drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / firewire / sbp2.c
1 /*
2 * SBP2 driver (SCSI over IEEE1394)
3 *
4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 * The basic structure of this driver is based on the old storage driver,
23 * drivers/ieee1394/sbp2.c, originally written by
24 * James Goodwin <jamesg@filanet.com>
25 * with later contributions and ongoing maintenance from
26 * Ben Collins <bcollins@debian.org>,
27 * Stefan Richter <stefanr@s5r6.in-berlin.de>
28 * and many others.
29 */
30
31 #include <linux/blkdev.h>
32 #include <linux/bug.h>
33 #include <linux/completion.h>
34 #include <linux/delay.h>
35 #include <linux/device.h>
36 #include <linux/dma-mapping.h>
37 #include <linux/firewire.h>
38 #include <linux/firewire-constants.h>
39 #include <linux/init.h>
40 #include <linux/jiffies.h>
41 #include <linux/kernel.h>
42 #include <linux/kref.h>
43 #include <linux/list.h>
44 #include <linux/mod_devicetable.h>
45 #include <linux/module.h>
46 #include <linux/moduleparam.h>
47 #include <linux/scatterlist.h>
48 #include <linux/slab.h>
49 #include <linux/spinlock.h>
50 #include <linux/string.h>
51 #include <linux/stringify.h>
52 #include <linux/workqueue.h>
53
54 #include <asm/byteorder.h>
55
56 #include <scsi/scsi.h>
57 #include <scsi/scsi_cmnd.h>
58 #include <scsi/scsi_device.h>
59 #include <scsi/scsi_host.h>
60
61 /*
62 * So far only bridges from Oxford Semiconductor are known to support
63 * concurrent logins. Depending on firmware, four or two concurrent logins
64 * are possible on OXFW911 and newer Oxsemi bridges.
65 *
66 * Concurrent logins are useful together with cluster filesystems.
67 */
68 static bool sbp2_param_exclusive_login = 1;
69 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
70 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
71 "(default = Y, use N for concurrent initiators)");
72
73 /*
74 * Flags for firmware oddities
75 *
76 * - 128kB max transfer
77 * Limit transfer size. Necessary for some old bridges.
78 *
79 * - 36 byte inquiry
80 * When scsi_mod probes the device, let the inquiry command look like that
81 * from MS Windows.
82 *
83 * - skip mode page 8
84 * Suppress sending of mode_sense for mode page 8 if the device pretends to
85 * support the SCSI Primary Block commands instead of Reduced Block Commands.
86 *
87 * - fix capacity
88 * Tell sd_mod to correct the last sector number reported by read_capacity.
89 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
90 * Don't use this with devices which don't have this bug.
91 *
92 * - delay inquiry
93 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
94 *
95 * - power condition
96 * Set the power condition field in the START STOP UNIT commands sent by
97 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
98 * Some disks need this to spin down or to resume properly.
99 *
100 * - override internal blacklist
101 * Instead of adding to the built-in blacklist, use only the workarounds
102 * specified in the module load parameter.
103 * Useful if a blacklist entry interfered with a non-broken device.
104 */
105 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
106 #define SBP2_WORKAROUND_INQUIRY_36 0x2
107 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
108 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
109 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10
110 #define SBP2_INQUIRY_DELAY 12
111 #define SBP2_WORKAROUND_POWER_CONDITION 0x20
112 #define SBP2_WORKAROUND_OVERRIDE 0x100
113
114 static int sbp2_param_workarounds;
115 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
116 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
117 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
118 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
119 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
120 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
121 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
122 ", set power condition in start stop unit = "
123 __stringify(SBP2_WORKAROUND_POWER_CONDITION)
124 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
125 ", or a combination)");
126
127 /*
128 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
129 * and one struct scsi_device per sbp2_logical_unit.
130 */
131 struct sbp2_logical_unit {
132 struct sbp2_target *tgt;
133 struct list_head link;
134 struct fw_address_handler address_handler;
135 struct list_head orb_list;
136
137 u64 command_block_agent_address;
138 u16 lun;
139 int login_id;
140
141 /*
142 * The generation is updated once we've logged in or reconnected
143 * to the logical unit. Thus, I/O to the device will automatically
144 * fail and get retried if it happens in a window where the device
145 * is not ready, e.g. after a bus reset but before we reconnect.
146 */
147 int generation;
148 int retries;
149 work_func_t workfn;
150 struct delayed_work work;
151 bool has_sdev;
152 bool blocked;
153 };
154
155 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
156 {
157 queue_delayed_work(fw_workqueue, &lu->work, delay);
158 }
159
160 /*
161 * We create one struct sbp2_target per IEEE 1212 Unit Directory
162 * and one struct Scsi_Host per sbp2_target.
163 */
164 struct sbp2_target {
165 struct fw_unit *unit;
166 struct list_head lu_list;
167
168 u64 management_agent_address;
169 u64 guid;
170 int directory_id;
171 int node_id;
172 int address_high;
173 unsigned int workarounds;
174 unsigned int mgt_orb_timeout;
175 unsigned int max_payload;
176
177 int dont_block; /* counter for each logical unit */
178 int blocked; /* ditto */
179 };
180
181 static struct fw_device *target_parent_device(struct sbp2_target *tgt)
182 {
183 return fw_parent_device(tgt->unit);
184 }
185
186 static const struct device *tgt_dev(const struct sbp2_target *tgt)
187 {
188 return &tgt->unit->device;
189 }
190
191 static const struct device *lu_dev(const struct sbp2_logical_unit *lu)
192 {
193 return &lu->tgt->unit->device;
194 }
195
196 /* Impossible login_id, to detect logout attempt before successful login */
197 #define INVALID_LOGIN_ID 0x10000
198
199 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
200 #define SBP2_ORB_NULL 0x80000000
201 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */
202 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */
203
204 /*
205 * There is no transport protocol limit to the CDB length, but we implement
206 * a fixed length only. 16 bytes is enough for disks larger than 2 TB.
207 */
208 #define SBP2_MAX_CDB_SIZE 16
209
210 /*
211 * The maximum SBP-2 data buffer size is 0xffff. We quadlet-align this
212 * for compatibility with earlier versions of this driver.
213 */
214 #define SBP2_MAX_SEG_SIZE 0xfffc
215
216 /* Unit directory keys */
217 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
218 #define SBP2_CSR_FIRMWARE_REVISION 0x3c
219 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
220 #define SBP2_CSR_UNIT_UNIQUE_ID 0x8d
221 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
222
223 /* Management orb opcodes */
224 #define SBP2_LOGIN_REQUEST 0x0
225 #define SBP2_QUERY_LOGINS_REQUEST 0x1
226 #define SBP2_RECONNECT_REQUEST 0x3
227 #define SBP2_SET_PASSWORD_REQUEST 0x4
228 #define SBP2_LOGOUT_REQUEST 0x7
229 #define SBP2_ABORT_TASK_REQUEST 0xb
230 #define SBP2_ABORT_TASK_SET 0xc
231 #define SBP2_LOGICAL_UNIT_RESET 0xe
232 #define SBP2_TARGET_RESET_REQUEST 0xf
233
234 /* Offsets for command block agent registers */
235 #define SBP2_AGENT_STATE 0x00
236 #define SBP2_AGENT_RESET 0x04
237 #define SBP2_ORB_POINTER 0x08
238 #define SBP2_DOORBELL 0x10
239 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
240
241 /* Status write response codes */
242 #define SBP2_STATUS_REQUEST_COMPLETE 0x0
243 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
244 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
245 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
246
247 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
248 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
249 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
250 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
251 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
252 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
253 #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
254 #define STATUS_GET_DATA(v) ((v).data)
255
256 struct sbp2_status {
257 u32 status;
258 u32 orb_low;
259 u8 data[24];
260 };
261
262 struct sbp2_pointer {
263 __be32 high;
264 __be32 low;
265 };
266
267 struct sbp2_orb {
268 struct fw_transaction t;
269 struct kref kref;
270 dma_addr_t request_bus;
271 int rcode;
272 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
273 struct list_head link;
274 };
275
276 #define MANAGEMENT_ORB_LUN(v) ((v))
277 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
278 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
279 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
280 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
281 #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
282
283 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
284 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
285
286 struct sbp2_management_orb {
287 struct sbp2_orb base;
288 struct {
289 struct sbp2_pointer password;
290 struct sbp2_pointer response;
291 __be32 misc;
292 __be32 length;
293 struct sbp2_pointer status_fifo;
294 } request;
295 __be32 response[4];
296 dma_addr_t response_bus;
297 struct completion done;
298 struct sbp2_status status;
299 };
300
301 struct sbp2_login_response {
302 __be32 misc;
303 struct sbp2_pointer command_block_agent;
304 __be32 reconnect_hold;
305 };
306 #define COMMAND_ORB_DATA_SIZE(v) ((v))
307 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
308 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
309 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
310 #define COMMAND_ORB_SPEED(v) ((v) << 24)
311 #define COMMAND_ORB_DIRECTION ((1) << 27)
312 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
313 #define COMMAND_ORB_NOTIFY ((1) << 31)
314
315 struct sbp2_command_orb {
316 struct sbp2_orb base;
317 struct {
318 struct sbp2_pointer next;
319 struct sbp2_pointer data_descriptor;
320 __be32 misc;
321 u8 command_block[SBP2_MAX_CDB_SIZE];
322 } request;
323 struct scsi_cmnd *cmd;
324 struct sbp2_logical_unit *lu;
325
326 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
327 dma_addr_t page_table_bus;
328 };
329
330 #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */
331 #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */
332
333 /*
334 * List of devices with known bugs.
335 *
336 * The firmware_revision field, masked with 0xffff00, is the best
337 * indicator for the type of bridge chip of a device. It yields a few
338 * false positives but this did not break correctly behaving devices
339 * so far.
340 */
341 static const struct {
342 u32 firmware_revision;
343 u32 model;
344 unsigned int workarounds;
345 } sbp2_workarounds_table[] = {
346 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
347 .firmware_revision = 0x002800,
348 .model = 0x001010,
349 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
350 SBP2_WORKAROUND_MODE_SENSE_8 |
351 SBP2_WORKAROUND_POWER_CONDITION,
352 },
353 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
354 .firmware_revision = 0x002800,
355 .model = 0x000000,
356 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
357 },
358 /* Initio bridges, actually only needed for some older ones */ {
359 .firmware_revision = 0x000200,
360 .model = SBP2_ROM_VALUE_WILDCARD,
361 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
362 },
363 /* PL-3507 bridge with Prolific firmware */ {
364 .firmware_revision = 0x012800,
365 .model = SBP2_ROM_VALUE_WILDCARD,
366 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
367 },
368 /* Symbios bridge */ {
369 .firmware_revision = 0xa0b800,
370 .model = SBP2_ROM_VALUE_WILDCARD,
371 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
372 },
373 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
374 .firmware_revision = 0x002600,
375 .model = SBP2_ROM_VALUE_WILDCARD,
376 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
377 },
378 /*
379 * iPod 2nd generation: needs 128k max transfer size workaround
380 * iPod 3rd generation: needs fix capacity workaround
381 */
382 {
383 .firmware_revision = 0x0a2700,
384 .model = 0x000000,
385 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS |
386 SBP2_WORKAROUND_FIX_CAPACITY,
387 },
388 /* iPod 4th generation */ {
389 .firmware_revision = 0x0a2700,
390 .model = 0x000021,
391 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
392 },
393 /* iPod mini */ {
394 .firmware_revision = 0x0a2700,
395 .model = 0x000022,
396 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
397 },
398 /* iPod mini */ {
399 .firmware_revision = 0x0a2700,
400 .model = 0x000023,
401 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
402 },
403 /* iPod Photo */ {
404 .firmware_revision = 0x0a2700,
405 .model = 0x00007e,
406 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
407 }
408 };
409
410 static void free_orb(struct kref *kref)
411 {
412 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
413
414 kfree(orb);
415 }
416
417 static void sbp2_status_write(struct fw_card *card, struct fw_request *request,
418 int tcode, int destination, int source,
419 int generation, unsigned long long offset,
420 void *payload, size_t length, void *callback_data)
421 {
422 struct sbp2_logical_unit *lu = callback_data;
423 struct sbp2_orb *orb;
424 struct sbp2_status status;
425 unsigned long flags;
426
427 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
428 length < 8 || length > sizeof(status)) {
429 fw_send_response(card, request, RCODE_TYPE_ERROR);
430 return;
431 }
432
433 status.status = be32_to_cpup(payload);
434 status.orb_low = be32_to_cpup(payload + 4);
435 memset(status.data, 0, sizeof(status.data));
436 if (length > 8)
437 memcpy(status.data, payload + 8, length - 8);
438
439 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
440 dev_notice(lu_dev(lu),
441 "non-ORB related status write, not handled\n");
442 fw_send_response(card, request, RCODE_COMPLETE);
443 return;
444 }
445
446 /* Lookup the orb corresponding to this status write. */
447 spin_lock_irqsave(&card->lock, flags);
448 list_for_each_entry(orb, &lu->orb_list, link) {
449 if (STATUS_GET_ORB_HIGH(status) == 0 &&
450 STATUS_GET_ORB_LOW(status) == orb->request_bus) {
451 orb->rcode = RCODE_COMPLETE;
452 list_del(&orb->link);
453 break;
454 }
455 }
456 spin_unlock_irqrestore(&card->lock, flags);
457
458 if (&orb->link != &lu->orb_list) {
459 orb->callback(orb, &status);
460 kref_put(&orb->kref, free_orb); /* orb callback reference */
461 } else {
462 dev_err(lu_dev(lu), "status write for unknown ORB\n");
463 }
464
465 fw_send_response(card, request, RCODE_COMPLETE);
466 }
467
468 static void complete_transaction(struct fw_card *card, int rcode,
469 void *payload, size_t length, void *data)
470 {
471 struct sbp2_orb *orb = data;
472 unsigned long flags;
473
474 /*
475 * This is a little tricky. We can get the status write for
476 * the orb before we get this callback. The status write
477 * handler above will assume the orb pointer transaction was
478 * successful and set the rcode to RCODE_COMPLETE for the orb.
479 * So this callback only sets the rcode if it hasn't already
480 * been set and only does the cleanup if the transaction
481 * failed and we didn't already get a status write.
482 */
483 spin_lock_irqsave(&card->lock, flags);
484
485 if (orb->rcode == -1)
486 orb->rcode = rcode;
487 if (orb->rcode != RCODE_COMPLETE) {
488 list_del(&orb->link);
489 spin_unlock_irqrestore(&card->lock, flags);
490
491 orb->callback(orb, NULL);
492 kref_put(&orb->kref, free_orb); /* orb callback reference */
493 } else {
494 spin_unlock_irqrestore(&card->lock, flags);
495 }
496
497 kref_put(&orb->kref, free_orb); /* transaction callback reference */
498 }
499
500 static void sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
501 int node_id, int generation, u64 offset)
502 {
503 struct fw_device *device = target_parent_device(lu->tgt);
504 struct sbp2_pointer orb_pointer;
505 unsigned long flags;
506
507 orb_pointer.high = 0;
508 orb_pointer.low = cpu_to_be32(orb->request_bus);
509
510 spin_lock_irqsave(&device->card->lock, flags);
511 list_add_tail(&orb->link, &lu->orb_list);
512 spin_unlock_irqrestore(&device->card->lock, flags);
513
514 kref_get(&orb->kref); /* transaction callback reference */
515 kref_get(&orb->kref); /* orb callback reference */
516
517 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
518 node_id, generation, device->max_speed, offset,
519 &orb_pointer, 8, complete_transaction, orb);
520 }
521
522 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
523 {
524 struct fw_device *device = target_parent_device(lu->tgt);
525 struct sbp2_orb *orb, *next;
526 struct list_head list;
527 unsigned long flags;
528 int retval = -ENOENT;
529
530 INIT_LIST_HEAD(&list);
531 spin_lock_irqsave(&device->card->lock, flags);
532 list_splice_init(&lu->orb_list, &list);
533 spin_unlock_irqrestore(&device->card->lock, flags);
534
535 list_for_each_entry_safe(orb, next, &list, link) {
536 retval = 0;
537 if (fw_cancel_transaction(device->card, &orb->t) == 0)
538 continue;
539
540 orb->rcode = RCODE_CANCELLED;
541 orb->callback(orb, NULL);
542 kref_put(&orb->kref, free_orb); /* orb callback reference */
543 }
544
545 return retval;
546 }
547
548 static void complete_management_orb(struct sbp2_orb *base_orb,
549 struct sbp2_status *status)
550 {
551 struct sbp2_management_orb *orb =
552 container_of(base_orb, struct sbp2_management_orb, base);
553
554 if (status)
555 memcpy(&orb->status, status, sizeof(*status));
556 complete(&orb->done);
557 }
558
559 static int sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
560 int generation, int function,
561 int lun_or_login_id, void *response)
562 {
563 struct fw_device *device = target_parent_device(lu->tgt);
564 struct sbp2_management_orb *orb;
565 unsigned int timeout;
566 int retval = -ENOMEM;
567
568 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
569 return 0;
570
571 orb = kzalloc(sizeof(*orb), GFP_NOIO);
572 if (orb == NULL)
573 return -ENOMEM;
574
575 kref_init(&orb->base.kref);
576 orb->response_bus =
577 dma_map_single(device->card->device, &orb->response,
578 sizeof(orb->response), DMA_FROM_DEVICE);
579 if (dma_mapping_error(device->card->device, orb->response_bus))
580 goto fail_mapping_response;
581
582 orb->request.response.high = 0;
583 orb->request.response.low = cpu_to_be32(orb->response_bus);
584
585 orb->request.misc = cpu_to_be32(
586 MANAGEMENT_ORB_NOTIFY |
587 MANAGEMENT_ORB_FUNCTION(function) |
588 MANAGEMENT_ORB_LUN(lun_or_login_id));
589 orb->request.length = cpu_to_be32(
590 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
591
592 orb->request.status_fifo.high =
593 cpu_to_be32(lu->address_handler.offset >> 32);
594 orb->request.status_fifo.low =
595 cpu_to_be32(lu->address_handler.offset);
596
597 if (function == SBP2_LOGIN_REQUEST) {
598 /* Ask for 2^2 == 4 seconds reconnect grace period */
599 orb->request.misc |= cpu_to_be32(
600 MANAGEMENT_ORB_RECONNECT(2) |
601 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
602 timeout = lu->tgt->mgt_orb_timeout;
603 } else {
604 timeout = SBP2_ORB_TIMEOUT;
605 }
606
607 init_completion(&orb->done);
608 orb->base.callback = complete_management_orb;
609
610 orb->base.request_bus =
611 dma_map_single(device->card->device, &orb->request,
612 sizeof(orb->request), DMA_TO_DEVICE);
613 if (dma_mapping_error(device->card->device, orb->base.request_bus))
614 goto fail_mapping_request;
615
616 sbp2_send_orb(&orb->base, lu, node_id, generation,
617 lu->tgt->management_agent_address);
618
619 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
620
621 retval = -EIO;
622 if (sbp2_cancel_orbs(lu) == 0) {
623 dev_err(lu_dev(lu), "ORB reply timed out, rcode 0x%02x\n",
624 orb->base.rcode);
625 goto out;
626 }
627
628 if (orb->base.rcode != RCODE_COMPLETE) {
629 dev_err(lu_dev(lu), "management write failed, rcode 0x%02x\n",
630 orb->base.rcode);
631 goto out;
632 }
633
634 if (STATUS_GET_RESPONSE(orb->status) != 0 ||
635 STATUS_GET_SBP_STATUS(orb->status) != 0) {
636 dev_err(lu_dev(lu), "error status: %d:%d\n",
637 STATUS_GET_RESPONSE(orb->status),
638 STATUS_GET_SBP_STATUS(orb->status));
639 goto out;
640 }
641
642 retval = 0;
643 out:
644 dma_unmap_single(device->card->device, orb->base.request_bus,
645 sizeof(orb->request), DMA_TO_DEVICE);
646 fail_mapping_request:
647 dma_unmap_single(device->card->device, orb->response_bus,
648 sizeof(orb->response), DMA_FROM_DEVICE);
649 fail_mapping_response:
650 if (response)
651 memcpy(response, orb->response, sizeof(orb->response));
652 kref_put(&orb->base.kref, free_orb);
653
654 return retval;
655 }
656
657 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
658 {
659 struct fw_device *device = target_parent_device(lu->tgt);
660 __be32 d = 0;
661
662 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
663 lu->tgt->node_id, lu->generation, device->max_speed,
664 lu->command_block_agent_address + SBP2_AGENT_RESET,
665 &d, 4);
666 }
667
668 static void complete_agent_reset_write_no_wait(struct fw_card *card,
669 int rcode, void *payload, size_t length, void *data)
670 {
671 kfree(data);
672 }
673
674 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
675 {
676 struct fw_device *device = target_parent_device(lu->tgt);
677 struct fw_transaction *t;
678 static __be32 d;
679
680 t = kmalloc(sizeof(*t), GFP_ATOMIC);
681 if (t == NULL)
682 return;
683
684 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
685 lu->tgt->node_id, lu->generation, device->max_speed,
686 lu->command_block_agent_address + SBP2_AGENT_RESET,
687 &d, 4, complete_agent_reset_write_no_wait, t);
688 }
689
690 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
691 {
692 /*
693 * We may access dont_block without taking card->lock here:
694 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
695 * are currently serialized against each other.
696 * And a wrong result in sbp2_conditionally_block()'s access of
697 * dont_block is rather harmless, it simply misses its first chance.
698 */
699 --lu->tgt->dont_block;
700 }
701
702 /*
703 * Blocks lu->tgt if all of the following conditions are met:
704 * - Login, INQUIRY, and high-level SCSI setup of all of the target's
705 * logical units have been finished (indicated by dont_block == 0).
706 * - lu->generation is stale.
707 *
708 * Note, scsi_block_requests() must be called while holding card->lock,
709 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
710 * unblock the target.
711 */
712 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
713 {
714 struct sbp2_target *tgt = lu->tgt;
715 struct fw_card *card = target_parent_device(tgt)->card;
716 struct Scsi_Host *shost =
717 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
718 unsigned long flags;
719
720 spin_lock_irqsave(&card->lock, flags);
721 if (!tgt->dont_block && !lu->blocked &&
722 lu->generation != card->generation) {
723 lu->blocked = true;
724 if (++tgt->blocked == 1)
725 scsi_block_requests(shost);
726 }
727 spin_unlock_irqrestore(&card->lock, flags);
728 }
729
730 /*
731 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
732 * Note, it is harmless to run scsi_unblock_requests() outside the
733 * card->lock protected section. On the other hand, running it inside
734 * the section might clash with shost->host_lock.
735 */
736 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
737 {
738 struct sbp2_target *tgt = lu->tgt;
739 struct fw_card *card = target_parent_device(tgt)->card;
740 struct Scsi_Host *shost =
741 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
742 unsigned long flags;
743 bool unblock = false;
744
745 spin_lock_irqsave(&card->lock, flags);
746 if (lu->blocked && lu->generation == card->generation) {
747 lu->blocked = false;
748 unblock = --tgt->blocked == 0;
749 }
750 spin_unlock_irqrestore(&card->lock, flags);
751
752 if (unblock)
753 scsi_unblock_requests(shost);
754 }
755
756 /*
757 * Prevents future blocking of tgt and unblocks it.
758 * Note, it is harmless to run scsi_unblock_requests() outside the
759 * card->lock protected section. On the other hand, running it inside
760 * the section might clash with shost->host_lock.
761 */
762 static void sbp2_unblock(struct sbp2_target *tgt)
763 {
764 struct fw_card *card = target_parent_device(tgt)->card;
765 struct Scsi_Host *shost =
766 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
767 unsigned long flags;
768
769 spin_lock_irqsave(&card->lock, flags);
770 ++tgt->dont_block;
771 spin_unlock_irqrestore(&card->lock, flags);
772
773 scsi_unblock_requests(shost);
774 }
775
776 static int sbp2_lun2int(u16 lun)
777 {
778 struct scsi_lun eight_bytes_lun;
779
780 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
781 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
782 eight_bytes_lun.scsi_lun[1] = lun & 0xff;
783
784 return scsilun_to_int(&eight_bytes_lun);
785 }
786
787 /*
788 * Write retransmit retry values into the BUSY_TIMEOUT register.
789 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
790 * default retry_limit value is 0 (i.e. never retry transmission). We write a
791 * saner value after logging into the device.
792 * - The dual-phase retry protocol is optional to implement, and if not
793 * supported, writes to the dual-phase portion of the register will be
794 * ignored. We try to write the original 1394-1995 default here.
795 * - In the case of devices that are also SBP-3-compliant, all writes are
796 * ignored, as the register is read-only, but contains single-phase retry of
797 * 15, which is what we're trying to set for all SBP-2 device anyway, so this
798 * write attempt is safe and yields more consistent behavior for all devices.
799 *
800 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
801 * and section 6.4 of the SBP-3 spec for further details.
802 */
803 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
804 {
805 struct fw_device *device = target_parent_device(lu->tgt);
806 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
807
808 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
809 lu->tgt->node_id, lu->generation, device->max_speed,
810 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT, &d, 4);
811 }
812
813 static void sbp2_reconnect(struct work_struct *work);
814
815 static void sbp2_login(struct work_struct *work)
816 {
817 struct sbp2_logical_unit *lu =
818 container_of(work, struct sbp2_logical_unit, work.work);
819 struct sbp2_target *tgt = lu->tgt;
820 struct fw_device *device = target_parent_device(tgt);
821 struct Scsi_Host *shost;
822 struct scsi_device *sdev;
823 struct sbp2_login_response response;
824 int generation, node_id, local_node_id;
825
826 if (fw_device_is_shutdown(device))
827 return;
828
829 generation = device->generation;
830 smp_rmb(); /* node IDs must not be older than generation */
831 node_id = device->node_id;
832 local_node_id = device->card->node_id;
833
834 /* If this is a re-login attempt, log out, or we might be rejected. */
835 if (lu->has_sdev)
836 sbp2_send_management_orb(lu, device->node_id, generation,
837 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
838
839 if (sbp2_send_management_orb(lu, node_id, generation,
840 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
841 if (lu->retries++ < 5) {
842 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
843 } else {
844 dev_err(tgt_dev(tgt), "failed to login to LUN %04x\n",
845 lu->lun);
846 /* Let any waiting I/O fail from now on. */
847 sbp2_unblock(lu->tgt);
848 }
849 return;
850 }
851
852 tgt->node_id = node_id;
853 tgt->address_high = local_node_id << 16;
854 smp_wmb(); /* node IDs must not be older than generation */
855 lu->generation = generation;
856
857 lu->command_block_agent_address =
858 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
859 << 32) | be32_to_cpu(response.command_block_agent.low);
860 lu->login_id = be32_to_cpu(response.misc) & 0xffff;
861
862 dev_notice(tgt_dev(tgt), "logged in to LUN %04x (%d retries)\n",
863 lu->lun, lu->retries);
864
865 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
866 sbp2_set_busy_timeout(lu);
867
868 lu->workfn = sbp2_reconnect;
869 sbp2_agent_reset(lu);
870
871 /* This was a re-login. */
872 if (lu->has_sdev) {
873 sbp2_cancel_orbs(lu);
874 sbp2_conditionally_unblock(lu);
875
876 return;
877 }
878
879 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
880 ssleep(SBP2_INQUIRY_DELAY);
881
882 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
883 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
884 /*
885 * FIXME: We are unable to perform reconnects while in sbp2_login().
886 * Therefore __scsi_add_device() will get into trouble if a bus reset
887 * happens in parallel. It will either fail or leave us with an
888 * unusable sdev. As a workaround we check for this and retry the
889 * whole login and SCSI probing.
890 */
891
892 /* Reported error during __scsi_add_device() */
893 if (IS_ERR(sdev))
894 goto out_logout_login;
895
896 /* Unreported error during __scsi_add_device() */
897 smp_rmb(); /* get current card generation */
898 if (generation != device->card->generation) {
899 scsi_remove_device(sdev);
900 scsi_device_put(sdev);
901 goto out_logout_login;
902 }
903
904 /* No error during __scsi_add_device() */
905 lu->has_sdev = true;
906 scsi_device_put(sdev);
907 sbp2_allow_block(lu);
908
909 return;
910
911 out_logout_login:
912 smp_rmb(); /* generation may have changed */
913 generation = device->generation;
914 smp_rmb(); /* node_id must not be older than generation */
915
916 sbp2_send_management_orb(lu, device->node_id, generation,
917 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
918 /*
919 * If a bus reset happened, sbp2_update will have requeued
920 * lu->work already. Reset the work from reconnect to login.
921 */
922 lu->workfn = sbp2_login;
923 }
924
925 static void sbp2_reconnect(struct work_struct *work)
926 {
927 struct sbp2_logical_unit *lu =
928 container_of(work, struct sbp2_logical_unit, work.work);
929 struct sbp2_target *tgt = lu->tgt;
930 struct fw_device *device = target_parent_device(tgt);
931 int generation, node_id, local_node_id;
932
933 if (fw_device_is_shutdown(device))
934 return;
935
936 generation = device->generation;
937 smp_rmb(); /* node IDs must not be older than generation */
938 node_id = device->node_id;
939 local_node_id = device->card->node_id;
940
941 if (sbp2_send_management_orb(lu, node_id, generation,
942 SBP2_RECONNECT_REQUEST,
943 lu->login_id, NULL) < 0) {
944 /*
945 * If reconnect was impossible even though we are in the
946 * current generation, fall back and try to log in again.
947 *
948 * We could check for "Function rejected" status, but
949 * looking at the bus generation as simpler and more general.
950 */
951 smp_rmb(); /* get current card generation */
952 if (generation == device->card->generation ||
953 lu->retries++ >= 5) {
954 dev_err(tgt_dev(tgt), "failed to reconnect\n");
955 lu->retries = 0;
956 lu->workfn = sbp2_login;
957 }
958 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
959
960 return;
961 }
962
963 tgt->node_id = node_id;
964 tgt->address_high = local_node_id << 16;
965 smp_wmb(); /* node IDs must not be older than generation */
966 lu->generation = generation;
967
968 dev_notice(tgt_dev(tgt), "reconnected to LUN %04x (%d retries)\n",
969 lu->lun, lu->retries);
970
971 sbp2_agent_reset(lu);
972 sbp2_cancel_orbs(lu);
973 sbp2_conditionally_unblock(lu);
974 }
975
976 static void sbp2_lu_workfn(struct work_struct *work)
977 {
978 struct sbp2_logical_unit *lu = container_of(to_delayed_work(work),
979 struct sbp2_logical_unit, work);
980 lu->workfn(work);
981 }
982
983 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
984 {
985 struct sbp2_logical_unit *lu;
986
987 lu = kmalloc(sizeof(*lu), GFP_KERNEL);
988 if (!lu)
989 return -ENOMEM;
990
991 lu->address_handler.length = 0x100;
992 lu->address_handler.address_callback = sbp2_status_write;
993 lu->address_handler.callback_data = lu;
994
995 if (fw_core_add_address_handler(&lu->address_handler,
996 &fw_high_memory_region) < 0) {
997 kfree(lu);
998 return -ENOMEM;
999 }
1000
1001 lu->tgt = tgt;
1002 lu->lun = lun_entry & 0xffff;
1003 lu->login_id = INVALID_LOGIN_ID;
1004 lu->retries = 0;
1005 lu->has_sdev = false;
1006 lu->blocked = false;
1007 ++tgt->dont_block;
1008 INIT_LIST_HEAD(&lu->orb_list);
1009 lu->workfn = sbp2_login;
1010 INIT_DELAYED_WORK(&lu->work, sbp2_lu_workfn);
1011
1012 list_add_tail(&lu->link, &tgt->lu_list);
1013 return 0;
1014 }
1015
1016 static void sbp2_get_unit_unique_id(struct sbp2_target *tgt,
1017 const u32 *leaf)
1018 {
1019 if ((leaf[0] & 0xffff0000) == 0x00020000)
1020 tgt->guid = (u64)leaf[1] << 32 | leaf[2];
1021 }
1022
1023 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt,
1024 const u32 *directory)
1025 {
1026 struct fw_csr_iterator ci;
1027 int key, value;
1028
1029 fw_csr_iterator_init(&ci, directory);
1030 while (fw_csr_iterator_next(&ci, &key, &value))
1031 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1032 sbp2_add_logical_unit(tgt, value) < 0)
1033 return -ENOMEM;
1034 return 0;
1035 }
1036
1037 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, const u32 *directory,
1038 u32 *model, u32 *firmware_revision)
1039 {
1040 struct fw_csr_iterator ci;
1041 int key, value;
1042
1043 fw_csr_iterator_init(&ci, directory);
1044 while (fw_csr_iterator_next(&ci, &key, &value)) {
1045 switch (key) {
1046
1047 case CSR_DEPENDENT_INFO | CSR_OFFSET:
1048 tgt->management_agent_address =
1049 CSR_REGISTER_BASE + 4 * value;
1050 break;
1051
1052 case CSR_DIRECTORY_ID:
1053 tgt->directory_id = value;
1054 break;
1055
1056 case CSR_MODEL:
1057 *model = value;
1058 break;
1059
1060 case SBP2_CSR_FIRMWARE_REVISION:
1061 *firmware_revision = value;
1062 break;
1063
1064 case SBP2_CSR_UNIT_CHARACTERISTICS:
1065 /* the timeout value is stored in 500ms units */
1066 tgt->mgt_orb_timeout = (value >> 8 & 0xff) * 500;
1067 break;
1068
1069 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1070 if (sbp2_add_logical_unit(tgt, value) < 0)
1071 return -ENOMEM;
1072 break;
1073
1074 case SBP2_CSR_UNIT_UNIQUE_ID:
1075 sbp2_get_unit_unique_id(tgt, ci.p - 1 + value);
1076 break;
1077
1078 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1079 /* Adjust for the increment in the iterator */
1080 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1081 return -ENOMEM;
1082 break;
1083 }
1084 }
1085 return 0;
1086 }
1087
1088 /*
1089 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
1090 * provided in the config rom. Most devices do provide a value, which
1091 * we'll use for login management orbs, but with some sane limits.
1092 */
1093 static void sbp2_clamp_management_orb_timeout(struct sbp2_target *tgt)
1094 {
1095 unsigned int timeout = tgt->mgt_orb_timeout;
1096
1097 if (timeout > 40000)
1098 dev_notice(tgt_dev(tgt), "%ds mgt_ORB_timeout limited to 40s\n",
1099 timeout / 1000);
1100
1101 tgt->mgt_orb_timeout = clamp_val(timeout, 5000, 40000);
1102 }
1103
1104 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1105 u32 firmware_revision)
1106 {
1107 int i;
1108 unsigned int w = sbp2_param_workarounds;
1109
1110 if (w)
1111 dev_notice(tgt_dev(tgt),
1112 "Please notify linux1394-devel@lists.sf.net "
1113 "if you need the workarounds parameter\n");
1114
1115 if (w & SBP2_WORKAROUND_OVERRIDE)
1116 goto out;
1117
1118 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1119
1120 if (sbp2_workarounds_table[i].firmware_revision !=
1121 (firmware_revision & 0xffffff00))
1122 continue;
1123
1124 if (sbp2_workarounds_table[i].model != model &&
1125 sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1126 continue;
1127
1128 w |= sbp2_workarounds_table[i].workarounds;
1129 break;
1130 }
1131 out:
1132 if (w)
1133 dev_notice(tgt_dev(tgt), "workarounds 0x%x "
1134 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1135 w, firmware_revision, model);
1136 tgt->workarounds = w;
1137 }
1138
1139 static struct scsi_host_template scsi_driver_template;
1140 static int sbp2_remove(struct device *dev);
1141
1142 static int sbp2_probe(struct device *dev)
1143 {
1144 struct fw_unit *unit = fw_unit(dev);
1145 struct fw_device *device = fw_parent_device(unit);
1146 struct sbp2_target *tgt;
1147 struct sbp2_logical_unit *lu;
1148 struct Scsi_Host *shost;
1149 u32 model, firmware_revision;
1150
1151 /* cannot (or should not) handle targets on the local node */
1152 if (device->is_local)
1153 return -ENODEV;
1154
1155 if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1156 WARN_ON(dma_set_max_seg_size(device->card->device,
1157 SBP2_MAX_SEG_SIZE));
1158
1159 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1160 if (shost == NULL)
1161 return -ENOMEM;
1162
1163 tgt = (struct sbp2_target *)shost->hostdata;
1164 dev_set_drvdata(&unit->device, tgt);
1165 tgt->unit = unit;
1166 INIT_LIST_HEAD(&tgt->lu_list);
1167 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1168
1169 if (fw_device_enable_phys_dma(device) < 0)
1170 goto fail_shost_put;
1171
1172 shost->max_cmd_len = SBP2_MAX_CDB_SIZE;
1173
1174 if (scsi_add_host_with_dma(shost, &unit->device,
1175 device->card->device) < 0)
1176 goto fail_shost_put;
1177
1178 /* implicit directory ID */
1179 tgt->directory_id = ((unit->directory - device->config_rom) * 4
1180 + CSR_CONFIG_ROM) & 0xffffff;
1181
1182 firmware_revision = SBP2_ROM_VALUE_MISSING;
1183 model = SBP2_ROM_VALUE_MISSING;
1184
1185 if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1186 &firmware_revision) < 0)
1187 goto fail_remove;
1188
1189 sbp2_clamp_management_orb_timeout(tgt);
1190 sbp2_init_workarounds(tgt, model, firmware_revision);
1191
1192 /*
1193 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1194 * and so on up to 4096 bytes. The SBP-2 max_payload field
1195 * specifies the max payload size as 2 ^ (max_payload + 2), so
1196 * if we set this to max_speed + 7, we get the right value.
1197 */
1198 tgt->max_payload = min3(device->max_speed + 7, 10U,
1199 device->card->max_receive - 1);
1200
1201 /* Do the login in a workqueue so we can easily reschedule retries. */
1202 list_for_each_entry(lu, &tgt->lu_list, link)
1203 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1204
1205 return 0;
1206
1207 fail_remove:
1208 sbp2_remove(dev);
1209 return -ENOMEM;
1210
1211 fail_shost_put:
1212 scsi_host_put(shost);
1213 return -ENOMEM;
1214 }
1215
1216 static void sbp2_update(struct fw_unit *unit)
1217 {
1218 struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1219 struct sbp2_logical_unit *lu;
1220
1221 fw_device_enable_phys_dma(fw_parent_device(unit));
1222
1223 /*
1224 * Fw-core serializes sbp2_update() against sbp2_remove().
1225 * Iteration over tgt->lu_list is therefore safe here.
1226 */
1227 list_for_each_entry(lu, &tgt->lu_list, link) {
1228 sbp2_conditionally_block(lu);
1229 lu->retries = 0;
1230 sbp2_queue_work(lu, 0);
1231 }
1232 }
1233
1234 static int sbp2_remove(struct device *dev)
1235 {
1236 struct fw_unit *unit = fw_unit(dev);
1237 struct fw_device *device = fw_parent_device(unit);
1238 struct sbp2_target *tgt = dev_get_drvdata(&unit->device);
1239 struct sbp2_logical_unit *lu, *next;
1240 struct Scsi_Host *shost =
1241 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
1242 struct scsi_device *sdev;
1243
1244 /* prevent deadlocks */
1245 sbp2_unblock(tgt);
1246
1247 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
1248 cancel_delayed_work_sync(&lu->work);
1249 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
1250 if (sdev) {
1251 scsi_remove_device(sdev);
1252 scsi_device_put(sdev);
1253 }
1254 if (lu->login_id != INVALID_LOGIN_ID) {
1255 int generation, node_id;
1256 /*
1257 * tgt->node_id may be obsolete here if we failed
1258 * during initial login or after a bus reset where
1259 * the topology changed.
1260 */
1261 generation = device->generation;
1262 smp_rmb(); /* node_id vs. generation */
1263 node_id = device->node_id;
1264 sbp2_send_management_orb(lu, node_id, generation,
1265 SBP2_LOGOUT_REQUEST,
1266 lu->login_id, NULL);
1267 }
1268 fw_core_remove_address_handler(&lu->address_handler);
1269 list_del(&lu->link);
1270 kfree(lu);
1271 }
1272 scsi_remove_host(shost);
1273 dev_notice(dev, "released target %d:0:0\n", shost->host_no);
1274
1275 scsi_host_put(shost);
1276 return 0;
1277 }
1278
1279 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1280 #define SBP2_SW_VERSION_ENTRY 0x00010483
1281
1282 static const struct ieee1394_device_id sbp2_id_table[] = {
1283 {
1284 .match_flags = IEEE1394_MATCH_SPECIFIER_ID |
1285 IEEE1394_MATCH_VERSION,
1286 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1287 .version = SBP2_SW_VERSION_ENTRY,
1288 },
1289 { }
1290 };
1291
1292 static struct fw_driver sbp2_driver = {
1293 .driver = {
1294 .owner = THIS_MODULE,
1295 .name = KBUILD_MODNAME,
1296 .bus = &fw_bus_type,
1297 .probe = sbp2_probe,
1298 .remove = sbp2_remove,
1299 },
1300 .update = sbp2_update,
1301 .id_table = sbp2_id_table,
1302 };
1303
1304 static void sbp2_unmap_scatterlist(struct device *card_device,
1305 struct sbp2_command_orb *orb)
1306 {
1307 scsi_dma_unmap(orb->cmd);
1308
1309 if (orb->request.misc & cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT))
1310 dma_unmap_single(card_device, orb->page_table_bus,
1311 sizeof(orb->page_table), DMA_TO_DEVICE);
1312 }
1313
1314 static unsigned int sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1315 {
1316 int sam_status;
1317 int sfmt = (sbp2_status[0] >> 6) & 0x03;
1318
1319 if (sfmt == 2 || sfmt == 3) {
1320 /*
1321 * Reserved for future standardization (2) or
1322 * Status block format vendor-dependent (3)
1323 */
1324 return DID_ERROR << 16;
1325 }
1326
1327 sense_data[0] = 0x70 | sfmt | (sbp2_status[1] & 0x80);
1328 sense_data[1] = 0x0;
1329 sense_data[2] = ((sbp2_status[1] << 1) & 0xe0) | (sbp2_status[1] & 0x0f);
1330 sense_data[3] = sbp2_status[4];
1331 sense_data[4] = sbp2_status[5];
1332 sense_data[5] = sbp2_status[6];
1333 sense_data[6] = sbp2_status[7];
1334 sense_data[7] = 10;
1335 sense_data[8] = sbp2_status[8];
1336 sense_data[9] = sbp2_status[9];
1337 sense_data[10] = sbp2_status[10];
1338 sense_data[11] = sbp2_status[11];
1339 sense_data[12] = sbp2_status[2];
1340 sense_data[13] = sbp2_status[3];
1341 sense_data[14] = sbp2_status[12];
1342 sense_data[15] = sbp2_status[13];
1343
1344 sam_status = sbp2_status[0] & 0x3f;
1345
1346 switch (sam_status) {
1347 case SAM_STAT_GOOD:
1348 case SAM_STAT_CHECK_CONDITION:
1349 case SAM_STAT_CONDITION_MET:
1350 case SAM_STAT_BUSY:
1351 case SAM_STAT_RESERVATION_CONFLICT:
1352 case SAM_STAT_COMMAND_TERMINATED:
1353 return DID_OK << 16 | sam_status;
1354
1355 default:
1356 return DID_ERROR << 16;
1357 }
1358 }
1359
1360 static void complete_command_orb(struct sbp2_orb *base_orb,
1361 struct sbp2_status *status)
1362 {
1363 struct sbp2_command_orb *orb =
1364 container_of(base_orb, struct sbp2_command_orb, base);
1365 struct fw_device *device = target_parent_device(orb->lu->tgt);
1366 int result;
1367
1368 if (status != NULL) {
1369 if (STATUS_GET_DEAD(*status))
1370 sbp2_agent_reset_no_wait(orb->lu);
1371
1372 switch (STATUS_GET_RESPONSE(*status)) {
1373 case SBP2_STATUS_REQUEST_COMPLETE:
1374 result = DID_OK << 16;
1375 break;
1376 case SBP2_STATUS_TRANSPORT_FAILURE:
1377 result = DID_BUS_BUSY << 16;
1378 break;
1379 case SBP2_STATUS_ILLEGAL_REQUEST:
1380 case SBP2_STATUS_VENDOR_DEPENDENT:
1381 default:
1382 result = DID_ERROR << 16;
1383 break;
1384 }
1385
1386 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1387 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1388 orb->cmd->sense_buffer);
1389 } else {
1390 /*
1391 * If the orb completes with status == NULL, something
1392 * went wrong, typically a bus reset happened mid-orb
1393 * or when sending the write (less likely).
1394 */
1395 result = DID_BUS_BUSY << 16;
1396 sbp2_conditionally_block(orb->lu);
1397 }
1398
1399 dma_unmap_single(device->card->device, orb->base.request_bus,
1400 sizeof(orb->request), DMA_TO_DEVICE);
1401 sbp2_unmap_scatterlist(device->card->device, orb);
1402
1403 orb->cmd->result = result;
1404 orb->cmd->scsi_done(orb->cmd);
1405 }
1406
1407 static int sbp2_map_scatterlist(struct sbp2_command_orb *orb,
1408 struct fw_device *device, struct sbp2_logical_unit *lu)
1409 {
1410 struct scatterlist *sg = scsi_sglist(orb->cmd);
1411 int i, n;
1412
1413 n = scsi_dma_map(orb->cmd);
1414 if (n <= 0)
1415 goto fail;
1416
1417 /*
1418 * Handle the special case where there is only one element in
1419 * the scatter list by converting it to an immediate block
1420 * request. This is also a workaround for broken devices such
1421 * as the second generation iPod which doesn't support page
1422 * tables.
1423 */
1424 if (n == 1) {
1425 orb->request.data_descriptor.high =
1426 cpu_to_be32(lu->tgt->address_high);
1427 orb->request.data_descriptor.low =
1428 cpu_to_be32(sg_dma_address(sg));
1429 orb->request.misc |=
1430 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1431 return 0;
1432 }
1433
1434 for_each_sg(sg, sg, n, i) {
1435 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1436 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1437 }
1438
1439 orb->page_table_bus =
1440 dma_map_single(device->card->device, orb->page_table,
1441 sizeof(orb->page_table), DMA_TO_DEVICE);
1442 if (dma_mapping_error(device->card->device, orb->page_table_bus))
1443 goto fail_page_table;
1444
1445 /*
1446 * The data_descriptor pointer is the one case where we need
1447 * to fill in the node ID part of the address. All other
1448 * pointers assume that the data referenced reside on the
1449 * initiator (i.e. us), but data_descriptor can refer to data
1450 * on other nodes so we need to put our ID in descriptor.high.
1451 */
1452 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1453 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus);
1454 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1455 COMMAND_ORB_DATA_SIZE(n));
1456
1457 return 0;
1458
1459 fail_page_table:
1460 scsi_dma_unmap(orb->cmd);
1461 fail:
1462 return -ENOMEM;
1463 }
1464
1465 /* SCSI stack integration */
1466
1467 static int sbp2_scsi_queuecommand(struct Scsi_Host *shost,
1468 struct scsi_cmnd *cmd)
1469 {
1470 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1471 struct fw_device *device = target_parent_device(lu->tgt);
1472 struct sbp2_command_orb *orb;
1473 int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1474
1475 /*
1476 * Bidirectional commands are not yet implemented, and unknown
1477 * transfer direction not handled.
1478 */
1479 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1480 dev_err(lu_dev(lu), "cannot handle bidirectional command\n");
1481 cmd->result = DID_ERROR << 16;
1482 cmd->scsi_done(cmd);
1483 return 0;
1484 }
1485
1486 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1487 if (orb == NULL)
1488 return SCSI_MLQUEUE_HOST_BUSY;
1489
1490 /* Initialize rcode to something not RCODE_COMPLETE. */
1491 orb->base.rcode = -1;
1492 kref_init(&orb->base.kref);
1493 orb->lu = lu;
1494 orb->cmd = cmd;
1495 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1496 orb->request.misc = cpu_to_be32(
1497 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1498 COMMAND_ORB_SPEED(device->max_speed) |
1499 COMMAND_ORB_NOTIFY);
1500
1501 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1502 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1503
1504 generation = device->generation;
1505 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */
1506
1507 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1508 goto out;
1509
1510 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1511
1512 orb->base.callback = complete_command_orb;
1513 orb->base.request_bus =
1514 dma_map_single(device->card->device, &orb->request,
1515 sizeof(orb->request), DMA_TO_DEVICE);
1516 if (dma_mapping_error(device->card->device, orb->base.request_bus)) {
1517 sbp2_unmap_scatterlist(device->card->device, orb);
1518 goto out;
1519 }
1520
1521 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1522 lu->command_block_agent_address + SBP2_ORB_POINTER);
1523 retval = 0;
1524 out:
1525 kref_put(&orb->base.kref, free_orb);
1526 return retval;
1527 }
1528
1529 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1530 {
1531 struct sbp2_logical_unit *lu = sdev->hostdata;
1532
1533 /* (Re-)Adding logical units via the SCSI stack is not supported. */
1534 if (!lu)
1535 return -ENOSYS;
1536
1537 sdev->allow_restart = 1;
1538
1539 /*
1540 * SBP-2 does not require any alignment, but we set it anyway
1541 * for compatibility with earlier versions of this driver.
1542 */
1543 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1544
1545 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1546 sdev->inquiry_len = 36;
1547
1548 return 0;
1549 }
1550
1551 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1552 {
1553 struct sbp2_logical_unit *lu = sdev->hostdata;
1554
1555 sdev->use_10_for_rw = 1;
1556
1557 if (sbp2_param_exclusive_login)
1558 sdev->manage_start_stop = 1;
1559
1560 if (sdev->type == TYPE_ROM)
1561 sdev->use_10_for_ms = 1;
1562
1563 if (sdev->type == TYPE_DISK &&
1564 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1565 sdev->skip_ms_page_8 = 1;
1566
1567 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1568 sdev->fix_capacity = 1;
1569
1570 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1571 sdev->start_stop_pwr_cond = 1;
1572
1573 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1574 blk_queue_max_hw_sectors(sdev->request_queue, 128 * 1024 / 512);
1575
1576 return 0;
1577 }
1578
1579 /*
1580 * Called by scsi stack when something has really gone wrong. Usually
1581 * called when a command has timed-out for some reason.
1582 */
1583 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1584 {
1585 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1586
1587 dev_notice(lu_dev(lu), "sbp2_scsi_abort\n");
1588 sbp2_agent_reset(lu);
1589 sbp2_cancel_orbs(lu);
1590
1591 return SUCCESS;
1592 }
1593
1594 /*
1595 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1596 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1597 *
1598 * This is the concatenation of target port identifier and logical unit
1599 * identifier as per SAM-2...SAM-4 annex A.
1600 */
1601 static ssize_t sbp2_sysfs_ieee1394_id_show(struct device *dev,
1602 struct device_attribute *attr, char *buf)
1603 {
1604 struct scsi_device *sdev = to_scsi_device(dev);
1605 struct sbp2_logical_unit *lu;
1606
1607 if (!sdev)
1608 return 0;
1609
1610 lu = sdev->hostdata;
1611
1612 return sprintf(buf, "%016llx:%06x:%04x\n",
1613 (unsigned long long)lu->tgt->guid,
1614 lu->tgt->directory_id, lu->lun);
1615 }
1616
1617 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1618
1619 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1620 &dev_attr_ieee1394_id,
1621 NULL
1622 };
1623
1624 static struct scsi_host_template scsi_driver_template = {
1625 .module = THIS_MODULE,
1626 .name = "SBP-2 IEEE-1394",
1627 .proc_name = "sbp2",
1628 .queuecommand = sbp2_scsi_queuecommand,
1629 .slave_alloc = sbp2_scsi_slave_alloc,
1630 .slave_configure = sbp2_scsi_slave_configure,
1631 .eh_abort_handler = sbp2_scsi_abort,
1632 .this_id = -1,
1633 .sg_tablesize = SG_ALL,
1634 .use_clustering = ENABLE_CLUSTERING,
1635 .cmd_per_lun = 1,
1636 .can_queue = 1,
1637 .sdev_attrs = sbp2_scsi_sysfs_attrs,
1638 };
1639
1640 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1641 MODULE_DESCRIPTION("SCSI over IEEE1394");
1642 MODULE_LICENSE("GPL");
1643 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1644
1645 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1646 MODULE_ALIAS("sbp2");
1647
1648 static int __init sbp2_init(void)
1649 {
1650 return driver_register(&sbp2_driver.driver);
1651 }
1652
1653 static void __exit sbp2_cleanup(void)
1654 {
1655 driver_unregister(&sbp2_driver.driver);
1656 }
1657
1658 module_init(sbp2_init);
1659 module_exit(sbp2_cleanup);