmap(obj);
2856
2857 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2858 return;
2859
2860 /* Wait for any direct GTT access to complete */
2861 mb();
2862
2863 old_read_domains = obj->base.read_domains;
2864 old_write_domain = obj->base.write_domain;
2865
2866 obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2867 obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2868
2869 trace_i915_gem_object_change_domain(obj,
2870 old_read_domains,
2871 old_write_domain);
2872 }
2873
2874 int i915_vma_unbind(struct i915_vma *vma)
2875 {
2876 struct drm_i915_gem_object *obj = vma->obj;
2877 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2878 int ret;
2879
2880 if (list_empty(&vma->vma_link))
2881 return 0;
2882
2883 if (!drm_mm_node_allocated(&vma->node)) {
2884 i915_gem_vma_destroy(vma);
2885 return 0;
2886 }
2887
2888 if (vma->pin_count)
2889 return -EBUSY;
2890
2891 BUG_ON(obj->pages == NULL);
2892
2893 ret = i915_gem_object_finish_gpu(obj);
2894 if (ret)
2895 return ret;
2896 /* Continue on if we fail due to EIO, the GPU is hung so we
2897 * should be safe and we need to cleanup or else we might
2898 * cause memory corruption through use-after-free.
2899 */
2900
2901 if (i915_is_ggtt(vma->vm)) {
2902 i915_gem_object_finish_gtt(obj);
2903
2904 /* release the fence reg _after_ flushing */
2905 ret = i915_gem_object_put_fence(obj);
2906 if (ret)
2907 return ret;
2908 }
2909
2910 trace_i915_vma_unbind(vma);
2911
2912 vma->unbind_vma(vma);
2913
2914 list_del_init(&vma->mm_list);
2915 if (i915_is_ggtt(vma->vm))
2916 obj->map_and_fenceable = false;
2917
2918 drm_mm_remove_node(&vma->node);
2919 i915_gem_vma_destroy(vma);
2920
2921 /* Since the unbound list is global, only move to that list if
2922 * no more VMAs exist. */
2923 if (list_empty(&obj->vma_list)) {
2924 i915_gem_gtt_finish_object(obj);
2925 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2926 }
2927
2928 /* And finally now the object is completely decoupled from this vma,
2929 * we can drop its hold on the backing storage and allow it to be
2930 * reaped by the shrinker.
2931 */
2932 i915_gem_object_unpin_pages(obj);
2933
2934 return 0;
2935 }
2936
2937 int i915_gpu_idle(struct drm_device *dev)
2938 {
2939 struct drm_i915_private *dev_priv = dev->dev_private;
2940 struct intel_engine_cs *ring;
2941 int ret, i;
2942
2943 /* Flush everything onto the inactive list. */
2944 for_each_ring(ring, dev_priv, i) {
2945 ret = i915_switch_context(ring, ring->default_context);
2946 if (ret)
2947 return ret;
2948
2949 ret = intel_ring_idle(ring);
2950 if (ret)
2951 return ret;
2952 }
2953
2954 return 0;
2955 }
2956
2957 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2958 struct drm_i915_gem_object *obj)
2959 {
2960 struct drm_i915_private *dev_priv = dev->dev_private;
2961 int fence_reg;
2962 int fence_pitch_shift;
2963
2964 if (INTEL_INFO(dev)->gen >= 6) {
2965 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2966 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2967 } else {
2968 fence_reg = FENCE_REG_965_0;
2969 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2970 }
2971
2972 fence_reg += reg * 8;
2973
2974 /* To w/a incoherency with non-atomic 64-bit register updates,
2975 * we split the 64-bit update into two 32-bit writes. In order
2976 * for a partial fence not to be evaluated between writes, we
2977 * precede the update with write to turn off the fence register,
2978 * and only enable the fence as the last step.
2979 *
2980 * For extra levels of paranoia, we make sure each step lands
2981 * before applying the next step.
2982 */
2983 I915_WRITE(fence_reg, 0);
2984 POSTING_READ(fence_reg);
2985
2986 if (obj) {
2987 u32 size = i915_gem_obj_ggtt_size(obj);
2988 uint64_t val;
2989
2990 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
2991 0xfffff000) << 32;
2992 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
2993 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
2994 if (obj->tiling_mode == I915_TILING_Y)
2995 val |= 1 << I965_FENCE_TILING_Y_SHIFT;
2996 val |= I965_FENCE_REG_VALID;
2997
2998 I915_WRITE(fence_reg + 4, val >> 32);
2999 POSTING_READ(fence_reg + 4);
3000
3001 I915_WRITE(fence_reg + 0, val);
3002 POSTING_READ(fence_reg);
3003 } else {
3004 I915_WRITE(fence_reg + 4, 0);
3005 POSTING_READ(fence_reg + 4);
3006 }
3007 }
3008
3009 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3010 struct drm_i915_gem_object *obj)
3011 {
3012 struct drm_i915_private *dev_priv = dev->dev_private;
3013 u32 val;
3014
3015 if (obj) {
3016 u32 size = i915_gem_obj_ggtt_size(obj);
3017 int pitch_val;
3018 int tile_width;
3019
3020 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3021 (size & -size) != size ||
3022 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3023 "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3024 i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3025
3026 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3027 tile_width = 128;
3028 else
3029 tile_width = 512;
3030
3031 /* Note: pitch better be a power of two tile widths */
3032 pitch_val = obj->stride / tile_width;
3033 pitch_val = ffs(pitch_val) - 1;
3034
3035 val = i915_gem_obj_ggtt_offset(obj);
3036 if (obj->tiling_mode == I915_TILING_Y)
3037 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3038 val |= I915_FENCE_SIZE_BITS(size);
3039 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3040 val |= I830_FENCE_REG_VALID;
3041 } else
3042 val = 0;
3043
3044 if (reg < 8)
3045 reg = FENCE_REG_830_0 + reg * 4;
3046 else
3047 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3048
3049 I915_WRITE(reg, val);
3050 POSTING_READ(reg);
3051 }
3052
3053 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3054 struct drm_i915_gem_object *obj)
3055 {
3056 struct drm_i915_private *dev_priv = dev->dev_private;
3057 uint32_t val;
3058
3059 if (obj) {
3060 u32 size = i915_gem_obj_ggtt_size(obj);
3061 uint32_t pitch_val;
3062
3063 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3064 (size & -size) != size ||
3065 (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3066 "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3067 i915_gem_obj_ggtt_offset(obj), size);
3068
3069 pitch_val = obj->stride / 128;
3070 pitch_val = ffs(pitch_val) - 1;
3071
3072 val = i915_gem_obj_ggtt_offset(obj);
3073 if (obj->tiling_mode == I915_TILING_Y)
3074 val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3075 val |= I830_FENCE_SIZE_BITS(size);
3076 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3077 val |= I830_FENCE_REG_VALID;
3078 } else
3079 val = 0;
3080
3081 I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3082 POSTING_READ(FENCE_REG_830_0 + reg * 4);
3083 }
3084
3085 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3086 {
3087 return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3088 }
3089
3090 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3091 struct drm_i915_gem_object *obj)
3092 {
3093 struct drm_i915_private *dev_priv = dev->dev_private;
3094
3095 /* Ensure that all CPU reads are completed before installing a fence
3096 * and all writes before removing the fence.
3097 */
3098 if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3099 mb();
3100
3101 WARN(obj && (!obj->stride || !obj->tiling_mode),
3102 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3103 obj->stride, obj->tiling_mode);
3104
3105 switch (INTEL_INFO(dev)->gen) {
3106 case 8:
3107 case 7:
3108 case 6:
3109 case 5:
3110 case 4: i965_write_fence_reg(dev, reg, obj); break;
3111 case 3: i915_write_fence_reg(dev, reg, obj); break;
3112 case 2: i830_write_fence_reg(dev, reg, obj); break;
3113 default: BUG();
3114 }
3115
3116 /* And similarly be paranoid that no direct access to this region
3117 * is reordered to before the fence is installed.
3118 */
3119 if (i915_gem_object_needs_mb(obj))
3120 mb();
3121 }
3122
3123 static inline int fence_number(struct drm_i915_private *dev_priv,
3124 struct drm_i915_fence_reg *fence)
3125 {
3126 return fence - dev_priv->fence_regs;
3127 }
3128
3129 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3130 struct drm_i915_fence_reg *fence,
3131 bool enable)
3132 {
3133 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3134 int reg = fence_number(dev_priv, fence);
3135
3136 i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3137
3138 if (enable) {
3139 obj->fence_reg = reg;
3140 fence->obj = obj;
3141 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3142 } else {
3143 obj->fence_reg = I915_FENCE_REG_NONE;
3144 fence->obj = NULL;
3145 list_del_init(&fence->lru_list);
3146 }
3147 obj->fence_dirty = false;
3148 }
3149
3150 static int
3151 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3152 {
3153 if (obj->last_fenced_seqno) {
3154 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3155 if (ret)
3156 return ret;
3157
3158 obj->last_fenced_seqno = 0;
3159 }
3160
3161 return 0;
3162 }
3163
3164 int
3165 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3166 {
3167 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3168 struct drm_i915_fence_reg *fence;
3169 int ret;
3170
3171 ret = i915_gem_object_wait_fence(obj);
3172 if (ret)
3173 return ret;
3174
3175 if (obj->fence_reg == I915_FENCE_REG_NONE)
3176 return 0;
3177
3178 fence = &dev_priv->fence_regs[obj->fence_reg];
3179
3180 if (WARN_ON(fence->pin_count))
3181 return -EBUSY;
3182
3183 i915_gem_object_fence_lost(obj);
3184 i915_gem_object_update_fence(obj, fence, false);
3185
3186 return 0;
3187 }
3188
3189 static struct drm_i915_fence_reg *
3190 i915_find_fence_reg(struct drm_device *dev)
3191 {
3192 struct drm_i915_private *dev_priv = dev->dev_private;
3193 struct drm_i915_fence_reg *reg, *avail;
3194 int i;
3195
3196 /* First try to find a free reg */
3197 avail = NULL;
3198 for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3199 reg = &dev_priv->fence_regs[i];
3200 if (!reg->obj)
3201 return reg;
3202
3203 if (!reg->pin_count)
3204 avail = reg;
3205 }
3206
3207 if (avail == NULL)
3208 goto deadlock;
3209
3210 /* None available, try to steal one or wait for a user to finish */
3211 list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3212 if (reg->pin_count)
3213 continue;
3214
3215 return reg;
3216 }
3217
3218 deadlock:
3219 /* Wait for completion of pending flips which consume fences */
3220 if (intel_has_pending_fb_unpin(dev))
3221 return ERR_PTR(-EAGAIN);
3222
3223 return ERR_PTR(-EDEADLK);
3224 }
3225
3226 /**
3227 * i915_gem_object_get_fence - set up fencing for an object
3228 * @obj: object to map through a fence reg
3229 *
3230 * When mapping objects through the GTT, userspace wants to be able to write
3231 * to them without having to worry about swizzling if the object is tiled.
3232 * This function walks the fence regs looking for a free one for @obj,
3233 * stealing one if it can't find any.
3234 *
3235 * It then sets up the reg based on the object's properties: address, pitch
3236 * and tiling format.
3237 *
3238 * For an untiled surface, this removes any existing fence.
3239 */
3240 int
3241 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3242 {
3243 struct drm_device *dev = obj->base.dev;
3244 struct drm_i915_private *dev_priv = dev->dev_private;
3245 bool enable = obj->tiling_mode != I915_TILING_NONE;
3246 struct drm_i915_fence_reg *reg;
3247 int ret;
3248
3249 /* Have we updated the tiling parameters upon the object and so
3250 * will need to serialise the write to the associated fence register?
3251 */
3252 if (obj->fence_dirty) {
3253 ret = i915_gem_object_wait_fence(obj);
3254 if (ret)
3255 return ret;
3256 }
3257
3258 /* Just update our place in the LRU if our fence is getting reused. */
3259 if (obj->fence_reg != I915_FENCE_REG_NONE) {
3260 reg = &dev_priv->fence_regs[obj->fence_reg];
3261 if (!obj->fence_dirty) {
3262 list_move_tail(&reg->lru_list,
3263 &dev_priv->mm.fence_list);
3264 return 0;
3265 }
3266 } else if (enable) {
3267 if (WARN_ON(!obj->map_and_fenceable))
3268 return -EINVAL;
3269
3270 reg = i915_find_fence_reg(dev);
3271 if (IS_ERR(reg))
3272 return PTR_ERR(reg);
3273
3274 if (reg->obj) {
3275 struct drm_i915_gem_object *old = reg->obj;
3276
3277 ret = i915_gem_object_wait_fence(old);
3278 if (ret)
3279 return ret;
3280
3281 i915_gem_object_fence_lost(old);
3282 }
3283 } else
3284 return 0;
3285
3286 i915_gem_object_update_fence(obj, reg, enable);
3287
3288 return 0;
3289 }
3290
3291 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3292 struct drm_mm_node *gtt_space,
3293 unsigned long cache_level)
3294 {
3295 struct drm_mm_node *other;
3296
3297 /* On non-LLC machines we have to be careful when putting differing
3298 * types of snoopable memory together to avoid the prefetcher
3299 * crossing memory domains and dying.
3300 */
3301 if (HAS_LLC(dev))
3302 return true;
3303
3304 if (!drm_mm_node_allocated(gtt_space))
3305 return true;
3306
3307 if (list_empty(&gtt_space->node_list))
3308 return true;
3309
3310 other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3311 if (other->allocated && !other->hole_follows && other->color != cache_level)
3312 return false;
3313
3314 other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3315 if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3316 return false;
3317
3318 return true;
3319 }
3320
3321 static void i915_gem_verify_gtt(struct drm_device *dev)
3322 {
3323 #if WATCH_GTT
3324 struct drm_i915_private *dev_priv = dev->dev_private;
3325 struct drm_i915_gem_object *obj;
3326 int err = 0;
3327
3328 list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3329 if (obj->gtt_space == NULL) {
3330 printk(KERN_ERR "object found on GTT list with no space reserved\n");
3331 err++;
3332 continue;
3333 }
3334
3335 if (obj->cache_level != obj->gtt_space->color) {
3336 printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3337 i915_gem_obj_ggtt_offset(obj),
3338 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3339 obj->cache_level,
3340 obj->gtt_space->color);
3341 err++;
3342 continue;
3343 }
3344
3345 if (!i915_gem_valid_gtt_space(dev,
3346 obj->gtt_space,
3347 obj->cache_level)) {
3348 printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3349 i915_gem_obj_ggtt_offset(obj),
3350 i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3351 obj->cache_level);
3352 err++;
3353 continue;
3354 }
3355 }
3356
3357 WARN_ON(err);
3358 #endif
3359 }
3360
3361 /**
3362 * Finds free space in the GTT aperture and binds the object there.
3363 */
3364 static struct i915_vma *
3365 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3366 struct i915_address_space *vm,
3367 unsigned alignment,
3368 uint64_t flags)
3369 {
3370 struct drm_device *dev = obj->base.dev;
3371 struct drm_i915_private *dev_priv = dev->dev_private;
3372 u32 size, fence_size, fence_alignment, unfenced_alignment;
3373 unsigned long start =
3374 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3375 unsigned long end =
3376 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3377 struct i915_vma *vma;
3378 int ret;
3379
3380 fence_size = i915_gem_get_gtt_size(dev,
3381 obj->base.size,
3382 obj->tiling_mode);
3383 fence_alignment = i915_gem_get_gtt_alignment(dev,
3384 obj->base.size,
3385 obj->tiling_mode, true);
3386 unfenced_alignment =
3387 i915_gem_get_gtt_alignment(dev,
3388 obj->base.size,
3389 obj->tiling_mode, false);
3390
3391 if (alignment == 0)
3392 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3393 unfenced_alignment;
3394 if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3395 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3396 return ERR_PTR(-EINVAL);
3397 }
3398
3399 size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3400
3401 /* If the object is bigger than the entire aperture, reject it early
3402 * before evicting everything in a vain attempt to find space.
3403 */
3404 if (obj->base.size > end) {
3405 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3406 obj->base.size,
3407 flags & PIN_MAPPABLE ? "mappable" : "total",
3408 end);
3409 return ERR_PTR(-E2BIG);
3410 }
3411
3412 ret = i915_gem_object_get_pages(obj);
3413 if (ret)
3414 return ERR_PTR(ret);
3415
3416 i915_gem_object_pin_pages(obj);
3417
3418 vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3419 if (IS_ERR(vma))
3420 goto err_unpin;
3421
3422 search_free:
3423 ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3424 size, alignment,
3425 obj->cache_level,
3426 start, end,
3427 DRM_MM_SEARCH_DEFAULT,
3428 DRM_MM_CREATE_DEFAULT);
3429 if (ret) {
3430 ret = i915_gem_evict_something(dev, vm, size, alignment,
3431 obj->cache_level,
3432 start, end,
3433 flags);
3434 if (ret == 0)
3435 goto search_free;
3436
3437 goto err_free_vma;
3438 }
3439 if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3440 obj->cache_level))) {
3441 ret = -EINVAL;
3442 goto err_remove_node;
3443 }
3444
3445 ret = i915_gem_gtt_prepare_object(obj);
3446 if (ret)
3447 goto err_remove_node;
3448
3449 list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3450 list_add_tail(&vma->mm_list, &vm->inactive_list);
3451
3452 if (i915_is_ggtt(vm)) {
3453 bool mappable, fenceable;
3454
3455 fenceable = (vma->node.size == fence_size &&
3456 (vma->node.start & (fence_alignment - 1)) == 0);
3457
3458 mappable = (vma->node.start + obj->base.size <=
3459 dev_priv->gtt.mappable_end);
3460
3461 obj->map_and_fenceable = mappable && fenceable;
3462 }
3463
3464 WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3465
3466 trace_i915_vma_bind(vma, flags);
3467 vma->bind_vma(vma, obj->cache_level,
3468 flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3469
3470 i915_gem_verify_gtt(dev);
3471 return vma;
3472
3473 err_remove_node:
3474 drm_mm_remove_node(&vma->node);
3475 err_free_vma:
3476 i915_gem_vma_destroy(vma);
3477 vma = ERR_PTR(ret);
3478 err_unpin:
3479 i915_gem_object_unpin_pages(obj);
3480 return vma;
3481 }
3482
3483 bool
3484 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3485 bool force)
3486 {
3487 /* If we don't have a page list set up, then we're not pinned
3488 * to GPU, and we can ignore the cache flush because it'll happen
3489 * again at bind time.
3490 */
3491 if (obj->pages == NULL)
3492 return false;
3493
3494 /*
3495 * Stolen memory is always coherent with the GPU as it is explicitly
3496 * marked as wc by the system, or the system is cache-coherent.
3497 */
3498 if (obj->stolen)
3499 return false;
3500
3501 /* If the GPU is snooping the contents of the CPU cache,
3502 * we do not need to manually clear the CPU cache lines. However,
3503 * the caches are only snooped when the render cache is
3504 * flushed/invalidated. As we always have to emit invalidations
3505 * and flushes when moving into and out of the RENDER domain, correct
3506 * snooping behaviour occurs naturally as the result of our domain
3507 * tracking.
3508 */
3509 if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3510 return false;
3511
3512 trace_i915_gem_object_clflush(obj);
3513 drm_clflush_sg(obj->pages);
3514
3515 return true;
3516 }
3517
3518 /** Flushes the GTT write domain for the object if it's dirty. */
3519 static void
3520 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3521 {
3522 uint32_t old_write_domain;
3523
3524 if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3525 return;
3526
3527 /* No actual flushing is required for the GTT write domain. Writes
3528 * to it immediately go to main memory as far as we know, so there's
3529 * no chipset flush. It also doesn't land in render cache.
3530 *
3531 * However, we do have to enforce the order so that all writes through
3532 * the GTT land before any writes to the device, such as updates to
3533 * the GATT itself.
3534 */
3535 wmb();
3536
3537 old_write_domain = obj->base.write_domain;
3538 obj->base.write_domain = 0;
3539
3540 intel_fb_obj_flush(obj, false);
3541
3542 trace_i915_gem_object_change_domain(obj,
3543 obj->base.read_domains,
3544 old_write_domain);
3545 }
3546
3547 /** Flushes the CPU write domain for the object if it's dirty. */
3548 static void
3549 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3550 bool force)
3551 {
3552 uint32_t old_write_domain;
3553
3554 if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3555 return;
3556
3557 if (i915_gem_clflush_object(obj, force))
3558 i915_gem_chipset_flush(obj->base.dev);
3559
3560 old_write_domain = obj->base.write_domain;
3561 obj->base.write_domain = 0;
3562
3563 intel_fb_obj_flush(obj, false);
3564
3565 trace_i915_gem_object_change_domain(obj,
3566 obj->base.read_domains,
3567 old_write_domain);
3568 }
3569
3570 /**
3571 * Moves a single object to the GTT read, and possibly write domain.
3572 *
3573 * This function returns when the move is complete, including waiting on
3574 * flushes to occur.
3575 */
3576 int
3577 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3578 {
3579 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3580 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3581 uint32_t old_write_domain, old_read_domains;
3582 int ret;
3583
3584 /* Not valid to be called on unbound objects. */
3585 if (vma == NULL)
3586 return -EINVAL;
3587
3588 if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3589 return 0;
3590
3591 ret = i915_gem_object_wait_rendering(obj, !write);
3592 if (ret)
3593 return ret;
3594
3595 i915_gem_object_retire(obj);
3596 i915_gem_object_flush_cpu_write_domain(obj, false);
3597
3598 /* Serialise direct access to this object with the barriers for
3599 * coherent writes from the GPU, by effectively invalidating the
3600 * GTT domain upon first access.
3601 */
3602 if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3603 mb();
3604
3605 old_write_domain = obj->base.write_domain;
3606 old_read_domains = obj->base.read_domains;
3607
3608 /* It should now be out of any other write domains, and we can update
3609 * the domain values for our changes.
3610 */
3611 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3612 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3613 if (write) {
3614 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3615 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3616 obj->dirty = 1;
3617 }
3618
3619 if (write)
3620 intel_fb_obj_invalidate(obj, NULL);
3621
3622 trace_i915_gem_object_change_domain(obj,
3623 old_read_domains,
3624 old_write_domain);
3625
3626 /* And bump the LRU for this access */
3627 if (i915_gem_object_is_inactive(obj))
3628 list_move_tail(&vma->mm_list,
3629 &dev_priv->gtt.base.inactive_list);
3630
3631 return 0;
3632 }
3633
3634 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3635 enum i915_cache_level cache_level)
3636 {
3637 struct drm_device *dev = obj->base.dev;
3638 struct i915_vma *vma, *next;
3639 int ret;
3640
3641 if (obj->cache_level == cache_level)
3642 return 0;
3643
3644 if (i915_gem_obj_is_pinned(obj)) {
3645 DRM_DEBUG("can not change the cache level of pinned objects\n");
3646 return -EBUSY;
3647 }
3648
3649 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3650 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3651 ret = i915_vma_unbind(vma);
3652 if (ret)
3653 return ret;
3654 }
3655 }
3656
3657 if (i915_gem_obj_bound_any(obj)) {
3658 ret = i915_gem_object_finish_gpu(obj);
3659 if (ret)
3660 return ret;
3661
3662 i915_gem_object_finish_gtt(obj);
3663
3664 /* Before SandyBridge, you could not use tiling or fence
3665 * registers with snooped memory, so relinquish any fences
3666 * currently pointing to our region in the aperture.
3667 */
3668 if (INTEL_INFO(dev)->gen < 6) {
3669 ret = i915_gem_object_put_fence(obj);
3670 if (ret)
3671 return ret;
3672 }
3673
3674 list_for_each_entry(vma, &obj->vma_list, vma_link)
3675 if (drm_mm_node_allocated(&vma->node))
3676 vma->bind_vma(vma, cache_level,
3677 obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3678 }
3679
3680 list_for_each_entry(vma, &obj->vma_list, vma_link)
3681 vma->node.color = cache_level;
3682 obj->cache_level = cache_level;
3683
3684 if (cpu_write_needs_clflush(obj)) {
3685 u32 old_read_domains, old_write_domain;
3686
3687 /* If we're coming from LLC cached, then we haven't
3688 * actually been tracking whether the data is in the
3689 * CPU cache or not, since we only allow one bit set
3690 * in obj->write_domain and have been skipping the clflushes.
3691 * Just set it to the CPU cache for now.
3692 */
3693 i915_gem_object_retire(obj);
3694 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3695
3696 old_read_domains = obj->base.read_domains;
3697 old_write_domain = obj->base.write_domain;
3698
3699 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3700 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3701
3702 trace_i915_gem_object_change_domain(obj,
3703 old_read_domains,
3704 old_write_domain);
3705 }
3706
3707 i915_gem_verify_gtt(dev);
3708 return 0;
3709 }
3710
3711 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3712 struct drm_file *file)
3713 {
3714 struct drm_i915_gem_caching *args = data;
3715 struct drm_i915_gem_object *obj;
3716 int ret;
3717
3718 ret = i915_mutex_lock_interruptible(dev);
3719 if (ret)
3720 return ret;
3721
3722 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3723 if (&obj->base == NULL) {
3724 ret = -ENOENT;
3725 goto unlock;
3726 }
3727
3728 switch (obj->cache_level) {
3729 case I915_CACHE_LLC:
3730 case I915_CACHE_L3_LLC:
3731 args->caching = I915_CACHING_CACHED;
3732 break;
3733
3734 case I915_CACHE_WT:
3735 args->caching = I915_CACHING_DISPLAY;
3736 break;
3737
3738 default:
3739 args->caching = I915_CACHING_NONE;
3740 break;
3741 }
3742
3743 drm_gem_object_unreference(&obj->base);
3744 unlock:
3745 mutex_unlock(&dev->struct_mutex);
3746 return ret;
3747 }
3748
3749 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3750 struct drm_file *file)
3751 {
3752 struct drm_i915_gem_caching *args = data;
3753 struct drm_i915_gem_object *obj;
3754 enum i915_cache_level level;
3755 int ret;
3756
3757 switch (args->caching) {
3758 case I915_CACHING_NONE:
3759 level = I915_CACHE_NONE;
3760 break;
3761 case I915_CACHING_CACHED:
3762 level = I915_CACHE_LLC;
3763 break;
3764 case I915_CACHING_DISPLAY:
3765 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3766 break;
3767 default:
3768 return -EINVAL;
3769 }
3770
3771 ret = i915_mutex_lock_interruptible(dev);
3772 if (ret)
3773 return ret;
3774
3775 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3776 if (&obj->base == NULL) {
3777 ret = -ENOENT;
3778 goto unlock;
3779 }
3780
3781 ret = i915_gem_object_set_cache_level(obj, level);
3782
3783 drm_gem_object_unreference(&obj->base);
3784 unlock:
3785 mutex_unlock(&dev->struct_mutex);
3786 return ret;
3787 }
3788
3789 static bool is_pin_display(struct drm_i915_gem_object *obj)
3790 {
3791 struct i915_vma *vma;
3792
3793 vma = i915_gem_obj_to_ggtt(obj);
3794 if (!vma)
3795 return false;
3796
3797 /* There are 3 sources that pin objects:
3798 * 1. The display engine (scanouts, sprites, cursors);
3799 * 2. Reservations for execbuffer;
3800 * 3. The user.
3801 *
3802 * We can ignore reservations as we hold the struct_mutex and
3803 * are only called outside of the reservation path. The user
3804 * can only increment pin_count once, and so if after
3805 * subtracting the potential reference by the user, any pin_count
3806 * remains, it must be due to another use by the display engine.
3807 */
3808 return vma->pin_count - !!obj->user_pin_count;
3809 }
3810
3811 /*
3812 * Prepare buffer for display plane (scanout, cursors, etc).
3813 * Can be called from an uninterruptible phase (modesetting) and allows
3814 * any flushes to be pipelined (for pageflips).
3815 */
3816 int
3817 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3818 u32 alignment,
3819 struct intel_engine_cs *pipelined)
3820 {
3821 u32 old_read_domains, old_write_domain;
3822 bool was_pin_display;
3823 int ret;
3824
3825 if (pipelined != obj->ring) {
3826 ret = i915_gem_object_sync(obj, pipelined);
3827 if (ret)
3828 return ret;
3829 }
3830
3831 /* Mark the pin_display early so that we account for the
3832 * display coherency whilst setting up the cache domains.
3833 */
3834 was_pin_display = obj->pin_display;
3835 obj->pin_display = true;
3836
3837 /* The display engine is not coherent with the LLC cache on gen6. As
3838 * a result, we make sure that the pinning that is about to occur is
3839 * done with uncached PTEs. This is lowest common denominator for all
3840 * chipsets.
3841 *
3842 * However for gen6+, we could do better by using the GFDT bit instead
3843 * of uncaching, which would allow us to flush all the LLC-cached data
3844 * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3845 */
3846 ret = i915_gem_object_set_cache_level(obj,
3847 HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3848 if (ret)
3849 goto err_unpin_display;
3850
3851 /* As the user may map the buffer once pinned in the display plane
3852 * (e.g. libkms for the bootup splash), we have to ensure that we
3853 * always use map_and_fenceable for all scanout buffers.
3854 */
3855 ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3856 if (ret)
3857 goto err_unpin_display;
3858
3859 i915_gem_object_flush_cpu_write_domain(obj, true);
3860
3861 old_write_domain = obj->base.write_domain;
3862 old_read_domains = obj->base.read_domains;
3863
3864 /* It should now be out of any other write domains, and we can update
3865 * the domain values for our changes.
3866 */
3867 obj->base.write_domain = 0;
3868 obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3869
3870 trace_i915_gem_object_change_domain(obj,
3871 old_read_domains,
3872 old_write_domain);
3873
3874 return 0;
3875
3876 err_unpin_display:
3877 WARN_ON(was_pin_display != is_pin_display(obj));
3878 obj->pin_display = was_pin_display;
3879 return ret;
3880 }
3881
3882 void
3883 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3884 {
3885 i915_gem_object_ggtt_unpin(obj);
3886 obj->pin_display = is_pin_display(obj);
3887 }
3888
3889 int
3890 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3891 {
3892 int ret;
3893
3894 if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3895 return 0;
3896
3897 ret = i915_gem_object_wait_rendering(obj, false);
3898 if (ret)
3899 return ret;
3900
3901 /* Ensure that we invalidate the GPU's caches and TLBs. */
3902 obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3903 return 0;
3904 }
3905
3906 /**
3907 * Moves a single object to the CPU read, and possibly write domain.
3908 *
3909 * This function returns when the move is complete, including waiting on
3910 * flushes to occur.
3911 */
3912 int
3913 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3914 {
3915 uint32_t old_write_domain, old_read_domains;
3916 int ret;
3917
3918 if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3919 return 0;
3920
3921 ret = i915_gem_object_wait_rendering(obj, !write);
3922 if (ret)
3923 return ret;
3924
3925 i915_gem_object_retire(obj);
3926 i915_gem_object_flush_gtt_write_domain(obj);
3927
3928 old_write_domain = obj->base.write_domain;
3929 old_read_domains = obj->base.read_domains;
3930
3931 /* Flush the CPU cache if it's still invalid. */
3932 if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3933 i915_gem_clflush_object(obj, false);
3934
3935 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3936 }
3937
3938 /* It should now be out of any other write domains, and we can update
3939 * the domain values for our changes.
3940 */
3941 BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3942
3943 /* If we're writing through the CPU, then the GPU read domains will
3944 * need to be invalidated at next use.
3945 */
3946 if (write) {
3947 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3948 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3949 }
3950
3951 if (write)
3952 intel_fb_obj_invalidate(obj, NULL);
3953
3954 trace_i915_gem_object_change_domain(obj,
3955 old_read_domains,
3956 old_write_domain);
3957
3958 return 0;
3959 }
3960
3961 /* Throttle our rendering by waiting until the ring has completed our requests
3962 * emitted over 20 msec ago.
3963 *
3964 * Note that if we were to use the current jiffies each time around the loop,
3965 * we wouldn't escape the function with any frames outstanding if the time to
3966 * render a frame was over 20ms.
3967 *
3968 * This should get us reasonable parallelism between CPU and GPU but also
3969 * relatively low latency when blocking on a particular request to finish.
3970 */
3971 static int
3972 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3973 {
3974 struct drm_i915_private *dev_priv = dev->dev_private;
3975 struct drm_i915_file_private *file_priv = file->driver_priv;
3976 unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3977 struct drm_i915_gem_request *request;
3978 struct intel_engine_cs *ring = NULL;
3979 unsigned reset_counter;
3980 u32 seqno = 0;
3981 int ret;
3982
3983 ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3984 if (ret)
3985 return ret;
3986
3987 ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3988 if (ret)
3989 return ret;
3990
3991 spin_lock(&file_priv->mm.lock);
3992 list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
3993 if (time_after_eq(request->emitted_jiffies, recent_enough))
3994 break;
3995
3996 ring = request->ring;
3997 seqno = request->seqno;
3998 }
3999 reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4000 spin_unlock(&file_priv->mm.lock);
4001
4002 if (seqno == 0)
4003 return 0;
4004
4005 ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4006 if (ret == 0)
4007 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4008
4009 return ret;
4010 }
4011
4012 static bool
4013 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4014 {
4015 struct drm_i915_gem_object *obj = vma->obj;
4016
4017 if (alignment &&
4018 vma->node.start & (alignment - 1))
4019 return true;
4020
4021 if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4022 return true;
4023
4024 if (flags & PIN_OFFSET_BIAS &&
4025 vma->node.start < (flags & PIN_OFFSET_MASK))
4026 return true;
4027
4028 return false;
4029 }
4030
4031 int
4032 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4033 struct i915_address_space *vm,
4034 uint32_t alignment,
4035 uint64_t flags)
4036 {
4037 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4038 struct i915_vma *vma;
4039 int ret;
4040
4041 if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4042 return -ENODEV;
4043
4044 if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4045 return -EINVAL;
4046
4047 vma = i915_gem_obj_to_vma(obj, vm);
4048 if (vma) {
4049 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4050 return -EBUSY;
4051
4052 if (i915_vma_misplaced(vma, alignment, flags)) {
4053 WARN(vma->pin_count,
4054 "bo is already pinned with incorrect alignment:"
4055 " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4056 " obj->map_and_fenceable=%d\n",
4057 i915_gem_obj_offset(obj, vm), alignment,
4058 !!(flags & PIN_MAPPABLE),
4059 obj->map_and_fenceable);
4060 ret = i915_vma_unbind(vma);
4061 if (ret)
4062 return ret;
4063
4064 vma = NULL;
4065 }
4066 }
4067
4068 if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4069 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4070 if (IS_ERR(vma))
4071 return PTR_ERR(vma);
4072 }
4073
4074 if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4075 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4076
4077 vma->pin_count++;
4078 if (flags & PIN_MAPPABLE)
4079 obj->pin_mappable |= true;
4080
4081 return 0;
4082 }
4083
4084 void
4085 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4086 {
4087 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4088
4089 BUG_ON(!vma);
4090 BUG_ON(vma->pin_count == 0);
4091 BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4092
4093 if (--vma->pin_count == 0)
4094 obj->pin_mappable = false;
4095 }
4096
4097 bool
4098 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4099 {
4100 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4101 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4102 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4103
4104 WARN_ON(!ggtt_vma ||
4105 dev_priv->fence_regs[obj->fence_reg].pin_count >
4106 ggtt_vma->pin_count);
4107 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4108 return true;
4109 } else
4110 return false;
4111 }
4112
4113 void
4114 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4115 {
4116 if (obj->fence_reg != I915_FENCE_REG_NONE) {
4117 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4118 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4119 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4120 }
4121 }
4122
4123 int
4124 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4125 struct drm_file *file)
4126 {
4127 struct drm_i915_gem_pin *args = data;
4128 struct drm_i915_gem_object *obj;
4129 int ret;
4130
4131 if (INTEL_INFO(dev)->gen >= 6)
4132 return -ENODEV;
4133
4134 ret = i915_mutex_lock_interruptible(dev);
4135 if (ret)
4136 return ret;
4137
4138 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4139 if (&obj->base == NULL) {
4140 ret = -ENOENT;
4141 goto unlock;
4142 }
4143
4144 if (obj->madv != I915_MADV_WILLNEED) {
4145 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4146 ret = -EFAULT;
4147 goto out;
4148 }
4149
4150 if (obj->pin_filp != NULL && obj->pin_filp != file) {
4151 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4152 args->handle);
4153 ret = -EINVAL;
4154 goto out;
4155 }
4156
4157 if (obj->user_pin_count == ULONG_MAX) {
4158 ret = -EBUSY;
4159 goto out;
4160 }
4161
4162 if (obj->user_pin_count == 0) {
4163 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4164 if (ret)
4165 goto out;
4166 }
4167
4168 obj->user_pin_count++;
4169 obj->pin_filp = file;
4170
4171 args->offset = i915_gem_obj_ggtt_offset(obj);
4172 out:
4173 drm_gem_object_unreference(&obj->base);
4174 unlock:
4175 mutex_unlock(&dev->struct_mutex);
4176 return ret;
4177 }
4178
4179 int
4180 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4181 struct drm_file *file)
4182 {
4183 struct drm_i915_gem_pin *args = data;
4184 struct drm_i915_gem_object *obj;
4185 int ret;
4186
4187 ret = i915_mutex_lock_interruptible(dev);
4188 if (ret)
4189 return ret;
4190
4191 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4192 if (&obj->base == NULL) {
4193 ret = -ENOENT;
4194 goto unlock;
4195 }
4196
4197 if (obj->pin_filp != file) {
4198 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4199 args->handle);
4200 ret = -EINVAL;
4201 goto out;
4202 }
4203 obj->user_pin_count--;
4204 if (obj->user_pin_count == 0) {
4205 obj->pin_filp = NULL;
4206 i915_gem_object_ggtt_unpin(obj);
4207 }
4208
4209 out:
4210 drm_gem_object_unreference(&obj->base);
4211 unlock:
4212 mutex_unlock(&dev->struct_mutex);
4213 return ret;
4214 }
4215
4216 int
4217 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4218 struct drm_file *file)
4219 {
4220 struct drm_i915_gem_busy *args = data;
4221 struct drm_i915_gem_object *obj;
4222 int ret;
4223
4224 ret = i915_mutex_lock_interruptible(dev);
4225 if (ret)
4226 return ret;
4227
4228 obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4229 if (&obj->base == NULL) {
4230 ret = -ENOENT;
4231 goto unlock;
4232 }
4233
4234 /* Count all active objects as busy, even if they are currently not used
4235 * by the gpu. Users of this interface expect objects to eventually
4236 * become non-busy without any further actions, therefore emit any
4237 * necessary flushes here.
4238 */
4239 ret = i915_gem_object_flush_active(obj);
4240
4241 args->busy = obj->active;
4242 if (obj->ring) {
4243 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4244 args->busy |= intel_ring_flag(obj->ring) << 16;
4245 }
4246
4247 drm_gem_object_unreference(&obj->base);
4248 unlock:
4249 mutex_unlock(&dev->struct_mutex);
4250 return ret;
4251 }
4252
4253 int
4254 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4255 struct drm_file *file_priv)
4256 {
4257 return i915_gem_ring_throttle(dev, file_priv);
4258 }
4259
4260 int
4261 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4262 struct drm_file *file_priv)
4263 {
4264 struct drm_i915_gem_madvise *args = data;
4265 struct drm_i915_gem_object *obj;
4266 int ret;
4267
4268 switch (args->madv) {
4269 case I915_MADV_DONTNEED:
4270 case I915_MADV_WILLNEED:
4271 break;
4272 default:
4273 return -EINVAL;
4274 }
4275
4276 ret = i915_mutex_lock_interruptible(dev);
4277 if (ret)
4278 return ret;
4279
4280 obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4281 if (&obj->base == NULL) {
4282 ret = -ENOENT;
4283 goto unlock;
4284 }
4285
4286 if (i915_gem_obj_is_pinned(obj)) {
4287 ret = -EINVAL;
4288 goto out;
4289 }
4290
4291 if (obj->madv != __I915_MADV_PURGED)
4292 obj->madv = args->madv;
4293
4294 /* if the object is no longer attached, discard its backing storage */
4295 if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4296 i915_gem_object_truncate(obj);
4297
4298 args->retained = obj->madv != __I915_MADV_PURGED;
4299
4300 out:
4301 drm_gem_object_unreference(&obj->base);
4302 unlock:
4303 mutex_unlock(&dev->struct_mutex);
4304 return ret;
4305 }
4306
4307 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4308 const struct drm_i915_gem_object_ops *ops)
4309 {
4310 INIT_LIST_HEAD(&obj->global_list);
4311 INIT_LIST_HEAD(&obj->ring_list);
4312 INIT_LIST_HEAD(&obj->obj_exec_link);
4313 INIT_LIST_HEAD(&obj->vma_list);
4314
4315 obj->ops = ops;
4316
4317 obj->fence_reg = I915_FENCE_REG_NONE;
4318 obj->madv = I915_MADV_WILLNEED;
4319
4320 i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4321 }
4322
4323 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4324 .get_pages = i915_gem_object_get_pages_gtt,
4325 .put_pages = i915_gem_object_put_pages_gtt,
4326 };
4327
4328 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4329 size_t size)
4330 {
4331 struct drm_i915_gem_object *obj;
4332 struct address_space *mapping;
4333 gfp_t mask;
4334
4335 obj = i915_gem_object_alloc(dev);
4336 if (obj == NULL)
4337 return NULL;
4338
4339 if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4340 i915_gem_object_free(obj);
4341 return NULL;
4342 }
4343
4344 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4345 if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4346 /* 965gm cannot relocate objects above 4GiB. */
4347 mask &= ~__GFP_HIGHMEM;
4348 mask |= __GFP_DMA32;
4349 }
4350
4351 mapping = file_inode(obj->base.filp)->i_mapping;
4352 mapping_set_gfp_mask(mapping, mask);
4353
4354 i915_gem_object_init(obj, &i915_gem_object_ops);
4355
4356 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4357 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4358
4359 if (HAS_LLC(dev)) {
4360 /* On some devices, we can have the GPU use the LLC (the CPU
4361 * cache) for about a 10% performance improvement
4362 * compared to uncached. Graphics requests other than
4363 * display scanout are coherent with the CPU in
4364 * accessing this cache. This means in this mode we
4365 * don't need to clflush on the CPU side, and on the
4366 * GPU side we only need to flush internal caches to
4367 * get data visible to the CPU.
4368 *
4369 * However, we maintain the display planes as UC, and so
4370 * need to rebind when first used as such.
4371 */
4372 obj->cache_level = I915_CACHE_LLC;
4373 } else
4374 obj->cache_level = I915_CACHE_NONE;
4375
4376 trace_i915_gem_object_create(obj);
4377
4378 return obj;
4379 }
4380
4381 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4382 {
4383 /* If we are the last user of the backing storage (be it shmemfs
4384 * pages or stolen etc), we know that the pages are going to be
4385 * immediately released. In this case, we can then skip copying
4386 * back the contents from the GPU.
4387 */
4388
4389 if (obj->madv != I915_MADV_WILLNEED)
4390 return false;
4391
4392 if (obj->base.filp == NULL)
4393 return true;
4394
4395 /* At first glance, this looks racy, but then again so would be
4396 * userspace racing mmap against close. However, the first external
4397 * reference to the filp can only be obtained through the
4398 * i915_gem_mmap_ioctl() which safeguards us against the user
4399 * acquiring such a reference whilst we are in the middle of
4400 * freeing the object.
4401 */
4402 return atomic_long_read(&obj->base.filp->f_count) == 1;
4403 }
4404
4405 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4406 {
4407 struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4408 struct drm_device *dev = obj->base.dev;
4409 struct drm_i915_private *dev_priv = dev->dev_private;
4410 struct i915_vma *vma, *next;
4411
4412 intel_runtime_pm_get(dev_priv);
4413
4414 trace_i915_gem_object_destroy(obj);
4415
4416 list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4417 int ret;
4418
4419 vma->pin_count = 0;
4420 ret = i915_vma_unbind(vma);
4421 if (WARN_ON(ret == -ERESTARTSYS)) {
4422 bool was_interruptible;
4423
4424 was_interruptible = dev_priv->mm.interruptible;
4425 dev_priv->mm.interruptible = false;
4426
4427 WARN_ON(i915_vma_unbind(vma));
4428
4429 dev_priv->mm.interruptible = was_interruptible;
4430 }
4431 }
4432
4433 i915_gem_object_detach_phys(obj);
4434
4435 /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4436 * before progressing. */
4437 if (obj->stolen)
4438 i915_gem_object_unpin_pages(obj);
4439
4440 WARN_ON(obj->frontbuffer_bits);
4441
4442 if (WARN_ON(obj->pages_pin_count))
4443 obj->pages_pin_count = 0;
4444 if (discard_backing_storage(obj))
4445 obj->madv = I915_MADV_DONTNEED;
4446 i915_gem_object_put_pages(obj);
4447 i915_gem_object_free_mmap_offset(obj);
4448
4449 BUG_ON(obj->pages);
4450
4451 if (obj->base.import_attach)
4452 drm_prime_gem_destroy(&obj->base, NULL);
4453
4454 if (obj->ops->release)
4455 obj->ops->release(obj);
4456
4457 drm_gem_object_release(&obj->base);
4458 i915_gem_info_remove_obj(dev_priv, obj->base.size);
4459
4460 kfree(obj->bit_17);
4461 i915_gem_object_free(obj);
4462
4463 intel_runtime_pm_put(dev_priv);
4464 }
4465
4466 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4467 struct i915_address_space *vm)
4468 {
4469 struct i915_vma *vma;
4470 list_for_each_entry(vma, &obj->vma_list, vma_link)
4471 if (vma->vm == vm)
4472 return vma;
4473
4474 return NULL;
4475 }
4476
4477 void i915_gem_vma_destroy(struct i915_vma *vma)
4478 {
4479 struct i915_address_space *vm = NULL;
4480 WARN_ON(vma->node.allocated);
4481
4482 /* Keep the vma as a placeholder in the execbuffer reservation lists */
4483 if (!list_empty(&vma->exec_list))
4484 return;
4485
4486 vm = vma->vm;
4487
4488 if (!i915_is_ggtt(vm))
4489 i915_ppgtt_put(i915_vm_to_ppgtt(vm));
4490
4491 list_del(&vma->vma_link);
4492
4493 kfree(vma);
4494 }
4495
4496 static void
4497 i915_gem_stop_ringbuffers(struct drm_device *dev)
4498 {
4499 struct drm_i915_private *dev_priv = dev->dev_private;
4500 struct intel_engine_cs *ring;
4501 int i;
4502
4503 for_each_ring(ring, dev_priv, i)
4504 dev_priv->gt.stop_ring(ring);
4505 }
4506
4507 int
4508 i915_gem_suspend(struct drm_device *dev)
4509 {
4510 struct drm_i915_private *dev_priv = dev->dev_private;
4511 int ret = 0;
4512
4513 mutex_lock(&dev->struct_mutex);
4514 if (dev_priv->ums.mm_suspended)
4515 goto err;
4516
4517 ret = i915_gpu_idle(dev);
4518 if (ret)
4519 goto err;
4520
4521 i915_gem_retire_requests(dev);
4522
4523 /* Under UMS, be paranoid and evict. */
4524 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4525 i915_gem_evict_everything(dev);
4526
4527 i915_kernel_lost_context(dev);
4528 i915_gem_stop_ringbuffers(dev);
4529
4530 /* Hack! Don't let anybody do execbuf while we don't control the chip.
4531 * We need to replace this with a semaphore, or something.
4532 * And not confound ums.mm_suspended!
4533 */
4534 dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4535 DRIVER_MODESET);
4536 mutex_unlock(&dev->struct_mutex);
4537
4538 del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4539 cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4540 flush_delayed_work(&dev_priv->mm.idle_work);
4541
4542 return 0;
4543
4544 err:
4545 mutex_unlock(&dev->struct_mutex);
4546 return ret;
4547 }
4548
4549 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4550 {
4551 struct drm_device *dev = ring->dev;
4552 struct drm_i915_private *dev_priv = dev->dev_private;
4553 u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4554 u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4555 int i, ret;
4556
4557 if (!HAS_L3_DPF(dev) || !remap_info)
4558 return 0;
4559
4560 ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4561 if (ret)
4562 return ret;
4563
4564 /*
4565 * Note: We do not worry about the concurrent register cacheline hang
4566 * here because no other code should access these registers other than
4567 * at initialization time.
4568 */
4569 for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4570 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4571 intel_ring_emit(ring, reg_base + i);
4572 intel_ring_emit(ring, remap_info[i/4]);
4573 }
4574
4575 intel_ring_advance(ring);
4576
4577 return ret;
4578 }
4579
4580 void i915_gem_init_swizzling(struct drm_device *dev)
4581 {
4582 struct drm_i915_private *dev_priv = dev->dev_private;
4583
4584 if (INTEL_INFO(dev)->gen < 5 ||
4585 dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4586 return;
4587
4588 I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4589 DISP_TILE_SURFACE_SWIZZLING);
4590
4591 if (IS_GEN5(dev))
4592 return;
4593
4594 I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4595 if (IS_GEN6(dev))
4596 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4597 else if (IS_GEN7(dev))
4598 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4599 else if (IS_GEN8(dev))
4600 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4601 else
4602 BUG();
4603 }
4604
4605 static bool
4606 intel_enable_blt(struct drm_device *dev)
4607 {
4608 if (!HAS_BLT(dev))
4609 return false;
4610
4611 /* The blitter was dysfunctional on early prototypes */
4612 if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4613 DRM_INFO("BLT not supported on this pre-production hardware;"
4614 " graphics performance will be degraded.\n");
4615 return false;
4616 }
4617
4618 return true;
4619 }
4620
4621 int i915_gem_init_rings(struct drm_device *dev)
4622 {
4623 struct drm_i915_private *dev_priv = dev->dev_private;
4624 int ret;
4625
4626 ret = intel_init_render_ring_buffer(dev);
4627 if (ret)
4628 return ret;
4629
4630 if (HAS_BSD(dev)) {
4631 ret = intel_init_bsd_ring_buffer(dev);
4632 if (ret)
4633 goto cleanup_render_ring;
4634 }
4635
4636 if (intel_enable_blt(dev)) {
4637 ret = intel_init_blt_ring_buffer(dev);
4638 if (ret)
4639 goto cleanup_bsd_ring;
4640 }
4641
4642 if (HAS_VEBOX(dev)) {
4643 ret = intel_init_vebox_ring_buffer(dev);
4644 if (ret)
4645 goto cleanup_blt_ring;
4646 }
4647
4648 if (HAS_BSD2(dev)) {
4649 ret = intel_init_bsd2_ring_buffer(dev);
4650 if (ret)
4651 goto cleanup_vebox_ring;
4652 }
4653
4654 ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4655 if (ret)
4656 goto cleanup_bsd2_ring;
4657
4658 return 0;
4659
4660 cleanup_bsd2_ring:
4661 intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4662 cleanup_vebox_ring:
4663 intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4664 cleanup_blt_ring:
4665 intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4666 cleanup_bsd_ring:
4667 intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4668 cleanup_render_ring:
4669 intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4670
4671 return ret;
4672 }
4673
4674 int
4675 i915_gem_init_hw(struct drm_device *dev)
4676 {
4677 struct drm_i915_private *dev_priv = dev->dev_private;
4678 int ret, i;
4679
4680 if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4681 return -EIO;
4682
4683 if (dev_priv->ellc_size)
4684 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4685
4686 if (IS_HASWELL(dev))
4687 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4688 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4689
4690 if (HAS_PCH_NOP(dev)) {
4691 if (IS_IVYBRIDGE(dev)) {
4692 u32 temp = I915_READ(GEN7_MSG_CTL);
4693 temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4694 I915_WRITE(GEN7_MSG_CTL, temp);
4695 } else if (INTEL_INFO(dev)->gen >= 7) {
4696 u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4697 temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4698 I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4699 }
4700 }
4701
4702 i915_gem_init_swizzling(dev);
4703
4704 ret = dev_priv->gt.init_rings(dev);
4705 if (ret)
4706 return ret;
4707
4708 for (i = 0; i < NUM_L3_SLICES(dev); i++)
4709 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4710
4711 /*
4712 * XXX: Contexts should only be initialized once. Doing a switch to the
4713 * default context switch however is something we'd like to do after
4714 * reset or thaw (the latter may not actually be necessary for HW, but
4715 * goes with our code better). Context switching requires rings (for
4716 * the do_switch), but before enabling PPGTT. So don't move this.
4717 */
4718 ret = i915_gem_context_enable(dev_priv);
4719 if (ret && ret != -EIO) {
4720 DRM_ERROR("Context enable failed %d\n", ret);
4721 i915_gem_cleanup_ringbuffer(dev);
4722
4723 return ret;
4724 }
4725
4726 ret = i915_ppgtt_init_hw(dev);
4727 if (ret && ret != -EIO) {
4728 DRM_ERROR("PPGTT enable failed %d\n", ret);
4729 i915_gem_cleanup_ringbuffer(dev);
4730 }
4731
4732 return ret;
4733 }
4734
4735 int i915_gem_init(struct drm_device *dev)
4736 {
4737 struct drm_i915_private *dev_priv = dev->dev_private;
4738 int ret;
4739
4740 i915.enable_execlists = intel_sanitize_enable_execlists(dev,
4741 i915.enable_execlists);
4742
4743 mutex_lock(&dev->struct_mutex);
4744
4745 if (IS_VALLEYVIEW(dev)) {
4746 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4747 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4748 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4749 VLV_GTLC_ALLOWWAKEACK), 10))
4750 DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4751 }
4752
4753 if (!i915.enable_execlists) {
4754 dev_priv->gt.do_execbuf = i915_gem_ringbuffer_submission;
4755 dev_priv->gt.init_rings = i915_gem_init_rings;
4756 dev_priv->gt.cleanup_ring = intel_cleanup_ring_buffer;
4757 dev_priv->gt.stop_ring = intel_stop_ring_buffer;
4758 } else {
4759 dev_priv->gt.do_execbuf = intel_execlists_submission;
4760 dev_priv->gt.init_rings = intel_logical_rings_init;
4761 dev_priv->gt.cleanup_ring = intel_logical_ring_cleanup;
4762 dev_priv->gt.stop_ring = intel_logical_ring_stop;
4763 }
4764
4765 ret = i915_gem_init_userptr(dev);
4766 if (ret) {
4767 mutex_unlock(&dev->struct_mutex);
4768 return ret;
4769 }
4770
4771 i915_gem_init_global_gtt(dev);
4772
4773 ret = i915_gem_context_init(dev);
4774 if (ret) {
4775 mutex_unlock(&dev->struct_mutex);
4776 return ret;
4777 }
4778
4779 ret = i915_gem_init_hw(dev);
4780 if (ret == -EIO) {
4781 /* Allow ring initialisation to fail by marking the GPU as
4782 * wedged. But we only want to do this where the GPU is angry,
4783 * for all other failure, such as an allocation failure, bail.
4784 */
4785 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4786 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4787 ret = 0;
4788 }
4789 mutex_unlock(&dev->struct_mutex);
4790
4791 /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4792 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4793 dev_priv->dri1.allow_batchbuffer = 1;
4794 return ret;
4795 }
4796
4797 void
4798 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4799 {
4800 struct drm_i915_private *dev_priv = dev->dev_private;
4801 struct intel_engine_cs *ring;
4802 int i;
4803
4804 for_each_ring(ring, dev_priv, i)
4805 dev_priv->gt.cleanup_ring(ring);
4806 }
4807
4808 int
4809 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4810 struct drm_file *file_priv)
4811 {
4812 struct drm_i915_private *dev_priv = dev->dev_private;
4813 int ret;
4814
4815 if (drm_core_check_feature(dev, DRIVER_MODESET))
4816 return 0;
4817
4818 if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4819 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4820 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4821 }
4822
4823 mutex_lock(&dev->struct_mutex);
4824 dev_priv->ums.mm_suspended = 0;
4825
4826 ret = i915_gem_init_hw(dev);
4827 if (ret != 0) {
4828 mutex_unlock(&dev->struct_mutex);
4829 return ret;
4830 }
4831
4832 BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4833
4834 ret = drm_irq_install(dev, dev->pdev->irq);
4835 if (ret)
4836 goto cleanup_ringbuffer;
4837 mutex_unlock(&dev->struct_mutex);
4838
4839 return 0;
4840
4841 cleanup_ringbuffer:
4842 i915_gem_cleanup_ringbuffer(dev);
4843 dev_priv->ums.mm_suspended = 1;
4844 mutex_unlock(&dev->struct_mutex);
4845
4846 return ret;
4847 }
4848
4849 int
4850 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4851 struct drm_file *file_priv)
4852 {
4853 if (drm_core_check_feature(dev, DRIVER_MODESET))
4854 return 0;
4855
4856 mutex_lock(&dev->struct_mutex);
4857 drm_irq_uninstall(dev);
4858 mutex_unlock(&dev->struct_mutex);
4859
4860 return i915_gem_suspend(dev);
4861 }
4862
4863 void
4864 i915_gem_lastclose(struct drm_device *dev)
4865 {
4866 int ret;
4867
4868 if (drm_core_check_feature(dev, DRIVER_MODESET))
4869 return;
4870
4871 ret = i915_gem_suspend(dev);
4872 if (ret)
4873 DRM_ERROR("failed to idle hardware: %d\n", ret);
4874 }
4875
4876 static void
4877 init_ring_lists(struct intel_engine_cs *ring)
4878 {
4879 INIT_LIST_HEAD(&ring->active_list);
4880 INIT_LIST_HEAD(&ring->request_list);
4881 }
4882
4883 void i915_init_vm(struct drm_i915_private *dev_priv,
4884 struct i915_address_space *vm)
4885 {
4886 if (!i915_is_ggtt(vm))
4887 drm_mm_init(&vm->mm, vm->start, vm->total);
4888 vm->dev = dev_priv->dev;
4889 INIT_LIST_HEAD(&vm->active_list);
4890 INIT_LIST_HEAD(&vm->inactive_list);
4891 INIT_LIST_HEAD(&vm->global_link);
4892 list_add_tail(&vm->global_link, &dev_priv->vm_list);
4893 }
4894
4895 void
4896 i915_gem_load(struct drm_device *dev)
4897 {
4898 struct drm_i915_private *dev_priv = dev->dev_private;
4899 int i;
4900
4901 dev_priv->slab =
4902 kmem_cache_create("i915_gem_object",
4903 sizeof(struct drm_i915_gem_object), 0,
4904 SLAB_HWCACHE_ALIGN,
4905 NULL);
4906
4907 INIT_LIST_HEAD(&dev_priv->vm_list);
4908 i915_init_vm(dev_priv, &dev_priv->gtt.base);
4909
4910 INIT_LIST_HEAD(&dev_priv->context_list);
4911 INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4912 INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4913 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4914 for (i = 0; i < I915_NUM_RINGS; i++)
4915 init_ring_lists(&dev_priv->ring[i]);
4916 for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4917 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4918 INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4919 i915_gem_retire_work_handler);
4920 INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4921 i915_gem_idle_work_handler);
4922 init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4923
4924 /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4925 if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4926 I915_WRITE(MI_ARB_STATE,
4927 _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4928 }
4929
4930 dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4931
4932 /* Old X drivers will take 0-2 for front, back, depth buffers */
4933 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4934 dev_priv->fence_reg_start = 3;
4935
4936 if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4937 dev_priv->num_fence_regs = 32;
4938 else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4939 dev_priv->num_fence_regs = 16;
4940 else
4941 dev_priv->num_fence_regs = 8;
4942
4943 /* Initialize fence registers to zero */
4944 INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4945 i915_gem_restore_fences(dev);
4946
4947 i915_gem_detect_bit_6_swizzle(dev);
4948 init_waitqueue_head(&dev_priv->pending_flip_queue);
4949
4950 dev_priv->mm.interruptible = true;
4951
4952 dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
4953 dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
4954 dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
4955 register_shrinker(&dev_priv->mm.shrinker);
4956
4957 dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
4958 register_oom_notifier(&dev_priv->mm.oom_notifier);
4959
4960 mutex_init(&dev_priv->fb_tracking.lock);
4961 }
4962
4963 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4964 {
4965 struct drm_i915_file_private *file_priv = file->driver_priv;
4966
4967 cancel_delayed_work_sync(&file_priv->mm.idle_work);
4968
4969 /* Clean up our request list when the client is going away, so that
4970 * later retire_requests won't dereference our soon-to-be-gone
4971 * file_priv.
4972 */
4973 spin_lock(&file_priv->mm.lock);
4974 while (!list_empty(&file_priv->mm.request_list)) {
4975 struct drm_i915_gem_request *request;
4976
4977 request = list_first_entry(&file_priv->mm.request_list,
4978 struct drm_i915_gem_request,
4979 client_list);
4980 list_del(&request->client_list);
4981 request->file_priv = NULL;
4982 }
4983 spin_unlock(&file_priv->mm.lock);
4984 }
4985
4986 static void
4987 i915_gem_file_idle_work_handler(struct work_struct *work)
4988 {
4989 struct drm_i915_file_private *file_priv =
4990 container_of(work, typeof(*file_priv), mm.idle_work.work);
4991
4992 atomic_set(&file_priv->rps_wait_boost, false);
4993 }
4994
4995 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4996 {
4997 struct drm_i915_file_private *file_priv;
4998 int ret;
4999
5000 DRM_DEBUG_DRIVER("\n");
5001
5002 file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5003 if (!file_priv)
5004 return -ENOMEM;
5005
5006 file->driver_priv = file_priv;
5007 file_priv->dev_priv = dev->dev_private;
5008 file_priv->file = file;
5009
5010 spin_lock_init(&file_priv->mm.lock);
5011 INIT_LIST_HEAD(&file_priv->mm.request_list);
5012 INIT_DELAYED_WORK(&file_priv->mm.idle_work,
5013 i915_gem_file_idle_work_handler);
5014
5015 ret = i915_gem_context_open(dev, file);
5016 if (ret)
5017 kfree(file_priv);
5018
5019 return ret;
5020 }
5021
5022 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5023 struct drm_i915_gem_object *new,
5024 unsigned frontbuffer_bits)
5025 {
5026 if (old) {
5027 WARN_ON(!mutex_is_locked(&old->base.dev->struct_mutex));
5028 WARN_ON(!(old->frontbuffer_bits & frontbuffer_bits));
5029 old->frontbuffer_bits &= ~frontbuffer_bits;
5030 }
5031
5032 if (new) {
5033 WARN_ON(!mutex_is_locked(&new->base.dev->struct_mutex));
5034 WARN_ON(new->frontbuffer_bits & frontbuffer_bits);
5035 new->frontbuffer_bits |= frontbuffer_bits;
5036 }
5037 }
5038
5039 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
5040 {
5041 if (!mutex_is_locked(mutex))
5042 return false;
5043
5044 #if defined(CONFIG_SMP) || defined(CONFIG_DEBUG_MUTEXES)
5045 return mutex->owner == task;
5046 #else
5047 /* Since UP may be pre-empted, we cannot assume that we own the lock */
5048 return false;
5049 #endif
5050 }
5051
5052 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5053 {
5054 if (!mutex_trylock(&dev->struct_mutex)) {
5055 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5056 return false;
5057
5058 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5059 return false;
5060
5061 *unlock = false;
5062 } else
5063 *unlock = true;
5064
5065 return true;
5066 }
5067
5068 static int num_vma_bound(struct drm_i915_gem_object *obj)
5069 {
5070 struct i915_vma *vma;
5071 int count = 0;
5072
5073 list_for_each_entry(vma, &obj->vma_list, vma_link)
5074 if (drm_mm_node_allocated(&vma->node))
5075 count++;
5076
5077 return count;
5078 }
5079
5080 static unsigned long
5081 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5082 {
5083 struct drm_i915_private *dev_priv =
5084 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5085 struct drm_device *dev = dev_priv->dev;
5086 struct drm_i915_gem_object *obj;
5087 unsigned long count;
5088 bool unlock;
5089
5090 if (!i915_gem_shrinker_lock(dev, &unlock))
5091 return 0;
5092
5093 count = 0;
5094 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5095 if (obj->pages_pin_count == 0)
5096 count += obj->base.size >> PAGE_SHIFT;
5097
5098 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5099 if (!i915_gem_obj_is_pinned(obj) &&
5100 obj->pages_pin_count == num_vma_bound(obj))
5101 count += obj->base.size >> PAGE_SHIFT;
5102 }
5103
5104 if (unlock)
5105 mutex_unlock(&dev->struct_mutex);
5106
5107 return count;
5108 }
5109
5110 /* All the new VM stuff */
5111 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5112 struct i915_address_space *vm)
5113 {
5114 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5115 struct i915_vma *vma;
5116
5117 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5118
5119 list_for_each_entry(vma, &o->vma_list, vma_link) {
5120 if (vma->vm == vm)
5121 return vma->node.start;
5122
5123 }
5124 WARN(1, "%s vma for this object not found.\n",
5125 i915_is_ggtt(vm) ? "global" : "ppgtt");
5126 return -1;
5127 }
5128
5129 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5130 struct i915_address_space *vm)
5131 {
5132 struct i915_vma *vma;
5133
5134 list_for_each_entry(vma, &o->vma_list, vma_link)
5135 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5136 return true;
5137
5138 return false;
5139 }
5140
5141 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5142 {
5143 struct i915_vma *vma;
5144
5145 list_for_each_entry(vma, &o->vma_list, vma_link)
5146 if (drm_mm_node_allocated(&vma->node))
5147 return true;
5148
5149 return false;
5150 }
5151
5152 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5153 struct i915_address_space *vm)
5154 {
5155 struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5156 struct i915_vma *vma;
5157
5158 WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base);
5159
5160 BUG_ON(list_empty(&o->vma_list));
5161
5162 list_for_each_entry(vma, &o->vma_list, vma_link)
5163 if (vma->vm == vm)
5164 return vma->node.size;
5165
5166 return 0;
5167 }
5168
5169 static unsigned long
5170 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5171 {
5172 struct drm_i915_private *dev_priv =
5173 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5174 struct drm_device *dev = dev_priv->dev;
5175 unsigned long freed;
5176 bool unlock;
5177
5178 if (!i915_gem_shrinker_lock(dev, &unlock))
5179 return SHRINK_STOP;
5180
5181 freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5182 if (freed < sc->nr_to_scan)
5183 freed += __i915_gem_shrink(dev_priv,
5184 sc->nr_to_scan - freed,
5185 false);
5186 if (unlock)
5187 mutex_unlock(&dev->struct_mutex);
5188
5189 return freed;
5190 }
5191
5192 static int
5193 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5194 {
5195 struct drm_i915_private *dev_priv =
5196 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5197 struct drm_device *dev = dev_priv->dev;
5198 struct drm_i915_gem_object *obj;
5199 unsigned long timeout = msecs_to_jiffies(5000) + 1;
5200 unsigned long pinned, bound, unbound, freed;
5201 bool was_interruptible;
5202 bool unlock;
5203
5204 while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout) {
5205 schedule_timeout_killable(1);
5206 if (fatal_signal_pending(current))
5207 return NOTIFY_DONE;
5208 }
5209 if (timeout == 0) {
5210 pr_err("Unable to purge GPU memory due lock contention.\n");
5211 return NOTIFY_DONE;
5212 }
5213
5214 was_interruptible = dev_priv->mm.interruptible;
5215 dev_priv->mm.interruptible = false;
5216
5217 freed = i915_gem_shrink_all(dev_priv);
5218
5219 dev_priv->mm.interruptible = was_interruptible;
5220
5221 /* Because we may be allocating inside our own driver, we cannot
5222 * assert that there are no objects with pinned pages that are not
5223 * being pointed to by hardware.
5224 */
5225 unbound = bound = pinned = 0;
5226 list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5227 if (!obj->base.filp) /* not backed by a freeable object */
5228 continue;
5229
5230 if (obj->pages_pin_count)
5231 pinned += obj->base.size;
5232 else
5233 unbound += obj->base.size;
5234 }
5235 list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5236 if (!obj->base.filp)
5237 continue;
5238
5239 if (obj->pages_pin_count)
5240 pinned += obj->base.size;
5241 else
5242 bound += obj->base.size;
5243 }
5244
5245 if (unlock)
5246 mutex_unlock(&dev->struct_mutex);
5247
5248 pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5249 freed, pinned);
5250 if (unbound || bound)
5251 pr_err("%lu and %lu bytes still available in the "
5252 "bound and unbound GPU page lists.\n",
5253 bound, unbound);
5254
5255 *(unsigned long *)ptr += freed;
5256 return NOTIFY_DONE;
5257 }
5258
5259 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5260 {
5261 struct i915_vma *vma;
5262
5263 vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5264 if (vma->vm != i915_obj_to_ggtt(obj))
5265 return NULL;
5266
5267 return vma;
5268 }