Merge branch 'for-3.10' of git://linux-nfs.org/~bfields/linux
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / gpu / drm / gma500 / psb_intel_display.c
1 /*
2 * Copyright © 2006-2011 Intel Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms and conditions of the GNU General Public License,
6 * version 2, as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope it will be useful, but WITHOUT
9 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
10 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
11 * more details.
12 *
13 * You should have received a copy of the GNU General Public License along with
14 * this program; if not, write to the Free Software Foundation, Inc.,
15 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
16 *
17 * Authors:
18 * Eric Anholt <eric@anholt.net>
19 */
20
21 #include <linux/i2c.h>
22 #include <linux/pm_runtime.h>
23
24 #include <drm/drmP.h>
25 #include "framebuffer.h"
26 #include "psb_drv.h"
27 #include "psb_intel_drv.h"
28 #include "psb_intel_reg.h"
29 #include "psb_intel_display.h"
30 #include "power.h"
31
32 struct psb_intel_clock_t {
33 /* given values */
34 int n;
35 int m1, m2;
36 int p1, p2;
37 /* derived values */
38 int dot;
39 int vco;
40 int m;
41 int p;
42 };
43
44 struct psb_intel_range_t {
45 int min, max;
46 };
47
48 struct psb_intel_p2_t {
49 int dot_limit;
50 int p2_slow, p2_fast;
51 };
52
53 struct psb_intel_limit_t {
54 struct psb_intel_range_t dot, vco, n, m, m1, m2, p, p1;
55 struct psb_intel_p2_t p2;
56 };
57
58 #define INTEL_LIMIT_I9XX_SDVO_DAC 0
59 #define INTEL_LIMIT_I9XX_LVDS 1
60
61 static const struct psb_intel_limit_t psb_intel_limits[] = {
62 { /* INTEL_LIMIT_I9XX_SDVO_DAC */
63 .dot = {.min = 20000, .max = 400000},
64 .vco = {.min = 1400000, .max = 2800000},
65 .n = {.min = 1, .max = 6},
66 .m = {.min = 70, .max = 120},
67 .m1 = {.min = 8, .max = 18},
68 .m2 = {.min = 3, .max = 7},
69 .p = {.min = 5, .max = 80},
70 .p1 = {.min = 1, .max = 8},
71 .p2 = {.dot_limit = 200000,
72 .p2_slow = 10, .p2_fast = 5},
73 },
74 { /* INTEL_LIMIT_I9XX_LVDS */
75 .dot = {.min = 20000, .max = 400000},
76 .vco = {.min = 1400000, .max = 2800000},
77 .n = {.min = 1, .max = 6},
78 .m = {.min = 70, .max = 120},
79 .m1 = {.min = 8, .max = 18},
80 .m2 = {.min = 3, .max = 7},
81 .p = {.min = 7, .max = 98},
82 .p1 = {.min = 1, .max = 8},
83 /* The single-channel range is 25-112Mhz, and dual-channel
84 * is 80-224Mhz. Prefer single channel as much as possible.
85 */
86 .p2 = {.dot_limit = 112000,
87 .p2_slow = 14, .p2_fast = 7},
88 },
89 };
90
91 static const struct psb_intel_limit_t *psb_intel_limit(struct drm_crtc *crtc)
92 {
93 const struct psb_intel_limit_t *limit;
94
95 if (psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
96 limit = &psb_intel_limits[INTEL_LIMIT_I9XX_LVDS];
97 else
98 limit = &psb_intel_limits[INTEL_LIMIT_I9XX_SDVO_DAC];
99 return limit;
100 }
101
102 static void psb_intel_clock(int refclk, struct psb_intel_clock_t *clock)
103 {
104 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
105 clock->p = clock->p1 * clock->p2;
106 clock->vco = refclk * clock->m / (clock->n + 2);
107 clock->dot = clock->vco / clock->p;
108 }
109
110 /**
111 * Returns whether any output on the specified pipe is of the specified type
112 */
113 bool psb_intel_pipe_has_type(struct drm_crtc *crtc, int type)
114 {
115 struct drm_device *dev = crtc->dev;
116 struct drm_mode_config *mode_config = &dev->mode_config;
117 struct drm_connector *l_entry;
118
119 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
120 if (l_entry->encoder && l_entry->encoder->crtc == crtc) {
121 struct psb_intel_encoder *psb_intel_encoder =
122 psb_intel_attached_encoder(l_entry);
123 if (psb_intel_encoder->type == type)
124 return true;
125 }
126 }
127 return false;
128 }
129
130 #define INTELPllInvalid(s) { /* ErrorF (s) */; return false; }
131 /**
132 * Returns whether the given set of divisors are valid for a given refclk with
133 * the given connectors.
134 */
135
136 static bool psb_intel_PLL_is_valid(struct drm_crtc *crtc,
137 struct psb_intel_clock_t *clock)
138 {
139 const struct psb_intel_limit_t *limit = psb_intel_limit(crtc);
140
141 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
142 INTELPllInvalid("p1 out of range\n");
143 if (clock->p < limit->p.min || limit->p.max < clock->p)
144 INTELPllInvalid("p out of range\n");
145 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
146 INTELPllInvalid("m2 out of range\n");
147 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
148 INTELPllInvalid("m1 out of range\n");
149 if (clock->m1 <= clock->m2)
150 INTELPllInvalid("m1 <= m2\n");
151 if (clock->m < limit->m.min || limit->m.max < clock->m)
152 INTELPllInvalid("m out of range\n");
153 if (clock->n < limit->n.min || limit->n.max < clock->n)
154 INTELPllInvalid("n out of range\n");
155 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
156 INTELPllInvalid("vco out of range\n");
157 /* XXX: We may need to be checking "Dot clock"
158 * depending on the multiplier, connector, etc.,
159 * rather than just a single range.
160 */
161 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
162 INTELPllInvalid("dot out of range\n");
163
164 return true;
165 }
166
167 /**
168 * Returns a set of divisors for the desired target clock with the given
169 * refclk, or FALSE. The returned values represent the clock equation:
170 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
171 */
172 static bool psb_intel_find_best_PLL(struct drm_crtc *crtc, int target,
173 int refclk,
174 struct psb_intel_clock_t *best_clock)
175 {
176 struct drm_device *dev = crtc->dev;
177 struct psb_intel_clock_t clock;
178 const struct psb_intel_limit_t *limit = psb_intel_limit(crtc);
179 int err = target;
180
181 if (psb_intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
182 (REG_READ(LVDS) & LVDS_PORT_EN) != 0) {
183 /*
184 * For LVDS, if the panel is on, just rely on its current
185 * settings for dual-channel. We haven't figured out how to
186 * reliably set up different single/dual channel state, if we
187 * even can.
188 */
189 if ((REG_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
190 LVDS_CLKB_POWER_UP)
191 clock.p2 = limit->p2.p2_fast;
192 else
193 clock.p2 = limit->p2.p2_slow;
194 } else {
195 if (target < limit->p2.dot_limit)
196 clock.p2 = limit->p2.p2_slow;
197 else
198 clock.p2 = limit->p2.p2_fast;
199 }
200
201 memset(best_clock, 0, sizeof(*best_clock));
202
203 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
204 clock.m1++) {
205 for (clock.m2 = limit->m2.min;
206 clock.m2 < clock.m1 && clock.m2 <= limit->m2.max;
207 clock.m2++) {
208 for (clock.n = limit->n.min;
209 clock.n <= limit->n.max; clock.n++) {
210 for (clock.p1 = limit->p1.min;
211 clock.p1 <= limit->p1.max;
212 clock.p1++) {
213 int this_err;
214
215 psb_intel_clock(refclk, &clock);
216
217 if (!psb_intel_PLL_is_valid
218 (crtc, &clock))
219 continue;
220
221 this_err = abs(clock.dot - target);
222 if (this_err < err) {
223 *best_clock = clock;
224 err = this_err;
225 }
226 }
227 }
228 }
229 }
230
231 return err != target;
232 }
233
234 void psb_intel_wait_for_vblank(struct drm_device *dev)
235 {
236 /* Wait for 20ms, i.e. one cycle at 50hz. */
237 mdelay(20);
238 }
239
240 static int psb_intel_pipe_set_base(struct drm_crtc *crtc,
241 int x, int y, struct drm_framebuffer *old_fb)
242 {
243 struct drm_device *dev = crtc->dev;
244 struct drm_psb_private *dev_priv = dev->dev_private;
245 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
246 struct psb_framebuffer *psbfb = to_psb_fb(crtc->fb);
247 int pipe = psb_intel_crtc->pipe;
248 const struct psb_offset *map = &dev_priv->regmap[pipe];
249 unsigned long start, offset;
250 u32 dspcntr;
251 int ret = 0;
252
253 if (!gma_power_begin(dev, true))
254 return 0;
255
256 /* no fb bound */
257 if (!crtc->fb) {
258 dev_dbg(dev->dev, "No FB bound\n");
259 goto psb_intel_pipe_cleaner;
260 }
261
262 /* We are displaying this buffer, make sure it is actually loaded
263 into the GTT */
264 ret = psb_gtt_pin(psbfb->gtt);
265 if (ret < 0)
266 goto psb_intel_pipe_set_base_exit;
267 start = psbfb->gtt->offset;
268
269 offset = y * crtc->fb->pitches[0] + x * (crtc->fb->bits_per_pixel / 8);
270
271 REG_WRITE(map->stride, crtc->fb->pitches[0]);
272
273 dspcntr = REG_READ(map->cntr);
274 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
275
276 switch (crtc->fb->bits_per_pixel) {
277 case 8:
278 dspcntr |= DISPPLANE_8BPP;
279 break;
280 case 16:
281 if (crtc->fb->depth == 15)
282 dspcntr |= DISPPLANE_15_16BPP;
283 else
284 dspcntr |= DISPPLANE_16BPP;
285 break;
286 case 24:
287 case 32:
288 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
289 break;
290 default:
291 dev_err(dev->dev, "Unknown color depth\n");
292 ret = -EINVAL;
293 psb_gtt_unpin(psbfb->gtt);
294 goto psb_intel_pipe_set_base_exit;
295 }
296 REG_WRITE(map->cntr, dspcntr);
297
298 REG_WRITE(map->base, start + offset);
299 REG_READ(map->base);
300
301 psb_intel_pipe_cleaner:
302 /* If there was a previous display we can now unpin it */
303 if (old_fb)
304 psb_gtt_unpin(to_psb_fb(old_fb)->gtt);
305
306 psb_intel_pipe_set_base_exit:
307 gma_power_end(dev);
308 return ret;
309 }
310
311 /**
312 * Sets the power management mode of the pipe and plane.
313 *
314 * This code should probably grow support for turning the cursor off and back
315 * on appropriately at the same time as we're turning the pipe off/on.
316 */
317 static void psb_intel_crtc_dpms(struct drm_crtc *crtc, int mode)
318 {
319 struct drm_device *dev = crtc->dev;
320 struct drm_psb_private *dev_priv = dev->dev_private;
321 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
322 int pipe = psb_intel_crtc->pipe;
323 const struct psb_offset *map = &dev_priv->regmap[pipe];
324 u32 temp;
325
326 /* XXX: When our outputs are all unaware of DPMS modes other than off
327 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
328 */
329 switch (mode) {
330 case DRM_MODE_DPMS_ON:
331 case DRM_MODE_DPMS_STANDBY:
332 case DRM_MODE_DPMS_SUSPEND:
333 /* Enable the DPLL */
334 temp = REG_READ(map->dpll);
335 if ((temp & DPLL_VCO_ENABLE) == 0) {
336 REG_WRITE(map->dpll, temp);
337 REG_READ(map->dpll);
338 /* Wait for the clocks to stabilize. */
339 udelay(150);
340 REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
341 REG_READ(map->dpll);
342 /* Wait for the clocks to stabilize. */
343 udelay(150);
344 REG_WRITE(map->dpll, temp | DPLL_VCO_ENABLE);
345 REG_READ(map->dpll);
346 /* Wait for the clocks to stabilize. */
347 udelay(150);
348 }
349
350 /* Enable the pipe */
351 temp = REG_READ(map->conf);
352 if ((temp & PIPEACONF_ENABLE) == 0)
353 REG_WRITE(map->conf, temp | PIPEACONF_ENABLE);
354
355 /* Enable the plane */
356 temp = REG_READ(map->cntr);
357 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
358 REG_WRITE(map->cntr,
359 temp | DISPLAY_PLANE_ENABLE);
360 /* Flush the plane changes */
361 REG_WRITE(map->base, REG_READ(map->base));
362 }
363
364 psb_intel_crtc_load_lut(crtc);
365
366 /* Give the overlay scaler a chance to enable
367 * if it's on this pipe */
368 /* psb_intel_crtc_dpms_video(crtc, true); TODO */
369 break;
370 case DRM_MODE_DPMS_OFF:
371 /* Give the overlay scaler a chance to disable
372 * if it's on this pipe */
373 /* psb_intel_crtc_dpms_video(crtc, FALSE); TODO */
374
375 /* Disable the VGA plane that we never use */
376 REG_WRITE(VGACNTRL, VGA_DISP_DISABLE);
377
378 /* Disable display plane */
379 temp = REG_READ(map->cntr);
380 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
381 REG_WRITE(map->cntr,
382 temp & ~DISPLAY_PLANE_ENABLE);
383 /* Flush the plane changes */
384 REG_WRITE(map->base, REG_READ(map->base));
385 REG_READ(map->base);
386 }
387
388 /* Next, disable display pipes */
389 temp = REG_READ(map->conf);
390 if ((temp & PIPEACONF_ENABLE) != 0) {
391 REG_WRITE(map->conf, temp & ~PIPEACONF_ENABLE);
392 REG_READ(map->conf);
393 }
394
395 /* Wait for vblank for the disable to take effect. */
396 psb_intel_wait_for_vblank(dev);
397
398 temp = REG_READ(map->dpll);
399 if ((temp & DPLL_VCO_ENABLE) != 0) {
400 REG_WRITE(map->dpll, temp & ~DPLL_VCO_ENABLE);
401 REG_READ(map->dpll);
402 }
403
404 /* Wait for the clocks to turn off. */
405 udelay(150);
406 break;
407 }
408
409 /*Set FIFO Watermarks*/
410 REG_WRITE(DSPARB, 0x3F3E);
411 }
412
413 static void psb_intel_crtc_prepare(struct drm_crtc *crtc)
414 {
415 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
416 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
417 }
418
419 static void psb_intel_crtc_commit(struct drm_crtc *crtc)
420 {
421 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
422 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
423 }
424
425 void psb_intel_encoder_prepare(struct drm_encoder *encoder)
426 {
427 struct drm_encoder_helper_funcs *encoder_funcs =
428 encoder->helper_private;
429 /* lvds has its own version of prepare see psb_intel_lvds_prepare */
430 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
431 }
432
433 void psb_intel_encoder_commit(struct drm_encoder *encoder)
434 {
435 struct drm_encoder_helper_funcs *encoder_funcs =
436 encoder->helper_private;
437 /* lvds has its own version of commit see psb_intel_lvds_commit */
438 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
439 }
440
441 void psb_intel_encoder_destroy(struct drm_encoder *encoder)
442 {
443 struct psb_intel_encoder *intel_encoder = to_psb_intel_encoder(encoder);
444
445 drm_encoder_cleanup(encoder);
446 kfree(intel_encoder);
447 }
448
449 static bool psb_intel_crtc_mode_fixup(struct drm_crtc *crtc,
450 const struct drm_display_mode *mode,
451 struct drm_display_mode *adjusted_mode)
452 {
453 return true;
454 }
455
456
457 /**
458 * Return the pipe currently connected to the panel fitter,
459 * or -1 if the panel fitter is not present or not in use
460 */
461 static int psb_intel_panel_fitter_pipe(struct drm_device *dev)
462 {
463 u32 pfit_control;
464
465 pfit_control = REG_READ(PFIT_CONTROL);
466
467 /* See if the panel fitter is in use */
468 if ((pfit_control & PFIT_ENABLE) == 0)
469 return -1;
470 /* Must be on PIPE 1 for PSB */
471 return 1;
472 }
473
474 static int psb_intel_crtc_mode_set(struct drm_crtc *crtc,
475 struct drm_display_mode *mode,
476 struct drm_display_mode *adjusted_mode,
477 int x, int y,
478 struct drm_framebuffer *old_fb)
479 {
480 struct drm_device *dev = crtc->dev;
481 struct drm_psb_private *dev_priv = dev->dev_private;
482 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
483 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
484 int pipe = psb_intel_crtc->pipe;
485 const struct psb_offset *map = &dev_priv->regmap[pipe];
486 int refclk;
487 struct psb_intel_clock_t clock;
488 u32 dpll = 0, fp = 0, dspcntr, pipeconf;
489 bool ok, is_sdvo = false;
490 bool is_lvds = false, is_tv = false;
491 struct drm_mode_config *mode_config = &dev->mode_config;
492 struct drm_connector *connector;
493
494 /* No scan out no play */
495 if (crtc->fb == NULL) {
496 crtc_funcs->mode_set_base(crtc, x, y, old_fb);
497 return 0;
498 }
499
500 list_for_each_entry(connector, &mode_config->connector_list, head) {
501 struct psb_intel_encoder *psb_intel_encoder =
502 psb_intel_attached_encoder(connector);
503
504 if (!connector->encoder
505 || connector->encoder->crtc != crtc)
506 continue;
507
508 switch (psb_intel_encoder->type) {
509 case INTEL_OUTPUT_LVDS:
510 is_lvds = true;
511 break;
512 case INTEL_OUTPUT_SDVO:
513 is_sdvo = true;
514 break;
515 case INTEL_OUTPUT_TVOUT:
516 is_tv = true;
517 break;
518 }
519 }
520
521 refclk = 96000;
522
523 ok = psb_intel_find_best_PLL(crtc, adjusted_mode->clock, refclk,
524 &clock);
525 if (!ok) {
526 dev_err(dev->dev, "Couldn't find PLL settings for mode!\n");
527 return 0;
528 }
529
530 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
531
532 dpll = DPLL_VGA_MODE_DIS;
533 if (is_lvds) {
534 dpll |= DPLLB_MODE_LVDS;
535 dpll |= DPLL_DVO_HIGH_SPEED;
536 } else
537 dpll |= DPLLB_MODE_DAC_SERIAL;
538 if (is_sdvo) {
539 int sdvo_pixel_multiply =
540 adjusted_mode->clock / mode->clock;
541 dpll |= DPLL_DVO_HIGH_SPEED;
542 dpll |=
543 (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
544 }
545
546 /* compute bitmask from p1 value */
547 dpll |= (1 << (clock.p1 - 1)) << 16;
548 switch (clock.p2) {
549 case 5:
550 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
551 break;
552 case 7:
553 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
554 break;
555 case 10:
556 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
557 break;
558 case 14:
559 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
560 break;
561 }
562
563 if (is_tv) {
564 /* XXX: just matching BIOS for now */
565 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
566 dpll |= 3;
567 }
568 dpll |= PLL_REF_INPUT_DREFCLK;
569
570 /* setup pipeconf */
571 pipeconf = REG_READ(map->conf);
572
573 /* Set up the display plane register */
574 dspcntr = DISPPLANE_GAMMA_ENABLE;
575
576 if (pipe == 0)
577 dspcntr |= DISPPLANE_SEL_PIPE_A;
578 else
579 dspcntr |= DISPPLANE_SEL_PIPE_B;
580
581 dspcntr |= DISPLAY_PLANE_ENABLE;
582 pipeconf |= PIPEACONF_ENABLE;
583 dpll |= DPLL_VCO_ENABLE;
584
585
586 /* Disable the panel fitter if it was on our pipe */
587 if (psb_intel_panel_fitter_pipe(dev) == pipe)
588 REG_WRITE(PFIT_CONTROL, 0);
589
590 drm_mode_debug_printmodeline(mode);
591
592 if (dpll & DPLL_VCO_ENABLE) {
593 REG_WRITE(map->fp0, fp);
594 REG_WRITE(map->dpll, dpll & ~DPLL_VCO_ENABLE);
595 REG_READ(map->dpll);
596 udelay(150);
597 }
598
599 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
600 * This is an exception to the general rule that mode_set doesn't turn
601 * things on.
602 */
603 if (is_lvds) {
604 u32 lvds = REG_READ(LVDS);
605
606 lvds &= ~LVDS_PIPEB_SELECT;
607 if (pipe == 1)
608 lvds |= LVDS_PIPEB_SELECT;
609
610 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP;
611 /* Set the B0-B3 data pairs corresponding to
612 * whether we're going to
613 * set the DPLLs for dual-channel mode or not.
614 */
615 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
616 if (clock.p2 == 7)
617 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
618
619 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
620 * appropriately here, but we need to look more
621 * thoroughly into how panels behave in the two modes.
622 */
623
624 REG_WRITE(LVDS, lvds);
625 REG_READ(LVDS);
626 }
627
628 REG_WRITE(map->fp0, fp);
629 REG_WRITE(map->dpll, dpll);
630 REG_READ(map->dpll);
631 /* Wait for the clocks to stabilize. */
632 udelay(150);
633
634 /* write it again -- the BIOS does, after all */
635 REG_WRITE(map->dpll, dpll);
636
637 REG_READ(map->dpll);
638 /* Wait for the clocks to stabilize. */
639 udelay(150);
640
641 REG_WRITE(map->htotal, (adjusted_mode->crtc_hdisplay - 1) |
642 ((adjusted_mode->crtc_htotal - 1) << 16));
643 REG_WRITE(map->hblank, (adjusted_mode->crtc_hblank_start - 1) |
644 ((adjusted_mode->crtc_hblank_end - 1) << 16));
645 REG_WRITE(map->hsync, (adjusted_mode->crtc_hsync_start - 1) |
646 ((adjusted_mode->crtc_hsync_end - 1) << 16));
647 REG_WRITE(map->vtotal, (adjusted_mode->crtc_vdisplay - 1) |
648 ((adjusted_mode->crtc_vtotal - 1) << 16));
649 REG_WRITE(map->vblank, (adjusted_mode->crtc_vblank_start - 1) |
650 ((adjusted_mode->crtc_vblank_end - 1) << 16));
651 REG_WRITE(map->vsync, (adjusted_mode->crtc_vsync_start - 1) |
652 ((adjusted_mode->crtc_vsync_end - 1) << 16));
653 /* pipesrc and dspsize control the size that is scaled from,
654 * which should always be the user's requested size.
655 */
656 REG_WRITE(map->size,
657 ((mode->vdisplay - 1) << 16) | (mode->hdisplay - 1));
658 REG_WRITE(map->pos, 0);
659 REG_WRITE(map->src,
660 ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
661 REG_WRITE(map->conf, pipeconf);
662 REG_READ(map->conf);
663
664 psb_intel_wait_for_vblank(dev);
665
666 REG_WRITE(map->cntr, dspcntr);
667
668 /* Flush the plane changes */
669 crtc_funcs->mode_set_base(crtc, x, y, old_fb);
670
671 psb_intel_wait_for_vblank(dev);
672
673 return 0;
674 }
675
676 /** Loads the palette/gamma unit for the CRTC with the prepared values */
677 void psb_intel_crtc_load_lut(struct drm_crtc *crtc)
678 {
679 struct drm_device *dev = crtc->dev;
680 struct drm_psb_private *dev_priv = dev->dev_private;
681 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
682 const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
683 int palreg = map->palette;
684 int i;
685
686 /* The clocks have to be on to load the palette. */
687 if (!crtc->enabled)
688 return;
689
690 switch (psb_intel_crtc->pipe) {
691 case 0:
692 case 1:
693 break;
694 default:
695 dev_err(dev->dev, "Illegal Pipe Number.\n");
696 return;
697 }
698
699 if (gma_power_begin(dev, false)) {
700 for (i = 0; i < 256; i++) {
701 REG_WRITE(palreg + 4 * i,
702 ((psb_intel_crtc->lut_r[i] +
703 psb_intel_crtc->lut_adj[i]) << 16) |
704 ((psb_intel_crtc->lut_g[i] +
705 psb_intel_crtc->lut_adj[i]) << 8) |
706 (psb_intel_crtc->lut_b[i] +
707 psb_intel_crtc->lut_adj[i]));
708 }
709 gma_power_end(dev);
710 } else {
711 for (i = 0; i < 256; i++) {
712 dev_priv->regs.pipe[0].palette[i] =
713 ((psb_intel_crtc->lut_r[i] +
714 psb_intel_crtc->lut_adj[i]) << 16) |
715 ((psb_intel_crtc->lut_g[i] +
716 psb_intel_crtc->lut_adj[i]) << 8) |
717 (psb_intel_crtc->lut_b[i] +
718 psb_intel_crtc->lut_adj[i]);
719 }
720
721 }
722 }
723
724 /**
725 * Save HW states of giving crtc
726 */
727 static void psb_intel_crtc_save(struct drm_crtc *crtc)
728 {
729 struct drm_device *dev = crtc->dev;
730 struct drm_psb_private *dev_priv = dev->dev_private;
731 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
732 struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
733 const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
734 uint32_t paletteReg;
735 int i;
736
737 if (!crtc_state) {
738 dev_err(dev->dev, "No CRTC state found\n");
739 return;
740 }
741
742 crtc_state->saveDSPCNTR = REG_READ(map->cntr);
743 crtc_state->savePIPECONF = REG_READ(map->conf);
744 crtc_state->savePIPESRC = REG_READ(map->src);
745 crtc_state->saveFP0 = REG_READ(map->fp0);
746 crtc_state->saveFP1 = REG_READ(map->fp1);
747 crtc_state->saveDPLL = REG_READ(map->dpll);
748 crtc_state->saveHTOTAL = REG_READ(map->htotal);
749 crtc_state->saveHBLANK = REG_READ(map->hblank);
750 crtc_state->saveHSYNC = REG_READ(map->hsync);
751 crtc_state->saveVTOTAL = REG_READ(map->vtotal);
752 crtc_state->saveVBLANK = REG_READ(map->vblank);
753 crtc_state->saveVSYNC = REG_READ(map->vsync);
754 crtc_state->saveDSPSTRIDE = REG_READ(map->stride);
755
756 /*NOTE: DSPSIZE DSPPOS only for psb*/
757 crtc_state->saveDSPSIZE = REG_READ(map->size);
758 crtc_state->saveDSPPOS = REG_READ(map->pos);
759
760 crtc_state->saveDSPBASE = REG_READ(map->base);
761
762 paletteReg = map->palette;
763 for (i = 0; i < 256; ++i)
764 crtc_state->savePalette[i] = REG_READ(paletteReg + (i << 2));
765 }
766
767 /**
768 * Restore HW states of giving crtc
769 */
770 static void psb_intel_crtc_restore(struct drm_crtc *crtc)
771 {
772 struct drm_device *dev = crtc->dev;
773 struct drm_psb_private *dev_priv = dev->dev_private;
774 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
775 struct psb_intel_crtc_state *crtc_state = psb_intel_crtc->crtc_state;
776 const struct psb_offset *map = &dev_priv->regmap[psb_intel_crtc->pipe];
777 uint32_t paletteReg;
778 int i;
779
780 if (!crtc_state) {
781 dev_err(dev->dev, "No crtc state\n");
782 return;
783 }
784
785 if (crtc_state->saveDPLL & DPLL_VCO_ENABLE) {
786 REG_WRITE(map->dpll,
787 crtc_state->saveDPLL & ~DPLL_VCO_ENABLE);
788 REG_READ(map->dpll);
789 udelay(150);
790 }
791
792 REG_WRITE(map->fp0, crtc_state->saveFP0);
793 REG_READ(map->fp0);
794
795 REG_WRITE(map->fp1, crtc_state->saveFP1);
796 REG_READ(map->fp1);
797
798 REG_WRITE(map->dpll, crtc_state->saveDPLL);
799 REG_READ(map->dpll);
800 udelay(150);
801
802 REG_WRITE(map->htotal, crtc_state->saveHTOTAL);
803 REG_WRITE(map->hblank, crtc_state->saveHBLANK);
804 REG_WRITE(map->hsync, crtc_state->saveHSYNC);
805 REG_WRITE(map->vtotal, crtc_state->saveVTOTAL);
806 REG_WRITE(map->vblank, crtc_state->saveVBLANK);
807 REG_WRITE(map->vsync, crtc_state->saveVSYNC);
808 REG_WRITE(map->stride, crtc_state->saveDSPSTRIDE);
809
810 REG_WRITE(map->size, crtc_state->saveDSPSIZE);
811 REG_WRITE(map->pos, crtc_state->saveDSPPOS);
812
813 REG_WRITE(map->src, crtc_state->savePIPESRC);
814 REG_WRITE(map->base, crtc_state->saveDSPBASE);
815 REG_WRITE(map->conf, crtc_state->savePIPECONF);
816
817 psb_intel_wait_for_vblank(dev);
818
819 REG_WRITE(map->cntr, crtc_state->saveDSPCNTR);
820 REG_WRITE(map->base, crtc_state->saveDSPBASE);
821
822 psb_intel_wait_for_vblank(dev);
823
824 paletteReg = map->palette;
825 for (i = 0; i < 256; ++i)
826 REG_WRITE(paletteReg + (i << 2), crtc_state->savePalette[i]);
827 }
828
829 static int psb_intel_crtc_cursor_set(struct drm_crtc *crtc,
830 struct drm_file *file_priv,
831 uint32_t handle,
832 uint32_t width, uint32_t height)
833 {
834 struct drm_device *dev = crtc->dev;
835 struct drm_psb_private *dev_priv = dev->dev_private;
836 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
837 int pipe = psb_intel_crtc->pipe;
838 uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
839 uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
840 uint32_t temp;
841 size_t addr = 0;
842 struct gtt_range *gt;
843 struct gtt_range *cursor_gt = psb_intel_crtc->cursor_gt;
844 struct drm_gem_object *obj;
845 void *tmp_dst, *tmp_src;
846 int ret, i, cursor_pages;
847
848 /* if we want to turn of the cursor ignore width and height */
849 if (!handle) {
850 /* turn off the cursor */
851 temp = CURSOR_MODE_DISABLE;
852
853 if (gma_power_begin(dev, false)) {
854 REG_WRITE(control, temp);
855 REG_WRITE(base, 0);
856 gma_power_end(dev);
857 }
858
859 /* Unpin the old GEM object */
860 if (psb_intel_crtc->cursor_obj) {
861 gt = container_of(psb_intel_crtc->cursor_obj,
862 struct gtt_range, gem);
863 psb_gtt_unpin(gt);
864 drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
865 psb_intel_crtc->cursor_obj = NULL;
866 }
867
868 return 0;
869 }
870
871 /* Currently we only support 64x64 cursors */
872 if (width != 64 || height != 64) {
873 dev_dbg(dev->dev, "we currently only support 64x64 cursors\n");
874 return -EINVAL;
875 }
876
877 obj = drm_gem_object_lookup(dev, file_priv, handle);
878 if (!obj)
879 return -ENOENT;
880
881 if (obj->size < width * height * 4) {
882 dev_dbg(dev->dev, "buffer is to small\n");
883 return -ENOMEM;
884 }
885
886 gt = container_of(obj, struct gtt_range, gem);
887
888 /* Pin the memory into the GTT */
889 ret = psb_gtt_pin(gt);
890 if (ret) {
891 dev_err(dev->dev, "Can not pin down handle 0x%x\n", handle);
892 return ret;
893 }
894
895 if (dev_priv->ops->cursor_needs_phys) {
896 if (cursor_gt == NULL) {
897 dev_err(dev->dev, "No hardware cursor mem available");
898 return -ENOMEM;
899 }
900
901 /* Prevent overflow */
902 if (gt->npage > 4)
903 cursor_pages = 4;
904 else
905 cursor_pages = gt->npage;
906
907 /* Copy the cursor to cursor mem */
908 tmp_dst = dev_priv->vram_addr + cursor_gt->offset;
909 for (i = 0; i < cursor_pages; i++) {
910 tmp_src = kmap(gt->pages[i]);
911 memcpy(tmp_dst, tmp_src, PAGE_SIZE);
912 kunmap(gt->pages[i]);
913 tmp_dst += PAGE_SIZE;
914 }
915
916 addr = psb_intel_crtc->cursor_addr;
917 } else {
918 addr = gt->offset; /* Or resource.start ??? */
919 psb_intel_crtc->cursor_addr = addr;
920 }
921
922 temp = 0;
923 /* set the pipe for the cursor */
924 temp |= (pipe << 28);
925 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
926
927 if (gma_power_begin(dev, false)) {
928 REG_WRITE(control, temp);
929 REG_WRITE(base, addr);
930 gma_power_end(dev);
931 }
932
933 /* unpin the old bo */
934 if (psb_intel_crtc->cursor_obj) {
935 gt = container_of(psb_intel_crtc->cursor_obj,
936 struct gtt_range, gem);
937 psb_gtt_unpin(gt);
938 drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
939 psb_intel_crtc->cursor_obj = obj;
940 }
941 return 0;
942 }
943
944 static int psb_intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
945 {
946 struct drm_device *dev = crtc->dev;
947 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
948 int pipe = psb_intel_crtc->pipe;
949 uint32_t temp = 0;
950 uint32_t addr;
951
952
953 if (x < 0) {
954 temp |= (CURSOR_POS_SIGN << CURSOR_X_SHIFT);
955 x = -x;
956 }
957 if (y < 0) {
958 temp |= (CURSOR_POS_SIGN << CURSOR_Y_SHIFT);
959 y = -y;
960 }
961
962 temp |= ((x & CURSOR_POS_MASK) << CURSOR_X_SHIFT);
963 temp |= ((y & CURSOR_POS_MASK) << CURSOR_Y_SHIFT);
964
965 addr = psb_intel_crtc->cursor_addr;
966
967 if (gma_power_begin(dev, false)) {
968 REG_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
969 REG_WRITE((pipe == 0) ? CURABASE : CURBBASE, addr);
970 gma_power_end(dev);
971 }
972 return 0;
973 }
974
975 static void psb_intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red,
976 u16 *green, u16 *blue, uint32_t type, uint32_t size)
977 {
978 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
979 int i;
980
981 if (size != 256)
982 return;
983
984 for (i = 0; i < 256; i++) {
985 psb_intel_crtc->lut_r[i] = red[i] >> 8;
986 psb_intel_crtc->lut_g[i] = green[i] >> 8;
987 psb_intel_crtc->lut_b[i] = blue[i] >> 8;
988 }
989
990 psb_intel_crtc_load_lut(crtc);
991 }
992
993 static int psb_crtc_set_config(struct drm_mode_set *set)
994 {
995 int ret;
996 struct drm_device *dev = set->crtc->dev;
997 struct drm_psb_private *dev_priv = dev->dev_private;
998
999 if (!dev_priv->rpm_enabled)
1000 return drm_crtc_helper_set_config(set);
1001
1002 pm_runtime_forbid(&dev->pdev->dev);
1003 ret = drm_crtc_helper_set_config(set);
1004 pm_runtime_allow(&dev->pdev->dev);
1005 return ret;
1006 }
1007
1008 /* Returns the clock of the currently programmed mode of the given pipe. */
1009 static int psb_intel_crtc_clock_get(struct drm_device *dev,
1010 struct drm_crtc *crtc)
1011 {
1012 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1013 struct drm_psb_private *dev_priv = dev->dev_private;
1014 int pipe = psb_intel_crtc->pipe;
1015 const struct psb_offset *map = &dev_priv->regmap[pipe];
1016 u32 dpll;
1017 u32 fp;
1018 struct psb_intel_clock_t clock;
1019 bool is_lvds;
1020 struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
1021
1022 if (gma_power_begin(dev, false)) {
1023 dpll = REG_READ(map->dpll);
1024 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1025 fp = REG_READ(map->fp0);
1026 else
1027 fp = REG_READ(map->fp1);
1028 is_lvds = (pipe == 1) && (REG_READ(LVDS) & LVDS_PORT_EN);
1029 gma_power_end(dev);
1030 } else {
1031 dpll = p->dpll;
1032
1033 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
1034 fp = p->fp0;
1035 else
1036 fp = p->fp1;
1037
1038 is_lvds = (pipe == 1) && (dev_priv->regs.psb.saveLVDS &
1039 LVDS_PORT_EN);
1040 }
1041
1042 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
1043 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
1044 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
1045
1046 if (is_lvds) {
1047 clock.p1 =
1048 ffs((dpll &
1049 DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
1050 DPLL_FPA01_P1_POST_DIV_SHIFT);
1051 clock.p2 = 14;
1052
1053 if ((dpll & PLL_REF_INPUT_MASK) ==
1054 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
1055 /* XXX: might not be 66MHz */
1056 psb_intel_clock(66000, &clock);
1057 } else
1058 psb_intel_clock(48000, &clock);
1059 } else {
1060 if (dpll & PLL_P1_DIVIDE_BY_TWO)
1061 clock.p1 = 2;
1062 else {
1063 clock.p1 =
1064 ((dpll &
1065 DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
1066 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
1067 }
1068 if (dpll & PLL_P2_DIVIDE_BY_4)
1069 clock.p2 = 4;
1070 else
1071 clock.p2 = 2;
1072
1073 psb_intel_clock(48000, &clock);
1074 }
1075
1076 /* XXX: It would be nice to validate the clocks, but we can't reuse
1077 * i830PllIsValid() because it relies on the xf86_config connector
1078 * configuration being accurate, which it isn't necessarily.
1079 */
1080
1081 return clock.dot;
1082 }
1083
1084 /** Returns the currently programmed mode of the given pipe. */
1085 struct drm_display_mode *psb_intel_crtc_mode_get(struct drm_device *dev,
1086 struct drm_crtc *crtc)
1087 {
1088 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1089 int pipe = psb_intel_crtc->pipe;
1090 struct drm_display_mode *mode;
1091 int htot;
1092 int hsync;
1093 int vtot;
1094 int vsync;
1095 struct drm_psb_private *dev_priv = dev->dev_private;
1096 struct psb_pipe *p = &dev_priv->regs.pipe[pipe];
1097 const struct psb_offset *map = &dev_priv->regmap[pipe];
1098
1099 if (gma_power_begin(dev, false)) {
1100 htot = REG_READ(map->htotal);
1101 hsync = REG_READ(map->hsync);
1102 vtot = REG_READ(map->vtotal);
1103 vsync = REG_READ(map->vsync);
1104 gma_power_end(dev);
1105 } else {
1106 htot = p->htotal;
1107 hsync = p->hsync;
1108 vtot = p->vtotal;
1109 vsync = p->vsync;
1110 }
1111
1112 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
1113 if (!mode)
1114 return NULL;
1115
1116 mode->clock = psb_intel_crtc_clock_get(dev, crtc);
1117 mode->hdisplay = (htot & 0xffff) + 1;
1118 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
1119 mode->hsync_start = (hsync & 0xffff) + 1;
1120 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
1121 mode->vdisplay = (vtot & 0xffff) + 1;
1122 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
1123 mode->vsync_start = (vsync & 0xffff) + 1;
1124 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
1125
1126 drm_mode_set_name(mode);
1127 drm_mode_set_crtcinfo(mode, 0);
1128
1129 return mode;
1130 }
1131
1132 static void psb_intel_crtc_destroy(struct drm_crtc *crtc)
1133 {
1134 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1135 struct gtt_range *gt;
1136
1137 /* Unpin the old GEM object */
1138 if (psb_intel_crtc->cursor_obj) {
1139 gt = container_of(psb_intel_crtc->cursor_obj,
1140 struct gtt_range, gem);
1141 psb_gtt_unpin(gt);
1142 drm_gem_object_unreference(psb_intel_crtc->cursor_obj);
1143 psb_intel_crtc->cursor_obj = NULL;
1144 }
1145
1146 if (psb_intel_crtc->cursor_gt != NULL)
1147 psb_gtt_free_range(crtc->dev, psb_intel_crtc->cursor_gt);
1148 kfree(psb_intel_crtc->crtc_state);
1149 drm_crtc_cleanup(crtc);
1150 kfree(psb_intel_crtc);
1151 }
1152
1153 const struct drm_crtc_helper_funcs psb_intel_helper_funcs = {
1154 .dpms = psb_intel_crtc_dpms,
1155 .mode_fixup = psb_intel_crtc_mode_fixup,
1156 .mode_set = psb_intel_crtc_mode_set,
1157 .mode_set_base = psb_intel_pipe_set_base,
1158 .prepare = psb_intel_crtc_prepare,
1159 .commit = psb_intel_crtc_commit,
1160 };
1161
1162 const struct drm_crtc_funcs psb_intel_crtc_funcs = {
1163 .save = psb_intel_crtc_save,
1164 .restore = psb_intel_crtc_restore,
1165 .cursor_set = psb_intel_crtc_cursor_set,
1166 .cursor_move = psb_intel_crtc_cursor_move,
1167 .gamma_set = psb_intel_crtc_gamma_set,
1168 .set_config = psb_crtc_set_config,
1169 .destroy = psb_intel_crtc_destroy,
1170 };
1171
1172 /*
1173 * Set the default value of cursor control and base register
1174 * to zero. This is a workaround for h/w defect on Oaktrail
1175 */
1176 static void psb_intel_cursor_init(struct drm_device *dev,
1177 struct psb_intel_crtc *psb_intel_crtc)
1178 {
1179 struct drm_psb_private *dev_priv = dev->dev_private;
1180 u32 control[3] = { CURACNTR, CURBCNTR, CURCCNTR };
1181 u32 base[3] = { CURABASE, CURBBASE, CURCBASE };
1182 struct gtt_range *cursor_gt;
1183
1184 if (dev_priv->ops->cursor_needs_phys) {
1185 /* Allocate 4 pages of stolen mem for a hardware cursor. That
1186 * is enough for the 64 x 64 ARGB cursors we support.
1187 */
1188 cursor_gt = psb_gtt_alloc_range(dev, 4 * PAGE_SIZE, "cursor", 1);
1189 if (!cursor_gt) {
1190 psb_intel_crtc->cursor_gt = NULL;
1191 goto out;
1192 }
1193 psb_intel_crtc->cursor_gt = cursor_gt;
1194 psb_intel_crtc->cursor_addr = dev_priv->stolen_base +
1195 cursor_gt->offset;
1196 } else {
1197 psb_intel_crtc->cursor_gt = NULL;
1198 }
1199
1200 out:
1201 REG_WRITE(control[psb_intel_crtc->pipe], 0);
1202 REG_WRITE(base[psb_intel_crtc->pipe], 0);
1203 }
1204
1205 void psb_intel_crtc_init(struct drm_device *dev, int pipe,
1206 struct psb_intel_mode_device *mode_dev)
1207 {
1208 struct drm_psb_private *dev_priv = dev->dev_private;
1209 struct psb_intel_crtc *psb_intel_crtc;
1210 int i;
1211 uint16_t *r_base, *g_base, *b_base;
1212
1213 /* We allocate a extra array of drm_connector pointers
1214 * for fbdev after the crtc */
1215 psb_intel_crtc =
1216 kzalloc(sizeof(struct psb_intel_crtc) +
1217 (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)),
1218 GFP_KERNEL);
1219 if (psb_intel_crtc == NULL)
1220 return;
1221
1222 psb_intel_crtc->crtc_state =
1223 kzalloc(sizeof(struct psb_intel_crtc_state), GFP_KERNEL);
1224 if (!psb_intel_crtc->crtc_state) {
1225 dev_err(dev->dev, "Crtc state error: No memory\n");
1226 kfree(psb_intel_crtc);
1227 return;
1228 }
1229
1230 /* Set the CRTC operations from the chip specific data */
1231 drm_crtc_init(dev, &psb_intel_crtc->base, dev_priv->ops->crtc_funcs);
1232
1233 drm_mode_crtc_set_gamma_size(&psb_intel_crtc->base, 256);
1234 psb_intel_crtc->pipe = pipe;
1235 psb_intel_crtc->plane = pipe;
1236
1237 r_base = psb_intel_crtc->base.gamma_store;
1238 g_base = r_base + 256;
1239 b_base = g_base + 256;
1240 for (i = 0; i < 256; i++) {
1241 psb_intel_crtc->lut_r[i] = i;
1242 psb_intel_crtc->lut_g[i] = i;
1243 psb_intel_crtc->lut_b[i] = i;
1244 r_base[i] = i << 8;
1245 g_base[i] = i << 8;
1246 b_base[i] = i << 8;
1247
1248 psb_intel_crtc->lut_adj[i] = 0;
1249 }
1250
1251 psb_intel_crtc->mode_dev = mode_dev;
1252 psb_intel_crtc->cursor_addr = 0;
1253
1254 drm_crtc_helper_add(&psb_intel_crtc->base,
1255 dev_priv->ops->crtc_helper);
1256
1257 /* Setup the array of drm_connector pointer array */
1258 psb_intel_crtc->mode_set.crtc = &psb_intel_crtc->base;
1259 BUG_ON(pipe >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
1260 dev_priv->plane_to_crtc_mapping[psb_intel_crtc->plane] != NULL);
1261 dev_priv->plane_to_crtc_mapping[psb_intel_crtc->plane] =
1262 &psb_intel_crtc->base;
1263 dev_priv->pipe_to_crtc_mapping[psb_intel_crtc->pipe] =
1264 &psb_intel_crtc->base;
1265 psb_intel_crtc->mode_set.connectors =
1266 (struct drm_connector **) (psb_intel_crtc + 1);
1267 psb_intel_crtc->mode_set.num_connectors = 0;
1268 psb_intel_cursor_init(dev, psb_intel_crtc);
1269
1270 /* Set to true so that the pipe is forced off on initial config. */
1271 psb_intel_crtc->active = true;
1272 }
1273
1274 int psb_intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
1275 struct drm_file *file_priv)
1276 {
1277 struct drm_psb_private *dev_priv = dev->dev_private;
1278 struct drm_psb_get_pipe_from_crtc_id_arg *pipe_from_crtc_id = data;
1279 struct drm_mode_object *drmmode_obj;
1280 struct psb_intel_crtc *crtc;
1281
1282 if (!dev_priv) {
1283 dev_err(dev->dev, "called with no initialization\n");
1284 return -EINVAL;
1285 }
1286
1287 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
1288 DRM_MODE_OBJECT_CRTC);
1289
1290 if (!drmmode_obj) {
1291 dev_err(dev->dev, "no such CRTC id\n");
1292 return -EINVAL;
1293 }
1294
1295 crtc = to_psb_intel_crtc(obj_to_crtc(drmmode_obj));
1296 pipe_from_crtc_id->pipe = crtc->pipe;
1297
1298 return 0;
1299 }
1300
1301 struct drm_crtc *psb_intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
1302 {
1303 struct drm_crtc *crtc = NULL;
1304
1305 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
1306 struct psb_intel_crtc *psb_intel_crtc = to_psb_intel_crtc(crtc);
1307 if (psb_intel_crtc->pipe == pipe)
1308 break;
1309 }
1310 return crtc;
1311 }
1312
1313 int psb_intel_connector_clones(struct drm_device *dev, int type_mask)
1314 {
1315 int index_mask = 0;
1316 struct drm_connector *connector;
1317 int entry = 0;
1318
1319 list_for_each_entry(connector, &dev->mode_config.connector_list,
1320 head) {
1321 struct psb_intel_encoder *psb_intel_encoder =
1322 psb_intel_attached_encoder(connector);
1323 if (type_mask & (1 << psb_intel_encoder->type))
1324 index_mask |= (1 << entry);
1325 entry++;
1326 }
1327 return index_mask;
1328 }
1329
1330 /* current intel driver doesn't take advantage of encoders
1331 always give back the encoder for the connector
1332 */
1333 struct drm_encoder *psb_intel_best_encoder(struct drm_connector *connector)
1334 {
1335 struct psb_intel_encoder *psb_intel_encoder =
1336 psb_intel_attached_encoder(connector);
1337
1338 return &psb_intel_encoder->base;
1339 }
1340
1341 void psb_intel_connector_attach_encoder(struct psb_intel_connector *connector,
1342 struct psb_intel_encoder *encoder)
1343 {
1344 connector->encoder = encoder;
1345 drm_mode_connector_attach_encoder(&connector->base,
1346 &encoder->base);
1347 }