x86/irq, trace: Add __irq_entry annotation to x86's platform IRQ handlers
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / gpu / drm / i915 / i915_drv.c
1 /* i915_drv.c -- i830,i845,i855,i865,i915 driver -*- linux-c -*-
2 */
3 /*
4 *
5 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
6 * All Rights Reserved.
7 *
8 * Permission is hereby granted, free of charge, to any person obtaining a
9 * copy of this software and associated documentation files (the
10 * "Software"), to deal in the Software without restriction, including
11 * without limitation the rights to use, copy, modify, merge, publish,
12 * distribute, sub license, and/or sell copies of the Software, and to
13 * permit persons to whom the Software is furnished to do so, subject to
14 * the following conditions:
15 *
16 * The above copyright notice and this permission notice (including the
17 * next paragraph) shall be included in all copies or substantial portions
18 * of the Software.
19 *
20 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
21 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
22 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
23 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
24 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
25 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
26 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
27 *
28 */
29
30 #include <linux/acpi.h>
31 #include <linux/device.h>
32 #include <linux/oom.h>
33 #include <linux/module.h>
34 #include <linux/pci.h>
35 #include <linux/pm.h>
36 #include <linux/pm_runtime.h>
37 #include <linux/pnp.h>
38 #include <linux/slab.h>
39 #include <linux/vgaarb.h>
40 #include <linux/vga_switcheroo.h>
41 #include <linux/vt.h>
42 #include <acpi/video.h>
43
44 #include <drm/drmP.h>
45 #include <drm/drm_crtc_helper.h>
46 #include <drm/i915_drm.h>
47
48 #include "i915_drv.h"
49 #include "i915_trace.h"
50 #include "i915_vgpu.h"
51 #include "intel_drv.h"
52
53 static struct drm_driver driver;
54
55 static unsigned int i915_load_fail_count;
56
57 bool __i915_inject_load_failure(const char *func, int line)
58 {
59 if (i915_load_fail_count >= i915.inject_load_failure)
60 return false;
61
62 if (++i915_load_fail_count == i915.inject_load_failure) {
63 DRM_INFO("Injecting failure at checkpoint %u [%s:%d]\n",
64 i915.inject_load_failure, func, line);
65 return true;
66 }
67
68 return false;
69 }
70
71 #define FDO_BUG_URL "https://bugs.freedesktop.org/enter_bug.cgi?product=DRI"
72 #define FDO_BUG_MSG "Please file a bug at " FDO_BUG_URL " against DRM/Intel " \
73 "providing the dmesg log by booting with drm.debug=0xf"
74
75 void
76 __i915_printk(struct drm_i915_private *dev_priv, const char *level,
77 const char *fmt, ...)
78 {
79 static bool shown_bug_once;
80 struct device *kdev = dev_priv->drm.dev;
81 bool is_error = level[1] <= KERN_ERR[1];
82 bool is_debug = level[1] == KERN_DEBUG[1];
83 struct va_format vaf;
84 va_list args;
85
86 if (is_debug && !(drm_debug & DRM_UT_DRIVER))
87 return;
88
89 va_start(args, fmt);
90
91 vaf.fmt = fmt;
92 vaf.va = &args;
93
94 dev_printk(level, kdev, "[" DRM_NAME ":%ps] %pV",
95 __builtin_return_address(0), &vaf);
96
97 if (is_error && !shown_bug_once) {
98 dev_notice(kdev, "%s", FDO_BUG_MSG);
99 shown_bug_once = true;
100 }
101
102 va_end(args);
103 }
104
105 static bool i915_error_injected(struct drm_i915_private *dev_priv)
106 {
107 return i915.inject_load_failure &&
108 i915_load_fail_count == i915.inject_load_failure;
109 }
110
111 #define i915_load_error(dev_priv, fmt, ...) \
112 __i915_printk(dev_priv, \
113 i915_error_injected(dev_priv) ? KERN_DEBUG : KERN_ERR, \
114 fmt, ##__VA_ARGS__)
115
116
117 static enum intel_pch intel_virt_detect_pch(struct drm_i915_private *dev_priv)
118 {
119 enum intel_pch ret = PCH_NOP;
120
121 /*
122 * In a virtualized passthrough environment we can be in a
123 * setup where the ISA bridge is not able to be passed through.
124 * In this case, a south bridge can be emulated and we have to
125 * make an educated guess as to which PCH is really there.
126 */
127
128 if (IS_GEN5(dev_priv)) {
129 ret = PCH_IBX;
130 DRM_DEBUG_KMS("Assuming Ibex Peak PCH\n");
131 } else if (IS_GEN6(dev_priv) || IS_IVYBRIDGE(dev_priv)) {
132 ret = PCH_CPT;
133 DRM_DEBUG_KMS("Assuming CouarPoint PCH\n");
134 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
135 ret = PCH_LPT;
136 DRM_DEBUG_KMS("Assuming LynxPoint PCH\n");
137 } else if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
138 ret = PCH_SPT;
139 DRM_DEBUG_KMS("Assuming SunrisePoint PCH\n");
140 }
141
142 return ret;
143 }
144
145 static void intel_detect_pch(struct drm_device *dev)
146 {
147 struct drm_i915_private *dev_priv = to_i915(dev);
148 struct pci_dev *pch = NULL;
149
150 /* In all current cases, num_pipes is equivalent to the PCH_NOP setting
151 * (which really amounts to a PCH but no South Display).
152 */
153 if (INTEL_INFO(dev_priv)->num_pipes == 0) {
154 dev_priv->pch_type = PCH_NOP;
155 return;
156 }
157
158 /*
159 * The reason to probe ISA bridge instead of Dev31:Fun0 is to
160 * make graphics device passthrough work easy for VMM, that only
161 * need to expose ISA bridge to let driver know the real hardware
162 * underneath. This is a requirement from virtualization team.
163 *
164 * In some virtualized environments (e.g. XEN), there is irrelevant
165 * ISA bridge in the system. To work reliably, we should scan trhough
166 * all the ISA bridge devices and check for the first match, instead
167 * of only checking the first one.
168 */
169 while ((pch = pci_get_class(PCI_CLASS_BRIDGE_ISA << 8, pch))) {
170 if (pch->vendor == PCI_VENDOR_ID_INTEL) {
171 unsigned short id = pch->device & INTEL_PCH_DEVICE_ID_MASK;
172 dev_priv->pch_id = id;
173
174 if (id == INTEL_PCH_IBX_DEVICE_ID_TYPE) {
175 dev_priv->pch_type = PCH_IBX;
176 DRM_DEBUG_KMS("Found Ibex Peak PCH\n");
177 WARN_ON(!IS_GEN5(dev_priv));
178 } else if (id == INTEL_PCH_CPT_DEVICE_ID_TYPE) {
179 dev_priv->pch_type = PCH_CPT;
180 DRM_DEBUG_KMS("Found CougarPoint PCH\n");
181 WARN_ON(!(IS_GEN6(dev_priv) ||
182 IS_IVYBRIDGE(dev_priv)));
183 } else if (id == INTEL_PCH_PPT_DEVICE_ID_TYPE) {
184 /* PantherPoint is CPT compatible */
185 dev_priv->pch_type = PCH_CPT;
186 DRM_DEBUG_KMS("Found PantherPoint PCH\n");
187 WARN_ON(!(IS_GEN6(dev_priv) ||
188 IS_IVYBRIDGE(dev_priv)));
189 } else if (id == INTEL_PCH_LPT_DEVICE_ID_TYPE) {
190 dev_priv->pch_type = PCH_LPT;
191 DRM_DEBUG_KMS("Found LynxPoint PCH\n");
192 WARN_ON(!IS_HASWELL(dev_priv) &&
193 !IS_BROADWELL(dev_priv));
194 WARN_ON(IS_HSW_ULT(dev_priv) ||
195 IS_BDW_ULT(dev_priv));
196 } else if (id == INTEL_PCH_LPT_LP_DEVICE_ID_TYPE) {
197 dev_priv->pch_type = PCH_LPT;
198 DRM_DEBUG_KMS("Found LynxPoint LP PCH\n");
199 WARN_ON(!IS_HASWELL(dev_priv) &&
200 !IS_BROADWELL(dev_priv));
201 WARN_ON(!IS_HSW_ULT(dev_priv) &&
202 !IS_BDW_ULT(dev_priv));
203 } else if (id == INTEL_PCH_SPT_DEVICE_ID_TYPE) {
204 dev_priv->pch_type = PCH_SPT;
205 DRM_DEBUG_KMS("Found SunrisePoint PCH\n");
206 WARN_ON(!IS_SKYLAKE(dev_priv) &&
207 !IS_KABYLAKE(dev_priv));
208 } else if (id == INTEL_PCH_SPT_LP_DEVICE_ID_TYPE) {
209 dev_priv->pch_type = PCH_SPT;
210 DRM_DEBUG_KMS("Found SunrisePoint LP PCH\n");
211 WARN_ON(!IS_SKYLAKE(dev_priv) &&
212 !IS_KABYLAKE(dev_priv));
213 } else if (id == INTEL_PCH_KBP_DEVICE_ID_TYPE) {
214 dev_priv->pch_type = PCH_KBP;
215 DRM_DEBUG_KMS("Found KabyPoint PCH\n");
216 WARN_ON(!IS_KABYLAKE(dev_priv));
217 } else if ((id == INTEL_PCH_P2X_DEVICE_ID_TYPE) ||
218 (id == INTEL_PCH_P3X_DEVICE_ID_TYPE) ||
219 ((id == INTEL_PCH_QEMU_DEVICE_ID_TYPE) &&
220 pch->subsystem_vendor ==
221 PCI_SUBVENDOR_ID_REDHAT_QUMRANET &&
222 pch->subsystem_device ==
223 PCI_SUBDEVICE_ID_QEMU)) {
224 dev_priv->pch_type =
225 intel_virt_detect_pch(dev_priv);
226 } else
227 continue;
228
229 break;
230 }
231 }
232 if (!pch)
233 DRM_DEBUG_KMS("No PCH found.\n");
234
235 pci_dev_put(pch);
236 }
237
238 static int i915_getparam(struct drm_device *dev, void *data,
239 struct drm_file *file_priv)
240 {
241 struct drm_i915_private *dev_priv = to_i915(dev);
242 struct pci_dev *pdev = dev_priv->drm.pdev;
243 drm_i915_getparam_t *param = data;
244 int value;
245
246 switch (param->param) {
247 case I915_PARAM_IRQ_ACTIVE:
248 case I915_PARAM_ALLOW_BATCHBUFFER:
249 case I915_PARAM_LAST_DISPATCH:
250 /* Reject all old ums/dri params. */
251 return -ENODEV;
252 case I915_PARAM_CHIPSET_ID:
253 value = pdev->device;
254 break;
255 case I915_PARAM_REVISION:
256 value = pdev->revision;
257 break;
258 case I915_PARAM_NUM_FENCES_AVAIL:
259 value = dev_priv->num_fence_regs;
260 break;
261 case I915_PARAM_HAS_OVERLAY:
262 value = dev_priv->overlay ? 1 : 0;
263 break;
264 case I915_PARAM_HAS_BSD:
265 value = !!dev_priv->engine[VCS];
266 break;
267 case I915_PARAM_HAS_BLT:
268 value = !!dev_priv->engine[BCS];
269 break;
270 case I915_PARAM_HAS_VEBOX:
271 value = !!dev_priv->engine[VECS];
272 break;
273 case I915_PARAM_HAS_BSD2:
274 value = !!dev_priv->engine[VCS2];
275 break;
276 case I915_PARAM_HAS_EXEC_CONSTANTS:
277 value = INTEL_GEN(dev_priv) >= 4;
278 break;
279 case I915_PARAM_HAS_LLC:
280 value = HAS_LLC(dev_priv);
281 break;
282 case I915_PARAM_HAS_WT:
283 value = HAS_WT(dev_priv);
284 break;
285 case I915_PARAM_HAS_ALIASING_PPGTT:
286 value = USES_PPGTT(dev_priv);
287 break;
288 case I915_PARAM_HAS_SEMAPHORES:
289 value = i915.semaphores;
290 break;
291 case I915_PARAM_HAS_SECURE_BATCHES:
292 value = capable(CAP_SYS_ADMIN);
293 break;
294 case I915_PARAM_CMD_PARSER_VERSION:
295 value = i915_cmd_parser_get_version(dev_priv);
296 break;
297 case I915_PARAM_SUBSLICE_TOTAL:
298 value = sseu_subslice_total(&INTEL_INFO(dev_priv)->sseu);
299 if (!value)
300 return -ENODEV;
301 break;
302 case I915_PARAM_EU_TOTAL:
303 value = INTEL_INFO(dev_priv)->sseu.eu_total;
304 if (!value)
305 return -ENODEV;
306 break;
307 case I915_PARAM_HAS_GPU_RESET:
308 value = i915.enable_hangcheck && intel_has_gpu_reset(dev_priv);
309 break;
310 case I915_PARAM_HAS_RESOURCE_STREAMER:
311 value = HAS_RESOURCE_STREAMER(dev_priv);
312 break;
313 case I915_PARAM_HAS_POOLED_EU:
314 value = HAS_POOLED_EU(dev_priv);
315 break;
316 case I915_PARAM_MIN_EU_IN_POOL:
317 value = INTEL_INFO(dev_priv)->sseu.min_eu_in_pool;
318 break;
319 case I915_PARAM_MMAP_GTT_VERSION:
320 /* Though we've started our numbering from 1, and so class all
321 * earlier versions as 0, in effect their value is undefined as
322 * the ioctl will report EINVAL for the unknown param!
323 */
324 value = i915_gem_mmap_gtt_version();
325 break;
326 case I915_PARAM_HAS_SCHEDULER:
327 value = dev_priv->engine[RCS] &&
328 dev_priv->engine[RCS]->schedule;
329 break;
330 case I915_PARAM_MMAP_VERSION:
331 /* Remember to bump this if the version changes! */
332 case I915_PARAM_HAS_GEM:
333 case I915_PARAM_HAS_PAGEFLIPPING:
334 case I915_PARAM_HAS_EXECBUF2: /* depends on GEM */
335 case I915_PARAM_HAS_RELAXED_FENCING:
336 case I915_PARAM_HAS_COHERENT_RINGS:
337 case I915_PARAM_HAS_RELAXED_DELTA:
338 case I915_PARAM_HAS_GEN7_SOL_RESET:
339 case I915_PARAM_HAS_WAIT_TIMEOUT:
340 case I915_PARAM_HAS_PRIME_VMAP_FLUSH:
341 case I915_PARAM_HAS_PINNED_BATCHES:
342 case I915_PARAM_HAS_EXEC_NO_RELOC:
343 case I915_PARAM_HAS_EXEC_HANDLE_LUT:
344 case I915_PARAM_HAS_COHERENT_PHYS_GTT:
345 case I915_PARAM_HAS_EXEC_SOFTPIN:
346 /* For the time being all of these are always true;
347 * if some supported hardware does not have one of these
348 * features this value needs to be provided from
349 * INTEL_INFO(), a feature macro, or similar.
350 */
351 value = 1;
352 break;
353 default:
354 DRM_DEBUG("Unknown parameter %d\n", param->param);
355 return -EINVAL;
356 }
357
358 if (put_user(value, param->value))
359 return -EFAULT;
360
361 return 0;
362 }
363
364 static int i915_get_bridge_dev(struct drm_device *dev)
365 {
366 struct drm_i915_private *dev_priv = to_i915(dev);
367
368 dev_priv->bridge_dev = pci_get_bus_and_slot(0, PCI_DEVFN(0, 0));
369 if (!dev_priv->bridge_dev) {
370 DRM_ERROR("bridge device not found\n");
371 return -1;
372 }
373 return 0;
374 }
375
376 /* Allocate space for the MCH regs if needed, return nonzero on error */
377 static int
378 intel_alloc_mchbar_resource(struct drm_device *dev)
379 {
380 struct drm_i915_private *dev_priv = to_i915(dev);
381 int reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
382 u32 temp_lo, temp_hi = 0;
383 u64 mchbar_addr;
384 int ret;
385
386 if (INTEL_GEN(dev_priv) >= 4)
387 pci_read_config_dword(dev_priv->bridge_dev, reg + 4, &temp_hi);
388 pci_read_config_dword(dev_priv->bridge_dev, reg, &temp_lo);
389 mchbar_addr = ((u64)temp_hi << 32) | temp_lo;
390
391 /* If ACPI doesn't have it, assume we need to allocate it ourselves */
392 #ifdef CONFIG_PNP
393 if (mchbar_addr &&
394 pnp_range_reserved(mchbar_addr, mchbar_addr + MCHBAR_SIZE))
395 return 0;
396 #endif
397
398 /* Get some space for it */
399 dev_priv->mch_res.name = "i915 MCHBAR";
400 dev_priv->mch_res.flags = IORESOURCE_MEM;
401 ret = pci_bus_alloc_resource(dev_priv->bridge_dev->bus,
402 &dev_priv->mch_res,
403 MCHBAR_SIZE, MCHBAR_SIZE,
404 PCIBIOS_MIN_MEM,
405 0, pcibios_align_resource,
406 dev_priv->bridge_dev);
407 if (ret) {
408 DRM_DEBUG_DRIVER("failed bus alloc: %d\n", ret);
409 dev_priv->mch_res.start = 0;
410 return ret;
411 }
412
413 if (INTEL_GEN(dev_priv) >= 4)
414 pci_write_config_dword(dev_priv->bridge_dev, reg + 4,
415 upper_32_bits(dev_priv->mch_res.start));
416
417 pci_write_config_dword(dev_priv->bridge_dev, reg,
418 lower_32_bits(dev_priv->mch_res.start));
419 return 0;
420 }
421
422 /* Setup MCHBAR if possible, return true if we should disable it again */
423 static void
424 intel_setup_mchbar(struct drm_device *dev)
425 {
426 struct drm_i915_private *dev_priv = to_i915(dev);
427 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
428 u32 temp;
429 bool enabled;
430
431 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
432 return;
433
434 dev_priv->mchbar_need_disable = false;
435
436 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
437 pci_read_config_dword(dev_priv->bridge_dev, DEVEN, &temp);
438 enabled = !!(temp & DEVEN_MCHBAR_EN);
439 } else {
440 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
441 enabled = temp & 1;
442 }
443
444 /* If it's already enabled, don't have to do anything */
445 if (enabled)
446 return;
447
448 if (intel_alloc_mchbar_resource(dev))
449 return;
450
451 dev_priv->mchbar_need_disable = true;
452
453 /* Space is allocated or reserved, so enable it. */
454 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
455 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
456 temp | DEVEN_MCHBAR_EN);
457 } else {
458 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg, &temp);
459 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg, temp | 1);
460 }
461 }
462
463 static void
464 intel_teardown_mchbar(struct drm_device *dev)
465 {
466 struct drm_i915_private *dev_priv = to_i915(dev);
467 int mchbar_reg = INTEL_GEN(dev_priv) >= 4 ? MCHBAR_I965 : MCHBAR_I915;
468
469 if (dev_priv->mchbar_need_disable) {
470 if (IS_I915G(dev_priv) || IS_I915GM(dev_priv)) {
471 u32 deven_val;
472
473 pci_read_config_dword(dev_priv->bridge_dev, DEVEN,
474 &deven_val);
475 deven_val &= ~DEVEN_MCHBAR_EN;
476 pci_write_config_dword(dev_priv->bridge_dev, DEVEN,
477 deven_val);
478 } else {
479 u32 mchbar_val;
480
481 pci_read_config_dword(dev_priv->bridge_dev, mchbar_reg,
482 &mchbar_val);
483 mchbar_val &= ~1;
484 pci_write_config_dword(dev_priv->bridge_dev, mchbar_reg,
485 mchbar_val);
486 }
487 }
488
489 if (dev_priv->mch_res.start)
490 release_resource(&dev_priv->mch_res);
491 }
492
493 /* true = enable decode, false = disable decoder */
494 static unsigned int i915_vga_set_decode(void *cookie, bool state)
495 {
496 struct drm_device *dev = cookie;
497
498 intel_modeset_vga_set_state(to_i915(dev), state);
499 if (state)
500 return VGA_RSRC_LEGACY_IO | VGA_RSRC_LEGACY_MEM |
501 VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
502 else
503 return VGA_RSRC_NORMAL_IO | VGA_RSRC_NORMAL_MEM;
504 }
505
506 static void i915_switcheroo_set_state(struct pci_dev *pdev, enum vga_switcheroo_state state)
507 {
508 struct drm_device *dev = pci_get_drvdata(pdev);
509 pm_message_t pmm = { .event = PM_EVENT_SUSPEND };
510
511 if (state == VGA_SWITCHEROO_ON) {
512 pr_info("switched on\n");
513 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
514 /* i915 resume handler doesn't set to D0 */
515 pci_set_power_state(pdev, PCI_D0);
516 i915_resume_switcheroo(dev);
517 dev->switch_power_state = DRM_SWITCH_POWER_ON;
518 } else {
519 pr_info("switched off\n");
520 dev->switch_power_state = DRM_SWITCH_POWER_CHANGING;
521 i915_suspend_switcheroo(dev, pmm);
522 dev->switch_power_state = DRM_SWITCH_POWER_OFF;
523 }
524 }
525
526 static bool i915_switcheroo_can_switch(struct pci_dev *pdev)
527 {
528 struct drm_device *dev = pci_get_drvdata(pdev);
529
530 /*
531 * FIXME: open_count is protected by drm_global_mutex but that would lead to
532 * locking inversion with the driver load path. And the access here is
533 * completely racy anyway. So don't bother with locking for now.
534 */
535 return dev->open_count == 0;
536 }
537
538 static const struct vga_switcheroo_client_ops i915_switcheroo_ops = {
539 .set_gpu_state = i915_switcheroo_set_state,
540 .reprobe = NULL,
541 .can_switch = i915_switcheroo_can_switch,
542 };
543
544 static void i915_gem_fini(struct drm_i915_private *dev_priv)
545 {
546 mutex_lock(&dev_priv->drm.struct_mutex);
547 i915_gem_cleanup_engines(&dev_priv->drm);
548 i915_gem_context_fini(&dev_priv->drm);
549 mutex_unlock(&dev_priv->drm.struct_mutex);
550
551 rcu_barrier();
552 flush_work(&dev_priv->mm.free_work);
553
554 WARN_ON(!list_empty(&dev_priv->context_list));
555 }
556
557 static int i915_load_modeset_init(struct drm_device *dev)
558 {
559 struct drm_i915_private *dev_priv = to_i915(dev);
560 struct pci_dev *pdev = dev_priv->drm.pdev;
561 int ret;
562
563 if (i915_inject_load_failure())
564 return -ENODEV;
565
566 ret = intel_bios_init(dev_priv);
567 if (ret)
568 DRM_INFO("failed to find VBIOS tables\n");
569
570 /* If we have > 1 VGA cards, then we need to arbitrate access
571 * to the common VGA resources.
572 *
573 * If we are a secondary display controller (!PCI_DISPLAY_CLASS_VGA),
574 * then we do not take part in VGA arbitration and the
575 * vga_client_register() fails with -ENODEV.
576 */
577 ret = vga_client_register(pdev, dev, NULL, i915_vga_set_decode);
578 if (ret && ret != -ENODEV)
579 goto out;
580
581 intel_register_dsm_handler();
582
583 ret = vga_switcheroo_register_client(pdev, &i915_switcheroo_ops, false);
584 if (ret)
585 goto cleanup_vga_client;
586
587 /* must happen before intel_power_domains_init_hw() on VLV/CHV */
588 intel_update_rawclk(dev_priv);
589
590 intel_power_domains_init_hw(dev_priv, false);
591
592 intel_csr_ucode_init(dev_priv);
593
594 ret = intel_irq_install(dev_priv);
595 if (ret)
596 goto cleanup_csr;
597
598 intel_setup_gmbus(dev);
599
600 /* Important: The output setup functions called by modeset_init need
601 * working irqs for e.g. gmbus and dp aux transfers. */
602 ret = intel_modeset_init(dev);
603 if (ret)
604 goto cleanup_irq;
605
606 intel_guc_init(dev);
607
608 ret = i915_gem_init(dev);
609 if (ret)
610 goto cleanup_irq;
611
612 intel_modeset_gem_init(dev);
613
614 if (INTEL_INFO(dev_priv)->num_pipes == 0)
615 return 0;
616
617 ret = intel_fbdev_init(dev);
618 if (ret)
619 goto cleanup_gem;
620
621 /* Only enable hotplug handling once the fbdev is fully set up. */
622 intel_hpd_init(dev_priv);
623
624 drm_kms_helper_poll_init(dev);
625
626 return 0;
627
628 cleanup_gem:
629 if (i915_gem_suspend(dev))
630 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
631 i915_gem_fini(dev_priv);
632 cleanup_irq:
633 intel_guc_fini(dev);
634 drm_irq_uninstall(dev);
635 intel_teardown_gmbus(dev);
636 cleanup_csr:
637 intel_csr_ucode_fini(dev_priv);
638 intel_power_domains_fini(dev_priv);
639 vga_switcheroo_unregister_client(pdev);
640 cleanup_vga_client:
641 vga_client_register(pdev, NULL, NULL, NULL);
642 out:
643 return ret;
644 }
645
646 #if IS_ENABLED(CONFIG_FB)
647 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
648 {
649 struct apertures_struct *ap;
650 struct pci_dev *pdev = dev_priv->drm.pdev;
651 struct i915_ggtt *ggtt = &dev_priv->ggtt;
652 bool primary;
653 int ret;
654
655 ap = alloc_apertures(1);
656 if (!ap)
657 return -ENOMEM;
658
659 ap->ranges[0].base = ggtt->mappable_base;
660 ap->ranges[0].size = ggtt->mappable_end;
661
662 primary =
663 pdev->resource[PCI_ROM_RESOURCE].flags & IORESOURCE_ROM_SHADOW;
664
665 ret = drm_fb_helper_remove_conflicting_framebuffers(ap, "inteldrmfb", primary);
666
667 kfree(ap);
668
669 return ret;
670 }
671 #else
672 static int i915_kick_out_firmware_fb(struct drm_i915_private *dev_priv)
673 {
674 return 0;
675 }
676 #endif
677
678 #if !defined(CONFIG_VGA_CONSOLE)
679 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
680 {
681 return 0;
682 }
683 #elif !defined(CONFIG_DUMMY_CONSOLE)
684 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
685 {
686 return -ENODEV;
687 }
688 #else
689 static int i915_kick_out_vgacon(struct drm_i915_private *dev_priv)
690 {
691 int ret = 0;
692
693 DRM_INFO("Replacing VGA console driver\n");
694
695 console_lock();
696 if (con_is_bound(&vga_con))
697 ret = do_take_over_console(&dummy_con, 0, MAX_NR_CONSOLES - 1, 1);
698 if (ret == 0) {
699 ret = do_unregister_con_driver(&vga_con);
700
701 /* Ignore "already unregistered". */
702 if (ret == -ENODEV)
703 ret = 0;
704 }
705 console_unlock();
706
707 return ret;
708 }
709 #endif
710
711 static void intel_init_dpio(struct drm_i915_private *dev_priv)
712 {
713 /*
714 * IOSF_PORT_DPIO is used for VLV x2 PHY (DP/HDMI B and C),
715 * CHV x1 PHY (DP/HDMI D)
716 * IOSF_PORT_DPIO_2 is used for CHV x2 PHY (DP/HDMI B and C)
717 */
718 if (IS_CHERRYVIEW(dev_priv)) {
719 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO_2;
720 DPIO_PHY_IOSF_PORT(DPIO_PHY1) = IOSF_PORT_DPIO;
721 } else if (IS_VALLEYVIEW(dev_priv)) {
722 DPIO_PHY_IOSF_PORT(DPIO_PHY0) = IOSF_PORT_DPIO;
723 }
724 }
725
726 static int i915_workqueues_init(struct drm_i915_private *dev_priv)
727 {
728 /*
729 * The i915 workqueue is primarily used for batched retirement of
730 * requests (and thus managing bo) once the task has been completed
731 * by the GPU. i915_gem_retire_requests() is called directly when we
732 * need high-priority retirement, such as waiting for an explicit
733 * bo.
734 *
735 * It is also used for periodic low-priority events, such as
736 * idle-timers and recording error state.
737 *
738 * All tasks on the workqueue are expected to acquire the dev mutex
739 * so there is no point in running more than one instance of the
740 * workqueue at any time. Use an ordered one.
741 */
742 dev_priv->wq = alloc_ordered_workqueue("i915", 0);
743 if (dev_priv->wq == NULL)
744 goto out_err;
745
746 dev_priv->hotplug.dp_wq = alloc_ordered_workqueue("i915-dp", 0);
747 if (dev_priv->hotplug.dp_wq == NULL)
748 goto out_free_wq;
749
750 return 0;
751
752 out_free_wq:
753 destroy_workqueue(dev_priv->wq);
754 out_err:
755 DRM_ERROR("Failed to allocate workqueues.\n");
756
757 return -ENOMEM;
758 }
759
760 static void i915_workqueues_cleanup(struct drm_i915_private *dev_priv)
761 {
762 destroy_workqueue(dev_priv->hotplug.dp_wq);
763 destroy_workqueue(dev_priv->wq);
764 }
765
766 /*
767 * We don't keep the workarounds for pre-production hardware, so we expect our
768 * driver to fail on these machines in one way or another. A little warning on
769 * dmesg may help both the user and the bug triagers.
770 */
771 static void intel_detect_preproduction_hw(struct drm_i915_private *dev_priv)
772 {
773 if (IS_HSW_EARLY_SDV(dev_priv) ||
774 IS_SKL_REVID(dev_priv, 0, SKL_REVID_F0))
775 DRM_ERROR("This is a pre-production stepping. "
776 "It may not be fully functional.\n");
777 }
778
779 /**
780 * i915_driver_init_early - setup state not requiring device access
781 * @dev_priv: device private
782 *
783 * Initialize everything that is a "SW-only" state, that is state not
784 * requiring accessing the device or exposing the driver via kernel internal
785 * or userspace interfaces. Example steps belonging here: lock initialization,
786 * system memory allocation, setting up device specific attributes and
787 * function hooks not requiring accessing the device.
788 */
789 static int i915_driver_init_early(struct drm_i915_private *dev_priv,
790 const struct pci_device_id *ent)
791 {
792 const struct intel_device_info *match_info =
793 (struct intel_device_info *)ent->driver_data;
794 struct intel_device_info *device_info;
795 int ret = 0;
796
797 if (i915_inject_load_failure())
798 return -ENODEV;
799
800 /* Setup the write-once "constant" device info */
801 device_info = mkwrite_device_info(dev_priv);
802 memcpy(device_info, match_info, sizeof(*device_info));
803 device_info->device_id = dev_priv->drm.pdev->device;
804
805 BUG_ON(device_info->gen > sizeof(device_info->gen_mask) * BITS_PER_BYTE);
806 device_info->gen_mask = BIT(device_info->gen - 1);
807
808 spin_lock_init(&dev_priv->irq_lock);
809 spin_lock_init(&dev_priv->gpu_error.lock);
810 mutex_init(&dev_priv->backlight_lock);
811 spin_lock_init(&dev_priv->uncore.lock);
812 spin_lock_init(&dev_priv->mm.object_stat_lock);
813 spin_lock_init(&dev_priv->mmio_flip_lock);
814 mutex_init(&dev_priv->sb_lock);
815 mutex_init(&dev_priv->modeset_restore_lock);
816 mutex_init(&dev_priv->av_mutex);
817 mutex_init(&dev_priv->wm.wm_mutex);
818 mutex_init(&dev_priv->pps_mutex);
819
820 i915_memcpy_init_early(dev_priv);
821
822 ret = i915_workqueues_init(dev_priv);
823 if (ret < 0)
824 return ret;
825
826 ret = intel_gvt_init(dev_priv);
827 if (ret < 0)
828 goto err_workqueues;
829
830 /* This must be called before any calls to HAS_PCH_* */
831 intel_detect_pch(&dev_priv->drm);
832
833 intel_pm_setup(&dev_priv->drm);
834 intel_init_dpio(dev_priv);
835 intel_power_domains_init(dev_priv);
836 intel_irq_init(dev_priv);
837 intel_hangcheck_init(dev_priv);
838 intel_init_display_hooks(dev_priv);
839 intel_init_clock_gating_hooks(dev_priv);
840 intel_init_audio_hooks(dev_priv);
841 ret = i915_gem_load_init(&dev_priv->drm);
842 if (ret < 0)
843 goto err_gvt;
844
845 intel_display_crc_init(dev_priv);
846
847 intel_device_info_dump(dev_priv);
848
849 intel_detect_preproduction_hw(dev_priv);
850
851 return 0;
852
853 err_gvt:
854 intel_gvt_cleanup(dev_priv);
855 err_workqueues:
856 i915_workqueues_cleanup(dev_priv);
857 return ret;
858 }
859
860 /**
861 * i915_driver_cleanup_early - cleanup the setup done in i915_driver_init_early()
862 * @dev_priv: device private
863 */
864 static void i915_driver_cleanup_early(struct drm_i915_private *dev_priv)
865 {
866 i915_gem_load_cleanup(&dev_priv->drm);
867 i915_workqueues_cleanup(dev_priv);
868 }
869
870 static int i915_mmio_setup(struct drm_device *dev)
871 {
872 struct drm_i915_private *dev_priv = to_i915(dev);
873 struct pci_dev *pdev = dev_priv->drm.pdev;
874 int mmio_bar;
875 int mmio_size;
876
877 mmio_bar = IS_GEN2(dev_priv) ? 1 : 0;
878 /*
879 * Before gen4, the registers and the GTT are behind different BARs.
880 * However, from gen4 onwards, the registers and the GTT are shared
881 * in the same BAR, so we want to restrict this ioremap from
882 * clobbering the GTT which we want ioremap_wc instead. Fortunately,
883 * the register BAR remains the same size for all the earlier
884 * generations up to Ironlake.
885 */
886 if (INTEL_GEN(dev_priv) < 5)
887 mmio_size = 512 * 1024;
888 else
889 mmio_size = 2 * 1024 * 1024;
890 dev_priv->regs = pci_iomap(pdev, mmio_bar, mmio_size);
891 if (dev_priv->regs == NULL) {
892 DRM_ERROR("failed to map registers\n");
893
894 return -EIO;
895 }
896
897 /* Try to make sure MCHBAR is enabled before poking at it */
898 intel_setup_mchbar(dev);
899
900 return 0;
901 }
902
903 static void i915_mmio_cleanup(struct drm_device *dev)
904 {
905 struct drm_i915_private *dev_priv = to_i915(dev);
906 struct pci_dev *pdev = dev_priv->drm.pdev;
907
908 intel_teardown_mchbar(dev);
909 pci_iounmap(pdev, dev_priv->regs);
910 }
911
912 /**
913 * i915_driver_init_mmio - setup device MMIO
914 * @dev_priv: device private
915 *
916 * Setup minimal device state necessary for MMIO accesses later in the
917 * initialization sequence. The setup here should avoid any other device-wide
918 * side effects or exposing the driver via kernel internal or user space
919 * interfaces.
920 */
921 static int i915_driver_init_mmio(struct drm_i915_private *dev_priv)
922 {
923 struct drm_device *dev = &dev_priv->drm;
924 int ret;
925
926 if (i915_inject_load_failure())
927 return -ENODEV;
928
929 if (i915_get_bridge_dev(dev))
930 return -EIO;
931
932 ret = i915_mmio_setup(dev);
933 if (ret < 0)
934 goto put_bridge;
935
936 intel_uncore_init(dev_priv);
937
938 return 0;
939
940 put_bridge:
941 pci_dev_put(dev_priv->bridge_dev);
942
943 return ret;
944 }
945
946 /**
947 * i915_driver_cleanup_mmio - cleanup the setup done in i915_driver_init_mmio()
948 * @dev_priv: device private
949 */
950 static void i915_driver_cleanup_mmio(struct drm_i915_private *dev_priv)
951 {
952 struct drm_device *dev = &dev_priv->drm;
953
954 intel_uncore_fini(dev_priv);
955 i915_mmio_cleanup(dev);
956 pci_dev_put(dev_priv->bridge_dev);
957 }
958
959 static void intel_sanitize_options(struct drm_i915_private *dev_priv)
960 {
961 i915.enable_execlists =
962 intel_sanitize_enable_execlists(dev_priv,
963 i915.enable_execlists);
964
965 /*
966 * i915.enable_ppgtt is read-only, so do an early pass to validate the
967 * user's requested state against the hardware/driver capabilities. We
968 * do this now so that we can print out any log messages once rather
969 * than every time we check intel_enable_ppgtt().
970 */
971 i915.enable_ppgtt =
972 intel_sanitize_enable_ppgtt(dev_priv, i915.enable_ppgtt);
973 DRM_DEBUG_DRIVER("ppgtt mode: %i\n", i915.enable_ppgtt);
974
975 i915.semaphores = intel_sanitize_semaphores(dev_priv, i915.semaphores);
976 DRM_DEBUG_DRIVER("use GPU sempahores? %s\n", yesno(i915.semaphores));
977 }
978
979 /**
980 * i915_driver_init_hw - setup state requiring device access
981 * @dev_priv: device private
982 *
983 * Setup state that requires accessing the device, but doesn't require
984 * exposing the driver via kernel internal or userspace interfaces.
985 */
986 static int i915_driver_init_hw(struct drm_i915_private *dev_priv)
987 {
988 struct pci_dev *pdev = dev_priv->drm.pdev;
989 int ret;
990
991 if (i915_inject_load_failure())
992 return -ENODEV;
993
994 intel_device_info_runtime_init(dev_priv);
995
996 intel_sanitize_options(dev_priv);
997
998 ret = i915_ggtt_probe_hw(dev_priv);
999 if (ret)
1000 return ret;
1001
1002 /* WARNING: Apparently we must kick fbdev drivers before vgacon,
1003 * otherwise the vga fbdev driver falls over. */
1004 ret = i915_kick_out_firmware_fb(dev_priv);
1005 if (ret) {
1006 DRM_ERROR("failed to remove conflicting framebuffer drivers\n");
1007 goto out_ggtt;
1008 }
1009
1010 ret = i915_kick_out_vgacon(dev_priv);
1011 if (ret) {
1012 DRM_ERROR("failed to remove conflicting VGA console\n");
1013 goto out_ggtt;
1014 }
1015
1016 ret = i915_ggtt_init_hw(dev_priv);
1017 if (ret)
1018 return ret;
1019
1020 ret = i915_ggtt_enable_hw(dev_priv);
1021 if (ret) {
1022 DRM_ERROR("failed to enable GGTT\n");
1023 goto out_ggtt;
1024 }
1025
1026 pci_set_master(pdev);
1027
1028 /* overlay on gen2 is broken and can't address above 1G */
1029 if (IS_GEN2(dev_priv)) {
1030 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(30));
1031 if (ret) {
1032 DRM_ERROR("failed to set DMA mask\n");
1033
1034 goto out_ggtt;
1035 }
1036 }
1037
1038 /* 965GM sometimes incorrectly writes to hardware status page (HWS)
1039 * using 32bit addressing, overwriting memory if HWS is located
1040 * above 4GB.
1041 *
1042 * The documentation also mentions an issue with undefined
1043 * behaviour if any general state is accessed within a page above 4GB,
1044 * which also needs to be handled carefully.
1045 */
1046 if (IS_BROADWATER(dev_priv) || IS_CRESTLINE(dev_priv)) {
1047 ret = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1048
1049 if (ret) {
1050 DRM_ERROR("failed to set DMA mask\n");
1051
1052 goto out_ggtt;
1053 }
1054 }
1055
1056 pm_qos_add_request(&dev_priv->pm_qos, PM_QOS_CPU_DMA_LATENCY,
1057 PM_QOS_DEFAULT_VALUE);
1058
1059 intel_uncore_sanitize(dev_priv);
1060
1061 intel_opregion_setup(dev_priv);
1062
1063 i915_gem_load_init_fences(dev_priv);
1064
1065 /* On the 945G/GM, the chipset reports the MSI capability on the
1066 * integrated graphics even though the support isn't actually there
1067 * according to the published specs. It doesn't appear to function
1068 * correctly in testing on 945G.
1069 * This may be a side effect of MSI having been made available for PEG
1070 * and the registers being closely associated.
1071 *
1072 * According to chipset errata, on the 965GM, MSI interrupts may
1073 * be lost or delayed, but we use them anyways to avoid
1074 * stuck interrupts on some machines.
1075 */
1076 if (!IS_I945G(dev_priv) && !IS_I945GM(dev_priv)) {
1077 if (pci_enable_msi(pdev) < 0)
1078 DRM_DEBUG_DRIVER("can't enable MSI");
1079 }
1080
1081 return 0;
1082
1083 out_ggtt:
1084 i915_ggtt_cleanup_hw(dev_priv);
1085
1086 return ret;
1087 }
1088
1089 /**
1090 * i915_driver_cleanup_hw - cleanup the setup done in i915_driver_init_hw()
1091 * @dev_priv: device private
1092 */
1093 static void i915_driver_cleanup_hw(struct drm_i915_private *dev_priv)
1094 {
1095 struct pci_dev *pdev = dev_priv->drm.pdev;
1096
1097 if (pdev->msi_enabled)
1098 pci_disable_msi(pdev);
1099
1100 pm_qos_remove_request(&dev_priv->pm_qos);
1101 i915_ggtt_cleanup_hw(dev_priv);
1102 }
1103
1104 /**
1105 * i915_driver_register - register the driver with the rest of the system
1106 * @dev_priv: device private
1107 *
1108 * Perform any steps necessary to make the driver available via kernel
1109 * internal or userspace interfaces.
1110 */
1111 static void i915_driver_register(struct drm_i915_private *dev_priv)
1112 {
1113 struct drm_device *dev = &dev_priv->drm;
1114
1115 i915_gem_shrinker_init(dev_priv);
1116
1117 /*
1118 * Notify a valid surface after modesetting,
1119 * when running inside a VM.
1120 */
1121 if (intel_vgpu_active(dev_priv))
1122 I915_WRITE(vgtif_reg(display_ready), VGT_DRV_DISPLAY_READY);
1123
1124 /* Reveal our presence to userspace */
1125 if (drm_dev_register(dev, 0) == 0) {
1126 i915_debugfs_register(dev_priv);
1127 i915_guc_register(dev_priv);
1128 i915_setup_sysfs(dev_priv);
1129 } else
1130 DRM_ERROR("Failed to register driver for userspace access!\n");
1131
1132 if (INTEL_INFO(dev_priv)->num_pipes) {
1133 /* Must be done after probing outputs */
1134 intel_opregion_register(dev_priv);
1135 acpi_video_register();
1136 }
1137
1138 if (IS_GEN5(dev_priv))
1139 intel_gpu_ips_init(dev_priv);
1140
1141 i915_audio_component_init(dev_priv);
1142
1143 /*
1144 * Some ports require correctly set-up hpd registers for detection to
1145 * work properly (leading to ghost connected connector status), e.g. VGA
1146 * on gm45. Hence we can only set up the initial fbdev config after hpd
1147 * irqs are fully enabled. We do it last so that the async config
1148 * cannot run before the connectors are registered.
1149 */
1150 intel_fbdev_initial_config_async(dev);
1151 }
1152
1153 /**
1154 * i915_driver_unregister - cleanup the registration done in i915_driver_regiser()
1155 * @dev_priv: device private
1156 */
1157 static void i915_driver_unregister(struct drm_i915_private *dev_priv)
1158 {
1159 i915_audio_component_cleanup(dev_priv);
1160
1161 intel_gpu_ips_teardown();
1162 acpi_video_unregister();
1163 intel_opregion_unregister(dev_priv);
1164
1165 i915_teardown_sysfs(dev_priv);
1166 i915_guc_unregister(dev_priv);
1167 i915_debugfs_unregister(dev_priv);
1168 drm_dev_unregister(&dev_priv->drm);
1169
1170 i915_gem_shrinker_cleanup(dev_priv);
1171 }
1172
1173 /**
1174 * i915_driver_load - setup chip and create an initial config
1175 * @pdev: PCI device
1176 * @ent: matching PCI ID entry
1177 *
1178 * The driver load routine has to do several things:
1179 * - drive output discovery via intel_modeset_init()
1180 * - initialize the memory manager
1181 * - allocate initial config memory
1182 * - setup the DRM framebuffer with the allocated memory
1183 */
1184 int i915_driver_load(struct pci_dev *pdev, const struct pci_device_id *ent)
1185 {
1186 struct drm_i915_private *dev_priv;
1187 int ret;
1188
1189 if (i915.nuclear_pageflip)
1190 driver.driver_features |= DRIVER_ATOMIC;
1191
1192 ret = -ENOMEM;
1193 dev_priv = kzalloc(sizeof(*dev_priv), GFP_KERNEL);
1194 if (dev_priv)
1195 ret = drm_dev_init(&dev_priv->drm, &driver, &pdev->dev);
1196 if (ret) {
1197 dev_printk(KERN_ERR, &pdev->dev,
1198 "[" DRM_NAME ":%s] allocation failed\n", __func__);
1199 kfree(dev_priv);
1200 return ret;
1201 }
1202
1203 dev_priv->drm.pdev = pdev;
1204 dev_priv->drm.dev_private = dev_priv;
1205
1206 ret = pci_enable_device(pdev);
1207 if (ret)
1208 goto out_free_priv;
1209
1210 pci_set_drvdata(pdev, &dev_priv->drm);
1211
1212 ret = i915_driver_init_early(dev_priv, ent);
1213 if (ret < 0)
1214 goto out_pci_disable;
1215
1216 intel_runtime_pm_get(dev_priv);
1217
1218 ret = i915_driver_init_mmio(dev_priv);
1219 if (ret < 0)
1220 goto out_runtime_pm_put;
1221
1222 ret = i915_driver_init_hw(dev_priv);
1223 if (ret < 0)
1224 goto out_cleanup_mmio;
1225
1226 /*
1227 * TODO: move the vblank init and parts of modeset init steps into one
1228 * of the i915_driver_init_/i915_driver_register functions according
1229 * to the role/effect of the given init step.
1230 */
1231 if (INTEL_INFO(dev_priv)->num_pipes) {
1232 ret = drm_vblank_init(&dev_priv->drm,
1233 INTEL_INFO(dev_priv)->num_pipes);
1234 if (ret)
1235 goto out_cleanup_hw;
1236 }
1237
1238 ret = i915_load_modeset_init(&dev_priv->drm);
1239 if (ret < 0)
1240 goto out_cleanup_vblank;
1241
1242 i915_driver_register(dev_priv);
1243
1244 intel_runtime_pm_enable(dev_priv);
1245
1246 /* Everything is in place, we can now relax! */
1247 DRM_INFO("Initialized %s %d.%d.%d %s for %s on minor %d\n",
1248 driver.name, driver.major, driver.minor, driver.patchlevel,
1249 driver.date, pci_name(pdev), dev_priv->drm.primary->index);
1250 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG))
1251 DRM_INFO("DRM_I915_DEBUG enabled\n");
1252 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
1253 DRM_INFO("DRM_I915_DEBUG_GEM enabled\n");
1254
1255 intel_runtime_pm_put(dev_priv);
1256
1257 return 0;
1258
1259 out_cleanup_vblank:
1260 drm_vblank_cleanup(&dev_priv->drm);
1261 out_cleanup_hw:
1262 i915_driver_cleanup_hw(dev_priv);
1263 out_cleanup_mmio:
1264 i915_driver_cleanup_mmio(dev_priv);
1265 out_runtime_pm_put:
1266 intel_runtime_pm_put(dev_priv);
1267 i915_driver_cleanup_early(dev_priv);
1268 out_pci_disable:
1269 pci_disable_device(pdev);
1270 out_free_priv:
1271 i915_load_error(dev_priv, "Device initialization failed (%d)\n", ret);
1272 drm_dev_unref(&dev_priv->drm);
1273 return ret;
1274 }
1275
1276 void i915_driver_unload(struct drm_device *dev)
1277 {
1278 struct drm_i915_private *dev_priv = to_i915(dev);
1279 struct pci_dev *pdev = dev_priv->drm.pdev;
1280
1281 intel_fbdev_fini(dev);
1282
1283 if (i915_gem_suspend(dev))
1284 DRM_ERROR("failed to idle hardware; continuing to unload!\n");
1285
1286 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1287
1288 i915_driver_unregister(dev_priv);
1289
1290 drm_vblank_cleanup(dev);
1291
1292 intel_modeset_cleanup(dev);
1293
1294 /*
1295 * free the memory space allocated for the child device
1296 * config parsed from VBT
1297 */
1298 if (dev_priv->vbt.child_dev && dev_priv->vbt.child_dev_num) {
1299 kfree(dev_priv->vbt.child_dev);
1300 dev_priv->vbt.child_dev = NULL;
1301 dev_priv->vbt.child_dev_num = 0;
1302 }
1303 kfree(dev_priv->vbt.sdvo_lvds_vbt_mode);
1304 dev_priv->vbt.sdvo_lvds_vbt_mode = NULL;
1305 kfree(dev_priv->vbt.lfp_lvds_vbt_mode);
1306 dev_priv->vbt.lfp_lvds_vbt_mode = NULL;
1307
1308 vga_switcheroo_unregister_client(pdev);
1309 vga_client_register(pdev, NULL, NULL, NULL);
1310
1311 intel_csr_ucode_fini(dev_priv);
1312
1313 /* Free error state after interrupts are fully disabled. */
1314 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
1315 i915_destroy_error_state(dev);
1316
1317 /* Flush any outstanding unpin_work. */
1318 drain_workqueue(dev_priv->wq);
1319
1320 intel_guc_fini(dev);
1321 i915_gem_fini(dev_priv);
1322 intel_fbc_cleanup_cfb(dev_priv);
1323
1324 intel_power_domains_fini(dev_priv);
1325
1326 i915_driver_cleanup_hw(dev_priv);
1327 i915_driver_cleanup_mmio(dev_priv);
1328
1329 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1330
1331 i915_driver_cleanup_early(dev_priv);
1332 }
1333
1334 static int i915_driver_open(struct drm_device *dev, struct drm_file *file)
1335 {
1336 int ret;
1337
1338 ret = i915_gem_open(dev, file);
1339 if (ret)
1340 return ret;
1341
1342 return 0;
1343 }
1344
1345 /**
1346 * i915_driver_lastclose - clean up after all DRM clients have exited
1347 * @dev: DRM device
1348 *
1349 * Take care of cleaning up after all DRM clients have exited. In the
1350 * mode setting case, we want to restore the kernel's initial mode (just
1351 * in case the last client left us in a bad state).
1352 *
1353 * Additionally, in the non-mode setting case, we'll tear down the GTT
1354 * and DMA structures, since the kernel won't be using them, and clea
1355 * up any GEM state.
1356 */
1357 static void i915_driver_lastclose(struct drm_device *dev)
1358 {
1359 intel_fbdev_restore_mode(dev);
1360 vga_switcheroo_process_delayed_switch();
1361 }
1362
1363 static void i915_driver_preclose(struct drm_device *dev, struct drm_file *file)
1364 {
1365 mutex_lock(&dev->struct_mutex);
1366 i915_gem_context_close(dev, file);
1367 i915_gem_release(dev, file);
1368 mutex_unlock(&dev->struct_mutex);
1369 }
1370
1371 static void i915_driver_postclose(struct drm_device *dev, struct drm_file *file)
1372 {
1373 struct drm_i915_file_private *file_priv = file->driver_priv;
1374
1375 kfree(file_priv);
1376 }
1377
1378 static void intel_suspend_encoders(struct drm_i915_private *dev_priv)
1379 {
1380 struct drm_device *dev = &dev_priv->drm;
1381 struct intel_encoder *encoder;
1382
1383 drm_modeset_lock_all(dev);
1384 for_each_intel_encoder(dev, encoder)
1385 if (encoder->suspend)
1386 encoder->suspend(encoder);
1387 drm_modeset_unlock_all(dev);
1388 }
1389
1390 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
1391 bool rpm_resume);
1392 static int vlv_suspend_complete(struct drm_i915_private *dev_priv);
1393
1394 static bool suspend_to_idle(struct drm_i915_private *dev_priv)
1395 {
1396 #if IS_ENABLED(CONFIG_ACPI_SLEEP)
1397 if (acpi_target_system_state() < ACPI_STATE_S3)
1398 return true;
1399 #endif
1400 return false;
1401 }
1402
1403 static int i915_drm_suspend(struct drm_device *dev)
1404 {
1405 struct drm_i915_private *dev_priv = to_i915(dev);
1406 struct pci_dev *pdev = dev_priv->drm.pdev;
1407 pci_power_t opregion_target_state;
1408 int error;
1409
1410 /* ignore lid events during suspend */
1411 mutex_lock(&dev_priv->modeset_restore_lock);
1412 dev_priv->modeset_restore = MODESET_SUSPENDED;
1413 mutex_unlock(&dev_priv->modeset_restore_lock);
1414
1415 disable_rpm_wakeref_asserts(dev_priv);
1416
1417 /* We do a lot of poking in a lot of registers, make sure they work
1418 * properly. */
1419 intel_display_set_init_power(dev_priv, true);
1420
1421 drm_kms_helper_poll_disable(dev);
1422
1423 pci_save_state(pdev);
1424
1425 error = i915_gem_suspend(dev);
1426 if (error) {
1427 dev_err(&pdev->dev,
1428 "GEM idle failed, resume might fail\n");
1429 goto out;
1430 }
1431
1432 intel_guc_suspend(dev);
1433
1434 intel_display_suspend(dev);
1435
1436 intel_dp_mst_suspend(dev);
1437
1438 intel_runtime_pm_disable_interrupts(dev_priv);
1439 intel_hpd_cancel_work(dev_priv);
1440
1441 intel_suspend_encoders(dev_priv);
1442
1443 intel_suspend_hw(dev_priv);
1444
1445 i915_gem_suspend_gtt_mappings(dev_priv);
1446
1447 i915_save_state(dev);
1448
1449 opregion_target_state = suspend_to_idle(dev_priv) ? PCI_D1 : PCI_D3cold;
1450 intel_opregion_notify_adapter(dev_priv, opregion_target_state);
1451
1452 intel_uncore_forcewake_reset(dev_priv, false);
1453 intel_opregion_unregister(dev_priv);
1454
1455 intel_fbdev_set_suspend(dev, FBINFO_STATE_SUSPENDED, true);
1456
1457 dev_priv->suspend_count++;
1458
1459 intel_csr_ucode_suspend(dev_priv);
1460
1461 out:
1462 enable_rpm_wakeref_asserts(dev_priv);
1463
1464 return error;
1465 }
1466
1467 static int i915_drm_suspend_late(struct drm_device *dev, bool hibernation)
1468 {
1469 struct drm_i915_private *dev_priv = to_i915(dev);
1470 struct pci_dev *pdev = dev_priv->drm.pdev;
1471 bool fw_csr;
1472 int ret;
1473
1474 disable_rpm_wakeref_asserts(dev_priv);
1475
1476 intel_display_set_init_power(dev_priv, false);
1477
1478 fw_csr = !IS_BROXTON(dev_priv) &&
1479 suspend_to_idle(dev_priv) && dev_priv->csr.dmc_payload;
1480 /*
1481 * In case of firmware assisted context save/restore don't manually
1482 * deinit the power domains. This also means the CSR/DMC firmware will
1483 * stay active, it will power down any HW resources as required and
1484 * also enable deeper system power states that would be blocked if the
1485 * firmware was inactive.
1486 */
1487 if (!fw_csr)
1488 intel_power_domains_suspend(dev_priv);
1489
1490 ret = 0;
1491 if (IS_BROXTON(dev_priv))
1492 bxt_enable_dc9(dev_priv);
1493 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1494 hsw_enable_pc8(dev_priv);
1495 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1496 ret = vlv_suspend_complete(dev_priv);
1497
1498 if (ret) {
1499 DRM_ERROR("Suspend complete failed: %d\n", ret);
1500 if (!fw_csr)
1501 intel_power_domains_init_hw(dev_priv, true);
1502
1503 goto out;
1504 }
1505
1506 pci_disable_device(pdev);
1507 /*
1508 * During hibernation on some platforms the BIOS may try to access
1509 * the device even though it's already in D3 and hang the machine. So
1510 * leave the device in D0 on those platforms and hope the BIOS will
1511 * power down the device properly. The issue was seen on multiple old
1512 * GENs with different BIOS vendors, so having an explicit blacklist
1513 * is inpractical; apply the workaround on everything pre GEN6. The
1514 * platforms where the issue was seen:
1515 * Lenovo Thinkpad X301, X61s, X60, T60, X41
1516 * Fujitsu FSC S7110
1517 * Acer Aspire 1830T
1518 */
1519 if (!(hibernation && INTEL_GEN(dev_priv) < 6))
1520 pci_set_power_state(pdev, PCI_D3hot);
1521
1522 dev_priv->suspended_to_idle = suspend_to_idle(dev_priv);
1523
1524 out:
1525 enable_rpm_wakeref_asserts(dev_priv);
1526
1527 return ret;
1528 }
1529
1530 int i915_suspend_switcheroo(struct drm_device *dev, pm_message_t state)
1531 {
1532 int error;
1533
1534 if (!dev) {
1535 DRM_ERROR("dev: %p\n", dev);
1536 DRM_ERROR("DRM not initialized, aborting suspend.\n");
1537 return -ENODEV;
1538 }
1539
1540 if (WARN_ON_ONCE(state.event != PM_EVENT_SUSPEND &&
1541 state.event != PM_EVENT_FREEZE))
1542 return -EINVAL;
1543
1544 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1545 return 0;
1546
1547 error = i915_drm_suspend(dev);
1548 if (error)
1549 return error;
1550
1551 return i915_drm_suspend_late(dev, false);
1552 }
1553
1554 static int i915_drm_resume(struct drm_device *dev)
1555 {
1556 struct drm_i915_private *dev_priv = to_i915(dev);
1557 int ret;
1558
1559 disable_rpm_wakeref_asserts(dev_priv);
1560 intel_sanitize_gt_powersave(dev_priv);
1561
1562 ret = i915_ggtt_enable_hw(dev_priv);
1563 if (ret)
1564 DRM_ERROR("failed to re-enable GGTT\n");
1565
1566 intel_csr_ucode_resume(dev_priv);
1567
1568 i915_gem_resume(dev);
1569
1570 i915_restore_state(dev);
1571 intel_pps_unlock_regs_wa(dev_priv);
1572 intel_opregion_setup(dev_priv);
1573
1574 intel_init_pch_refclk(dev);
1575 drm_mode_config_reset(dev);
1576
1577 /*
1578 * Interrupts have to be enabled before any batches are run. If not the
1579 * GPU will hang. i915_gem_init_hw() will initiate batches to
1580 * update/restore the context.
1581 *
1582 * Modeset enabling in intel_modeset_init_hw() also needs working
1583 * interrupts.
1584 */
1585 intel_runtime_pm_enable_interrupts(dev_priv);
1586
1587 mutex_lock(&dev->struct_mutex);
1588 if (i915_gem_init_hw(dev)) {
1589 DRM_ERROR("failed to re-initialize GPU, declaring wedged!\n");
1590 i915_gem_set_wedged(dev_priv);
1591 }
1592 mutex_unlock(&dev->struct_mutex);
1593
1594 intel_guc_resume(dev);
1595
1596 intel_modeset_init_hw(dev);
1597
1598 spin_lock_irq(&dev_priv->irq_lock);
1599 if (dev_priv->display.hpd_irq_setup)
1600 dev_priv->display.hpd_irq_setup(dev_priv);
1601 spin_unlock_irq(&dev_priv->irq_lock);
1602
1603 intel_dp_mst_resume(dev);
1604
1605 intel_display_resume(dev);
1606
1607 drm_kms_helper_poll_enable(dev);
1608
1609 /*
1610 * ... but also need to make sure that hotplug processing
1611 * doesn't cause havoc. Like in the driver load code we don't
1612 * bother with the tiny race here where we might loose hotplug
1613 * notifications.
1614 * */
1615 intel_hpd_init(dev_priv);
1616
1617 intel_opregion_register(dev_priv);
1618
1619 intel_fbdev_set_suspend(dev, FBINFO_STATE_RUNNING, false);
1620
1621 mutex_lock(&dev_priv->modeset_restore_lock);
1622 dev_priv->modeset_restore = MODESET_DONE;
1623 mutex_unlock(&dev_priv->modeset_restore_lock);
1624
1625 intel_opregion_notify_adapter(dev_priv, PCI_D0);
1626
1627 intel_autoenable_gt_powersave(dev_priv);
1628
1629 enable_rpm_wakeref_asserts(dev_priv);
1630
1631 return 0;
1632 }
1633
1634 static int i915_drm_resume_early(struct drm_device *dev)
1635 {
1636 struct drm_i915_private *dev_priv = to_i915(dev);
1637 struct pci_dev *pdev = dev_priv->drm.pdev;
1638 int ret;
1639
1640 /*
1641 * We have a resume ordering issue with the snd-hda driver also
1642 * requiring our device to be power up. Due to the lack of a
1643 * parent/child relationship we currently solve this with an early
1644 * resume hook.
1645 *
1646 * FIXME: This should be solved with a special hdmi sink device or
1647 * similar so that power domains can be employed.
1648 */
1649
1650 /*
1651 * Note that we need to set the power state explicitly, since we
1652 * powered off the device during freeze and the PCI core won't power
1653 * it back up for us during thaw. Powering off the device during
1654 * freeze is not a hard requirement though, and during the
1655 * suspend/resume phases the PCI core makes sure we get here with the
1656 * device powered on. So in case we change our freeze logic and keep
1657 * the device powered we can also remove the following set power state
1658 * call.
1659 */
1660 ret = pci_set_power_state(pdev, PCI_D0);
1661 if (ret) {
1662 DRM_ERROR("failed to set PCI D0 power state (%d)\n", ret);
1663 goto out;
1664 }
1665
1666 /*
1667 * Note that pci_enable_device() first enables any parent bridge
1668 * device and only then sets the power state for this device. The
1669 * bridge enabling is a nop though, since bridge devices are resumed
1670 * first. The order of enabling power and enabling the device is
1671 * imposed by the PCI core as described above, so here we preserve the
1672 * same order for the freeze/thaw phases.
1673 *
1674 * TODO: eventually we should remove pci_disable_device() /
1675 * pci_enable_enable_device() from suspend/resume. Due to how they
1676 * depend on the device enable refcount we can't anyway depend on them
1677 * disabling/enabling the device.
1678 */
1679 if (pci_enable_device(pdev)) {
1680 ret = -EIO;
1681 goto out;
1682 }
1683
1684 pci_set_master(pdev);
1685
1686 disable_rpm_wakeref_asserts(dev_priv);
1687
1688 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1689 ret = vlv_resume_prepare(dev_priv, false);
1690 if (ret)
1691 DRM_ERROR("Resume prepare failed: %d, continuing anyway\n",
1692 ret);
1693
1694 intel_uncore_early_sanitize(dev_priv, true);
1695
1696 if (IS_BROXTON(dev_priv)) {
1697 if (!dev_priv->suspended_to_idle)
1698 gen9_sanitize_dc_state(dev_priv);
1699 bxt_disable_dc9(dev_priv);
1700 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
1701 hsw_disable_pc8(dev_priv);
1702 }
1703
1704 intel_uncore_sanitize(dev_priv);
1705
1706 if (IS_BROXTON(dev_priv) ||
1707 !(dev_priv->suspended_to_idle && dev_priv->csr.dmc_payload))
1708 intel_power_domains_init_hw(dev_priv, true);
1709
1710 enable_rpm_wakeref_asserts(dev_priv);
1711
1712 out:
1713 dev_priv->suspended_to_idle = false;
1714
1715 return ret;
1716 }
1717
1718 int i915_resume_switcheroo(struct drm_device *dev)
1719 {
1720 int ret;
1721
1722 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1723 return 0;
1724
1725 ret = i915_drm_resume_early(dev);
1726 if (ret)
1727 return ret;
1728
1729 return i915_drm_resume(dev);
1730 }
1731
1732 static void disable_engines_irq(struct drm_i915_private *dev_priv)
1733 {
1734 struct intel_engine_cs *engine;
1735 enum intel_engine_id id;
1736
1737 /* Ensure irq handler finishes, and not run again. */
1738 disable_irq(dev_priv->drm.irq);
1739 for_each_engine(engine, dev_priv, id)
1740 tasklet_kill(&engine->irq_tasklet);
1741 }
1742
1743 static void enable_engines_irq(struct drm_i915_private *dev_priv)
1744 {
1745 enable_irq(dev_priv->drm.irq);
1746 }
1747
1748 /**
1749 * i915_reset - reset chip after a hang
1750 * @dev: drm device to reset
1751 *
1752 * Reset the chip. Useful if a hang is detected. Marks the device as wedged
1753 * on failure.
1754 *
1755 * Caller must hold the struct_mutex.
1756 *
1757 * Procedure is fairly simple:
1758 * - reset the chip using the reset reg
1759 * - re-init context state
1760 * - re-init hardware status page
1761 * - re-init ring buffer
1762 * - re-init interrupt state
1763 * - re-init display
1764 */
1765 void i915_reset(struct drm_i915_private *dev_priv)
1766 {
1767 struct drm_device *dev = &dev_priv->drm;
1768 struct i915_gpu_error *error = &dev_priv->gpu_error;
1769 int ret;
1770
1771 lockdep_assert_held(&dev->struct_mutex);
1772
1773 if (!test_and_clear_bit(I915_RESET_IN_PROGRESS, &error->flags))
1774 return;
1775
1776 /* Clear any previous failed attempts at recovery. Time to try again. */
1777 __clear_bit(I915_WEDGED, &error->flags);
1778 error->reset_count++;
1779
1780 pr_notice("drm/i915: Resetting chip after gpu hang\n");
1781
1782 disable_engines_irq(dev_priv);
1783 ret = intel_gpu_reset(dev_priv, ALL_ENGINES);
1784 enable_engines_irq(dev_priv);
1785
1786 if (ret) {
1787 if (ret != -ENODEV)
1788 DRM_ERROR("Failed to reset chip: %i\n", ret);
1789 else
1790 DRM_DEBUG_DRIVER("GPU reset disabled\n");
1791 goto error;
1792 }
1793
1794 i915_gem_reset(dev_priv);
1795 intel_overlay_reset(dev_priv);
1796
1797 /* Ok, now get things going again... */
1798
1799 /*
1800 * Everything depends on having the GTT running, so we need to start
1801 * there. Fortunately we don't need to do this unless we reset the
1802 * chip at a PCI level.
1803 *
1804 * Next we need to restore the context, but we don't use those
1805 * yet either...
1806 *
1807 * Ring buffer needs to be re-initialized in the KMS case, or if X
1808 * was running at the time of the reset (i.e. we weren't VT
1809 * switched away).
1810 */
1811 ret = i915_gem_init_hw(dev);
1812 if (ret) {
1813 DRM_ERROR("Failed hw init on reset %d\n", ret);
1814 goto error;
1815 }
1816
1817 wakeup:
1818 wake_up_bit(&error->flags, I915_RESET_IN_PROGRESS);
1819 return;
1820
1821 error:
1822 i915_gem_set_wedged(dev_priv);
1823 goto wakeup;
1824 }
1825
1826 static int i915_pm_suspend(struct device *kdev)
1827 {
1828 struct pci_dev *pdev = to_pci_dev(kdev);
1829 struct drm_device *dev = pci_get_drvdata(pdev);
1830
1831 if (!dev) {
1832 dev_err(kdev, "DRM not initialized, aborting suspend.\n");
1833 return -ENODEV;
1834 }
1835
1836 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1837 return 0;
1838
1839 return i915_drm_suspend(dev);
1840 }
1841
1842 static int i915_pm_suspend_late(struct device *kdev)
1843 {
1844 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1845
1846 /*
1847 * We have a suspend ordering issue with the snd-hda driver also
1848 * requiring our device to be power up. Due to the lack of a
1849 * parent/child relationship we currently solve this with an late
1850 * suspend hook.
1851 *
1852 * FIXME: This should be solved with a special hdmi sink device or
1853 * similar so that power domains can be employed.
1854 */
1855 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1856 return 0;
1857
1858 return i915_drm_suspend_late(dev, false);
1859 }
1860
1861 static int i915_pm_poweroff_late(struct device *kdev)
1862 {
1863 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1864
1865 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1866 return 0;
1867
1868 return i915_drm_suspend_late(dev, true);
1869 }
1870
1871 static int i915_pm_resume_early(struct device *kdev)
1872 {
1873 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1874
1875 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1876 return 0;
1877
1878 return i915_drm_resume_early(dev);
1879 }
1880
1881 static int i915_pm_resume(struct device *kdev)
1882 {
1883 struct drm_device *dev = &kdev_to_i915(kdev)->drm;
1884
1885 if (dev->switch_power_state == DRM_SWITCH_POWER_OFF)
1886 return 0;
1887
1888 return i915_drm_resume(dev);
1889 }
1890
1891 /* freeze: before creating the hibernation_image */
1892 static int i915_pm_freeze(struct device *kdev)
1893 {
1894 int ret;
1895
1896 ret = i915_pm_suspend(kdev);
1897 if (ret)
1898 return ret;
1899
1900 ret = i915_gem_freeze(kdev_to_i915(kdev));
1901 if (ret)
1902 return ret;
1903
1904 return 0;
1905 }
1906
1907 static int i915_pm_freeze_late(struct device *kdev)
1908 {
1909 int ret;
1910
1911 ret = i915_pm_suspend_late(kdev);
1912 if (ret)
1913 return ret;
1914
1915 ret = i915_gem_freeze_late(kdev_to_i915(kdev));
1916 if (ret)
1917 return ret;
1918
1919 return 0;
1920 }
1921
1922 /* thaw: called after creating the hibernation image, but before turning off. */
1923 static int i915_pm_thaw_early(struct device *kdev)
1924 {
1925 return i915_pm_resume_early(kdev);
1926 }
1927
1928 static int i915_pm_thaw(struct device *kdev)
1929 {
1930 return i915_pm_resume(kdev);
1931 }
1932
1933 /* restore: called after loading the hibernation image. */
1934 static int i915_pm_restore_early(struct device *kdev)
1935 {
1936 return i915_pm_resume_early(kdev);
1937 }
1938
1939 static int i915_pm_restore(struct device *kdev)
1940 {
1941 return i915_pm_resume(kdev);
1942 }
1943
1944 /*
1945 * Save all Gunit registers that may be lost after a D3 and a subsequent
1946 * S0i[R123] transition. The list of registers needing a save/restore is
1947 * defined in the VLV2_S0IXRegs document. This documents marks all Gunit
1948 * registers in the following way:
1949 * - Driver: saved/restored by the driver
1950 * - Punit : saved/restored by the Punit firmware
1951 * - No, w/o marking: no need to save/restore, since the register is R/O or
1952 * used internally by the HW in a way that doesn't depend
1953 * keeping the content across a suspend/resume.
1954 * - Debug : used for debugging
1955 *
1956 * We save/restore all registers marked with 'Driver', with the following
1957 * exceptions:
1958 * - Registers out of use, including also registers marked with 'Debug'.
1959 * These have no effect on the driver's operation, so we don't save/restore
1960 * them to reduce the overhead.
1961 * - Registers that are fully setup by an initialization function called from
1962 * the resume path. For example many clock gating and RPS/RC6 registers.
1963 * - Registers that provide the right functionality with their reset defaults.
1964 *
1965 * TODO: Except for registers that based on the above 3 criteria can be safely
1966 * ignored, we save/restore all others, practically treating the HW context as
1967 * a black-box for the driver. Further investigation is needed to reduce the
1968 * saved/restored registers even further, by following the same 3 criteria.
1969 */
1970 static void vlv_save_gunit_s0ix_state(struct drm_i915_private *dev_priv)
1971 {
1972 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
1973 int i;
1974
1975 /* GAM 0x4000-0x4770 */
1976 s->wr_watermark = I915_READ(GEN7_WR_WATERMARK);
1977 s->gfx_prio_ctrl = I915_READ(GEN7_GFX_PRIO_CTRL);
1978 s->arb_mode = I915_READ(ARB_MODE);
1979 s->gfx_pend_tlb0 = I915_READ(GEN7_GFX_PEND_TLB0);
1980 s->gfx_pend_tlb1 = I915_READ(GEN7_GFX_PEND_TLB1);
1981
1982 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
1983 s->lra_limits[i] = I915_READ(GEN7_LRA_LIMITS(i));
1984
1985 s->media_max_req_count = I915_READ(GEN7_MEDIA_MAX_REQ_COUNT);
1986 s->gfx_max_req_count = I915_READ(GEN7_GFX_MAX_REQ_COUNT);
1987
1988 s->render_hwsp = I915_READ(RENDER_HWS_PGA_GEN7);
1989 s->ecochk = I915_READ(GAM_ECOCHK);
1990 s->bsd_hwsp = I915_READ(BSD_HWS_PGA_GEN7);
1991 s->blt_hwsp = I915_READ(BLT_HWS_PGA_GEN7);
1992
1993 s->tlb_rd_addr = I915_READ(GEN7_TLB_RD_ADDR);
1994
1995 /* MBC 0x9024-0x91D0, 0x8500 */
1996 s->g3dctl = I915_READ(VLV_G3DCTL);
1997 s->gsckgctl = I915_READ(VLV_GSCKGCTL);
1998 s->mbctl = I915_READ(GEN6_MBCTL);
1999
2000 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2001 s->ucgctl1 = I915_READ(GEN6_UCGCTL1);
2002 s->ucgctl3 = I915_READ(GEN6_UCGCTL3);
2003 s->rcgctl1 = I915_READ(GEN6_RCGCTL1);
2004 s->rcgctl2 = I915_READ(GEN6_RCGCTL2);
2005 s->rstctl = I915_READ(GEN6_RSTCTL);
2006 s->misccpctl = I915_READ(GEN7_MISCCPCTL);
2007
2008 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2009 s->gfxpause = I915_READ(GEN6_GFXPAUSE);
2010 s->rpdeuhwtc = I915_READ(GEN6_RPDEUHWTC);
2011 s->rpdeuc = I915_READ(GEN6_RPDEUC);
2012 s->ecobus = I915_READ(ECOBUS);
2013 s->pwrdwnupctl = I915_READ(VLV_PWRDWNUPCTL);
2014 s->rp_down_timeout = I915_READ(GEN6_RP_DOWN_TIMEOUT);
2015 s->rp_deucsw = I915_READ(GEN6_RPDEUCSW);
2016 s->rcubmabdtmr = I915_READ(GEN6_RCUBMABDTMR);
2017 s->rcedata = I915_READ(VLV_RCEDATA);
2018 s->spare2gh = I915_READ(VLV_SPAREG2H);
2019
2020 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2021 s->gt_imr = I915_READ(GTIMR);
2022 s->gt_ier = I915_READ(GTIER);
2023 s->pm_imr = I915_READ(GEN6_PMIMR);
2024 s->pm_ier = I915_READ(GEN6_PMIER);
2025
2026 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2027 s->gt_scratch[i] = I915_READ(GEN7_GT_SCRATCH(i));
2028
2029 /* GT SA CZ domain, 0x100000-0x138124 */
2030 s->tilectl = I915_READ(TILECTL);
2031 s->gt_fifoctl = I915_READ(GTFIFOCTL);
2032 s->gtlc_wake_ctrl = I915_READ(VLV_GTLC_WAKE_CTRL);
2033 s->gtlc_survive = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2034 s->pmwgicz = I915_READ(VLV_PMWGICZ);
2035
2036 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2037 s->gu_ctl0 = I915_READ(VLV_GU_CTL0);
2038 s->gu_ctl1 = I915_READ(VLV_GU_CTL1);
2039 s->pcbr = I915_READ(VLV_PCBR);
2040 s->clock_gate_dis2 = I915_READ(VLV_GUNIT_CLOCK_GATE2);
2041
2042 /*
2043 * Not saving any of:
2044 * DFT, 0x9800-0x9EC0
2045 * SARB, 0xB000-0xB1FC
2046 * GAC, 0x5208-0x524C, 0x14000-0x14C000
2047 * PCI CFG
2048 */
2049 }
2050
2051 static void vlv_restore_gunit_s0ix_state(struct drm_i915_private *dev_priv)
2052 {
2053 struct vlv_s0ix_state *s = &dev_priv->vlv_s0ix_state;
2054 u32 val;
2055 int i;
2056
2057 /* GAM 0x4000-0x4770 */
2058 I915_WRITE(GEN7_WR_WATERMARK, s->wr_watermark);
2059 I915_WRITE(GEN7_GFX_PRIO_CTRL, s->gfx_prio_ctrl);
2060 I915_WRITE(ARB_MODE, s->arb_mode | (0xffff << 16));
2061 I915_WRITE(GEN7_GFX_PEND_TLB0, s->gfx_pend_tlb0);
2062 I915_WRITE(GEN7_GFX_PEND_TLB1, s->gfx_pend_tlb1);
2063
2064 for (i = 0; i < ARRAY_SIZE(s->lra_limits); i++)
2065 I915_WRITE(GEN7_LRA_LIMITS(i), s->lra_limits[i]);
2066
2067 I915_WRITE(GEN7_MEDIA_MAX_REQ_COUNT, s->media_max_req_count);
2068 I915_WRITE(GEN7_GFX_MAX_REQ_COUNT, s->gfx_max_req_count);
2069
2070 I915_WRITE(RENDER_HWS_PGA_GEN7, s->render_hwsp);
2071 I915_WRITE(GAM_ECOCHK, s->ecochk);
2072 I915_WRITE(BSD_HWS_PGA_GEN7, s->bsd_hwsp);
2073 I915_WRITE(BLT_HWS_PGA_GEN7, s->blt_hwsp);
2074
2075 I915_WRITE(GEN7_TLB_RD_ADDR, s->tlb_rd_addr);
2076
2077 /* MBC 0x9024-0x91D0, 0x8500 */
2078 I915_WRITE(VLV_G3DCTL, s->g3dctl);
2079 I915_WRITE(VLV_GSCKGCTL, s->gsckgctl);
2080 I915_WRITE(GEN6_MBCTL, s->mbctl);
2081
2082 /* GCP 0x9400-0x9424, 0x8100-0x810C */
2083 I915_WRITE(GEN6_UCGCTL1, s->ucgctl1);
2084 I915_WRITE(GEN6_UCGCTL3, s->ucgctl3);
2085 I915_WRITE(GEN6_RCGCTL1, s->rcgctl1);
2086 I915_WRITE(GEN6_RCGCTL2, s->rcgctl2);
2087 I915_WRITE(GEN6_RSTCTL, s->rstctl);
2088 I915_WRITE(GEN7_MISCCPCTL, s->misccpctl);
2089
2090 /* GPM 0xA000-0xAA84, 0x8000-0x80FC */
2091 I915_WRITE(GEN6_GFXPAUSE, s->gfxpause);
2092 I915_WRITE(GEN6_RPDEUHWTC, s->rpdeuhwtc);
2093 I915_WRITE(GEN6_RPDEUC, s->rpdeuc);
2094 I915_WRITE(ECOBUS, s->ecobus);
2095 I915_WRITE(VLV_PWRDWNUPCTL, s->pwrdwnupctl);
2096 I915_WRITE(GEN6_RP_DOWN_TIMEOUT,s->rp_down_timeout);
2097 I915_WRITE(GEN6_RPDEUCSW, s->rp_deucsw);
2098 I915_WRITE(GEN6_RCUBMABDTMR, s->rcubmabdtmr);
2099 I915_WRITE(VLV_RCEDATA, s->rcedata);
2100 I915_WRITE(VLV_SPAREG2H, s->spare2gh);
2101
2102 /* Display CZ domain, 0x4400C-0x4402C, 0x4F000-0x4F11F */
2103 I915_WRITE(GTIMR, s->gt_imr);
2104 I915_WRITE(GTIER, s->gt_ier);
2105 I915_WRITE(GEN6_PMIMR, s->pm_imr);
2106 I915_WRITE(GEN6_PMIER, s->pm_ier);
2107
2108 for (i = 0; i < ARRAY_SIZE(s->gt_scratch); i++)
2109 I915_WRITE(GEN7_GT_SCRATCH(i), s->gt_scratch[i]);
2110
2111 /* GT SA CZ domain, 0x100000-0x138124 */
2112 I915_WRITE(TILECTL, s->tilectl);
2113 I915_WRITE(GTFIFOCTL, s->gt_fifoctl);
2114 /*
2115 * Preserve the GT allow wake and GFX force clock bit, they are not
2116 * be restored, as they are used to control the s0ix suspend/resume
2117 * sequence by the caller.
2118 */
2119 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2120 val &= VLV_GTLC_ALLOWWAKEREQ;
2121 val |= s->gtlc_wake_ctrl & ~VLV_GTLC_ALLOWWAKEREQ;
2122 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2123
2124 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2125 val &= VLV_GFX_CLK_FORCE_ON_BIT;
2126 val |= s->gtlc_survive & ~VLV_GFX_CLK_FORCE_ON_BIT;
2127 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2128
2129 I915_WRITE(VLV_PMWGICZ, s->pmwgicz);
2130
2131 /* Gunit-Display CZ domain, 0x182028-0x1821CF */
2132 I915_WRITE(VLV_GU_CTL0, s->gu_ctl0);
2133 I915_WRITE(VLV_GU_CTL1, s->gu_ctl1);
2134 I915_WRITE(VLV_PCBR, s->pcbr);
2135 I915_WRITE(VLV_GUNIT_CLOCK_GATE2, s->clock_gate_dis2);
2136 }
2137
2138 int vlv_force_gfx_clock(struct drm_i915_private *dev_priv, bool force_on)
2139 {
2140 u32 val;
2141 int err;
2142
2143 val = I915_READ(VLV_GTLC_SURVIVABILITY_REG);
2144 val &= ~VLV_GFX_CLK_FORCE_ON_BIT;
2145 if (force_on)
2146 val |= VLV_GFX_CLK_FORCE_ON_BIT;
2147 I915_WRITE(VLV_GTLC_SURVIVABILITY_REG, val);
2148
2149 if (!force_on)
2150 return 0;
2151
2152 err = intel_wait_for_register(dev_priv,
2153 VLV_GTLC_SURVIVABILITY_REG,
2154 VLV_GFX_CLK_STATUS_BIT,
2155 VLV_GFX_CLK_STATUS_BIT,
2156 20);
2157 if (err)
2158 DRM_ERROR("timeout waiting for GFX clock force-on (%08x)\n",
2159 I915_READ(VLV_GTLC_SURVIVABILITY_REG));
2160
2161 return err;
2162 }
2163
2164 static int vlv_allow_gt_wake(struct drm_i915_private *dev_priv, bool allow)
2165 {
2166 u32 val;
2167 int err = 0;
2168
2169 val = I915_READ(VLV_GTLC_WAKE_CTRL);
2170 val &= ~VLV_GTLC_ALLOWWAKEREQ;
2171 if (allow)
2172 val |= VLV_GTLC_ALLOWWAKEREQ;
2173 I915_WRITE(VLV_GTLC_WAKE_CTRL, val);
2174 POSTING_READ(VLV_GTLC_WAKE_CTRL);
2175
2176 err = intel_wait_for_register(dev_priv,
2177 VLV_GTLC_PW_STATUS,
2178 VLV_GTLC_ALLOWWAKEACK,
2179 allow,
2180 1);
2181 if (err)
2182 DRM_ERROR("timeout disabling GT waking\n");
2183
2184 return err;
2185 }
2186
2187 static int vlv_wait_for_gt_wells(struct drm_i915_private *dev_priv,
2188 bool wait_for_on)
2189 {
2190 u32 mask;
2191 u32 val;
2192 int err;
2193
2194 mask = VLV_GTLC_PW_MEDIA_STATUS_MASK | VLV_GTLC_PW_RENDER_STATUS_MASK;
2195 val = wait_for_on ? mask : 0;
2196 if ((I915_READ(VLV_GTLC_PW_STATUS) & mask) == val)
2197 return 0;
2198
2199 DRM_DEBUG_KMS("waiting for GT wells to go %s (%08x)\n",
2200 onoff(wait_for_on),
2201 I915_READ(VLV_GTLC_PW_STATUS));
2202
2203 /*
2204 * RC6 transitioning can be delayed up to 2 msec (see
2205 * valleyview_enable_rps), use 3 msec for safety.
2206 */
2207 err = intel_wait_for_register(dev_priv,
2208 VLV_GTLC_PW_STATUS, mask, val,
2209 3);
2210 if (err)
2211 DRM_ERROR("timeout waiting for GT wells to go %s\n",
2212 onoff(wait_for_on));
2213
2214 return err;
2215 }
2216
2217 static void vlv_check_no_gt_access(struct drm_i915_private *dev_priv)
2218 {
2219 if (!(I915_READ(VLV_GTLC_PW_STATUS) & VLV_GTLC_ALLOWWAKEERR))
2220 return;
2221
2222 DRM_DEBUG_DRIVER("GT register access while GT waking disabled\n");
2223 I915_WRITE(VLV_GTLC_PW_STATUS, VLV_GTLC_ALLOWWAKEERR);
2224 }
2225
2226 static int vlv_suspend_complete(struct drm_i915_private *dev_priv)
2227 {
2228 u32 mask;
2229 int err;
2230
2231 /*
2232 * Bspec defines the following GT well on flags as debug only, so
2233 * don't treat them as hard failures.
2234 */
2235 (void)vlv_wait_for_gt_wells(dev_priv, false);
2236
2237 mask = VLV_GTLC_RENDER_CTX_EXISTS | VLV_GTLC_MEDIA_CTX_EXISTS;
2238 WARN_ON((I915_READ(VLV_GTLC_WAKE_CTRL) & mask) != mask);
2239
2240 vlv_check_no_gt_access(dev_priv);
2241
2242 err = vlv_force_gfx_clock(dev_priv, true);
2243 if (err)
2244 goto err1;
2245
2246 err = vlv_allow_gt_wake(dev_priv, false);
2247 if (err)
2248 goto err2;
2249
2250 if (!IS_CHERRYVIEW(dev_priv))
2251 vlv_save_gunit_s0ix_state(dev_priv);
2252
2253 err = vlv_force_gfx_clock(dev_priv, false);
2254 if (err)
2255 goto err2;
2256
2257 return 0;
2258
2259 err2:
2260 /* For safety always re-enable waking and disable gfx clock forcing */
2261 vlv_allow_gt_wake(dev_priv, true);
2262 err1:
2263 vlv_force_gfx_clock(dev_priv, false);
2264
2265 return err;
2266 }
2267
2268 static int vlv_resume_prepare(struct drm_i915_private *dev_priv,
2269 bool rpm_resume)
2270 {
2271 int err;
2272 int ret;
2273
2274 /*
2275 * If any of the steps fail just try to continue, that's the best we
2276 * can do at this point. Return the first error code (which will also
2277 * leave RPM permanently disabled).
2278 */
2279 ret = vlv_force_gfx_clock(dev_priv, true);
2280
2281 if (!IS_CHERRYVIEW(dev_priv))
2282 vlv_restore_gunit_s0ix_state(dev_priv);
2283
2284 err = vlv_allow_gt_wake(dev_priv, true);
2285 if (!ret)
2286 ret = err;
2287
2288 err = vlv_force_gfx_clock(dev_priv, false);
2289 if (!ret)
2290 ret = err;
2291
2292 vlv_check_no_gt_access(dev_priv);
2293
2294 if (rpm_resume)
2295 intel_init_clock_gating(dev_priv);
2296
2297 return ret;
2298 }
2299
2300 static int intel_runtime_suspend(struct device *kdev)
2301 {
2302 struct pci_dev *pdev = to_pci_dev(kdev);
2303 struct drm_device *dev = pci_get_drvdata(pdev);
2304 struct drm_i915_private *dev_priv = to_i915(dev);
2305 int ret;
2306
2307 if (WARN_ON_ONCE(!(dev_priv->rps.enabled && intel_enable_rc6())))
2308 return -ENODEV;
2309
2310 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2311 return -ENODEV;
2312
2313 DRM_DEBUG_KMS("Suspending device\n");
2314
2315 disable_rpm_wakeref_asserts(dev_priv);
2316
2317 /*
2318 * We are safe here against re-faults, since the fault handler takes
2319 * an RPM reference.
2320 */
2321 i915_gem_runtime_suspend(dev_priv);
2322
2323 intel_guc_suspend(dev);
2324
2325 intel_runtime_pm_disable_interrupts(dev_priv);
2326
2327 ret = 0;
2328 if (IS_BROXTON(dev_priv)) {
2329 bxt_display_core_uninit(dev_priv);
2330 bxt_enable_dc9(dev_priv);
2331 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2332 hsw_enable_pc8(dev_priv);
2333 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2334 ret = vlv_suspend_complete(dev_priv);
2335 }
2336
2337 if (ret) {
2338 DRM_ERROR("Runtime suspend failed, disabling it (%d)\n", ret);
2339 intel_runtime_pm_enable_interrupts(dev_priv);
2340
2341 enable_rpm_wakeref_asserts(dev_priv);
2342
2343 return ret;
2344 }
2345
2346 intel_uncore_forcewake_reset(dev_priv, false);
2347
2348 enable_rpm_wakeref_asserts(dev_priv);
2349 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2350
2351 if (intel_uncore_arm_unclaimed_mmio_detection(dev_priv))
2352 DRM_ERROR("Unclaimed access detected prior to suspending\n");
2353
2354 dev_priv->pm.suspended = true;
2355
2356 /*
2357 * FIXME: We really should find a document that references the arguments
2358 * used below!
2359 */
2360 if (IS_BROADWELL(dev_priv)) {
2361 /*
2362 * On Broadwell, if we use PCI_D1 the PCH DDI ports will stop
2363 * being detected, and the call we do at intel_runtime_resume()
2364 * won't be able to restore them. Since PCI_D3hot matches the
2365 * actual specification and appears to be working, use it.
2366 */
2367 intel_opregion_notify_adapter(dev_priv, PCI_D3hot);
2368 } else {
2369 /*
2370 * current versions of firmware which depend on this opregion
2371 * notification have repurposed the D1 definition to mean
2372 * "runtime suspended" vs. what you would normally expect (D3)
2373 * to distinguish it from notifications that might be sent via
2374 * the suspend path.
2375 */
2376 intel_opregion_notify_adapter(dev_priv, PCI_D1);
2377 }
2378
2379 assert_forcewakes_inactive(dev_priv);
2380
2381 if (!IS_VALLEYVIEW(dev_priv) || !IS_CHERRYVIEW(dev_priv))
2382 intel_hpd_poll_init(dev_priv);
2383
2384 DRM_DEBUG_KMS("Device suspended\n");
2385 return 0;
2386 }
2387
2388 static int intel_runtime_resume(struct device *kdev)
2389 {
2390 struct pci_dev *pdev = to_pci_dev(kdev);
2391 struct drm_device *dev = pci_get_drvdata(pdev);
2392 struct drm_i915_private *dev_priv = to_i915(dev);
2393 int ret = 0;
2394
2395 if (WARN_ON_ONCE(!HAS_RUNTIME_PM(dev_priv)))
2396 return -ENODEV;
2397
2398 DRM_DEBUG_KMS("Resuming device\n");
2399
2400 WARN_ON_ONCE(atomic_read(&dev_priv->pm.wakeref_count));
2401 disable_rpm_wakeref_asserts(dev_priv);
2402
2403 intel_opregion_notify_adapter(dev_priv, PCI_D0);
2404 dev_priv->pm.suspended = false;
2405 if (intel_uncore_unclaimed_mmio(dev_priv))
2406 DRM_DEBUG_DRIVER("Unclaimed access during suspend, bios?\n");
2407
2408 intel_guc_resume(dev);
2409
2410 if (IS_GEN6(dev_priv))
2411 intel_init_pch_refclk(dev);
2412
2413 if (IS_BROXTON(dev_priv)) {
2414 bxt_disable_dc9(dev_priv);
2415 bxt_display_core_init(dev_priv, true);
2416 if (dev_priv->csr.dmc_payload &&
2417 (dev_priv->csr.allowed_dc_mask & DC_STATE_EN_UPTO_DC5))
2418 gen9_enable_dc5(dev_priv);
2419 } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2420 hsw_disable_pc8(dev_priv);
2421 } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2422 ret = vlv_resume_prepare(dev_priv, true);
2423 }
2424
2425 /*
2426 * No point of rolling back things in case of an error, as the best
2427 * we can do is to hope that things will still work (and disable RPM).
2428 */
2429 i915_gem_init_swizzling(dev_priv);
2430
2431 intel_runtime_pm_enable_interrupts(dev_priv);
2432
2433 /*
2434 * On VLV/CHV display interrupts are part of the display
2435 * power well, so hpd is reinitialized from there. For
2436 * everyone else do it here.
2437 */
2438 if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv))
2439 intel_hpd_init(dev_priv);
2440
2441 enable_rpm_wakeref_asserts(dev_priv);
2442
2443 if (ret)
2444 DRM_ERROR("Runtime resume failed, disabling it (%d)\n", ret);
2445 else
2446 DRM_DEBUG_KMS("Device resumed\n");
2447
2448 return ret;
2449 }
2450
2451 const struct dev_pm_ops i915_pm_ops = {
2452 /*
2453 * S0ix (via system suspend) and S3 event handlers [PMSG_SUSPEND,
2454 * PMSG_RESUME]
2455 */
2456 .suspend = i915_pm_suspend,
2457 .suspend_late = i915_pm_suspend_late,
2458 .resume_early = i915_pm_resume_early,
2459 .resume = i915_pm_resume,
2460
2461 /*
2462 * S4 event handlers
2463 * @freeze, @freeze_late : called (1) before creating the
2464 * hibernation image [PMSG_FREEZE] and
2465 * (2) after rebooting, before restoring
2466 * the image [PMSG_QUIESCE]
2467 * @thaw, @thaw_early : called (1) after creating the hibernation
2468 * image, before writing it [PMSG_THAW]
2469 * and (2) after failing to create or
2470 * restore the image [PMSG_RECOVER]
2471 * @poweroff, @poweroff_late: called after writing the hibernation
2472 * image, before rebooting [PMSG_HIBERNATE]
2473 * @restore, @restore_early : called after rebooting and restoring the
2474 * hibernation image [PMSG_RESTORE]
2475 */
2476 .freeze = i915_pm_freeze,
2477 .freeze_late = i915_pm_freeze_late,
2478 .thaw_early = i915_pm_thaw_early,
2479 .thaw = i915_pm_thaw,
2480 .poweroff = i915_pm_suspend,
2481 .poweroff_late = i915_pm_poweroff_late,
2482 .restore_early = i915_pm_restore_early,
2483 .restore = i915_pm_restore,
2484
2485 /* S0ix (via runtime suspend) event handlers */
2486 .runtime_suspend = intel_runtime_suspend,
2487 .runtime_resume = intel_runtime_resume,
2488 };
2489
2490 static const struct vm_operations_struct i915_gem_vm_ops = {
2491 .fault = i915_gem_fault,
2492 .open = drm_gem_vm_open,
2493 .close = drm_gem_vm_close,
2494 };
2495
2496 static const struct file_operations i915_driver_fops = {
2497 .owner = THIS_MODULE,
2498 .open = drm_open,
2499 .release = drm_release,
2500 .unlocked_ioctl = drm_ioctl,
2501 .mmap = drm_gem_mmap,
2502 .poll = drm_poll,
2503 .read = drm_read,
2504 .compat_ioctl = i915_compat_ioctl,
2505 .llseek = noop_llseek,
2506 };
2507
2508 static int
2509 i915_gem_reject_pin_ioctl(struct drm_device *dev, void *data,
2510 struct drm_file *file)
2511 {
2512 return -ENODEV;
2513 }
2514
2515 static const struct drm_ioctl_desc i915_ioctls[] = {
2516 DRM_IOCTL_DEF_DRV(I915_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2517 DRM_IOCTL_DEF_DRV(I915_FLUSH, drm_noop, DRM_AUTH),
2518 DRM_IOCTL_DEF_DRV(I915_FLIP, drm_noop, DRM_AUTH),
2519 DRM_IOCTL_DEF_DRV(I915_BATCHBUFFER, drm_noop, DRM_AUTH),
2520 DRM_IOCTL_DEF_DRV(I915_IRQ_EMIT, drm_noop, DRM_AUTH),
2521 DRM_IOCTL_DEF_DRV(I915_IRQ_WAIT, drm_noop, DRM_AUTH),
2522 DRM_IOCTL_DEF_DRV(I915_GETPARAM, i915_getparam, DRM_AUTH|DRM_RENDER_ALLOW),
2523 DRM_IOCTL_DEF_DRV(I915_SETPARAM, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2524 DRM_IOCTL_DEF_DRV(I915_ALLOC, drm_noop, DRM_AUTH),
2525 DRM_IOCTL_DEF_DRV(I915_FREE, drm_noop, DRM_AUTH),
2526 DRM_IOCTL_DEF_DRV(I915_INIT_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2527 DRM_IOCTL_DEF_DRV(I915_CMDBUFFER, drm_noop, DRM_AUTH),
2528 DRM_IOCTL_DEF_DRV(I915_DESTROY_HEAP, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2529 DRM_IOCTL_DEF_DRV(I915_SET_VBLANK_PIPE, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2530 DRM_IOCTL_DEF_DRV(I915_GET_VBLANK_PIPE, drm_noop, DRM_AUTH),
2531 DRM_IOCTL_DEF_DRV(I915_VBLANK_SWAP, drm_noop, DRM_AUTH),
2532 DRM_IOCTL_DEF_DRV(I915_HWS_ADDR, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2533 DRM_IOCTL_DEF_DRV(I915_GEM_INIT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2534 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER, i915_gem_execbuffer, DRM_AUTH),
2535 DRM_IOCTL_DEF_DRV(I915_GEM_EXECBUFFER2, i915_gem_execbuffer2, DRM_AUTH|DRM_RENDER_ALLOW),
2536 DRM_IOCTL_DEF_DRV(I915_GEM_PIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2537 DRM_IOCTL_DEF_DRV(I915_GEM_UNPIN, i915_gem_reject_pin_ioctl, DRM_AUTH|DRM_ROOT_ONLY),
2538 DRM_IOCTL_DEF_DRV(I915_GEM_BUSY, i915_gem_busy_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2539 DRM_IOCTL_DEF_DRV(I915_GEM_SET_CACHING, i915_gem_set_caching_ioctl, DRM_RENDER_ALLOW),
2540 DRM_IOCTL_DEF_DRV(I915_GEM_GET_CACHING, i915_gem_get_caching_ioctl, DRM_RENDER_ALLOW),
2541 DRM_IOCTL_DEF_DRV(I915_GEM_THROTTLE, i915_gem_throttle_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2542 DRM_IOCTL_DEF_DRV(I915_GEM_ENTERVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2543 DRM_IOCTL_DEF_DRV(I915_GEM_LEAVEVT, drm_noop, DRM_AUTH|DRM_MASTER|DRM_ROOT_ONLY),
2544 DRM_IOCTL_DEF_DRV(I915_GEM_CREATE, i915_gem_create_ioctl, DRM_RENDER_ALLOW),
2545 DRM_IOCTL_DEF_DRV(I915_GEM_PREAD, i915_gem_pread_ioctl, DRM_RENDER_ALLOW),
2546 DRM_IOCTL_DEF_DRV(I915_GEM_PWRITE, i915_gem_pwrite_ioctl, DRM_RENDER_ALLOW),
2547 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP, i915_gem_mmap_ioctl, DRM_RENDER_ALLOW),
2548 DRM_IOCTL_DEF_DRV(I915_GEM_MMAP_GTT, i915_gem_mmap_gtt_ioctl, DRM_RENDER_ALLOW),
2549 DRM_IOCTL_DEF_DRV(I915_GEM_SET_DOMAIN, i915_gem_set_domain_ioctl, DRM_RENDER_ALLOW),
2550 DRM_IOCTL_DEF_DRV(I915_GEM_SW_FINISH, i915_gem_sw_finish_ioctl, DRM_RENDER_ALLOW),
2551 DRM_IOCTL_DEF_DRV(I915_GEM_SET_TILING, i915_gem_set_tiling, DRM_RENDER_ALLOW),
2552 DRM_IOCTL_DEF_DRV(I915_GEM_GET_TILING, i915_gem_get_tiling, DRM_RENDER_ALLOW),
2553 DRM_IOCTL_DEF_DRV(I915_GEM_GET_APERTURE, i915_gem_get_aperture_ioctl, DRM_RENDER_ALLOW),
2554 DRM_IOCTL_DEF_DRV(I915_GET_PIPE_FROM_CRTC_ID, intel_get_pipe_from_crtc_id, 0),
2555 DRM_IOCTL_DEF_DRV(I915_GEM_MADVISE, i915_gem_madvise_ioctl, DRM_RENDER_ALLOW),
2556 DRM_IOCTL_DEF_DRV(I915_OVERLAY_PUT_IMAGE, intel_overlay_put_image_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2557 DRM_IOCTL_DEF_DRV(I915_OVERLAY_ATTRS, intel_overlay_attrs_ioctl, DRM_MASTER|DRM_CONTROL_ALLOW),
2558 DRM_IOCTL_DEF_DRV(I915_SET_SPRITE_COLORKEY, intel_sprite_set_colorkey, DRM_MASTER|DRM_CONTROL_ALLOW),
2559 DRM_IOCTL_DEF_DRV(I915_GET_SPRITE_COLORKEY, drm_noop, DRM_MASTER|DRM_CONTROL_ALLOW),
2560 DRM_IOCTL_DEF_DRV(I915_GEM_WAIT, i915_gem_wait_ioctl, DRM_AUTH|DRM_RENDER_ALLOW),
2561 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_CREATE, i915_gem_context_create_ioctl, DRM_RENDER_ALLOW),
2562 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_DESTROY, i915_gem_context_destroy_ioctl, DRM_RENDER_ALLOW),
2563 DRM_IOCTL_DEF_DRV(I915_REG_READ, i915_reg_read_ioctl, DRM_RENDER_ALLOW),
2564 DRM_IOCTL_DEF_DRV(I915_GET_RESET_STATS, i915_gem_context_reset_stats_ioctl, DRM_RENDER_ALLOW),
2565 DRM_IOCTL_DEF_DRV(I915_GEM_USERPTR, i915_gem_userptr_ioctl, DRM_RENDER_ALLOW),
2566 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_GETPARAM, i915_gem_context_getparam_ioctl, DRM_RENDER_ALLOW),
2567 DRM_IOCTL_DEF_DRV(I915_GEM_CONTEXT_SETPARAM, i915_gem_context_setparam_ioctl, DRM_RENDER_ALLOW),
2568 };
2569
2570 static struct drm_driver driver = {
2571 /* Don't use MTRRs here; the Xserver or userspace app should
2572 * deal with them for Intel hardware.
2573 */
2574 .driver_features =
2575 DRIVER_HAVE_IRQ | DRIVER_IRQ_SHARED | DRIVER_GEM | DRIVER_PRIME |
2576 DRIVER_RENDER | DRIVER_MODESET,
2577 .open = i915_driver_open,
2578 .lastclose = i915_driver_lastclose,
2579 .preclose = i915_driver_preclose,
2580 .postclose = i915_driver_postclose,
2581 .set_busid = drm_pci_set_busid,
2582
2583 .gem_close_object = i915_gem_close_object,
2584 .gem_free_object_unlocked = i915_gem_free_object,
2585 .gem_vm_ops = &i915_gem_vm_ops,
2586
2587 .prime_handle_to_fd = drm_gem_prime_handle_to_fd,
2588 .prime_fd_to_handle = drm_gem_prime_fd_to_handle,
2589 .gem_prime_export = i915_gem_prime_export,
2590 .gem_prime_import = i915_gem_prime_import,
2591
2592 .dumb_create = i915_gem_dumb_create,
2593 .dumb_map_offset = i915_gem_mmap_gtt,
2594 .dumb_destroy = drm_gem_dumb_destroy,
2595 .ioctls = i915_ioctls,
2596 .num_ioctls = ARRAY_SIZE(i915_ioctls),
2597 .fops = &i915_driver_fops,
2598 .name = DRIVER_NAME,
2599 .desc = DRIVER_DESC,
2600 .date = DRIVER_DATE,
2601 .major = DRIVER_MAJOR,
2602 .minor = DRIVER_MINOR,
2603 .patchlevel = DRIVER_PATCHLEVEL,
2604 };