battery: sec_battery: export {CURRENT/VOLTAGE}_MAX to sysfs
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / drivers / firewire / ohci.c
1 /*
2 * Driver for OHCI 1394 controllers
3 *
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45 #include <linux/workqueue.h>
46
47 #include <asm/byteorder.h>
48 #include <asm/page.h>
49
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
52 #endif
53
54 #include "core.h"
55 #include "ohci.h"
56
57 #define ohci_info(ohci, f, args...) dev_info(ohci->card.device, f, ##args)
58 #define ohci_notice(ohci, f, args...) dev_notice(ohci->card.device, f, ##args)
59 #define ohci_err(ohci, f, args...) dev_err(ohci->card.device, f, ##args)
60
61 #define DESCRIPTOR_OUTPUT_MORE 0
62 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
63 #define DESCRIPTOR_INPUT_MORE (2 << 12)
64 #define DESCRIPTOR_INPUT_LAST (3 << 12)
65 #define DESCRIPTOR_STATUS (1 << 11)
66 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
67 #define DESCRIPTOR_PING (1 << 7)
68 #define DESCRIPTOR_YY (1 << 6)
69 #define DESCRIPTOR_NO_IRQ (0 << 4)
70 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
71 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
72 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
73 #define DESCRIPTOR_WAIT (3 << 0)
74
75 #define DESCRIPTOR_CMD (0xf << 12)
76
77 struct descriptor {
78 __le16 req_count;
79 __le16 control;
80 __le32 data_address;
81 __le32 branch_address;
82 __le16 res_count;
83 __le16 transfer_status;
84 } __attribute__((aligned(16)));
85
86 #define CONTROL_SET(regs) (regs)
87 #define CONTROL_CLEAR(regs) ((regs) + 4)
88 #define COMMAND_PTR(regs) ((regs) + 12)
89 #define CONTEXT_MATCH(regs) ((regs) + 16)
90
91 #define AR_BUFFER_SIZE (32*1024)
92 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
93 /* we need at least two pages for proper list management */
94 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
95
96 #define MAX_ASYNC_PAYLOAD 4096
97 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
98 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
99
100 struct ar_context {
101 struct fw_ohci *ohci;
102 struct page *pages[AR_BUFFERS];
103 void *buffer;
104 struct descriptor *descriptors;
105 dma_addr_t descriptors_bus;
106 void *pointer;
107 unsigned int last_buffer_index;
108 u32 regs;
109 struct tasklet_struct tasklet;
110 };
111
112 struct context;
113
114 typedef int (*descriptor_callback_t)(struct context *ctx,
115 struct descriptor *d,
116 struct descriptor *last);
117
118 /*
119 * A buffer that contains a block of DMA-able coherent memory used for
120 * storing a portion of a DMA descriptor program.
121 */
122 struct descriptor_buffer {
123 struct list_head list;
124 dma_addr_t buffer_bus;
125 size_t buffer_size;
126 size_t used;
127 struct descriptor buffer[0];
128 };
129
130 struct context {
131 struct fw_ohci *ohci;
132 u32 regs;
133 int total_allocation;
134 u32 current_bus;
135 bool running;
136 bool flushing;
137
138 /*
139 * List of page-sized buffers for storing DMA descriptors.
140 * Head of list contains buffers in use and tail of list contains
141 * free buffers.
142 */
143 struct list_head buffer_list;
144
145 /*
146 * Pointer to a buffer inside buffer_list that contains the tail
147 * end of the current DMA program.
148 */
149 struct descriptor_buffer *buffer_tail;
150
151 /*
152 * The descriptor containing the branch address of the first
153 * descriptor that has not yet been filled by the device.
154 */
155 struct descriptor *last;
156
157 /*
158 * The last descriptor block in the DMA program. It contains the branch
159 * address that must be updated upon appending a new descriptor.
160 */
161 struct descriptor *prev;
162 int prev_z;
163
164 descriptor_callback_t callback;
165
166 struct tasklet_struct tasklet;
167 };
168
169 #define IT_HEADER_SY(v) ((v) << 0)
170 #define IT_HEADER_TCODE(v) ((v) << 4)
171 #define IT_HEADER_CHANNEL(v) ((v) << 8)
172 #define IT_HEADER_TAG(v) ((v) << 14)
173 #define IT_HEADER_SPEED(v) ((v) << 16)
174 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
175
176 struct iso_context {
177 struct fw_iso_context base;
178 struct context context;
179 void *header;
180 size_t header_length;
181 unsigned long flushing_completions;
182 u32 mc_buffer_bus;
183 u16 mc_completed;
184 u16 last_timestamp;
185 u8 sync;
186 u8 tags;
187 };
188
189 #define CONFIG_ROM_SIZE 1024
190
191 struct fw_ohci {
192 struct fw_card card;
193
194 __iomem char *registers;
195 int node_id;
196 int generation;
197 int request_generation; /* for timestamping incoming requests */
198 unsigned quirks;
199 unsigned int pri_req_max;
200 u32 bus_time;
201 bool bus_time_running;
202 bool is_root;
203 bool csr_state_setclear_abdicate;
204 int n_ir;
205 int n_it;
206 /*
207 * Spinlock for accessing fw_ohci data. Never call out of
208 * this driver with this lock held.
209 */
210 spinlock_t lock;
211
212 struct mutex phy_reg_mutex;
213
214 void *misc_buffer;
215 dma_addr_t misc_buffer_bus;
216
217 struct ar_context ar_request_ctx;
218 struct ar_context ar_response_ctx;
219 struct context at_request_ctx;
220 struct context at_response_ctx;
221
222 u32 it_context_support;
223 u32 it_context_mask; /* unoccupied IT contexts */
224 struct iso_context *it_context_list;
225 u64 ir_context_channels; /* unoccupied channels */
226 u32 ir_context_support;
227 u32 ir_context_mask; /* unoccupied IR contexts */
228 struct iso_context *ir_context_list;
229 u64 mc_channels; /* channels in use by the multichannel IR context */
230 bool mc_allocated;
231
232 __be32 *config_rom;
233 dma_addr_t config_rom_bus;
234 __be32 *next_config_rom;
235 dma_addr_t next_config_rom_bus;
236 __be32 next_header;
237
238 __le32 *self_id_cpu;
239 dma_addr_t self_id_bus;
240 struct work_struct bus_reset_work;
241
242 u32 self_id_buffer[512];
243 };
244
245 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
246 {
247 return container_of(card, struct fw_ohci, card);
248 }
249
250 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
251 #define IR_CONTEXT_BUFFER_FILL 0x80000000
252 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
253 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
254 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
255 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
256
257 #define CONTEXT_RUN 0x8000
258 #define CONTEXT_WAKE 0x1000
259 #define CONTEXT_DEAD 0x0800
260 #define CONTEXT_ACTIVE 0x0400
261
262 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
263 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
264 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
265
266 #define OHCI1394_REGISTER_SIZE 0x800
267 #define OHCI1394_PCI_HCI_Control 0x40
268 #define SELF_ID_BUF_SIZE 0x800
269 #define OHCI_TCODE_PHY_PACKET 0x0e
270 #define OHCI_VERSION_1_1 0x010010
271
272 static char ohci_driver_name[] = KBUILD_MODNAME;
273
274 #define PCI_VENDOR_ID_PINNACLE_SYSTEMS 0x11bd
275 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
276 #define PCI_DEVICE_ID_CREATIVE_SB1394 0x4001
277 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
278 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
279 #define PCI_DEVICE_ID_TI_TSB12LV26 0x8020
280 #define PCI_DEVICE_ID_TI_TSB82AA2 0x8025
281 #define PCI_DEVICE_ID_VIA_VT630X 0x3044
282 #define PCI_REV_ID_VIA_VT6306 0x46
283
284 #define QUIRK_CYCLE_TIMER 0x1
285 #define QUIRK_RESET_PACKET 0x2
286 #define QUIRK_BE_HEADERS 0x4
287 #define QUIRK_NO_1394A 0x8
288 #define QUIRK_NO_MSI 0x10
289 #define QUIRK_TI_SLLZ059 0x20
290 #define QUIRK_IR_WAKE 0x40
291
292 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
293 static const struct {
294 unsigned short vendor, device, revision, flags;
295 } ohci_quirks[] = {
296 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
297 QUIRK_CYCLE_TIMER},
298
299 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
300 QUIRK_BE_HEADERS},
301
302 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
303 QUIRK_NO_MSI},
304
305 {PCI_VENDOR_ID_CREATIVE, PCI_DEVICE_ID_CREATIVE_SB1394, PCI_ANY_ID,
306 QUIRK_RESET_PACKET},
307
308 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
309 QUIRK_NO_MSI},
310
311 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
312 QUIRK_CYCLE_TIMER},
313
314 {PCI_VENDOR_ID_O2, PCI_ANY_ID, PCI_ANY_ID,
315 QUIRK_NO_MSI},
316
317 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
318 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
319
320 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
321 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
322
323 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV26, PCI_ANY_ID,
324 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
325
326 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB82AA2, PCI_ANY_ID,
327 QUIRK_RESET_PACKET | QUIRK_TI_SLLZ059},
328
329 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
330 QUIRK_RESET_PACKET},
331
332 {PCI_VENDOR_ID_VIA, PCI_DEVICE_ID_VIA_VT630X, PCI_REV_ID_VIA_VT6306,
333 QUIRK_CYCLE_TIMER | QUIRK_IR_WAKE},
334
335 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
336 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
337 };
338
339 /* This overrides anything that was found in ohci_quirks[]. */
340 static int param_quirks;
341 module_param_named(quirks, param_quirks, int, 0644);
342 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
343 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
344 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
345 ", AR/selfID endianness = " __stringify(QUIRK_BE_HEADERS)
346 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
347 ", disable MSI = " __stringify(QUIRK_NO_MSI)
348 ", TI SLLZ059 erratum = " __stringify(QUIRK_TI_SLLZ059)
349 ", IR wake unreliable = " __stringify(QUIRK_IR_WAKE)
350 ")");
351
352 #define OHCI_PARAM_DEBUG_AT_AR 1
353 #define OHCI_PARAM_DEBUG_SELFIDS 2
354 #define OHCI_PARAM_DEBUG_IRQS 4
355 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
356
357 static int param_debug;
358 module_param_named(debug, param_debug, int, 0644);
359 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
360 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
361 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
362 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
363 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
364 ", or a combination, or all = -1)");
365
366 static void log_irqs(struct fw_ohci *ohci, u32 evt)
367 {
368 if (likely(!(param_debug &
369 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
370 return;
371
372 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
373 !(evt & OHCI1394_busReset))
374 return;
375
376 ohci_notice(ohci, "IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
377 evt & OHCI1394_selfIDComplete ? " selfID" : "",
378 evt & OHCI1394_RQPkt ? " AR_req" : "",
379 evt & OHCI1394_RSPkt ? " AR_resp" : "",
380 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
381 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
382 evt & OHCI1394_isochRx ? " IR" : "",
383 evt & OHCI1394_isochTx ? " IT" : "",
384 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
385 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
386 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
387 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
388 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
389 evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "",
390 evt & OHCI1394_busReset ? " busReset" : "",
391 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
392 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
393 OHCI1394_respTxComplete | OHCI1394_isochRx |
394 OHCI1394_isochTx | OHCI1394_postedWriteErr |
395 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
396 OHCI1394_cycleInconsistent |
397 OHCI1394_regAccessFail | OHCI1394_busReset)
398 ? " ?" : "");
399 }
400
401 static const char *speed[] = {
402 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
403 };
404 static const char *power[] = {
405 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
406 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
407 };
408 static const char port[] = { '.', '-', 'p', 'c', };
409
410 static char _p(u32 *s, int shift)
411 {
412 return port[*s >> shift & 3];
413 }
414
415 static void log_selfids(struct fw_ohci *ohci, int generation, int self_id_count)
416 {
417 u32 *s;
418
419 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
420 return;
421
422 ohci_notice(ohci, "%d selfIDs, generation %d, local node ID %04x\n",
423 self_id_count, generation, ohci->node_id);
424
425 for (s = ohci->self_id_buffer; self_id_count--; ++s)
426 if ((*s & 1 << 23) == 0)
427 ohci_notice(ohci,
428 "selfID 0: %08x, phy %d [%c%c%c] %s gc=%d %s %s%s%s\n",
429 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
430 speed[*s >> 14 & 3], *s >> 16 & 63,
431 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
432 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
433 else
434 ohci_notice(ohci,
435 "selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
436 *s, *s >> 24 & 63,
437 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
438 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
439 }
440
441 static const char *evts[] = {
442 [0x00] = "evt_no_status", [0x01] = "-reserved-",
443 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
444 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
445 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
446 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
447 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
448 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
449 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
450 [0x10] = "-reserved-", [0x11] = "ack_complete",
451 [0x12] = "ack_pending ", [0x13] = "-reserved-",
452 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
453 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
454 [0x18] = "-reserved-", [0x19] = "-reserved-",
455 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
456 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
457 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
458 [0x20] = "pending/cancelled",
459 };
460 static const char *tcodes[] = {
461 [0x0] = "QW req", [0x1] = "BW req",
462 [0x2] = "W resp", [0x3] = "-reserved-",
463 [0x4] = "QR req", [0x5] = "BR req",
464 [0x6] = "QR resp", [0x7] = "BR resp",
465 [0x8] = "cycle start", [0x9] = "Lk req",
466 [0xa] = "async stream packet", [0xb] = "Lk resp",
467 [0xc] = "-reserved-", [0xd] = "-reserved-",
468 [0xe] = "link internal", [0xf] = "-reserved-",
469 };
470
471 static void log_ar_at_event(struct fw_ohci *ohci,
472 char dir, int speed, u32 *header, int evt)
473 {
474 int tcode = header[0] >> 4 & 0xf;
475 char specific[12];
476
477 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
478 return;
479
480 if (unlikely(evt >= ARRAY_SIZE(evts)))
481 evt = 0x1f;
482
483 if (evt == OHCI1394_evt_bus_reset) {
484 ohci_notice(ohci, "A%c evt_bus_reset, generation %d\n",
485 dir, (header[2] >> 16) & 0xff);
486 return;
487 }
488
489 switch (tcode) {
490 case 0x0: case 0x6: case 0x8:
491 snprintf(specific, sizeof(specific), " = %08x",
492 be32_to_cpu((__force __be32)header[3]));
493 break;
494 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
495 snprintf(specific, sizeof(specific), " %x,%x",
496 header[3] >> 16, header[3] & 0xffff);
497 break;
498 default:
499 specific[0] = '\0';
500 }
501
502 switch (tcode) {
503 case 0xa:
504 ohci_notice(ohci, "A%c %s, %s\n",
505 dir, evts[evt], tcodes[tcode]);
506 break;
507 case 0xe:
508 ohci_notice(ohci, "A%c %s, PHY %08x %08x\n",
509 dir, evts[evt], header[1], header[2]);
510 break;
511 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
512 ohci_notice(ohci,
513 "A%c spd %x tl %02x, %04x -> %04x, %s, %s, %04x%08x%s\n",
514 dir, speed, header[0] >> 10 & 0x3f,
515 header[1] >> 16, header[0] >> 16, evts[evt],
516 tcodes[tcode], header[1] & 0xffff, header[2], specific);
517 break;
518 default:
519 ohci_notice(ohci,
520 "A%c spd %x tl %02x, %04x -> %04x, %s, %s%s\n",
521 dir, speed, header[0] >> 10 & 0x3f,
522 header[1] >> 16, header[0] >> 16, evts[evt],
523 tcodes[tcode], specific);
524 }
525 }
526
527 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
528 {
529 writel(data, ohci->registers + offset);
530 }
531
532 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
533 {
534 return readl(ohci->registers + offset);
535 }
536
537 static inline void flush_writes(const struct fw_ohci *ohci)
538 {
539 /* Do a dummy read to flush writes. */
540 reg_read(ohci, OHCI1394_Version);
541 }
542
543 /*
544 * Beware! read_phy_reg(), write_phy_reg(), update_phy_reg(), and
545 * read_paged_phy_reg() require the caller to hold ohci->phy_reg_mutex.
546 * In other words, only use ohci_read_phy_reg() and ohci_update_phy_reg()
547 * directly. Exceptions are intrinsically serialized contexts like pci_probe.
548 */
549 static int read_phy_reg(struct fw_ohci *ohci, int addr)
550 {
551 u32 val;
552 int i;
553
554 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
555 for (i = 0; i < 3 + 100; i++) {
556 val = reg_read(ohci, OHCI1394_PhyControl);
557 if (!~val)
558 return -ENODEV; /* Card was ejected. */
559
560 if (val & OHCI1394_PhyControl_ReadDone)
561 return OHCI1394_PhyControl_ReadData(val);
562
563 /*
564 * Try a few times without waiting. Sleeping is necessary
565 * only when the link/PHY interface is busy.
566 */
567 if (i >= 3)
568 msleep(1);
569 }
570 ohci_err(ohci, "failed to read phy reg %d\n", addr);
571 dump_stack();
572
573 return -EBUSY;
574 }
575
576 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
577 {
578 int i;
579
580 reg_write(ohci, OHCI1394_PhyControl,
581 OHCI1394_PhyControl_Write(addr, val));
582 for (i = 0; i < 3 + 100; i++) {
583 val = reg_read(ohci, OHCI1394_PhyControl);
584 if (!~val)
585 return -ENODEV; /* Card was ejected. */
586
587 if (!(val & OHCI1394_PhyControl_WritePending))
588 return 0;
589
590 if (i >= 3)
591 msleep(1);
592 }
593 ohci_err(ohci, "failed to write phy reg %d, val %u\n", addr, val);
594 dump_stack();
595
596 return -EBUSY;
597 }
598
599 static int update_phy_reg(struct fw_ohci *ohci, int addr,
600 int clear_bits, int set_bits)
601 {
602 int ret = read_phy_reg(ohci, addr);
603 if (ret < 0)
604 return ret;
605
606 /*
607 * The interrupt status bits are cleared by writing a one bit.
608 * Avoid clearing them unless explicitly requested in set_bits.
609 */
610 if (addr == 5)
611 clear_bits |= PHY_INT_STATUS_BITS;
612
613 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
614 }
615
616 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
617 {
618 int ret;
619
620 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
621 if (ret < 0)
622 return ret;
623
624 return read_phy_reg(ohci, addr);
625 }
626
627 static int ohci_read_phy_reg(struct fw_card *card, int addr)
628 {
629 struct fw_ohci *ohci = fw_ohci(card);
630 int ret;
631
632 mutex_lock(&ohci->phy_reg_mutex);
633 ret = read_phy_reg(ohci, addr);
634 mutex_unlock(&ohci->phy_reg_mutex);
635
636 return ret;
637 }
638
639 static int ohci_update_phy_reg(struct fw_card *card, int addr,
640 int clear_bits, int set_bits)
641 {
642 struct fw_ohci *ohci = fw_ohci(card);
643 int ret;
644
645 mutex_lock(&ohci->phy_reg_mutex);
646 ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
647 mutex_unlock(&ohci->phy_reg_mutex);
648
649 return ret;
650 }
651
652 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
653 {
654 return page_private(ctx->pages[i]);
655 }
656
657 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
658 {
659 struct descriptor *d;
660
661 d = &ctx->descriptors[index];
662 d->branch_address &= cpu_to_le32(~0xf);
663 d->res_count = cpu_to_le16(PAGE_SIZE);
664 d->transfer_status = 0;
665
666 wmb(); /* finish init of new descriptors before branch_address update */
667 d = &ctx->descriptors[ctx->last_buffer_index];
668 d->branch_address |= cpu_to_le32(1);
669
670 ctx->last_buffer_index = index;
671
672 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
673 }
674
675 static void ar_context_release(struct ar_context *ctx)
676 {
677 unsigned int i;
678
679 if (ctx->buffer)
680 vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
681
682 for (i = 0; i < AR_BUFFERS; i++)
683 if (ctx->pages[i]) {
684 dma_unmap_page(ctx->ohci->card.device,
685 ar_buffer_bus(ctx, i),
686 PAGE_SIZE, DMA_FROM_DEVICE);
687 __free_page(ctx->pages[i]);
688 }
689 }
690
691 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
692 {
693 struct fw_ohci *ohci = ctx->ohci;
694
695 if (reg_read(ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
696 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
697 flush_writes(ohci);
698
699 ohci_err(ohci, "AR error: %s; DMA stopped\n", error_msg);
700 }
701 /* FIXME: restart? */
702 }
703
704 static inline unsigned int ar_next_buffer_index(unsigned int index)
705 {
706 return (index + 1) % AR_BUFFERS;
707 }
708
709 static inline unsigned int ar_prev_buffer_index(unsigned int index)
710 {
711 return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
712 }
713
714 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
715 {
716 return ar_next_buffer_index(ctx->last_buffer_index);
717 }
718
719 /*
720 * We search for the buffer that contains the last AR packet DMA data written
721 * by the controller.
722 */
723 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
724 unsigned int *buffer_offset)
725 {
726 unsigned int i, next_i, last = ctx->last_buffer_index;
727 __le16 res_count, next_res_count;
728
729 i = ar_first_buffer_index(ctx);
730 res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
731
732 /* A buffer that is not yet completely filled must be the last one. */
733 while (i != last && res_count == 0) {
734
735 /* Peek at the next descriptor. */
736 next_i = ar_next_buffer_index(i);
737 rmb(); /* read descriptors in order */
738 next_res_count = ACCESS_ONCE(
739 ctx->descriptors[next_i].res_count);
740 /*
741 * If the next descriptor is still empty, we must stop at this
742 * descriptor.
743 */
744 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
745 /*
746 * The exception is when the DMA data for one packet is
747 * split over three buffers; in this case, the middle
748 * buffer's descriptor might be never updated by the
749 * controller and look still empty, and we have to peek
750 * at the third one.
751 */
752 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
753 next_i = ar_next_buffer_index(next_i);
754 rmb();
755 next_res_count = ACCESS_ONCE(
756 ctx->descriptors[next_i].res_count);
757 if (next_res_count != cpu_to_le16(PAGE_SIZE))
758 goto next_buffer_is_active;
759 }
760
761 break;
762 }
763
764 next_buffer_is_active:
765 i = next_i;
766 res_count = next_res_count;
767 }
768
769 rmb(); /* read res_count before the DMA data */
770
771 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
772 if (*buffer_offset > PAGE_SIZE) {
773 *buffer_offset = 0;
774 ar_context_abort(ctx, "corrupted descriptor");
775 }
776
777 return i;
778 }
779
780 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
781 unsigned int end_buffer_index,
782 unsigned int end_buffer_offset)
783 {
784 unsigned int i;
785
786 i = ar_first_buffer_index(ctx);
787 while (i != end_buffer_index) {
788 dma_sync_single_for_cpu(ctx->ohci->card.device,
789 ar_buffer_bus(ctx, i),
790 PAGE_SIZE, DMA_FROM_DEVICE);
791 i = ar_next_buffer_index(i);
792 }
793 if (end_buffer_offset > 0)
794 dma_sync_single_for_cpu(ctx->ohci->card.device,
795 ar_buffer_bus(ctx, i),
796 end_buffer_offset, DMA_FROM_DEVICE);
797 }
798
799 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
800 #define cond_le32_to_cpu(v) \
801 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
802 #else
803 #define cond_le32_to_cpu(v) le32_to_cpu(v)
804 #endif
805
806 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
807 {
808 struct fw_ohci *ohci = ctx->ohci;
809 struct fw_packet p;
810 u32 status, length, tcode;
811 int evt;
812
813 p.header[0] = cond_le32_to_cpu(buffer[0]);
814 p.header[1] = cond_le32_to_cpu(buffer[1]);
815 p.header[2] = cond_le32_to_cpu(buffer[2]);
816
817 tcode = (p.header[0] >> 4) & 0x0f;
818 switch (tcode) {
819 case TCODE_WRITE_QUADLET_REQUEST:
820 case TCODE_READ_QUADLET_RESPONSE:
821 p.header[3] = (__force __u32) buffer[3];
822 p.header_length = 16;
823 p.payload_length = 0;
824 break;
825
826 case TCODE_READ_BLOCK_REQUEST :
827 p.header[3] = cond_le32_to_cpu(buffer[3]);
828 p.header_length = 16;
829 p.payload_length = 0;
830 break;
831
832 case TCODE_WRITE_BLOCK_REQUEST:
833 case TCODE_READ_BLOCK_RESPONSE:
834 case TCODE_LOCK_REQUEST:
835 case TCODE_LOCK_RESPONSE:
836 p.header[3] = cond_le32_to_cpu(buffer[3]);
837 p.header_length = 16;
838 p.payload_length = p.header[3] >> 16;
839 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
840 ar_context_abort(ctx, "invalid packet length");
841 return NULL;
842 }
843 break;
844
845 case TCODE_WRITE_RESPONSE:
846 case TCODE_READ_QUADLET_REQUEST:
847 case OHCI_TCODE_PHY_PACKET:
848 p.header_length = 12;
849 p.payload_length = 0;
850 break;
851
852 default:
853 ar_context_abort(ctx, "invalid tcode");
854 return NULL;
855 }
856
857 p.payload = (void *) buffer + p.header_length;
858
859 /* FIXME: What to do about evt_* errors? */
860 length = (p.header_length + p.payload_length + 3) / 4;
861 status = cond_le32_to_cpu(buffer[length]);
862 evt = (status >> 16) & 0x1f;
863
864 p.ack = evt - 16;
865 p.speed = (status >> 21) & 0x7;
866 p.timestamp = status & 0xffff;
867 p.generation = ohci->request_generation;
868
869 log_ar_at_event(ohci, 'R', p.speed, p.header, evt);
870
871 /*
872 * Several controllers, notably from NEC and VIA, forget to
873 * write ack_complete status at PHY packet reception.
874 */
875 if (evt == OHCI1394_evt_no_status &&
876 (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
877 p.ack = ACK_COMPLETE;
878
879 /*
880 * The OHCI bus reset handler synthesizes a PHY packet with
881 * the new generation number when a bus reset happens (see
882 * section 8.4.2.3). This helps us determine when a request
883 * was received and make sure we send the response in the same
884 * generation. We only need this for requests; for responses
885 * we use the unique tlabel for finding the matching
886 * request.
887 *
888 * Alas some chips sometimes emit bus reset packets with a
889 * wrong generation. We set the correct generation for these
890 * at a slightly incorrect time (in bus_reset_work).
891 */
892 if (evt == OHCI1394_evt_bus_reset) {
893 if (!(ohci->quirks & QUIRK_RESET_PACKET))
894 ohci->request_generation = (p.header[2] >> 16) & 0xff;
895 } else if (ctx == &ohci->ar_request_ctx) {
896 fw_core_handle_request(&ohci->card, &p);
897 } else {
898 fw_core_handle_response(&ohci->card, &p);
899 }
900
901 return buffer + length + 1;
902 }
903
904 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
905 {
906 void *next;
907
908 while (p < end) {
909 next = handle_ar_packet(ctx, p);
910 if (!next)
911 return p;
912 p = next;
913 }
914
915 return p;
916 }
917
918 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
919 {
920 unsigned int i;
921
922 i = ar_first_buffer_index(ctx);
923 while (i != end_buffer) {
924 dma_sync_single_for_device(ctx->ohci->card.device,
925 ar_buffer_bus(ctx, i),
926 PAGE_SIZE, DMA_FROM_DEVICE);
927 ar_context_link_page(ctx, i);
928 i = ar_next_buffer_index(i);
929 }
930 }
931
932 static void ar_context_tasklet(unsigned long data)
933 {
934 struct ar_context *ctx = (struct ar_context *)data;
935 unsigned int end_buffer_index, end_buffer_offset;
936 void *p, *end;
937
938 p = ctx->pointer;
939 if (!p)
940 return;
941
942 end_buffer_index = ar_search_last_active_buffer(ctx,
943 &end_buffer_offset);
944 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
945 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
946
947 if (end_buffer_index < ar_first_buffer_index(ctx)) {
948 /*
949 * The filled part of the overall buffer wraps around; handle
950 * all packets up to the buffer end here. If the last packet
951 * wraps around, its tail will be visible after the buffer end
952 * because the buffer start pages are mapped there again.
953 */
954 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
955 p = handle_ar_packets(ctx, p, buffer_end);
956 if (p < buffer_end)
957 goto error;
958 /* adjust p to point back into the actual buffer */
959 p -= AR_BUFFERS * PAGE_SIZE;
960 }
961
962 p = handle_ar_packets(ctx, p, end);
963 if (p != end) {
964 if (p > end)
965 ar_context_abort(ctx, "inconsistent descriptor");
966 goto error;
967 }
968
969 ctx->pointer = p;
970 ar_recycle_buffers(ctx, end_buffer_index);
971
972 return;
973
974 error:
975 ctx->pointer = NULL;
976 }
977
978 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
979 unsigned int descriptors_offset, u32 regs)
980 {
981 unsigned int i;
982 dma_addr_t dma_addr;
983 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
984 struct descriptor *d;
985
986 ctx->regs = regs;
987 ctx->ohci = ohci;
988 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
989
990 for (i = 0; i < AR_BUFFERS; i++) {
991 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
992 if (!ctx->pages[i])
993 goto out_of_memory;
994 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
995 0, PAGE_SIZE, DMA_FROM_DEVICE);
996 if (dma_mapping_error(ohci->card.device, dma_addr)) {
997 __free_page(ctx->pages[i]);
998 ctx->pages[i] = NULL;
999 goto out_of_memory;
1000 }
1001 set_page_private(ctx->pages[i], dma_addr);
1002 }
1003
1004 for (i = 0; i < AR_BUFFERS; i++)
1005 pages[i] = ctx->pages[i];
1006 for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
1007 pages[AR_BUFFERS + i] = ctx->pages[i];
1008 ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
1009 -1, PAGE_KERNEL);
1010 if (!ctx->buffer)
1011 goto out_of_memory;
1012
1013 ctx->descriptors = ohci->misc_buffer + descriptors_offset;
1014 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
1015
1016 for (i = 0; i < AR_BUFFERS; i++) {
1017 d = &ctx->descriptors[i];
1018 d->req_count = cpu_to_le16(PAGE_SIZE);
1019 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
1020 DESCRIPTOR_STATUS |
1021 DESCRIPTOR_BRANCH_ALWAYS);
1022 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
1023 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
1024 ar_next_buffer_index(i) * sizeof(struct descriptor));
1025 }
1026
1027 return 0;
1028
1029 out_of_memory:
1030 ar_context_release(ctx);
1031
1032 return -ENOMEM;
1033 }
1034
1035 static void ar_context_run(struct ar_context *ctx)
1036 {
1037 unsigned int i;
1038
1039 for (i = 0; i < AR_BUFFERS; i++)
1040 ar_context_link_page(ctx, i);
1041
1042 ctx->pointer = ctx->buffer;
1043
1044 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1045 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1046 }
1047
1048 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1049 {
1050 __le16 branch;
1051
1052 branch = d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS);
1053
1054 /* figure out which descriptor the branch address goes in */
1055 if (z == 2 && branch == cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
1056 return d;
1057 else
1058 return d + z - 1;
1059 }
1060
1061 static void context_tasklet(unsigned long data)
1062 {
1063 struct context *ctx = (struct context *) data;
1064 struct descriptor *d, *last;
1065 u32 address;
1066 int z;
1067 struct descriptor_buffer *desc;
1068
1069 desc = list_entry(ctx->buffer_list.next,
1070 struct descriptor_buffer, list);
1071 last = ctx->last;
1072 while (last->branch_address != 0) {
1073 struct descriptor_buffer *old_desc = desc;
1074 address = le32_to_cpu(last->branch_address);
1075 z = address & 0xf;
1076 address &= ~0xf;
1077 ctx->current_bus = address;
1078
1079 /* If the branch address points to a buffer outside of the
1080 * current buffer, advance to the next buffer. */
1081 if (address < desc->buffer_bus ||
1082 address >= desc->buffer_bus + desc->used)
1083 desc = list_entry(desc->list.next,
1084 struct descriptor_buffer, list);
1085 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1086 last = find_branch_descriptor(d, z);
1087
1088 if (!ctx->callback(ctx, d, last))
1089 break;
1090
1091 if (old_desc != desc) {
1092 /* If we've advanced to the next buffer, move the
1093 * previous buffer to the free list. */
1094 unsigned long flags;
1095 old_desc->used = 0;
1096 spin_lock_irqsave(&ctx->ohci->lock, flags);
1097 list_move_tail(&old_desc->list, &ctx->buffer_list);
1098 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1099 }
1100 ctx->last = last;
1101 }
1102 }
1103
1104 /*
1105 * Allocate a new buffer and add it to the list of free buffers for this
1106 * context. Must be called with ohci->lock held.
1107 */
1108 static int context_add_buffer(struct context *ctx)
1109 {
1110 struct descriptor_buffer *desc;
1111 dma_addr_t uninitialized_var(bus_addr);
1112 int offset;
1113
1114 /*
1115 * 16MB of descriptors should be far more than enough for any DMA
1116 * program. This will catch run-away userspace or DoS attacks.
1117 */
1118 if (ctx->total_allocation >= 16*1024*1024)
1119 return -ENOMEM;
1120
1121 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1122 &bus_addr, GFP_ATOMIC);
1123 if (!desc)
1124 return -ENOMEM;
1125
1126 offset = (void *)&desc->buffer - (void *)desc;
1127 desc->buffer_size = PAGE_SIZE - offset;
1128 desc->buffer_bus = bus_addr + offset;
1129 desc->used = 0;
1130
1131 list_add_tail(&desc->list, &ctx->buffer_list);
1132 ctx->total_allocation += PAGE_SIZE;
1133
1134 return 0;
1135 }
1136
1137 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1138 u32 regs, descriptor_callback_t callback)
1139 {
1140 ctx->ohci = ohci;
1141 ctx->regs = regs;
1142 ctx->total_allocation = 0;
1143
1144 INIT_LIST_HEAD(&ctx->buffer_list);
1145 if (context_add_buffer(ctx) < 0)
1146 return -ENOMEM;
1147
1148 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1149 struct descriptor_buffer, list);
1150
1151 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1152 ctx->callback = callback;
1153
1154 /*
1155 * We put a dummy descriptor in the buffer that has a NULL
1156 * branch address and looks like it's been sent. That way we
1157 * have a descriptor to append DMA programs to.
1158 */
1159 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1160 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1161 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1162 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1163 ctx->last = ctx->buffer_tail->buffer;
1164 ctx->prev = ctx->buffer_tail->buffer;
1165 ctx->prev_z = 1;
1166
1167 return 0;
1168 }
1169
1170 static void context_release(struct context *ctx)
1171 {
1172 struct fw_card *card = &ctx->ohci->card;
1173 struct descriptor_buffer *desc, *tmp;
1174
1175 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1176 dma_free_coherent(card->device, PAGE_SIZE, desc,
1177 desc->buffer_bus -
1178 ((void *)&desc->buffer - (void *)desc));
1179 }
1180
1181 /* Must be called with ohci->lock held */
1182 static struct descriptor *context_get_descriptors(struct context *ctx,
1183 int z, dma_addr_t *d_bus)
1184 {
1185 struct descriptor *d = NULL;
1186 struct descriptor_buffer *desc = ctx->buffer_tail;
1187
1188 if (z * sizeof(*d) > desc->buffer_size)
1189 return NULL;
1190
1191 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1192 /* No room for the descriptor in this buffer, so advance to the
1193 * next one. */
1194
1195 if (desc->list.next == &ctx->buffer_list) {
1196 /* If there is no free buffer next in the list,
1197 * allocate one. */
1198 if (context_add_buffer(ctx) < 0)
1199 return NULL;
1200 }
1201 desc = list_entry(desc->list.next,
1202 struct descriptor_buffer, list);
1203 ctx->buffer_tail = desc;
1204 }
1205
1206 d = desc->buffer + desc->used / sizeof(*d);
1207 memset(d, 0, z * sizeof(*d));
1208 *d_bus = desc->buffer_bus + desc->used;
1209
1210 return d;
1211 }
1212
1213 static void context_run(struct context *ctx, u32 extra)
1214 {
1215 struct fw_ohci *ohci = ctx->ohci;
1216
1217 reg_write(ohci, COMMAND_PTR(ctx->regs),
1218 le32_to_cpu(ctx->last->branch_address));
1219 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1220 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1221 ctx->running = true;
1222 flush_writes(ohci);
1223 }
1224
1225 static void context_append(struct context *ctx,
1226 struct descriptor *d, int z, int extra)
1227 {
1228 dma_addr_t d_bus;
1229 struct descriptor_buffer *desc = ctx->buffer_tail;
1230 struct descriptor *d_branch;
1231
1232 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1233
1234 desc->used += (z + extra) * sizeof(*d);
1235
1236 wmb(); /* finish init of new descriptors before branch_address update */
1237
1238 d_branch = find_branch_descriptor(ctx->prev, ctx->prev_z);
1239 d_branch->branch_address = cpu_to_le32(d_bus | z);
1240
1241 /*
1242 * VT6306 incorrectly checks only the single descriptor at the
1243 * CommandPtr when the wake bit is written, so if it's a
1244 * multi-descriptor block starting with an INPUT_MORE, put a copy of
1245 * the branch address in the first descriptor.
1246 *
1247 * Not doing this for transmit contexts since not sure how it interacts
1248 * with skip addresses.
1249 */
1250 if (unlikely(ctx->ohci->quirks & QUIRK_IR_WAKE) &&
1251 d_branch != ctx->prev &&
1252 (ctx->prev->control & cpu_to_le16(DESCRIPTOR_CMD)) ==
1253 cpu_to_le16(DESCRIPTOR_INPUT_MORE)) {
1254 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1255 }
1256
1257 ctx->prev = d;
1258 ctx->prev_z = z;
1259 }
1260
1261 static void context_stop(struct context *ctx)
1262 {
1263 struct fw_ohci *ohci = ctx->ohci;
1264 u32 reg;
1265 int i;
1266
1267 reg_write(ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1268 ctx->running = false;
1269
1270 for (i = 0; i < 1000; i++) {
1271 reg = reg_read(ohci, CONTROL_SET(ctx->regs));
1272 if ((reg & CONTEXT_ACTIVE) == 0)
1273 return;
1274
1275 if (i)
1276 udelay(10);
1277 }
1278 ohci_err(ohci, "DMA context still active (0x%08x)\n", reg);
1279 }
1280
1281 struct driver_data {
1282 u8 inline_data[8];
1283 struct fw_packet *packet;
1284 };
1285
1286 /*
1287 * This function apppends a packet to the DMA queue for transmission.
1288 * Must always be called with the ochi->lock held to ensure proper
1289 * generation handling and locking around packet queue manipulation.
1290 */
1291 static int at_context_queue_packet(struct context *ctx,
1292 struct fw_packet *packet)
1293 {
1294 struct fw_ohci *ohci = ctx->ohci;
1295 dma_addr_t d_bus, uninitialized_var(payload_bus);
1296 struct driver_data *driver_data;
1297 struct descriptor *d, *last;
1298 __le32 *header;
1299 int z, tcode;
1300
1301 d = context_get_descriptors(ctx, 4, &d_bus);
1302 if (d == NULL) {
1303 packet->ack = RCODE_SEND_ERROR;
1304 return -1;
1305 }
1306
1307 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1308 d[0].res_count = cpu_to_le16(packet->timestamp);
1309
1310 /*
1311 * The DMA format for asynchronous link packets is different
1312 * from the IEEE1394 layout, so shift the fields around
1313 * accordingly.
1314 */
1315
1316 tcode = (packet->header[0] >> 4) & 0x0f;
1317 header = (__le32 *) &d[1];
1318 switch (tcode) {
1319 case TCODE_WRITE_QUADLET_REQUEST:
1320 case TCODE_WRITE_BLOCK_REQUEST:
1321 case TCODE_WRITE_RESPONSE:
1322 case TCODE_READ_QUADLET_REQUEST:
1323 case TCODE_READ_BLOCK_REQUEST:
1324 case TCODE_READ_QUADLET_RESPONSE:
1325 case TCODE_READ_BLOCK_RESPONSE:
1326 case TCODE_LOCK_REQUEST:
1327 case TCODE_LOCK_RESPONSE:
1328 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1329 (packet->speed << 16));
1330 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1331 (packet->header[0] & 0xffff0000));
1332 header[2] = cpu_to_le32(packet->header[2]);
1333
1334 if (TCODE_IS_BLOCK_PACKET(tcode))
1335 header[3] = cpu_to_le32(packet->header[3]);
1336 else
1337 header[3] = (__force __le32) packet->header[3];
1338
1339 d[0].req_count = cpu_to_le16(packet->header_length);
1340 break;
1341
1342 case TCODE_LINK_INTERNAL:
1343 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1344 (packet->speed << 16));
1345 header[1] = cpu_to_le32(packet->header[1]);
1346 header[2] = cpu_to_le32(packet->header[2]);
1347 d[0].req_count = cpu_to_le16(12);
1348
1349 if (is_ping_packet(&packet->header[1]))
1350 d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1351 break;
1352
1353 case TCODE_STREAM_DATA:
1354 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1355 (packet->speed << 16));
1356 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1357 d[0].req_count = cpu_to_le16(8);
1358 break;
1359
1360 default:
1361 /* BUG(); */
1362 packet->ack = RCODE_SEND_ERROR;
1363 return -1;
1364 }
1365
1366 BUILD_BUG_ON(sizeof(struct driver_data) > sizeof(struct descriptor));
1367 driver_data = (struct driver_data *) &d[3];
1368 driver_data->packet = packet;
1369 packet->driver_data = driver_data;
1370
1371 if (packet->payload_length > 0) {
1372 if (packet->payload_length > sizeof(driver_data->inline_data)) {
1373 payload_bus = dma_map_single(ohci->card.device,
1374 packet->payload,
1375 packet->payload_length,
1376 DMA_TO_DEVICE);
1377 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1378 packet->ack = RCODE_SEND_ERROR;
1379 return -1;
1380 }
1381 packet->payload_bus = payload_bus;
1382 packet->payload_mapped = true;
1383 } else {
1384 memcpy(driver_data->inline_data, packet->payload,
1385 packet->payload_length);
1386 payload_bus = d_bus + 3 * sizeof(*d);
1387 }
1388
1389 d[2].req_count = cpu_to_le16(packet->payload_length);
1390 d[2].data_address = cpu_to_le32(payload_bus);
1391 last = &d[2];
1392 z = 3;
1393 } else {
1394 last = &d[0];
1395 z = 2;
1396 }
1397
1398 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1399 DESCRIPTOR_IRQ_ALWAYS |
1400 DESCRIPTOR_BRANCH_ALWAYS);
1401
1402 /* FIXME: Document how the locking works. */
1403 if (ohci->generation != packet->generation) {
1404 if (packet->payload_mapped)
1405 dma_unmap_single(ohci->card.device, payload_bus,
1406 packet->payload_length, DMA_TO_DEVICE);
1407 packet->ack = RCODE_GENERATION;
1408 return -1;
1409 }
1410
1411 context_append(ctx, d, z, 4 - z);
1412
1413 if (ctx->running)
1414 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1415 else
1416 context_run(ctx, 0);
1417
1418 return 0;
1419 }
1420
1421 static void at_context_flush(struct context *ctx)
1422 {
1423 tasklet_disable(&ctx->tasklet);
1424
1425 ctx->flushing = true;
1426 context_tasklet((unsigned long)ctx);
1427 ctx->flushing = false;
1428
1429 tasklet_enable(&ctx->tasklet);
1430 }
1431
1432 static int handle_at_packet(struct context *context,
1433 struct descriptor *d,
1434 struct descriptor *last)
1435 {
1436 struct driver_data *driver_data;
1437 struct fw_packet *packet;
1438 struct fw_ohci *ohci = context->ohci;
1439 int evt;
1440
1441 if (last->transfer_status == 0 && !context->flushing)
1442 /* This descriptor isn't done yet, stop iteration. */
1443 return 0;
1444
1445 driver_data = (struct driver_data *) &d[3];
1446 packet = driver_data->packet;
1447 if (packet == NULL)
1448 /* This packet was cancelled, just continue. */
1449 return 1;
1450
1451 if (packet->payload_mapped)
1452 dma_unmap_single(ohci->card.device, packet->payload_bus,
1453 packet->payload_length, DMA_TO_DEVICE);
1454
1455 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1456 packet->timestamp = le16_to_cpu(last->res_count);
1457
1458 log_ar_at_event(ohci, 'T', packet->speed, packet->header, evt);
1459
1460 switch (evt) {
1461 case OHCI1394_evt_timeout:
1462 /* Async response transmit timed out. */
1463 packet->ack = RCODE_CANCELLED;
1464 break;
1465
1466 case OHCI1394_evt_flushed:
1467 /*
1468 * The packet was flushed should give same error as
1469 * when we try to use a stale generation count.
1470 */
1471 packet->ack = RCODE_GENERATION;
1472 break;
1473
1474 case OHCI1394_evt_missing_ack:
1475 if (context->flushing)
1476 packet->ack = RCODE_GENERATION;
1477 else {
1478 /*
1479 * Using a valid (current) generation count, but the
1480 * node is not on the bus or not sending acks.
1481 */
1482 packet->ack = RCODE_NO_ACK;
1483 }
1484 break;
1485
1486 case ACK_COMPLETE + 0x10:
1487 case ACK_PENDING + 0x10:
1488 case ACK_BUSY_X + 0x10:
1489 case ACK_BUSY_A + 0x10:
1490 case ACK_BUSY_B + 0x10:
1491 case ACK_DATA_ERROR + 0x10:
1492 case ACK_TYPE_ERROR + 0x10:
1493 packet->ack = evt - 0x10;
1494 break;
1495
1496 case OHCI1394_evt_no_status:
1497 if (context->flushing) {
1498 packet->ack = RCODE_GENERATION;
1499 break;
1500 }
1501 /* fall through */
1502
1503 default:
1504 packet->ack = RCODE_SEND_ERROR;
1505 break;
1506 }
1507
1508 packet->callback(packet, &ohci->card, packet->ack);
1509
1510 return 1;
1511 }
1512
1513 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1514 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1515 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1516 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1517 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1518
1519 static void handle_local_rom(struct fw_ohci *ohci,
1520 struct fw_packet *packet, u32 csr)
1521 {
1522 struct fw_packet response;
1523 int tcode, length, i;
1524
1525 tcode = HEADER_GET_TCODE(packet->header[0]);
1526 if (TCODE_IS_BLOCK_PACKET(tcode))
1527 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1528 else
1529 length = 4;
1530
1531 i = csr - CSR_CONFIG_ROM;
1532 if (i + length > CONFIG_ROM_SIZE) {
1533 fw_fill_response(&response, packet->header,
1534 RCODE_ADDRESS_ERROR, NULL, 0);
1535 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1536 fw_fill_response(&response, packet->header,
1537 RCODE_TYPE_ERROR, NULL, 0);
1538 } else {
1539 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1540 (void *) ohci->config_rom + i, length);
1541 }
1542
1543 fw_core_handle_response(&ohci->card, &response);
1544 }
1545
1546 static void handle_local_lock(struct fw_ohci *ohci,
1547 struct fw_packet *packet, u32 csr)
1548 {
1549 struct fw_packet response;
1550 int tcode, length, ext_tcode, sel, try;
1551 __be32 *payload, lock_old;
1552 u32 lock_arg, lock_data;
1553
1554 tcode = HEADER_GET_TCODE(packet->header[0]);
1555 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1556 payload = packet->payload;
1557 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1558
1559 if (tcode == TCODE_LOCK_REQUEST &&
1560 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1561 lock_arg = be32_to_cpu(payload[0]);
1562 lock_data = be32_to_cpu(payload[1]);
1563 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1564 lock_arg = 0;
1565 lock_data = 0;
1566 } else {
1567 fw_fill_response(&response, packet->header,
1568 RCODE_TYPE_ERROR, NULL, 0);
1569 goto out;
1570 }
1571
1572 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1573 reg_write(ohci, OHCI1394_CSRData, lock_data);
1574 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1575 reg_write(ohci, OHCI1394_CSRControl, sel);
1576
1577 for (try = 0; try < 20; try++)
1578 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1579 lock_old = cpu_to_be32(reg_read(ohci,
1580 OHCI1394_CSRData));
1581 fw_fill_response(&response, packet->header,
1582 RCODE_COMPLETE,
1583 &lock_old, sizeof(lock_old));
1584 goto out;
1585 }
1586
1587 ohci_err(ohci, "swap not done (CSR lock timeout)\n");
1588 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1589
1590 out:
1591 fw_core_handle_response(&ohci->card, &response);
1592 }
1593
1594 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1595 {
1596 u64 offset, csr;
1597
1598 if (ctx == &ctx->ohci->at_request_ctx) {
1599 packet->ack = ACK_PENDING;
1600 packet->callback(packet, &ctx->ohci->card, packet->ack);
1601 }
1602
1603 offset =
1604 ((unsigned long long)
1605 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1606 packet->header[2];
1607 csr = offset - CSR_REGISTER_BASE;
1608
1609 /* Handle config rom reads. */
1610 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1611 handle_local_rom(ctx->ohci, packet, csr);
1612 else switch (csr) {
1613 case CSR_BUS_MANAGER_ID:
1614 case CSR_BANDWIDTH_AVAILABLE:
1615 case CSR_CHANNELS_AVAILABLE_HI:
1616 case CSR_CHANNELS_AVAILABLE_LO:
1617 handle_local_lock(ctx->ohci, packet, csr);
1618 break;
1619 default:
1620 if (ctx == &ctx->ohci->at_request_ctx)
1621 fw_core_handle_request(&ctx->ohci->card, packet);
1622 else
1623 fw_core_handle_response(&ctx->ohci->card, packet);
1624 break;
1625 }
1626
1627 if (ctx == &ctx->ohci->at_response_ctx) {
1628 packet->ack = ACK_COMPLETE;
1629 packet->callback(packet, &ctx->ohci->card, packet->ack);
1630 }
1631 }
1632
1633 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1634 {
1635 unsigned long flags;
1636 int ret;
1637
1638 spin_lock_irqsave(&ctx->ohci->lock, flags);
1639
1640 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1641 ctx->ohci->generation == packet->generation) {
1642 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1643 handle_local_request(ctx, packet);
1644 return;
1645 }
1646
1647 ret = at_context_queue_packet(ctx, packet);
1648 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1649
1650 if (ret < 0)
1651 packet->callback(packet, &ctx->ohci->card, packet->ack);
1652
1653 }
1654
1655 static void detect_dead_context(struct fw_ohci *ohci,
1656 const char *name, unsigned int regs)
1657 {
1658 u32 ctl;
1659
1660 ctl = reg_read(ohci, CONTROL_SET(regs));
1661 if (ctl & CONTEXT_DEAD)
1662 ohci_err(ohci, "DMA context %s has stopped, error code: %s\n",
1663 name, evts[ctl & 0x1f]);
1664 }
1665
1666 static void handle_dead_contexts(struct fw_ohci *ohci)
1667 {
1668 unsigned int i;
1669 char name[8];
1670
1671 detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1672 detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1673 detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1674 detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1675 for (i = 0; i < 32; ++i) {
1676 if (!(ohci->it_context_support & (1 << i)))
1677 continue;
1678 sprintf(name, "IT%u", i);
1679 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1680 }
1681 for (i = 0; i < 32; ++i) {
1682 if (!(ohci->ir_context_support & (1 << i)))
1683 continue;
1684 sprintf(name, "IR%u", i);
1685 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1686 }
1687 /* TODO: maybe try to flush and restart the dead contexts */
1688 }
1689
1690 static u32 cycle_timer_ticks(u32 cycle_timer)
1691 {
1692 u32 ticks;
1693
1694 ticks = cycle_timer & 0xfff;
1695 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1696 ticks += (3072 * 8000) * (cycle_timer >> 25);
1697
1698 return ticks;
1699 }
1700
1701 /*
1702 * Some controllers exhibit one or more of the following bugs when updating the
1703 * iso cycle timer register:
1704 * - When the lowest six bits are wrapping around to zero, a read that happens
1705 * at the same time will return garbage in the lowest ten bits.
1706 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1707 * not incremented for about 60 ns.
1708 * - Occasionally, the entire register reads zero.
1709 *
1710 * To catch these, we read the register three times and ensure that the
1711 * difference between each two consecutive reads is approximately the same, i.e.
1712 * less than twice the other. Furthermore, any negative difference indicates an
1713 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1714 * execute, so we have enough precision to compute the ratio of the differences.)
1715 */
1716 static u32 get_cycle_time(struct fw_ohci *ohci)
1717 {
1718 u32 c0, c1, c2;
1719 u32 t0, t1, t2;
1720 s32 diff01, diff12;
1721 int i;
1722
1723 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1724
1725 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1726 i = 0;
1727 c1 = c2;
1728 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1729 do {
1730 c0 = c1;
1731 c1 = c2;
1732 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1733 t0 = cycle_timer_ticks(c0);
1734 t1 = cycle_timer_ticks(c1);
1735 t2 = cycle_timer_ticks(c2);
1736 diff01 = t1 - t0;
1737 diff12 = t2 - t1;
1738 } while ((diff01 <= 0 || diff12 <= 0 ||
1739 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1740 && i++ < 20);
1741 }
1742
1743 return c2;
1744 }
1745
1746 /*
1747 * This function has to be called at least every 64 seconds. The bus_time
1748 * field stores not only the upper 25 bits of the BUS_TIME register but also
1749 * the most significant bit of the cycle timer in bit 6 so that we can detect
1750 * changes in this bit.
1751 */
1752 static u32 update_bus_time(struct fw_ohci *ohci)
1753 {
1754 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1755
1756 if (unlikely(!ohci->bus_time_running)) {
1757 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_cycle64Seconds);
1758 ohci->bus_time = (lower_32_bits(get_seconds()) & ~0x7f) |
1759 (cycle_time_seconds & 0x40);
1760 ohci->bus_time_running = true;
1761 }
1762
1763 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1764 ohci->bus_time += 0x40;
1765
1766 return ohci->bus_time | cycle_time_seconds;
1767 }
1768
1769 static int get_status_for_port(struct fw_ohci *ohci, int port_index)
1770 {
1771 int reg;
1772
1773 mutex_lock(&ohci->phy_reg_mutex);
1774 reg = write_phy_reg(ohci, 7, port_index);
1775 if (reg >= 0)
1776 reg = read_phy_reg(ohci, 8);
1777 mutex_unlock(&ohci->phy_reg_mutex);
1778 if (reg < 0)
1779 return reg;
1780
1781 switch (reg & 0x0f) {
1782 case 0x06:
1783 return 2; /* is child node (connected to parent node) */
1784 case 0x0e:
1785 return 3; /* is parent node (connected to child node) */
1786 }
1787 return 1; /* not connected */
1788 }
1789
1790 static int get_self_id_pos(struct fw_ohci *ohci, u32 self_id,
1791 int self_id_count)
1792 {
1793 int i;
1794 u32 entry;
1795
1796 for (i = 0; i < self_id_count; i++) {
1797 entry = ohci->self_id_buffer[i];
1798 if ((self_id & 0xff000000) == (entry & 0xff000000))
1799 return -1;
1800 if ((self_id & 0xff000000) < (entry & 0xff000000))
1801 return i;
1802 }
1803 return i;
1804 }
1805
1806 static int initiated_reset(struct fw_ohci *ohci)
1807 {
1808 int reg;
1809 int ret = 0;
1810
1811 mutex_lock(&ohci->phy_reg_mutex);
1812 reg = write_phy_reg(ohci, 7, 0xe0); /* Select page 7 */
1813 if (reg >= 0) {
1814 reg = read_phy_reg(ohci, 8);
1815 reg |= 0x40;
1816 reg = write_phy_reg(ohci, 8, reg); /* set PMODE bit */
1817 if (reg >= 0) {
1818 reg = read_phy_reg(ohci, 12); /* read register 12 */
1819 if (reg >= 0) {
1820 if ((reg & 0x08) == 0x08) {
1821 /* bit 3 indicates "initiated reset" */
1822 ret = 0x2;
1823 }
1824 }
1825 }
1826 }
1827 mutex_unlock(&ohci->phy_reg_mutex);
1828 return ret;
1829 }
1830
1831 /*
1832 * TI TSB82AA2B and TSB12LV26 do not receive the selfID of a locally
1833 * attached TSB41BA3D phy; see http://www.ti.com/litv/pdf/sllz059.
1834 * Construct the selfID from phy register contents.
1835 */
1836 static int find_and_insert_self_id(struct fw_ohci *ohci, int self_id_count)
1837 {
1838 int reg, i, pos, status;
1839 /* link active 1, speed 3, bridge 0, contender 1, more packets 0 */
1840 u32 self_id = 0x8040c800;
1841
1842 reg = reg_read(ohci, OHCI1394_NodeID);
1843 if (!(reg & OHCI1394_NodeID_idValid)) {
1844 ohci_notice(ohci,
1845 "node ID not valid, new bus reset in progress\n");
1846 return -EBUSY;
1847 }
1848 self_id |= ((reg & 0x3f) << 24); /* phy ID */
1849
1850 reg = ohci_read_phy_reg(&ohci->card, 4);
1851 if (reg < 0)
1852 return reg;
1853 self_id |= ((reg & 0x07) << 8); /* power class */
1854
1855 reg = ohci_read_phy_reg(&ohci->card, 1);
1856 if (reg < 0)
1857 return reg;
1858 self_id |= ((reg & 0x3f) << 16); /* gap count */
1859
1860 for (i = 0; i < 3; i++) {
1861 status = get_status_for_port(ohci, i);
1862 if (status < 0)
1863 return status;
1864 self_id |= ((status & 0x3) << (6 - (i * 2)));
1865 }
1866
1867 self_id |= initiated_reset(ohci);
1868
1869 pos = get_self_id_pos(ohci, self_id, self_id_count);
1870 if (pos >= 0) {
1871 memmove(&(ohci->self_id_buffer[pos+1]),
1872 &(ohci->self_id_buffer[pos]),
1873 (self_id_count - pos) * sizeof(*ohci->self_id_buffer));
1874 ohci->self_id_buffer[pos] = self_id;
1875 self_id_count++;
1876 }
1877 return self_id_count;
1878 }
1879
1880 static void bus_reset_work(struct work_struct *work)
1881 {
1882 struct fw_ohci *ohci =
1883 container_of(work, struct fw_ohci, bus_reset_work);
1884 int self_id_count, generation, new_generation, i, j;
1885 u32 reg;
1886 void *free_rom = NULL;
1887 dma_addr_t free_rom_bus = 0;
1888 bool is_new_root;
1889
1890 reg = reg_read(ohci, OHCI1394_NodeID);
1891 if (!(reg & OHCI1394_NodeID_idValid)) {
1892 ohci_notice(ohci,
1893 "node ID not valid, new bus reset in progress\n");
1894 return;
1895 }
1896 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1897 ohci_notice(ohci, "malconfigured bus\n");
1898 return;
1899 }
1900 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1901 OHCI1394_NodeID_nodeNumber);
1902
1903 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1904 if (!(ohci->is_root && is_new_root))
1905 reg_write(ohci, OHCI1394_LinkControlSet,
1906 OHCI1394_LinkControl_cycleMaster);
1907 ohci->is_root = is_new_root;
1908
1909 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1910 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1911 ohci_notice(ohci, "self ID receive error\n");
1912 return;
1913 }
1914 /*
1915 * The count in the SelfIDCount register is the number of
1916 * bytes in the self ID receive buffer. Since we also receive
1917 * the inverted quadlets and a header quadlet, we shift one
1918 * bit extra to get the actual number of self IDs.
1919 */
1920 self_id_count = (reg >> 3) & 0xff;
1921
1922 if (self_id_count > 252) {
1923 ohci_notice(ohci, "bad selfIDSize (%08x)\n", reg);
1924 return;
1925 }
1926
1927 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1928 rmb();
1929
1930 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1931 u32 id = cond_le32_to_cpu(ohci->self_id_cpu[i]);
1932 u32 id2 = cond_le32_to_cpu(ohci->self_id_cpu[i + 1]);
1933
1934 if (id != ~id2) {
1935 /*
1936 * If the invalid data looks like a cycle start packet,
1937 * it's likely to be the result of the cycle master
1938 * having a wrong gap count. In this case, the self IDs
1939 * so far are valid and should be processed so that the
1940 * bus manager can then correct the gap count.
1941 */
1942 if (id == 0xffff008f) {
1943 ohci_notice(ohci, "ignoring spurious self IDs\n");
1944 self_id_count = j;
1945 break;
1946 }
1947
1948 ohci_notice(ohci, "bad self ID %d/%d (%08x != ~%08x)\n",
1949 j, self_id_count, id, id2);
1950 return;
1951 }
1952 ohci->self_id_buffer[j] = id;
1953 }
1954
1955 if (ohci->quirks & QUIRK_TI_SLLZ059) {
1956 self_id_count = find_and_insert_self_id(ohci, self_id_count);
1957 if (self_id_count < 0) {
1958 ohci_notice(ohci,
1959 "could not construct local self ID\n");
1960 return;
1961 }
1962 }
1963
1964 if (self_id_count == 0) {
1965 ohci_notice(ohci, "no self IDs\n");
1966 return;
1967 }
1968 rmb();
1969
1970 /*
1971 * Check the consistency of the self IDs we just read. The
1972 * problem we face is that a new bus reset can start while we
1973 * read out the self IDs from the DMA buffer. If this happens,
1974 * the DMA buffer will be overwritten with new self IDs and we
1975 * will read out inconsistent data. The OHCI specification
1976 * (section 11.2) recommends a technique similar to
1977 * linux/seqlock.h, where we remember the generation of the
1978 * self IDs in the buffer before reading them out and compare
1979 * it to the current generation after reading them out. If
1980 * the two generations match we know we have a consistent set
1981 * of self IDs.
1982 */
1983
1984 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1985 if (new_generation != generation) {
1986 ohci_notice(ohci, "new bus reset, discarding self ids\n");
1987 return;
1988 }
1989
1990 /* FIXME: Document how the locking works. */
1991 spin_lock_irq(&ohci->lock);
1992
1993 ohci->generation = -1; /* prevent AT packet queueing */
1994 context_stop(&ohci->at_request_ctx);
1995 context_stop(&ohci->at_response_ctx);
1996
1997 spin_unlock_irq(&ohci->lock);
1998
1999 /*
2000 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
2001 * packets in the AT queues and software needs to drain them.
2002 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
2003 */
2004 at_context_flush(&ohci->at_request_ctx);
2005 at_context_flush(&ohci->at_response_ctx);
2006
2007 spin_lock_irq(&ohci->lock);
2008
2009 ohci->generation = generation;
2010 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
2011
2012 if (ohci->quirks & QUIRK_RESET_PACKET)
2013 ohci->request_generation = generation;
2014
2015 /*
2016 * This next bit is unrelated to the AT context stuff but we
2017 * have to do it under the spinlock also. If a new config rom
2018 * was set up before this reset, the old one is now no longer
2019 * in use and we can free it. Update the config rom pointers
2020 * to point to the current config rom and clear the
2021 * next_config_rom pointer so a new update can take place.
2022 */
2023
2024 if (ohci->next_config_rom != NULL) {
2025 if (ohci->next_config_rom != ohci->config_rom) {
2026 free_rom = ohci->config_rom;
2027 free_rom_bus = ohci->config_rom_bus;
2028 }
2029 ohci->config_rom = ohci->next_config_rom;
2030 ohci->config_rom_bus = ohci->next_config_rom_bus;
2031 ohci->next_config_rom = NULL;
2032
2033 /*
2034 * Restore config_rom image and manually update
2035 * config_rom registers. Writing the header quadlet
2036 * will indicate that the config rom is ready, so we
2037 * do that last.
2038 */
2039 reg_write(ohci, OHCI1394_BusOptions,
2040 be32_to_cpu(ohci->config_rom[2]));
2041 ohci->config_rom[0] = ohci->next_header;
2042 reg_write(ohci, OHCI1394_ConfigROMhdr,
2043 be32_to_cpu(ohci->next_header));
2044 }
2045
2046 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2047 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
2048 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
2049 #endif
2050
2051 spin_unlock_irq(&ohci->lock);
2052
2053 if (free_rom)
2054 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2055 free_rom, free_rom_bus);
2056
2057 log_selfids(ohci, generation, self_id_count);
2058
2059 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
2060 self_id_count, ohci->self_id_buffer,
2061 ohci->csr_state_setclear_abdicate);
2062 ohci->csr_state_setclear_abdicate = false;
2063 }
2064
2065 static irqreturn_t irq_handler(int irq, void *data)
2066 {
2067 struct fw_ohci *ohci = data;
2068 u32 event, iso_event;
2069 int i;
2070
2071 event = reg_read(ohci, OHCI1394_IntEventClear);
2072
2073 if (!event || !~event)
2074 return IRQ_NONE;
2075
2076 /*
2077 * busReset and postedWriteErr must not be cleared yet
2078 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
2079 */
2080 reg_write(ohci, OHCI1394_IntEventClear,
2081 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
2082 log_irqs(ohci, event);
2083
2084 if (event & OHCI1394_selfIDComplete)
2085 queue_work(fw_workqueue, &ohci->bus_reset_work);
2086
2087 if (event & OHCI1394_RQPkt)
2088 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
2089
2090 if (event & OHCI1394_RSPkt)
2091 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
2092
2093 if (event & OHCI1394_reqTxComplete)
2094 tasklet_schedule(&ohci->at_request_ctx.tasklet);
2095
2096 if (event & OHCI1394_respTxComplete)
2097 tasklet_schedule(&ohci->at_response_ctx.tasklet);
2098
2099 if (event & OHCI1394_isochRx) {
2100 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
2101 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
2102
2103 while (iso_event) {
2104 i = ffs(iso_event) - 1;
2105 tasklet_schedule(
2106 &ohci->ir_context_list[i].context.tasklet);
2107 iso_event &= ~(1 << i);
2108 }
2109 }
2110
2111 if (event & OHCI1394_isochTx) {
2112 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
2113 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
2114
2115 while (iso_event) {
2116 i = ffs(iso_event) - 1;
2117 tasklet_schedule(
2118 &ohci->it_context_list[i].context.tasklet);
2119 iso_event &= ~(1 << i);
2120 }
2121 }
2122
2123 if (unlikely(event & OHCI1394_regAccessFail))
2124 ohci_err(ohci, "register access failure\n");
2125
2126 if (unlikely(event & OHCI1394_postedWriteErr)) {
2127 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
2128 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
2129 reg_write(ohci, OHCI1394_IntEventClear,
2130 OHCI1394_postedWriteErr);
2131 if (printk_ratelimit())
2132 ohci_err(ohci, "PCI posted write error\n");
2133 }
2134
2135 if (unlikely(event & OHCI1394_cycleTooLong)) {
2136 if (printk_ratelimit())
2137 ohci_notice(ohci, "isochronous cycle too long\n");
2138 reg_write(ohci, OHCI1394_LinkControlSet,
2139 OHCI1394_LinkControl_cycleMaster);
2140 }
2141
2142 if (unlikely(event & OHCI1394_cycleInconsistent)) {
2143 /*
2144 * We need to clear this event bit in order to make
2145 * cycleMatch isochronous I/O work. In theory we should
2146 * stop active cycleMatch iso contexts now and restart
2147 * them at least two cycles later. (FIXME?)
2148 */
2149 if (printk_ratelimit())
2150 ohci_notice(ohci, "isochronous cycle inconsistent\n");
2151 }
2152
2153 if (unlikely(event & OHCI1394_unrecoverableError))
2154 handle_dead_contexts(ohci);
2155
2156 if (event & OHCI1394_cycle64Seconds) {
2157 spin_lock(&ohci->lock);
2158 update_bus_time(ohci);
2159 spin_unlock(&ohci->lock);
2160 } else
2161 flush_writes(ohci);
2162
2163 return IRQ_HANDLED;
2164 }
2165
2166 static int software_reset(struct fw_ohci *ohci)
2167 {
2168 u32 val;
2169 int i;
2170
2171 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
2172 for (i = 0; i < 500; i++) {
2173 val = reg_read(ohci, OHCI1394_HCControlSet);
2174 if (!~val)
2175 return -ENODEV; /* Card was ejected. */
2176
2177 if (!(val & OHCI1394_HCControl_softReset))
2178 return 0;
2179
2180 msleep(1);
2181 }
2182
2183 return -EBUSY;
2184 }
2185
2186 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
2187 {
2188 size_t size = length * 4;
2189
2190 memcpy(dest, src, size);
2191 if (size < CONFIG_ROM_SIZE)
2192 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
2193 }
2194
2195 static int configure_1394a_enhancements(struct fw_ohci *ohci)
2196 {
2197 bool enable_1394a;
2198 int ret, clear, set, offset;
2199
2200 /* Check if the driver should configure link and PHY. */
2201 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
2202 OHCI1394_HCControl_programPhyEnable))
2203 return 0;
2204
2205 /* Paranoia: check whether the PHY supports 1394a, too. */
2206 enable_1394a = false;
2207 ret = read_phy_reg(ohci, 2);
2208 if (ret < 0)
2209 return ret;
2210 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
2211 ret = read_paged_phy_reg(ohci, 1, 8);
2212 if (ret < 0)
2213 return ret;
2214 if (ret >= 1)
2215 enable_1394a = true;
2216 }
2217
2218 if (ohci->quirks & QUIRK_NO_1394A)
2219 enable_1394a = false;
2220
2221 /* Configure PHY and link consistently. */
2222 if (enable_1394a) {
2223 clear = 0;
2224 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2225 } else {
2226 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2227 set = 0;
2228 }
2229 ret = update_phy_reg(ohci, 5, clear, set);
2230 if (ret < 0)
2231 return ret;
2232
2233 if (enable_1394a)
2234 offset = OHCI1394_HCControlSet;
2235 else
2236 offset = OHCI1394_HCControlClear;
2237 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2238
2239 /* Clean up: configuration has been taken care of. */
2240 reg_write(ohci, OHCI1394_HCControlClear,
2241 OHCI1394_HCControl_programPhyEnable);
2242
2243 return 0;
2244 }
2245
2246 static int probe_tsb41ba3d(struct fw_ohci *ohci)
2247 {
2248 /* TI vendor ID = 0x080028, TSB41BA3D product ID = 0x833005 (sic) */
2249 static const u8 id[] = { 0x08, 0x00, 0x28, 0x83, 0x30, 0x05, };
2250 int reg, i;
2251
2252 reg = read_phy_reg(ohci, 2);
2253 if (reg < 0)
2254 return reg;
2255 if ((reg & PHY_EXTENDED_REGISTERS) != PHY_EXTENDED_REGISTERS)
2256 return 0;
2257
2258 for (i = ARRAY_SIZE(id) - 1; i >= 0; i--) {
2259 reg = read_paged_phy_reg(ohci, 1, i + 10);
2260 if (reg < 0)
2261 return reg;
2262 if (reg != id[i])
2263 return 0;
2264 }
2265 return 1;
2266 }
2267
2268 static int ohci_enable(struct fw_card *card,
2269 const __be32 *config_rom, size_t length)
2270 {
2271 struct fw_ohci *ohci = fw_ohci(card);
2272 u32 lps, version, irqs;
2273 int i, ret;
2274
2275 if (software_reset(ohci)) {
2276 ohci_err(ohci, "failed to reset ohci card\n");
2277 return -EBUSY;
2278 }
2279
2280 /*
2281 * Now enable LPS, which we need in order to start accessing
2282 * most of the registers. In fact, on some cards (ALI M5251),
2283 * accessing registers in the SClk domain without LPS enabled
2284 * will lock up the machine. Wait 50msec to make sure we have
2285 * full link enabled. However, with some cards (well, at least
2286 * a JMicron PCIe card), we have to try again sometimes.
2287 *
2288 * TI TSB82AA2 + TSB81BA3(A) cards signal LPS enabled early but
2289 * cannot actually use the phy at that time. These need tens of
2290 * millisecods pause between LPS write and first phy access too.
2291 */
2292
2293 reg_write(ohci, OHCI1394_HCControlSet,
2294 OHCI1394_HCControl_LPS |
2295 OHCI1394_HCControl_postedWriteEnable);
2296 flush_writes(ohci);
2297
2298 for (lps = 0, i = 0; !lps && i < 3; i++) {
2299 msleep(50);
2300 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2301 OHCI1394_HCControl_LPS;
2302 }
2303
2304 if (!lps) {
2305 ohci_err(ohci, "failed to set Link Power Status\n");
2306 return -EIO;
2307 }
2308
2309 if (ohci->quirks & QUIRK_TI_SLLZ059) {
2310 ret = probe_tsb41ba3d(ohci);
2311 if (ret < 0)
2312 return ret;
2313 if (ret)
2314 ohci_notice(ohci, "local TSB41BA3D phy\n");
2315 else
2316 ohci->quirks &= ~QUIRK_TI_SLLZ059;
2317 }
2318
2319 reg_write(ohci, OHCI1394_HCControlClear,
2320 OHCI1394_HCControl_noByteSwapData);
2321
2322 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2323 reg_write(ohci, OHCI1394_LinkControlSet,
2324 OHCI1394_LinkControl_cycleTimerEnable |
2325 OHCI1394_LinkControl_cycleMaster);
2326
2327 reg_write(ohci, OHCI1394_ATRetries,
2328 OHCI1394_MAX_AT_REQ_RETRIES |
2329 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2330 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2331 (200 << 16));
2332
2333 ohci->bus_time_running = false;
2334
2335 for (i = 0; i < 32; i++)
2336 if (ohci->ir_context_support & (1 << i))
2337 reg_write(ohci, OHCI1394_IsoRcvContextControlClear(i),
2338 IR_CONTEXT_MULTI_CHANNEL_MODE);
2339
2340 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2341 if (version >= OHCI_VERSION_1_1) {
2342 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2343 0xfffffffe);
2344 card->broadcast_channel_auto_allocated = true;
2345 }
2346
2347 /* Get implemented bits of the priority arbitration request counter. */
2348 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2349 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2350 reg_write(ohci, OHCI1394_FairnessControl, 0);
2351 card->priority_budget_implemented = ohci->pri_req_max != 0;
2352
2353 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2354 reg_write(ohci, OHCI1394_IntEventClear, ~0);
2355 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2356
2357 ret = configure_1394a_enhancements(ohci);
2358 if (ret < 0)
2359 return ret;
2360
2361 /* Activate link_on bit and contender bit in our self ID packets.*/
2362 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2363 if (ret < 0)
2364 return ret;
2365
2366 /*
2367 * When the link is not yet enabled, the atomic config rom
2368 * update mechanism described below in ohci_set_config_rom()
2369 * is not active. We have to update ConfigRomHeader and
2370 * BusOptions manually, and the write to ConfigROMmap takes
2371 * effect immediately. We tie this to the enabling of the
2372 * link, so we have a valid config rom before enabling - the
2373 * OHCI requires that ConfigROMhdr and BusOptions have valid
2374 * values before enabling.
2375 *
2376 * However, when the ConfigROMmap is written, some controllers
2377 * always read back quadlets 0 and 2 from the config rom to
2378 * the ConfigRomHeader and BusOptions registers on bus reset.
2379 * They shouldn't do that in this initial case where the link
2380 * isn't enabled. This means we have to use the same
2381 * workaround here, setting the bus header to 0 and then write
2382 * the right values in the bus reset tasklet.
2383 */
2384
2385 if (config_rom) {
2386 ohci->next_config_rom =
2387 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2388 &ohci->next_config_rom_bus,
2389 GFP_KERNEL);
2390 if (ohci->next_config_rom == NULL)
2391 return -ENOMEM;
2392
2393 copy_config_rom(ohci->next_config_rom, config_rom, length);
2394 } else {
2395 /*
2396 * In the suspend case, config_rom is NULL, which
2397 * means that we just reuse the old config rom.
2398 */
2399 ohci->next_config_rom = ohci->config_rom;
2400 ohci->next_config_rom_bus = ohci->config_rom_bus;
2401 }
2402
2403 ohci->next_header = ohci->next_config_rom[0];
2404 ohci->next_config_rom[0] = 0;
2405 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2406 reg_write(ohci, OHCI1394_BusOptions,
2407 be32_to_cpu(ohci->next_config_rom[2]));
2408 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2409
2410 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2411
2412 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2413 OHCI1394_RQPkt | OHCI1394_RSPkt |
2414 OHCI1394_isochTx | OHCI1394_isochRx |
2415 OHCI1394_postedWriteErr |
2416 OHCI1394_selfIDComplete |
2417 OHCI1394_regAccessFail |
2418 OHCI1394_cycleInconsistent |
2419 OHCI1394_unrecoverableError |
2420 OHCI1394_cycleTooLong |
2421 OHCI1394_masterIntEnable;
2422 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2423 irqs |= OHCI1394_busReset;
2424 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2425
2426 reg_write(ohci, OHCI1394_HCControlSet,
2427 OHCI1394_HCControl_linkEnable |
2428 OHCI1394_HCControl_BIBimageValid);
2429
2430 reg_write(ohci, OHCI1394_LinkControlSet,
2431 OHCI1394_LinkControl_rcvSelfID |
2432 OHCI1394_LinkControl_rcvPhyPkt);
2433
2434 ar_context_run(&ohci->ar_request_ctx);
2435 ar_context_run(&ohci->ar_response_ctx);
2436
2437 flush_writes(ohci);
2438
2439 /* We are ready to go, reset bus to finish initialization. */
2440 fw_schedule_bus_reset(&ohci->card, false, true);
2441
2442 return 0;
2443 }
2444
2445 static int ohci_set_config_rom(struct fw_card *card,
2446 const __be32 *config_rom, size_t length)
2447 {
2448 struct fw_ohci *ohci;
2449 __be32 *next_config_rom;
2450 dma_addr_t uninitialized_var(next_config_rom_bus);
2451
2452 ohci = fw_ohci(card);
2453
2454 /*
2455 * When the OHCI controller is enabled, the config rom update
2456 * mechanism is a bit tricky, but easy enough to use. See
2457 * section 5.5.6 in the OHCI specification.
2458 *
2459 * The OHCI controller caches the new config rom address in a
2460 * shadow register (ConfigROMmapNext) and needs a bus reset
2461 * for the changes to take place. When the bus reset is
2462 * detected, the controller loads the new values for the
2463 * ConfigRomHeader and BusOptions registers from the specified
2464 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2465 * shadow register. All automatically and atomically.
2466 *
2467 * Now, there's a twist to this story. The automatic load of
2468 * ConfigRomHeader and BusOptions doesn't honor the
2469 * noByteSwapData bit, so with a be32 config rom, the
2470 * controller will load be32 values in to these registers
2471 * during the atomic update, even on litte endian
2472 * architectures. The workaround we use is to put a 0 in the
2473 * header quadlet; 0 is endian agnostic and means that the
2474 * config rom isn't ready yet. In the bus reset tasklet we
2475 * then set up the real values for the two registers.
2476 *
2477 * We use ohci->lock to avoid racing with the code that sets
2478 * ohci->next_config_rom to NULL (see bus_reset_work).
2479 */
2480
2481 next_config_rom =
2482 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2483 &next_config_rom_bus, GFP_KERNEL);
2484 if (next_config_rom == NULL)
2485 return -ENOMEM;
2486
2487 spin_lock_irq(&ohci->lock);
2488
2489 /*
2490 * If there is not an already pending config_rom update,
2491 * push our new allocation into the ohci->next_config_rom
2492 * and then mark the local variable as null so that we
2493 * won't deallocate the new buffer.
2494 *
2495 * OTOH, if there is a pending config_rom update, just
2496 * use that buffer with the new config_rom data, and
2497 * let this routine free the unused DMA allocation.
2498 */
2499
2500 if (ohci->next_config_rom == NULL) {
2501 ohci->next_config_rom = next_config_rom;
2502 ohci->next_config_rom_bus = next_config_rom_bus;
2503 next_config_rom = NULL;
2504 }
2505
2506 copy_config_rom(ohci->next_config_rom, config_rom, length);
2507
2508 ohci->next_header = config_rom[0];
2509 ohci->next_config_rom[0] = 0;
2510
2511 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2512
2513 spin_unlock_irq(&ohci->lock);
2514
2515 /* If we didn't use the DMA allocation, delete it. */
2516 if (next_config_rom != NULL)
2517 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2518 next_config_rom, next_config_rom_bus);
2519
2520 /*
2521 * Now initiate a bus reset to have the changes take
2522 * effect. We clean up the old config rom memory and DMA
2523 * mappings in the bus reset tasklet, since the OHCI
2524 * controller could need to access it before the bus reset
2525 * takes effect.
2526 */
2527
2528 fw_schedule_bus_reset(&ohci->card, true, true);
2529
2530 return 0;
2531 }
2532
2533 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2534 {
2535 struct fw_ohci *ohci = fw_ohci(card);
2536
2537 at_context_transmit(&ohci->at_request_ctx, packet);
2538 }
2539
2540 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2541 {
2542 struct fw_ohci *ohci = fw_ohci(card);
2543
2544 at_context_transmit(&ohci->at_response_ctx, packet);
2545 }
2546
2547 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2548 {
2549 struct fw_ohci *ohci = fw_ohci(card);
2550 struct context *ctx = &ohci->at_request_ctx;
2551 struct driver_data *driver_data = packet->driver_data;
2552 int ret = -ENOENT;
2553
2554 tasklet_disable(&ctx->tasklet);
2555
2556 if (packet->ack != 0)
2557 goto out;
2558
2559 if (packet->payload_mapped)
2560 dma_unmap_single(ohci->card.device, packet->payload_bus,
2561 packet->payload_length, DMA_TO_DEVICE);
2562
2563 log_ar_at_event(ohci, 'T', packet->speed, packet->header, 0x20);
2564 driver_data->packet = NULL;
2565 packet->ack = RCODE_CANCELLED;
2566 packet->callback(packet, &ohci->card, packet->ack);
2567 ret = 0;
2568 out:
2569 tasklet_enable(&ctx->tasklet);
2570
2571 return ret;
2572 }
2573
2574 static int ohci_enable_phys_dma(struct fw_card *card,
2575 int node_id, int generation)
2576 {
2577 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2578 return 0;
2579 #else
2580 struct fw_ohci *ohci = fw_ohci(card);
2581 unsigned long flags;
2582 int n, ret = 0;
2583
2584 /*
2585 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2586 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2587 */
2588
2589 spin_lock_irqsave(&ohci->lock, flags);
2590
2591 if (ohci->generation != generation) {
2592 ret = -ESTALE;
2593 goto out;
2594 }
2595
2596 /*
2597 * Note, if the node ID contains a non-local bus ID, physical DMA is
2598 * enabled for _all_ nodes on remote buses.
2599 */
2600
2601 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2602 if (n < 32)
2603 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2604 else
2605 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2606
2607 flush_writes(ohci);
2608 out:
2609 spin_unlock_irqrestore(&ohci->lock, flags);
2610
2611 return ret;
2612 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2613 }
2614
2615 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2616 {
2617 struct fw_ohci *ohci = fw_ohci(card);
2618 unsigned long flags;
2619 u32 value;
2620
2621 switch (csr_offset) {
2622 case CSR_STATE_CLEAR:
2623 case CSR_STATE_SET:
2624 if (ohci->is_root &&
2625 (reg_read(ohci, OHCI1394_LinkControlSet) &
2626 OHCI1394_LinkControl_cycleMaster))
2627 value = CSR_STATE_BIT_CMSTR;
2628 else
2629 value = 0;
2630 if (ohci->csr_state_setclear_abdicate)
2631 value |= CSR_STATE_BIT_ABDICATE;
2632
2633 return value;
2634
2635 case CSR_NODE_IDS:
2636 return reg_read(ohci, OHCI1394_NodeID) << 16;
2637
2638 case CSR_CYCLE_TIME:
2639 return get_cycle_time(ohci);
2640
2641 case CSR_BUS_TIME:
2642 /*
2643 * We might be called just after the cycle timer has wrapped
2644 * around but just before the cycle64Seconds handler, so we
2645 * better check here, too, if the bus time needs to be updated.
2646 */
2647 spin_lock_irqsave(&ohci->lock, flags);
2648 value = update_bus_time(ohci);
2649 spin_unlock_irqrestore(&ohci->lock, flags);
2650 return value;
2651
2652 case CSR_BUSY_TIMEOUT:
2653 value = reg_read(ohci, OHCI1394_ATRetries);
2654 return (value >> 4) & 0x0ffff00f;
2655
2656 case CSR_PRIORITY_BUDGET:
2657 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2658 (ohci->pri_req_max << 8);
2659
2660 default:
2661 WARN_ON(1);
2662 return 0;
2663 }
2664 }
2665
2666 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2667 {
2668 struct fw_ohci *ohci = fw_ohci(card);
2669 unsigned long flags;
2670
2671 switch (csr_offset) {
2672 case CSR_STATE_CLEAR:
2673 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2674 reg_write(ohci, OHCI1394_LinkControlClear,
2675 OHCI1394_LinkControl_cycleMaster);
2676 flush_writes(ohci);
2677 }
2678 if (value & CSR_STATE_BIT_ABDICATE)
2679 ohci->csr_state_setclear_abdicate = false;
2680 break;
2681
2682 case CSR_STATE_SET:
2683 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2684 reg_write(ohci, OHCI1394_LinkControlSet,
2685 OHCI1394_LinkControl_cycleMaster);
2686 flush_writes(ohci);
2687 }
2688 if (value & CSR_STATE_BIT_ABDICATE)
2689 ohci->csr_state_setclear_abdicate = true;
2690 break;
2691
2692 case CSR_NODE_IDS:
2693 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2694 flush_writes(ohci);
2695 break;
2696
2697 case CSR_CYCLE_TIME:
2698 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2699 reg_write(ohci, OHCI1394_IntEventSet,
2700 OHCI1394_cycleInconsistent);
2701 flush_writes(ohci);
2702 break;
2703
2704 case CSR_BUS_TIME:
2705 spin_lock_irqsave(&ohci->lock, flags);
2706 ohci->bus_time = (update_bus_time(ohci) & 0x40) |
2707 (value & ~0x7f);
2708 spin_unlock_irqrestore(&ohci->lock, flags);
2709 break;
2710
2711 case CSR_BUSY_TIMEOUT:
2712 value = (value & 0xf) | ((value & 0xf) << 4) |
2713 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2714 reg_write(ohci, OHCI1394_ATRetries, value);
2715 flush_writes(ohci);
2716 break;
2717
2718 case CSR_PRIORITY_BUDGET:
2719 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2720 flush_writes(ohci);
2721 break;
2722
2723 default:
2724 WARN_ON(1);
2725 break;
2726 }
2727 }
2728
2729 static void flush_iso_completions(struct iso_context *ctx)
2730 {
2731 ctx->base.callback.sc(&ctx->base, ctx->last_timestamp,
2732 ctx->header_length, ctx->header,
2733 ctx->base.callback_data);
2734 ctx->header_length = 0;
2735 }
2736
2737 static void copy_iso_headers(struct iso_context *ctx, const u32 *dma_hdr)
2738 {
2739 u32 *ctx_hdr;
2740
2741 if (ctx->header_length + ctx->base.header_size > PAGE_SIZE) {
2742 if (ctx->base.drop_overflow_headers)
2743 return;
2744 flush_iso_completions(ctx);
2745 }
2746
2747 ctx_hdr = ctx->header + ctx->header_length;
2748 ctx->last_timestamp = (u16)le32_to_cpu((__force __le32)dma_hdr[0]);
2749
2750 /*
2751 * The two iso header quadlets are byteswapped to little
2752 * endian by the controller, but we want to present them
2753 * as big endian for consistency with the bus endianness.
2754 */
2755 if (ctx->base.header_size > 0)
2756 ctx_hdr[0] = swab32(dma_hdr[1]); /* iso packet header */
2757 if (ctx->base.header_size > 4)
2758 ctx_hdr[1] = swab32(dma_hdr[0]); /* timestamp */
2759 if (ctx->base.header_size > 8)
2760 memcpy(&ctx_hdr[2], &dma_hdr[2], ctx->base.header_size - 8);
2761 ctx->header_length += ctx->base.header_size;
2762 }
2763
2764 static int handle_ir_packet_per_buffer(struct context *context,
2765 struct descriptor *d,
2766 struct descriptor *last)
2767 {
2768 struct iso_context *ctx =
2769 container_of(context, struct iso_context, context);
2770 struct descriptor *pd;
2771 u32 buffer_dma;
2772
2773 for (pd = d; pd <= last; pd++)
2774 if (pd->transfer_status)
2775 break;
2776 if (pd > last)
2777 /* Descriptor(s) not done yet, stop iteration */
2778 return 0;
2779
2780 while (!(d->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))) {
2781 d++;
2782 buffer_dma = le32_to_cpu(d->data_address);
2783 dma_sync_single_range_for_cpu(context->ohci->card.device,
2784 buffer_dma & PAGE_MASK,
2785 buffer_dma & ~PAGE_MASK,
2786 le16_to_cpu(d->req_count),
2787 DMA_FROM_DEVICE);
2788 }
2789
2790 copy_iso_headers(ctx, (u32 *) (last + 1));
2791
2792 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2793 flush_iso_completions(ctx);
2794
2795 return 1;
2796 }
2797
2798 /* d == last because each descriptor block is only a single descriptor. */
2799 static int handle_ir_buffer_fill(struct context *context,
2800 struct descriptor *d,
2801 struct descriptor *last)
2802 {
2803 struct iso_context *ctx =
2804 container_of(context, struct iso_context, context);
2805 unsigned int req_count, res_count, completed;
2806 u32 buffer_dma;
2807
2808 req_count = le16_to_cpu(last->req_count);
2809 res_count = le16_to_cpu(ACCESS_ONCE(last->res_count));
2810 completed = req_count - res_count;
2811 buffer_dma = le32_to_cpu(last->data_address);
2812
2813 if (completed > 0) {
2814 ctx->mc_buffer_bus = buffer_dma;
2815 ctx->mc_completed = completed;
2816 }
2817
2818 if (res_count != 0)
2819 /* Descriptor(s) not done yet, stop iteration */
2820 return 0;
2821
2822 dma_sync_single_range_for_cpu(context->ohci->card.device,
2823 buffer_dma & PAGE_MASK,
2824 buffer_dma & ~PAGE_MASK,
2825 completed, DMA_FROM_DEVICE);
2826
2827 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS)) {
2828 ctx->base.callback.mc(&ctx->base,
2829 buffer_dma + completed,
2830 ctx->base.callback_data);
2831 ctx->mc_completed = 0;
2832 }
2833
2834 return 1;
2835 }
2836
2837 static void flush_ir_buffer_fill(struct iso_context *ctx)
2838 {
2839 dma_sync_single_range_for_cpu(ctx->context.ohci->card.device,
2840 ctx->mc_buffer_bus & PAGE_MASK,
2841 ctx->mc_buffer_bus & ~PAGE_MASK,
2842 ctx->mc_completed, DMA_FROM_DEVICE);
2843
2844 ctx->base.callback.mc(&ctx->base,
2845 ctx->mc_buffer_bus + ctx->mc_completed,
2846 ctx->base.callback_data);
2847 ctx->mc_completed = 0;
2848 }
2849
2850 static inline void sync_it_packet_for_cpu(struct context *context,
2851 struct descriptor *pd)
2852 {
2853 __le16 control;
2854 u32 buffer_dma;
2855
2856 /* only packets beginning with OUTPUT_MORE* have data buffers */
2857 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2858 return;
2859
2860 /* skip over the OUTPUT_MORE_IMMEDIATE descriptor */
2861 pd += 2;
2862
2863 /*
2864 * If the packet has a header, the first OUTPUT_MORE/LAST descriptor's
2865 * data buffer is in the context program's coherent page and must not
2866 * be synced.
2867 */
2868 if ((le32_to_cpu(pd->data_address) & PAGE_MASK) ==
2869 (context->current_bus & PAGE_MASK)) {
2870 if (pd->control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS))
2871 return;
2872 pd++;
2873 }
2874
2875 do {
2876 buffer_dma = le32_to_cpu(pd->data_address);
2877 dma_sync_single_range_for_cpu(context->ohci->card.device,
2878 buffer_dma & PAGE_MASK,
2879 buffer_dma & ~PAGE_MASK,
2880 le16_to_cpu(pd->req_count),
2881 DMA_TO_DEVICE);
2882 control = pd->control;
2883 pd++;
2884 } while (!(control & cpu_to_le16(DESCRIPTOR_BRANCH_ALWAYS)));
2885 }
2886
2887 static int handle_it_packet(struct context *context,
2888 struct descriptor *d,
2889 struct descriptor *last)
2890 {
2891 struct iso_context *ctx =
2892 container_of(context, struct iso_context, context);
2893 struct descriptor *pd;
2894 __be32 *ctx_hdr;
2895
2896 for (pd = d; pd <= last; pd++)
2897 if (pd->transfer_status)
2898 break;
2899 if (pd > last)
2900 /* Descriptor(s) not done yet, stop iteration */
2901 return 0;
2902
2903 sync_it_packet_for_cpu(context, d);
2904
2905 if (ctx->header_length + 4 > PAGE_SIZE) {
2906 if (ctx->base.drop_overflow_headers)
2907 return 1;
2908 flush_iso_completions(ctx);
2909 }
2910
2911 ctx_hdr = ctx->header + ctx->header_length;
2912 ctx->last_timestamp = le16_to_cpu(last->res_count);
2913 /* Present this value as big-endian to match the receive code */
2914 *ctx_hdr = cpu_to_be32((le16_to_cpu(pd->transfer_status) << 16) |
2915 le16_to_cpu(pd->res_count));
2916 ctx->header_length += 4;
2917
2918 if (last->control & cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS))
2919 flush_iso_completions(ctx);
2920
2921 return 1;
2922 }
2923
2924 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2925 {
2926 u32 hi = channels >> 32, lo = channels;
2927
2928 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2929 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2930 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2931 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2932 mmiowb();
2933 ohci->mc_channels = channels;
2934 }
2935
2936 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2937 int type, int channel, size_t header_size)
2938 {
2939 struct fw_ohci *ohci = fw_ohci(card);
2940 struct iso_context *uninitialized_var(ctx);
2941 descriptor_callback_t uninitialized_var(callback);
2942 u64 *uninitialized_var(channels);
2943 u32 *uninitialized_var(mask), uninitialized_var(regs);
2944 int index, ret = -EBUSY;
2945
2946 spin_lock_irq(&ohci->lock);
2947
2948 switch (type) {
2949 case FW_ISO_CONTEXT_TRANSMIT:
2950 mask = &ohci->it_context_mask;
2951 callback = handle_it_packet;
2952 index = ffs(*mask) - 1;
2953 if (index >= 0) {
2954 *mask &= ~(1 << index);
2955 regs = OHCI1394_IsoXmitContextBase(index);
2956 ctx = &ohci->it_context_list[index];
2957 }
2958 break;
2959
2960 case FW_ISO_CONTEXT_RECEIVE:
2961 channels = &ohci->ir_context_channels;
2962 mask = &ohci->ir_context_mask;
2963 callback = handle_ir_packet_per_buffer;
2964 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2965 if (index >= 0) {
2966 *channels &= ~(1ULL << channel);
2967 *mask &= ~(1 << index);
2968 regs = OHCI1394_IsoRcvContextBase(index);
2969 ctx = &ohci->ir_context_list[index];
2970 }
2971 break;
2972
2973 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2974 mask = &ohci->ir_context_mask;
2975 callback = handle_ir_buffer_fill;
2976 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2977 if (index >= 0) {
2978 ohci->mc_allocated = true;
2979 *mask &= ~(1 << index);
2980 regs = OHCI1394_IsoRcvContextBase(index);
2981 ctx = &ohci->ir_context_list[index];
2982 }
2983 break;
2984
2985 default:
2986 index = -1;
2987 ret = -ENOSYS;
2988 }
2989
2990 spin_unlock_irq(&ohci->lock);
2991
2992 if (index < 0)
2993 return ERR_PTR(ret);
2994
2995 memset(ctx, 0, sizeof(*ctx));
2996 ctx->header_length = 0;
2997 ctx->header = (void *) __get_free_page(GFP_KERNEL);
2998 if (ctx->header == NULL) {
2999 ret = -ENOMEM;
3000 goto out;
3001 }
3002 ret = context_init(&ctx->context, ohci, regs, callback);
3003 if (ret < 0)
3004 goto out_with_header;
3005
3006 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL) {
3007 set_multichannel_mask(ohci, 0);
3008 ctx->mc_completed = 0;
3009 }
3010
3011 return &ctx->base;
3012
3013 out_with_header:
3014 free_page((unsigned long)ctx->header);
3015 out:
3016 spin_lock_irq(&ohci->lock);
3017
3018 switch (type) {
3019 case FW_ISO_CONTEXT_RECEIVE:
3020 *channels |= 1ULL << channel;
3021 break;
3022
3023 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3024 ohci->mc_allocated = false;
3025 break;
3026 }
3027 *mask |= 1 << index;
3028
3029 spin_unlock_irq(&ohci->lock);
3030
3031 return ERR_PTR(ret);
3032 }
3033
3034 static int ohci_start_iso(struct fw_iso_context *base,
3035 s32 cycle, u32 sync, u32 tags)
3036 {
3037 struct iso_context *ctx = container_of(base, struct iso_context, base);
3038 struct fw_ohci *ohci = ctx->context.ohci;
3039 u32 control = IR_CONTEXT_ISOCH_HEADER, match;
3040 int index;
3041
3042 /* the controller cannot start without any queued packets */
3043 if (ctx->context.last->branch_address == 0)
3044 return -ENODATA;
3045
3046 switch (ctx->base.type) {
3047 case FW_ISO_CONTEXT_TRANSMIT:
3048 index = ctx - ohci->it_context_list;
3049 match = 0;
3050 if (cycle >= 0)
3051 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
3052 (cycle & 0x7fff) << 16;
3053
3054 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
3055 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
3056 context_run(&ctx->context, match);
3057 break;
3058
3059 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3060 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
3061 /* fall through */
3062 case FW_ISO_CONTEXT_RECEIVE:
3063 index = ctx - ohci->ir_context_list;
3064 match = (tags << 28) | (sync << 8) | ctx->base.channel;
3065 if (cycle >= 0) {
3066 match |= (cycle & 0x07fff) << 12;
3067 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
3068 }
3069
3070 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
3071 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
3072 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
3073 context_run(&ctx->context, control);
3074
3075 ctx->sync = sync;
3076 ctx->tags = tags;
3077
3078 break;
3079 }
3080
3081 return 0;
3082 }
3083
3084 static int ohci_stop_iso(struct fw_iso_context *base)
3085 {
3086 struct fw_ohci *ohci = fw_ohci(base->card);
3087 struct iso_context *ctx = container_of(base, struct iso_context, base);
3088 int index;
3089
3090 switch (ctx->base.type) {
3091 case FW_ISO_CONTEXT_TRANSMIT:
3092 index = ctx - ohci->it_context_list;
3093 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
3094 break;
3095
3096 case FW_ISO_CONTEXT_RECEIVE:
3097 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3098 index = ctx - ohci->ir_context_list;
3099 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
3100 break;
3101 }
3102 flush_writes(ohci);
3103 context_stop(&ctx->context);
3104 tasklet_kill(&ctx->context.tasklet);
3105
3106 return 0;
3107 }
3108
3109 static void ohci_free_iso_context(struct fw_iso_context *base)
3110 {
3111 struct fw_ohci *ohci = fw_ohci(base->card);
3112 struct iso_context *ctx = container_of(base, struct iso_context, base);
3113 unsigned long flags;
3114 int index;
3115
3116 ohci_stop_iso(base);
3117 context_release(&ctx->context);
3118 free_page((unsigned long)ctx->header);
3119
3120 spin_lock_irqsave(&ohci->lock, flags);
3121
3122 switch (base->type) {
3123 case FW_ISO_CONTEXT_TRANSMIT:
3124 index = ctx - ohci->it_context_list;
3125 ohci->it_context_mask |= 1 << index;
3126 break;
3127
3128 case FW_ISO_CONTEXT_RECEIVE:
3129 index = ctx - ohci->ir_context_list;
3130 ohci->ir_context_mask |= 1 << index;
3131 ohci->ir_context_channels |= 1ULL << base->channel;
3132 break;
3133
3134 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3135 index = ctx - ohci->ir_context_list;
3136 ohci->ir_context_mask |= 1 << index;
3137 ohci->ir_context_channels |= ohci->mc_channels;
3138 ohci->mc_channels = 0;
3139 ohci->mc_allocated = false;
3140 break;
3141 }
3142
3143 spin_unlock_irqrestore(&ohci->lock, flags);
3144 }
3145
3146 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
3147 {
3148 struct fw_ohci *ohci = fw_ohci(base->card);
3149 unsigned long flags;
3150 int ret;
3151
3152 switch (base->type) {
3153 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3154
3155 spin_lock_irqsave(&ohci->lock, flags);
3156
3157 /* Don't allow multichannel to grab other contexts' channels. */
3158 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
3159 *channels = ohci->ir_context_channels;
3160 ret = -EBUSY;
3161 } else {
3162 set_multichannel_mask(ohci, *channels);
3163 ret = 0;
3164 }
3165
3166 spin_unlock_irqrestore(&ohci->lock, flags);
3167
3168 break;
3169 default:
3170 ret = -EINVAL;
3171 }
3172
3173 return ret;
3174 }
3175
3176 #ifdef CONFIG_PM
3177 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
3178 {
3179 int i;
3180 struct iso_context *ctx;
3181
3182 for (i = 0 ; i < ohci->n_ir ; i++) {
3183 ctx = &ohci->ir_context_list[i];
3184 if (ctx->context.running)
3185 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3186 }
3187
3188 for (i = 0 ; i < ohci->n_it ; i++) {
3189 ctx = &ohci->it_context_list[i];
3190 if (ctx->context.running)
3191 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
3192 }
3193 }
3194 #endif
3195
3196 static int queue_iso_transmit(struct iso_context *ctx,
3197 struct fw_iso_packet *packet,
3198 struct fw_iso_buffer *buffer,
3199 unsigned long payload)
3200 {
3201 struct descriptor *d, *last, *pd;
3202 struct fw_iso_packet *p;
3203 __le32 *header;
3204 dma_addr_t d_bus, page_bus;
3205 u32 z, header_z, payload_z, irq;
3206 u32 payload_index, payload_end_index, next_page_index;
3207 int page, end_page, i, length, offset;
3208
3209 p = packet;
3210 payload_index = payload;
3211
3212 if (p->skip)
3213 z = 1;
3214 else
3215 z = 2;
3216 if (p->header_length > 0)
3217 z++;
3218
3219 /* Determine the first page the payload isn't contained in. */
3220 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
3221 if (p->payload_length > 0)
3222 payload_z = end_page - (payload_index >> PAGE_SHIFT);
3223 else
3224 payload_z = 0;
3225
3226 z += payload_z;
3227
3228 /* Get header size in number of descriptors. */
3229 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
3230
3231 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
3232 if (d == NULL)
3233 return -ENOMEM;
3234
3235 if (!p->skip) {
3236 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
3237 d[0].req_count = cpu_to_le16(8);
3238 /*
3239 * Link the skip address to this descriptor itself. This causes
3240 * a context to skip a cycle whenever lost cycles or FIFO
3241 * overruns occur, without dropping the data. The application
3242 * should then decide whether this is an error condition or not.
3243 * FIXME: Make the context's cycle-lost behaviour configurable?
3244 */
3245 d[0].branch_address = cpu_to_le32(d_bus | z);
3246
3247 header = (__le32 *) &d[1];
3248 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
3249 IT_HEADER_TAG(p->tag) |
3250 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
3251 IT_HEADER_CHANNEL(ctx->base.channel) |
3252 IT_HEADER_SPEED(ctx->base.speed));
3253 header[1] =
3254 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
3255 p->payload_length));
3256 }
3257
3258 if (p->header_length > 0) {
3259 d[2].req_count = cpu_to_le16(p->header_length);
3260 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
3261 memcpy(&d[z], p->header, p->header_length);
3262 }
3263
3264 pd = d + z - payload_z;
3265 payload_end_index = payload_index + p->payload_length;
3266 for (i = 0; i < payload_z; i++) {
3267 page = payload_index >> PAGE_SHIFT;
3268 offset = payload_index & ~PAGE_MASK;
3269 next_page_index = (page + 1) << PAGE_SHIFT;
3270 length =
3271 min(next_page_index, payload_end_index) - payload_index;
3272 pd[i].req_count = cpu_to_le16(length);
3273
3274 page_bus = page_private(buffer->pages[page]);
3275 pd[i].data_address = cpu_to_le32(page_bus + offset);
3276
3277 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3278 page_bus, offset, length,
3279 DMA_TO_DEVICE);
3280
3281 payload_index += length;
3282 }
3283
3284 if (p->interrupt)
3285 irq = DESCRIPTOR_IRQ_ALWAYS;
3286 else
3287 irq = DESCRIPTOR_NO_IRQ;
3288
3289 last = z == 2 ? d : d + z - 1;
3290 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
3291 DESCRIPTOR_STATUS |
3292 DESCRIPTOR_BRANCH_ALWAYS |
3293 irq);
3294
3295 context_append(&ctx->context, d, z, header_z);
3296
3297 return 0;
3298 }
3299
3300 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
3301 struct fw_iso_packet *packet,
3302 struct fw_iso_buffer *buffer,
3303 unsigned long payload)
3304 {
3305 struct device *device = ctx->context.ohci->card.device;
3306 struct descriptor *d, *pd;
3307 dma_addr_t d_bus, page_bus;
3308 u32 z, header_z, rest;
3309 int i, j, length;
3310 int page, offset, packet_count, header_size, payload_per_buffer;
3311
3312 /*
3313 * The OHCI controller puts the isochronous header and trailer in the
3314 * buffer, so we need at least 8 bytes.
3315 */
3316 packet_count = packet->header_length / ctx->base.header_size;
3317 header_size = max(ctx->base.header_size, (size_t)8);
3318
3319 /* Get header size in number of descriptors. */
3320 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
3321 page = payload >> PAGE_SHIFT;
3322 offset = payload & ~PAGE_MASK;
3323 payload_per_buffer = packet->payload_length / packet_count;
3324
3325 for (i = 0; i < packet_count; i++) {
3326 /* d points to the header descriptor */
3327 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
3328 d = context_get_descriptors(&ctx->context,
3329 z + header_z, &d_bus);
3330 if (d == NULL)
3331 return -ENOMEM;
3332
3333 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
3334 DESCRIPTOR_INPUT_MORE);
3335 if (packet->skip && i == 0)
3336 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3337 d->req_count = cpu_to_le16(header_size);
3338 d->res_count = d->req_count;
3339 d->transfer_status = 0;
3340 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
3341
3342 rest = payload_per_buffer;
3343 pd = d;
3344 for (j = 1; j < z; j++) {
3345 pd++;
3346 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3347 DESCRIPTOR_INPUT_MORE);
3348
3349 if (offset + rest < PAGE_SIZE)
3350 length = rest;
3351 else
3352 length = PAGE_SIZE - offset;
3353 pd->req_count = cpu_to_le16(length);
3354 pd->res_count = pd->req_count;
3355 pd->transfer_status = 0;
3356
3357 page_bus = page_private(buffer->pages[page]);
3358 pd->data_address = cpu_to_le32(page_bus + offset);
3359
3360 dma_sync_single_range_for_device(device, page_bus,
3361 offset, length,
3362 DMA_FROM_DEVICE);
3363
3364 offset = (offset + length) & ~PAGE_MASK;
3365 rest -= length;
3366 if (offset == 0)
3367 page++;
3368 }
3369 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3370 DESCRIPTOR_INPUT_LAST |
3371 DESCRIPTOR_BRANCH_ALWAYS);
3372 if (packet->interrupt && i == packet_count - 1)
3373 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3374
3375 context_append(&ctx->context, d, z, header_z);
3376 }
3377
3378 return 0;
3379 }
3380
3381 static int queue_iso_buffer_fill(struct iso_context *ctx,
3382 struct fw_iso_packet *packet,
3383 struct fw_iso_buffer *buffer,
3384 unsigned long payload)
3385 {
3386 struct descriptor *d;
3387 dma_addr_t d_bus, page_bus;
3388 int page, offset, rest, z, i, length;
3389
3390 page = payload >> PAGE_SHIFT;
3391 offset = payload & ~PAGE_MASK;
3392 rest = packet->payload_length;
3393
3394 /* We need one descriptor for each page in the buffer. */
3395 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3396
3397 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3398 return -EFAULT;
3399
3400 for (i = 0; i < z; i++) {
3401 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3402 if (d == NULL)
3403 return -ENOMEM;
3404
3405 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3406 DESCRIPTOR_BRANCH_ALWAYS);
3407 if (packet->skip && i == 0)
3408 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3409 if (packet->interrupt && i == z - 1)
3410 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3411
3412 if (offset + rest < PAGE_SIZE)
3413 length = rest;
3414 else
3415 length = PAGE_SIZE - offset;
3416 d->req_count = cpu_to_le16(length);
3417 d->res_count = d->req_count;
3418 d->transfer_status = 0;
3419
3420 page_bus = page_private(buffer->pages[page]);
3421 d->data_address = cpu_to_le32(page_bus + offset);
3422
3423 dma_sync_single_range_for_device(ctx->context.ohci->card.device,
3424 page_bus, offset, length,
3425 DMA_FROM_DEVICE);
3426
3427 rest -= length;
3428 offset = 0;
3429 page++;
3430
3431 context_append(&ctx->context, d, 1, 0);
3432 }
3433
3434 return 0;
3435 }
3436
3437 static int ohci_queue_iso(struct fw_iso_context *base,
3438 struct fw_iso_packet *packet,
3439 struct fw_iso_buffer *buffer,
3440 unsigned long payload)
3441 {
3442 struct iso_context *ctx = container_of(base, struct iso_context, base);
3443 unsigned long flags;
3444 int ret = -ENOSYS;
3445
3446 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3447 switch (base->type) {
3448 case FW_ISO_CONTEXT_TRANSMIT:
3449 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3450 break;
3451 case FW_ISO_CONTEXT_RECEIVE:
3452 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3453 break;
3454 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3455 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3456 break;
3457 }
3458 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3459
3460 return ret;
3461 }
3462
3463 static void ohci_flush_queue_iso(struct fw_iso_context *base)
3464 {
3465 struct context *ctx =
3466 &container_of(base, struct iso_context, base)->context;
3467
3468 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
3469 }
3470
3471 static int ohci_flush_iso_completions(struct fw_iso_context *base)
3472 {
3473 struct iso_context *ctx = container_of(base, struct iso_context, base);
3474 int ret = 0;
3475
3476 tasklet_disable(&ctx->context.tasklet);
3477
3478 if (!test_and_set_bit_lock(0, &ctx->flushing_completions)) {
3479 context_tasklet((unsigned long)&ctx->context);
3480
3481 switch (base->type) {
3482 case FW_ISO_CONTEXT_TRANSMIT:
3483 case FW_ISO_CONTEXT_RECEIVE:
3484 if (ctx->header_length != 0)
3485 flush_iso_completions(ctx);
3486 break;
3487 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3488 if (ctx->mc_completed != 0)
3489 flush_ir_buffer_fill(ctx);
3490 break;
3491 default:
3492 ret = -ENOSYS;
3493 }
3494
3495 clear_bit_unlock(0, &ctx->flushing_completions);
3496 smp_mb__after_atomic();
3497 }
3498
3499 tasklet_enable(&ctx->context.tasklet);
3500
3501 return ret;
3502 }
3503
3504 static const struct fw_card_driver ohci_driver = {
3505 .enable = ohci_enable,
3506 .read_phy_reg = ohci_read_phy_reg,
3507 .update_phy_reg = ohci_update_phy_reg,
3508 .set_config_rom = ohci_set_config_rom,
3509 .send_request = ohci_send_request,
3510 .send_response = ohci_send_response,
3511 .cancel_packet = ohci_cancel_packet,
3512 .enable_phys_dma = ohci_enable_phys_dma,
3513 .read_csr = ohci_read_csr,
3514 .write_csr = ohci_write_csr,
3515
3516 .allocate_iso_context = ohci_allocate_iso_context,
3517 .free_iso_context = ohci_free_iso_context,
3518 .set_iso_channels = ohci_set_iso_channels,
3519 .queue_iso = ohci_queue_iso,
3520 .flush_queue_iso = ohci_flush_queue_iso,
3521 .flush_iso_completions = ohci_flush_iso_completions,
3522 .start_iso = ohci_start_iso,
3523 .stop_iso = ohci_stop_iso,
3524 };
3525
3526 #ifdef CONFIG_PPC_PMAC
3527 static void pmac_ohci_on(struct pci_dev *dev)
3528 {
3529 if (machine_is(powermac)) {
3530 struct device_node *ofn = pci_device_to_OF_node(dev);
3531
3532 if (ofn) {
3533 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3534 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3535 }
3536 }
3537 }
3538
3539 static void pmac_ohci_off(struct pci_dev *dev)
3540 {
3541 if (machine_is(powermac)) {
3542 struct device_node *ofn = pci_device_to_OF_node(dev);
3543
3544 if (ofn) {
3545 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3546 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3547 }
3548 }
3549 }
3550 #else
3551 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3552 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3553 #endif /* CONFIG_PPC_PMAC */
3554
3555 static int pci_probe(struct pci_dev *dev,
3556 const struct pci_device_id *ent)
3557 {
3558 struct fw_ohci *ohci;
3559 u32 bus_options, max_receive, link_speed, version;
3560 u64 guid;
3561 int i, err;
3562 size_t size;
3563
3564 if (dev->vendor == PCI_VENDOR_ID_PINNACLE_SYSTEMS) {
3565 dev_err(&dev->dev, "Pinnacle MovieBoard is not yet supported\n");
3566 return -ENOSYS;
3567 }
3568
3569 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3570 if (ohci == NULL) {
3571 err = -ENOMEM;
3572 goto fail;
3573 }
3574
3575 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3576
3577 pmac_ohci_on(dev);
3578
3579 err = pci_enable_device(dev);
3580 if (err) {
3581 dev_err(&dev->dev, "failed to enable OHCI hardware\n");
3582 goto fail_free;
3583 }
3584
3585 pci_set_master(dev);
3586 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3587 pci_set_drvdata(dev, ohci);
3588
3589 spin_lock_init(&ohci->lock);
3590 mutex_init(&ohci->phy_reg_mutex);
3591
3592 INIT_WORK(&ohci->bus_reset_work, bus_reset_work);
3593
3594 if (!(pci_resource_flags(dev, 0) & IORESOURCE_MEM) ||
3595 pci_resource_len(dev, 0) < OHCI1394_REGISTER_SIZE) {
3596 ohci_err(ohci, "invalid MMIO resource\n");
3597 err = -ENXIO;
3598 goto fail_disable;
3599 }
3600
3601 err = pci_request_region(dev, 0, ohci_driver_name);
3602 if (err) {
3603 ohci_err(ohci, "MMIO resource unavailable\n");
3604 goto fail_disable;
3605 }
3606
3607 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3608 if (ohci->registers == NULL) {
3609 ohci_err(ohci, "failed to remap registers\n");
3610 err = -ENXIO;
3611 goto fail_iomem;
3612 }
3613
3614 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3615 if ((ohci_quirks[i].vendor == dev->vendor) &&
3616 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3617 ohci_quirks[i].device == dev->device) &&
3618 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3619 ohci_quirks[i].revision >= dev->revision)) {
3620 ohci->quirks = ohci_quirks[i].flags;
3621 break;
3622 }
3623 if (param_quirks)
3624 ohci->quirks = param_quirks;
3625
3626 /*
3627 * Because dma_alloc_coherent() allocates at least one page,
3628 * we save space by using a common buffer for the AR request/
3629 * response descriptors and the self IDs buffer.
3630 */
3631 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3632 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3633 ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3634 PAGE_SIZE,
3635 &ohci->misc_buffer_bus,
3636 GFP_KERNEL);
3637 if (!ohci->misc_buffer) {
3638 err = -ENOMEM;
3639 goto fail_iounmap;
3640 }
3641
3642 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3643 OHCI1394_AsReqRcvContextControlSet);
3644 if (err < 0)
3645 goto fail_misc_buf;
3646
3647 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3648 OHCI1394_AsRspRcvContextControlSet);
3649 if (err < 0)
3650 goto fail_arreq_ctx;
3651
3652 err = context_init(&ohci->at_request_ctx, ohci,
3653 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3654 if (err < 0)
3655 goto fail_arrsp_ctx;
3656
3657 err = context_init(&ohci->at_response_ctx, ohci,
3658 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3659 if (err < 0)
3660 goto fail_atreq_ctx;
3661
3662 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3663 ohci->ir_context_channels = ~0ULL;
3664 ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3665 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3666 ohci->ir_context_mask = ohci->ir_context_support;
3667 ohci->n_ir = hweight32(ohci->ir_context_mask);
3668 size = sizeof(struct iso_context) * ohci->n_ir;
3669 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3670
3671 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3672 ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3673 /* JMicron JMB38x often shows 0 at first read, just ignore it */
3674 if (!ohci->it_context_support) {
3675 ohci_notice(ohci, "overriding IsoXmitIntMask\n");
3676 ohci->it_context_support = 0xf;
3677 }
3678 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3679 ohci->it_context_mask = ohci->it_context_support;
3680 ohci->n_it = hweight32(ohci->it_context_mask);
3681 size = sizeof(struct iso_context) * ohci->n_it;
3682 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3683
3684 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3685 err = -ENOMEM;
3686 goto fail_contexts;
3687 }
3688
3689 ohci->self_id_cpu = ohci->misc_buffer + PAGE_SIZE/2;
3690 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3691
3692 bus_options = reg_read(ohci, OHCI1394_BusOptions);
3693 max_receive = (bus_options >> 12) & 0xf;
3694 link_speed = bus_options & 0x7;
3695 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3696 reg_read(ohci, OHCI1394_GUIDLo);
3697
3698 if (!(ohci->quirks & QUIRK_NO_MSI))
3699 pci_enable_msi(dev);
3700 if (request_irq(dev->irq, irq_handler,
3701 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
3702 ohci_driver_name, ohci)) {
3703 ohci_err(ohci, "failed to allocate interrupt %d\n", dev->irq);
3704 err = -EIO;
3705 goto fail_msi;
3706 }
3707
3708 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3709 if (err)
3710 goto fail_irq;
3711
3712 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3713 ohci_notice(ohci,
3714 "added OHCI v%x.%x device as card %d, "
3715 "%d IR + %d IT contexts, quirks 0x%x\n",
3716 version >> 16, version & 0xff, ohci->card.index,
3717 ohci->n_ir, ohci->n_it, ohci->quirks);
3718
3719 return 0;
3720
3721 fail_irq:
3722 free_irq(dev->irq, ohci);
3723 fail_msi:
3724 pci_disable_msi(dev);
3725 fail_contexts:
3726 kfree(ohci->ir_context_list);
3727 kfree(ohci->it_context_list);
3728 context_release(&ohci->at_response_ctx);
3729 fail_atreq_ctx:
3730 context_release(&ohci->at_request_ctx);
3731 fail_arrsp_ctx:
3732 ar_context_release(&ohci->ar_response_ctx);
3733 fail_arreq_ctx:
3734 ar_context_release(&ohci->ar_request_ctx);
3735 fail_misc_buf:
3736 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3737 ohci->misc_buffer, ohci->misc_buffer_bus);
3738 fail_iounmap:
3739 pci_iounmap(dev, ohci->registers);
3740 fail_iomem:
3741 pci_release_region(dev, 0);
3742 fail_disable:
3743 pci_disable_device(dev);
3744 fail_free:
3745 kfree(ohci);
3746 pmac_ohci_off(dev);
3747 fail:
3748 return err;
3749 }
3750
3751 static void pci_remove(struct pci_dev *dev)
3752 {
3753 struct fw_ohci *ohci = pci_get_drvdata(dev);
3754
3755 /*
3756 * If the removal is happening from the suspend state, LPS won't be
3757 * enabled and host registers (eg., IntMaskClear) won't be accessible.
3758 */
3759 if (reg_read(ohci, OHCI1394_HCControlSet) & OHCI1394_HCControl_LPS) {
3760 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3761 flush_writes(ohci);
3762 }
3763 cancel_work_sync(&ohci->bus_reset_work);
3764 fw_core_remove_card(&ohci->card);
3765
3766 /*
3767 * FIXME: Fail all pending packets here, now that the upper
3768 * layers can't queue any more.
3769 */
3770
3771 software_reset(ohci);
3772 free_irq(dev->irq, ohci);
3773
3774 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3775 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3776 ohci->next_config_rom, ohci->next_config_rom_bus);
3777 if (ohci->config_rom)
3778 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3779 ohci->config_rom, ohci->config_rom_bus);
3780 ar_context_release(&ohci->ar_request_ctx);
3781 ar_context_release(&ohci->ar_response_ctx);
3782 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3783 ohci->misc_buffer, ohci->misc_buffer_bus);
3784 context_release(&ohci->at_request_ctx);
3785 context_release(&ohci->at_response_ctx);
3786 kfree(ohci->it_context_list);
3787 kfree(ohci->ir_context_list);
3788 pci_disable_msi(dev);
3789 pci_iounmap(dev, ohci->registers);
3790 pci_release_region(dev, 0);
3791 pci_disable_device(dev);
3792 kfree(ohci);
3793 pmac_ohci_off(dev);
3794
3795 dev_notice(&dev->dev, "removed fw-ohci device\n");
3796 }
3797
3798 #ifdef CONFIG_PM
3799 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3800 {
3801 struct fw_ohci *ohci = pci_get_drvdata(dev);
3802 int err;
3803
3804 software_reset(ohci);
3805 err = pci_save_state(dev);
3806 if (err) {
3807 ohci_err(ohci, "pci_save_state failed\n");
3808 return err;
3809 }
3810 err = pci_set_power_state(dev, pci_choose_state(dev, state));
3811 if (err)
3812 ohci_err(ohci, "pci_set_power_state failed with %d\n", err);
3813 pmac_ohci_off(dev);
3814
3815 return 0;
3816 }
3817
3818 static int pci_resume(struct pci_dev *dev)
3819 {
3820 struct fw_ohci *ohci = pci_get_drvdata(dev);
3821 int err;
3822
3823 pmac_ohci_on(dev);
3824 pci_set_power_state(dev, PCI_D0);
3825 pci_restore_state(dev);
3826 err = pci_enable_device(dev);
3827 if (err) {
3828 ohci_err(ohci, "pci_enable_device failed\n");
3829 return err;
3830 }
3831
3832 /* Some systems don't setup GUID register on resume from ram */
3833 if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3834 !reg_read(ohci, OHCI1394_GUIDHi)) {
3835 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3836 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3837 }
3838
3839 err = ohci_enable(&ohci->card, NULL, 0);
3840 if (err)
3841 return err;
3842
3843 ohci_resume_iso_dma(ohci);
3844
3845 return 0;
3846 }
3847 #endif
3848
3849 static const struct pci_device_id pci_table[] = {
3850 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3851 { }
3852 };
3853
3854 MODULE_DEVICE_TABLE(pci, pci_table);
3855
3856 static struct pci_driver fw_ohci_pci_driver = {
3857 .name = ohci_driver_name,
3858 .id_table = pci_table,
3859 .probe = pci_probe,
3860 .remove = pci_remove,
3861 #ifdef CONFIG_PM
3862 .resume = pci_resume,
3863 .suspend = pci_suspend,
3864 #endif
3865 };
3866
3867 module_pci_driver(fw_ohci_pci_driver);
3868
3869 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3870 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3871 MODULE_LICENSE("GPL");
3872
3873 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3874 MODULE_ALIAS("ohci1394");