TOMOYO: Fix wrong domainname validation.
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / firewire / ohci.c
1 /*
2 * Driver for OHCI 1394 controllers
3 *
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include <linux/bitops.h>
22 #include <linux/bug.h>
23 #include <linux/compiler.h>
24 #include <linux/delay.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firewire.h>
28 #include <linux/firewire-constants.h>
29 #include <linux/init.h>
30 #include <linux/interrupt.h>
31 #include <linux/io.h>
32 #include <linux/kernel.h>
33 #include <linux/list.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/mutex.h>
38 #include <linux/pci.h>
39 #include <linux/pci_ids.h>
40 #include <linux/slab.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/time.h>
44 #include <linux/vmalloc.h>
45
46 #include <asm/byteorder.h>
47 #include <asm/page.h>
48 #include <asm/system.h>
49
50 #ifdef CONFIG_PPC_PMAC
51 #include <asm/pmac_feature.h>
52 #endif
53
54 #include "core.h"
55 #include "ohci.h"
56
57 #define DESCRIPTOR_OUTPUT_MORE 0
58 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
59 #define DESCRIPTOR_INPUT_MORE (2 << 12)
60 #define DESCRIPTOR_INPUT_LAST (3 << 12)
61 #define DESCRIPTOR_STATUS (1 << 11)
62 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
63 #define DESCRIPTOR_PING (1 << 7)
64 #define DESCRIPTOR_YY (1 << 6)
65 #define DESCRIPTOR_NO_IRQ (0 << 4)
66 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
67 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
68 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
69 #define DESCRIPTOR_WAIT (3 << 0)
70
71 struct descriptor {
72 __le16 req_count;
73 __le16 control;
74 __le32 data_address;
75 __le32 branch_address;
76 __le16 res_count;
77 __le16 transfer_status;
78 } __attribute__((aligned(16)));
79
80 #define CONTROL_SET(regs) (regs)
81 #define CONTROL_CLEAR(regs) ((regs) + 4)
82 #define COMMAND_PTR(regs) ((regs) + 12)
83 #define CONTEXT_MATCH(regs) ((regs) + 16)
84
85 #define AR_BUFFER_SIZE (32*1024)
86 #define AR_BUFFERS_MIN DIV_ROUND_UP(AR_BUFFER_SIZE, PAGE_SIZE)
87 /* we need at least two pages for proper list management */
88 #define AR_BUFFERS (AR_BUFFERS_MIN >= 2 ? AR_BUFFERS_MIN : 2)
89
90 #define MAX_ASYNC_PAYLOAD 4096
91 #define MAX_AR_PACKET_SIZE (16 + MAX_ASYNC_PAYLOAD + 4)
92 #define AR_WRAPAROUND_PAGES DIV_ROUND_UP(MAX_AR_PACKET_SIZE, PAGE_SIZE)
93
94 struct ar_context {
95 struct fw_ohci *ohci;
96 struct page *pages[AR_BUFFERS];
97 void *buffer;
98 struct descriptor *descriptors;
99 dma_addr_t descriptors_bus;
100 void *pointer;
101 unsigned int last_buffer_index;
102 u32 regs;
103 struct tasklet_struct tasklet;
104 };
105
106 struct context;
107
108 typedef int (*descriptor_callback_t)(struct context *ctx,
109 struct descriptor *d,
110 struct descriptor *last);
111
112 /*
113 * A buffer that contains a block of DMA-able coherent memory used for
114 * storing a portion of a DMA descriptor program.
115 */
116 struct descriptor_buffer {
117 struct list_head list;
118 dma_addr_t buffer_bus;
119 size_t buffer_size;
120 size_t used;
121 struct descriptor buffer[0];
122 };
123
124 struct context {
125 struct fw_ohci *ohci;
126 u32 regs;
127 int total_allocation;
128 bool running;
129 bool flushing;
130
131 /*
132 * List of page-sized buffers for storing DMA descriptors.
133 * Head of list contains buffers in use and tail of list contains
134 * free buffers.
135 */
136 struct list_head buffer_list;
137
138 /*
139 * Pointer to a buffer inside buffer_list that contains the tail
140 * end of the current DMA program.
141 */
142 struct descriptor_buffer *buffer_tail;
143
144 /*
145 * The descriptor containing the branch address of the first
146 * descriptor that has not yet been filled by the device.
147 */
148 struct descriptor *last;
149
150 /*
151 * The last descriptor in the DMA program. It contains the branch
152 * address that must be updated upon appending a new descriptor.
153 */
154 struct descriptor *prev;
155
156 descriptor_callback_t callback;
157
158 struct tasklet_struct tasklet;
159 };
160
161 #define IT_HEADER_SY(v) ((v) << 0)
162 #define IT_HEADER_TCODE(v) ((v) << 4)
163 #define IT_HEADER_CHANNEL(v) ((v) << 8)
164 #define IT_HEADER_TAG(v) ((v) << 14)
165 #define IT_HEADER_SPEED(v) ((v) << 16)
166 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
167
168 struct iso_context {
169 struct fw_iso_context base;
170 struct context context;
171 int excess_bytes;
172 void *header;
173 size_t header_length;
174
175 u8 sync;
176 u8 tags;
177 };
178
179 #define CONFIG_ROM_SIZE 1024
180
181 struct fw_ohci {
182 struct fw_card card;
183
184 __iomem char *registers;
185 int node_id;
186 int generation;
187 int request_generation; /* for timestamping incoming requests */
188 unsigned quirks;
189 unsigned int pri_req_max;
190 u32 bus_time;
191 bool is_root;
192 bool csr_state_setclear_abdicate;
193 int n_ir;
194 int n_it;
195 /*
196 * Spinlock for accessing fw_ohci data. Never call out of
197 * this driver with this lock held.
198 */
199 spinlock_t lock;
200
201 struct mutex phy_reg_mutex;
202
203 void *misc_buffer;
204 dma_addr_t misc_buffer_bus;
205
206 struct ar_context ar_request_ctx;
207 struct ar_context ar_response_ctx;
208 struct context at_request_ctx;
209 struct context at_response_ctx;
210
211 u32 it_context_support;
212 u32 it_context_mask; /* unoccupied IT contexts */
213 struct iso_context *it_context_list;
214 u64 ir_context_channels; /* unoccupied channels */
215 u32 ir_context_support;
216 u32 ir_context_mask; /* unoccupied IR contexts */
217 struct iso_context *ir_context_list;
218 u64 mc_channels; /* channels in use by the multichannel IR context */
219 bool mc_allocated;
220
221 __be32 *config_rom;
222 dma_addr_t config_rom_bus;
223 __be32 *next_config_rom;
224 dma_addr_t next_config_rom_bus;
225 __be32 next_header;
226
227 __le32 *self_id_cpu;
228 dma_addr_t self_id_bus;
229 struct tasklet_struct bus_reset_tasklet;
230
231 u32 self_id_buffer[512];
232 };
233
234 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
235 {
236 return container_of(card, struct fw_ohci, card);
237 }
238
239 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
240 #define IR_CONTEXT_BUFFER_FILL 0x80000000
241 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
242 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
243 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
244 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
245
246 #define CONTEXT_RUN 0x8000
247 #define CONTEXT_WAKE 0x1000
248 #define CONTEXT_DEAD 0x0800
249 #define CONTEXT_ACTIVE 0x0400
250
251 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
252 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
253 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
254
255 #define OHCI1394_REGISTER_SIZE 0x800
256 #define OHCI_LOOP_COUNT 500
257 #define OHCI1394_PCI_HCI_Control 0x40
258 #define SELF_ID_BUF_SIZE 0x800
259 #define OHCI_TCODE_PHY_PACKET 0x0e
260 #define OHCI_VERSION_1_1 0x010010
261
262 static char ohci_driver_name[] = KBUILD_MODNAME;
263
264 #define PCI_DEVICE_ID_AGERE_FW643 0x5901
265 #define PCI_DEVICE_ID_JMICRON_JMB38X_FW 0x2380
266 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
267
268 #define QUIRK_CYCLE_TIMER 1
269 #define QUIRK_RESET_PACKET 2
270 #define QUIRK_BE_HEADERS 4
271 #define QUIRK_NO_1394A 8
272 #define QUIRK_NO_MSI 16
273
274 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
275 static const struct {
276 unsigned short vendor, device, revision, flags;
277 } ohci_quirks[] = {
278 {PCI_VENDOR_ID_AL, PCI_ANY_ID, PCI_ANY_ID,
279 QUIRK_CYCLE_TIMER},
280
281 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, PCI_ANY_ID,
282 QUIRK_BE_HEADERS},
283
284 {PCI_VENDOR_ID_ATT, PCI_DEVICE_ID_AGERE_FW643, 6,
285 QUIRK_NO_MSI},
286
287 {PCI_VENDOR_ID_JMICRON, PCI_DEVICE_ID_JMICRON_JMB38X_FW, PCI_ANY_ID,
288 QUIRK_NO_MSI},
289
290 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, PCI_ANY_ID,
291 QUIRK_CYCLE_TIMER},
292
293 {PCI_VENDOR_ID_RICOH, PCI_ANY_ID, PCI_ANY_ID,
294 QUIRK_CYCLE_TIMER},
295
296 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, PCI_ANY_ID,
297 QUIRK_CYCLE_TIMER | QUIRK_RESET_PACKET | QUIRK_NO_1394A},
298
299 {PCI_VENDOR_ID_TI, PCI_ANY_ID, PCI_ANY_ID,
300 QUIRK_RESET_PACKET},
301
302 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, PCI_ANY_ID,
303 QUIRK_CYCLE_TIMER | QUIRK_NO_MSI},
304 };
305
306 /* This overrides anything that was found in ohci_quirks[]. */
307 static int param_quirks;
308 module_param_named(quirks, param_quirks, int, 0644);
309 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
310 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
311 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
312 ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS)
313 ", no 1394a enhancements = " __stringify(QUIRK_NO_1394A)
314 ", disable MSI = " __stringify(QUIRK_NO_MSI)
315 ")");
316
317 #define OHCI_PARAM_DEBUG_AT_AR 1
318 #define OHCI_PARAM_DEBUG_SELFIDS 2
319 #define OHCI_PARAM_DEBUG_IRQS 4
320 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
321
322 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
323
324 static int param_debug;
325 module_param_named(debug, param_debug, int, 0644);
326 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
327 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
328 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
329 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
330 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
331 ", or a combination, or all = -1)");
332
333 static void log_irqs(u32 evt)
334 {
335 if (likely(!(param_debug &
336 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
337 return;
338
339 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
340 !(evt & OHCI1394_busReset))
341 return;
342
343 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
344 evt & OHCI1394_selfIDComplete ? " selfID" : "",
345 evt & OHCI1394_RQPkt ? " AR_req" : "",
346 evt & OHCI1394_RSPkt ? " AR_resp" : "",
347 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
348 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
349 evt & OHCI1394_isochRx ? " IR" : "",
350 evt & OHCI1394_isochTx ? " IT" : "",
351 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
352 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
353 evt & OHCI1394_cycle64Seconds ? " cycle64Seconds" : "",
354 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
355 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
356 evt & OHCI1394_unrecoverableError ? " unrecoverableError" : "",
357 evt & OHCI1394_busReset ? " busReset" : "",
358 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
359 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
360 OHCI1394_respTxComplete | OHCI1394_isochRx |
361 OHCI1394_isochTx | OHCI1394_postedWriteErr |
362 OHCI1394_cycleTooLong | OHCI1394_cycle64Seconds |
363 OHCI1394_cycleInconsistent |
364 OHCI1394_regAccessFail | OHCI1394_busReset)
365 ? " ?" : "");
366 }
367
368 static const char *speed[] = {
369 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
370 };
371 static const char *power[] = {
372 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
373 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
374 };
375 static const char port[] = { '.', '-', 'p', 'c', };
376
377 static char _p(u32 *s, int shift)
378 {
379 return port[*s >> shift & 3];
380 }
381
382 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
383 {
384 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
385 return;
386
387 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
388 self_id_count, generation, node_id);
389
390 for (; self_id_count--; ++s)
391 if ((*s & 1 << 23) == 0)
392 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
393 "%s gc=%d %s %s%s%s\n",
394 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
395 speed[*s >> 14 & 3], *s >> 16 & 63,
396 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
397 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
398 else
399 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
400 *s, *s >> 24 & 63,
401 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
402 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
403 }
404
405 static const char *evts[] = {
406 [0x00] = "evt_no_status", [0x01] = "-reserved-",
407 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
408 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
409 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
410 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
411 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
412 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
413 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
414 [0x10] = "-reserved-", [0x11] = "ack_complete",
415 [0x12] = "ack_pending ", [0x13] = "-reserved-",
416 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
417 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
418 [0x18] = "-reserved-", [0x19] = "-reserved-",
419 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
420 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
421 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
422 [0x20] = "pending/cancelled",
423 };
424 static const char *tcodes[] = {
425 [0x0] = "QW req", [0x1] = "BW req",
426 [0x2] = "W resp", [0x3] = "-reserved-",
427 [0x4] = "QR req", [0x5] = "BR req",
428 [0x6] = "QR resp", [0x7] = "BR resp",
429 [0x8] = "cycle start", [0x9] = "Lk req",
430 [0xa] = "async stream packet", [0xb] = "Lk resp",
431 [0xc] = "-reserved-", [0xd] = "-reserved-",
432 [0xe] = "link internal", [0xf] = "-reserved-",
433 };
434
435 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
436 {
437 int tcode = header[0] >> 4 & 0xf;
438 char specific[12];
439
440 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
441 return;
442
443 if (unlikely(evt >= ARRAY_SIZE(evts)))
444 evt = 0x1f;
445
446 if (evt == OHCI1394_evt_bus_reset) {
447 fw_notify("A%c evt_bus_reset, generation %d\n",
448 dir, (header[2] >> 16) & 0xff);
449 return;
450 }
451
452 switch (tcode) {
453 case 0x0: case 0x6: case 0x8:
454 snprintf(specific, sizeof(specific), " = %08x",
455 be32_to_cpu((__force __be32)header[3]));
456 break;
457 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
458 snprintf(specific, sizeof(specific), " %x,%x",
459 header[3] >> 16, header[3] & 0xffff);
460 break;
461 default:
462 specific[0] = '\0';
463 }
464
465 switch (tcode) {
466 case 0xa:
467 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
468 break;
469 case 0xe:
470 fw_notify("A%c %s, PHY %08x %08x\n",
471 dir, evts[evt], header[1], header[2]);
472 break;
473 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
474 fw_notify("A%c spd %x tl %02x, "
475 "%04x -> %04x, %s, "
476 "%s, %04x%08x%s\n",
477 dir, speed, header[0] >> 10 & 0x3f,
478 header[1] >> 16, header[0] >> 16, evts[evt],
479 tcodes[tcode], header[1] & 0xffff, header[2], specific);
480 break;
481 default:
482 fw_notify("A%c spd %x tl %02x, "
483 "%04x -> %04x, %s, "
484 "%s%s\n",
485 dir, speed, header[0] >> 10 & 0x3f,
486 header[1] >> 16, header[0] >> 16, evts[evt],
487 tcodes[tcode], specific);
488 }
489 }
490
491 #else
492
493 #define param_debug 0
494 static inline void log_irqs(u32 evt) {}
495 static inline void log_selfids(int node_id, int generation, int self_id_count, u32 *s) {}
496 static inline void log_ar_at_event(char dir, int speed, u32 *header, int evt) {}
497
498 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
499
500 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
501 {
502 writel(data, ohci->registers + offset);
503 }
504
505 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
506 {
507 return readl(ohci->registers + offset);
508 }
509
510 static inline void flush_writes(const struct fw_ohci *ohci)
511 {
512 /* Do a dummy read to flush writes. */
513 reg_read(ohci, OHCI1394_Version);
514 }
515
516 static int read_phy_reg(struct fw_ohci *ohci, int addr)
517 {
518 u32 val;
519 int i;
520
521 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
522 for (i = 0; i < 3 + 100; i++) {
523 val = reg_read(ohci, OHCI1394_PhyControl);
524 if (val & OHCI1394_PhyControl_ReadDone)
525 return OHCI1394_PhyControl_ReadData(val);
526
527 /*
528 * Try a few times without waiting. Sleeping is necessary
529 * only when the link/PHY interface is busy.
530 */
531 if (i >= 3)
532 msleep(1);
533 }
534 fw_error("failed to read phy reg\n");
535
536 return -EBUSY;
537 }
538
539 static int write_phy_reg(const struct fw_ohci *ohci, int addr, u32 val)
540 {
541 int i;
542
543 reg_write(ohci, OHCI1394_PhyControl,
544 OHCI1394_PhyControl_Write(addr, val));
545 for (i = 0; i < 3 + 100; i++) {
546 val = reg_read(ohci, OHCI1394_PhyControl);
547 if (!(val & OHCI1394_PhyControl_WritePending))
548 return 0;
549
550 if (i >= 3)
551 msleep(1);
552 }
553 fw_error("failed to write phy reg\n");
554
555 return -EBUSY;
556 }
557
558 static int update_phy_reg(struct fw_ohci *ohci, int addr,
559 int clear_bits, int set_bits)
560 {
561 int ret = read_phy_reg(ohci, addr);
562 if (ret < 0)
563 return ret;
564
565 /*
566 * The interrupt status bits are cleared by writing a one bit.
567 * Avoid clearing them unless explicitly requested in set_bits.
568 */
569 if (addr == 5)
570 clear_bits |= PHY_INT_STATUS_BITS;
571
572 return write_phy_reg(ohci, addr, (ret & ~clear_bits) | set_bits);
573 }
574
575 static int read_paged_phy_reg(struct fw_ohci *ohci, int page, int addr)
576 {
577 int ret;
578
579 ret = update_phy_reg(ohci, 7, PHY_PAGE_SELECT, page << 5);
580 if (ret < 0)
581 return ret;
582
583 return read_phy_reg(ohci, addr);
584 }
585
586 static int ohci_read_phy_reg(struct fw_card *card, int addr)
587 {
588 struct fw_ohci *ohci = fw_ohci(card);
589 int ret;
590
591 mutex_lock(&ohci->phy_reg_mutex);
592 ret = read_phy_reg(ohci, addr);
593 mutex_unlock(&ohci->phy_reg_mutex);
594
595 return ret;
596 }
597
598 static int ohci_update_phy_reg(struct fw_card *card, int addr,
599 int clear_bits, int set_bits)
600 {
601 struct fw_ohci *ohci = fw_ohci(card);
602 int ret;
603
604 mutex_lock(&ohci->phy_reg_mutex);
605 ret = update_phy_reg(ohci, addr, clear_bits, set_bits);
606 mutex_unlock(&ohci->phy_reg_mutex);
607
608 return ret;
609 }
610
611 static inline dma_addr_t ar_buffer_bus(struct ar_context *ctx, unsigned int i)
612 {
613 return page_private(ctx->pages[i]);
614 }
615
616 static void ar_context_link_page(struct ar_context *ctx, unsigned int index)
617 {
618 struct descriptor *d;
619
620 d = &ctx->descriptors[index];
621 d->branch_address &= cpu_to_le32(~0xf);
622 d->res_count = cpu_to_le16(PAGE_SIZE);
623 d->transfer_status = 0;
624
625 wmb(); /* finish init of new descriptors before branch_address update */
626 d = &ctx->descriptors[ctx->last_buffer_index];
627 d->branch_address |= cpu_to_le32(1);
628
629 ctx->last_buffer_index = index;
630
631 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
632 flush_writes(ctx->ohci);
633 }
634
635 static void ar_context_release(struct ar_context *ctx)
636 {
637 unsigned int i;
638
639 if (ctx->buffer)
640 vm_unmap_ram(ctx->buffer, AR_BUFFERS + AR_WRAPAROUND_PAGES);
641
642 for (i = 0; i < AR_BUFFERS; i++)
643 if (ctx->pages[i]) {
644 dma_unmap_page(ctx->ohci->card.device,
645 ar_buffer_bus(ctx, i),
646 PAGE_SIZE, DMA_FROM_DEVICE);
647 __free_page(ctx->pages[i]);
648 }
649 }
650
651 static void ar_context_abort(struct ar_context *ctx, const char *error_msg)
652 {
653 if (reg_read(ctx->ohci, CONTROL_CLEAR(ctx->regs)) & CONTEXT_RUN) {
654 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
655 flush_writes(ctx->ohci);
656
657 fw_error("AR error: %s; DMA stopped\n", error_msg);
658 }
659 /* FIXME: restart? */
660 }
661
662 static inline unsigned int ar_next_buffer_index(unsigned int index)
663 {
664 return (index + 1) % AR_BUFFERS;
665 }
666
667 static inline unsigned int ar_prev_buffer_index(unsigned int index)
668 {
669 return (index - 1 + AR_BUFFERS) % AR_BUFFERS;
670 }
671
672 static inline unsigned int ar_first_buffer_index(struct ar_context *ctx)
673 {
674 return ar_next_buffer_index(ctx->last_buffer_index);
675 }
676
677 /*
678 * We search for the buffer that contains the last AR packet DMA data written
679 * by the controller.
680 */
681 static unsigned int ar_search_last_active_buffer(struct ar_context *ctx,
682 unsigned int *buffer_offset)
683 {
684 unsigned int i, next_i, last = ctx->last_buffer_index;
685 __le16 res_count, next_res_count;
686
687 i = ar_first_buffer_index(ctx);
688 res_count = ACCESS_ONCE(ctx->descriptors[i].res_count);
689
690 /* A buffer that is not yet completely filled must be the last one. */
691 while (i != last && res_count == 0) {
692
693 /* Peek at the next descriptor. */
694 next_i = ar_next_buffer_index(i);
695 rmb(); /* read descriptors in order */
696 next_res_count = ACCESS_ONCE(
697 ctx->descriptors[next_i].res_count);
698 /*
699 * If the next descriptor is still empty, we must stop at this
700 * descriptor.
701 */
702 if (next_res_count == cpu_to_le16(PAGE_SIZE)) {
703 /*
704 * The exception is when the DMA data for one packet is
705 * split over three buffers; in this case, the middle
706 * buffer's descriptor might be never updated by the
707 * controller and look still empty, and we have to peek
708 * at the third one.
709 */
710 if (MAX_AR_PACKET_SIZE > PAGE_SIZE && i != last) {
711 next_i = ar_next_buffer_index(next_i);
712 rmb();
713 next_res_count = ACCESS_ONCE(
714 ctx->descriptors[next_i].res_count);
715 if (next_res_count != cpu_to_le16(PAGE_SIZE))
716 goto next_buffer_is_active;
717 }
718
719 break;
720 }
721
722 next_buffer_is_active:
723 i = next_i;
724 res_count = next_res_count;
725 }
726
727 rmb(); /* read res_count before the DMA data */
728
729 *buffer_offset = PAGE_SIZE - le16_to_cpu(res_count);
730 if (*buffer_offset > PAGE_SIZE) {
731 *buffer_offset = 0;
732 ar_context_abort(ctx, "corrupted descriptor");
733 }
734
735 return i;
736 }
737
738 static void ar_sync_buffers_for_cpu(struct ar_context *ctx,
739 unsigned int end_buffer_index,
740 unsigned int end_buffer_offset)
741 {
742 unsigned int i;
743
744 i = ar_first_buffer_index(ctx);
745 while (i != end_buffer_index) {
746 dma_sync_single_for_cpu(ctx->ohci->card.device,
747 ar_buffer_bus(ctx, i),
748 PAGE_SIZE, DMA_FROM_DEVICE);
749 i = ar_next_buffer_index(i);
750 }
751 if (end_buffer_offset > 0)
752 dma_sync_single_for_cpu(ctx->ohci->card.device,
753 ar_buffer_bus(ctx, i),
754 end_buffer_offset, DMA_FROM_DEVICE);
755 }
756
757 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
758 #define cond_le32_to_cpu(v) \
759 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
760 #else
761 #define cond_le32_to_cpu(v) le32_to_cpu(v)
762 #endif
763
764 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
765 {
766 struct fw_ohci *ohci = ctx->ohci;
767 struct fw_packet p;
768 u32 status, length, tcode;
769 int evt;
770
771 p.header[0] = cond_le32_to_cpu(buffer[0]);
772 p.header[1] = cond_le32_to_cpu(buffer[1]);
773 p.header[2] = cond_le32_to_cpu(buffer[2]);
774
775 tcode = (p.header[0] >> 4) & 0x0f;
776 switch (tcode) {
777 case TCODE_WRITE_QUADLET_REQUEST:
778 case TCODE_READ_QUADLET_RESPONSE:
779 p.header[3] = (__force __u32) buffer[3];
780 p.header_length = 16;
781 p.payload_length = 0;
782 break;
783
784 case TCODE_READ_BLOCK_REQUEST :
785 p.header[3] = cond_le32_to_cpu(buffer[3]);
786 p.header_length = 16;
787 p.payload_length = 0;
788 break;
789
790 case TCODE_WRITE_BLOCK_REQUEST:
791 case TCODE_READ_BLOCK_RESPONSE:
792 case TCODE_LOCK_REQUEST:
793 case TCODE_LOCK_RESPONSE:
794 p.header[3] = cond_le32_to_cpu(buffer[3]);
795 p.header_length = 16;
796 p.payload_length = p.header[3] >> 16;
797 if (p.payload_length > MAX_ASYNC_PAYLOAD) {
798 ar_context_abort(ctx, "invalid packet length");
799 return NULL;
800 }
801 break;
802
803 case TCODE_WRITE_RESPONSE:
804 case TCODE_READ_QUADLET_REQUEST:
805 case OHCI_TCODE_PHY_PACKET:
806 p.header_length = 12;
807 p.payload_length = 0;
808 break;
809
810 default:
811 ar_context_abort(ctx, "invalid tcode");
812 return NULL;
813 }
814
815 p.payload = (void *) buffer + p.header_length;
816
817 /* FIXME: What to do about evt_* errors? */
818 length = (p.header_length + p.payload_length + 3) / 4;
819 status = cond_le32_to_cpu(buffer[length]);
820 evt = (status >> 16) & 0x1f;
821
822 p.ack = evt - 16;
823 p.speed = (status >> 21) & 0x7;
824 p.timestamp = status & 0xffff;
825 p.generation = ohci->request_generation;
826
827 log_ar_at_event('R', p.speed, p.header, evt);
828
829 /*
830 * Several controllers, notably from NEC and VIA, forget to
831 * write ack_complete status at PHY packet reception.
832 */
833 if (evt == OHCI1394_evt_no_status &&
834 (p.header[0] & 0xff) == (OHCI1394_phy_tcode << 4))
835 p.ack = ACK_COMPLETE;
836
837 /*
838 * The OHCI bus reset handler synthesizes a PHY packet with
839 * the new generation number when a bus reset happens (see
840 * section 8.4.2.3). This helps us determine when a request
841 * was received and make sure we send the response in the same
842 * generation. We only need this for requests; for responses
843 * we use the unique tlabel for finding the matching
844 * request.
845 *
846 * Alas some chips sometimes emit bus reset packets with a
847 * wrong generation. We set the correct generation for these
848 * at a slightly incorrect time (in bus_reset_tasklet).
849 */
850 if (evt == OHCI1394_evt_bus_reset) {
851 if (!(ohci->quirks & QUIRK_RESET_PACKET))
852 ohci->request_generation = (p.header[2] >> 16) & 0xff;
853 } else if (ctx == &ohci->ar_request_ctx) {
854 fw_core_handle_request(&ohci->card, &p);
855 } else {
856 fw_core_handle_response(&ohci->card, &p);
857 }
858
859 return buffer + length + 1;
860 }
861
862 static void *handle_ar_packets(struct ar_context *ctx, void *p, void *end)
863 {
864 void *next;
865
866 while (p < end) {
867 next = handle_ar_packet(ctx, p);
868 if (!next)
869 return p;
870 p = next;
871 }
872
873 return p;
874 }
875
876 static void ar_recycle_buffers(struct ar_context *ctx, unsigned int end_buffer)
877 {
878 unsigned int i;
879
880 i = ar_first_buffer_index(ctx);
881 while (i != end_buffer) {
882 dma_sync_single_for_device(ctx->ohci->card.device,
883 ar_buffer_bus(ctx, i),
884 PAGE_SIZE, DMA_FROM_DEVICE);
885 ar_context_link_page(ctx, i);
886 i = ar_next_buffer_index(i);
887 }
888 }
889
890 static void ar_context_tasklet(unsigned long data)
891 {
892 struct ar_context *ctx = (struct ar_context *)data;
893 unsigned int end_buffer_index, end_buffer_offset;
894 void *p, *end;
895
896 p = ctx->pointer;
897 if (!p)
898 return;
899
900 end_buffer_index = ar_search_last_active_buffer(ctx,
901 &end_buffer_offset);
902 ar_sync_buffers_for_cpu(ctx, end_buffer_index, end_buffer_offset);
903 end = ctx->buffer + end_buffer_index * PAGE_SIZE + end_buffer_offset;
904
905 if (end_buffer_index < ar_first_buffer_index(ctx)) {
906 /*
907 * The filled part of the overall buffer wraps around; handle
908 * all packets up to the buffer end here. If the last packet
909 * wraps around, its tail will be visible after the buffer end
910 * because the buffer start pages are mapped there again.
911 */
912 void *buffer_end = ctx->buffer + AR_BUFFERS * PAGE_SIZE;
913 p = handle_ar_packets(ctx, p, buffer_end);
914 if (p < buffer_end)
915 goto error;
916 /* adjust p to point back into the actual buffer */
917 p -= AR_BUFFERS * PAGE_SIZE;
918 }
919
920 p = handle_ar_packets(ctx, p, end);
921 if (p != end) {
922 if (p > end)
923 ar_context_abort(ctx, "inconsistent descriptor");
924 goto error;
925 }
926
927 ctx->pointer = p;
928 ar_recycle_buffers(ctx, end_buffer_index);
929
930 return;
931
932 error:
933 ctx->pointer = NULL;
934 }
935
936 static int ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci,
937 unsigned int descriptors_offset, u32 regs)
938 {
939 unsigned int i;
940 dma_addr_t dma_addr;
941 struct page *pages[AR_BUFFERS + AR_WRAPAROUND_PAGES];
942 struct descriptor *d;
943
944 ctx->regs = regs;
945 ctx->ohci = ohci;
946 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
947
948 for (i = 0; i < AR_BUFFERS; i++) {
949 ctx->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32);
950 if (!ctx->pages[i])
951 goto out_of_memory;
952 dma_addr = dma_map_page(ohci->card.device, ctx->pages[i],
953 0, PAGE_SIZE, DMA_FROM_DEVICE);
954 if (dma_mapping_error(ohci->card.device, dma_addr)) {
955 __free_page(ctx->pages[i]);
956 ctx->pages[i] = NULL;
957 goto out_of_memory;
958 }
959 set_page_private(ctx->pages[i], dma_addr);
960 }
961
962 for (i = 0; i < AR_BUFFERS; i++)
963 pages[i] = ctx->pages[i];
964 for (i = 0; i < AR_WRAPAROUND_PAGES; i++)
965 pages[AR_BUFFERS + i] = ctx->pages[i];
966 ctx->buffer = vm_map_ram(pages, AR_BUFFERS + AR_WRAPAROUND_PAGES,
967 -1, PAGE_KERNEL);
968 if (!ctx->buffer)
969 goto out_of_memory;
970
971 ctx->descriptors = ohci->misc_buffer + descriptors_offset;
972 ctx->descriptors_bus = ohci->misc_buffer_bus + descriptors_offset;
973
974 for (i = 0; i < AR_BUFFERS; i++) {
975 d = &ctx->descriptors[i];
976 d->req_count = cpu_to_le16(PAGE_SIZE);
977 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
978 DESCRIPTOR_STATUS |
979 DESCRIPTOR_BRANCH_ALWAYS);
980 d->data_address = cpu_to_le32(ar_buffer_bus(ctx, i));
981 d->branch_address = cpu_to_le32(ctx->descriptors_bus +
982 ar_next_buffer_index(i) * sizeof(struct descriptor));
983 }
984
985 return 0;
986
987 out_of_memory:
988 ar_context_release(ctx);
989
990 return -ENOMEM;
991 }
992
993 static void ar_context_run(struct ar_context *ctx)
994 {
995 unsigned int i;
996
997 for (i = 0; i < AR_BUFFERS; i++)
998 ar_context_link_page(ctx, i);
999
1000 ctx->pointer = ctx->buffer;
1001
1002 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ctx->descriptors_bus | 1);
1003 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
1004 flush_writes(ctx->ohci);
1005 }
1006
1007 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
1008 {
1009 int b, key;
1010
1011 b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
1012 key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
1013
1014 /* figure out which descriptor the branch address goes in */
1015 if (z == 2 && (b == 3 || key == 2))
1016 return d;
1017 else
1018 return d + z - 1;
1019 }
1020
1021 static void context_tasklet(unsigned long data)
1022 {
1023 struct context *ctx = (struct context *) data;
1024 struct descriptor *d, *last;
1025 u32 address;
1026 int z;
1027 struct descriptor_buffer *desc;
1028
1029 desc = list_entry(ctx->buffer_list.next,
1030 struct descriptor_buffer, list);
1031 last = ctx->last;
1032 while (last->branch_address != 0) {
1033 struct descriptor_buffer *old_desc = desc;
1034 address = le32_to_cpu(last->branch_address);
1035 z = address & 0xf;
1036 address &= ~0xf;
1037
1038 /* If the branch address points to a buffer outside of the
1039 * current buffer, advance to the next buffer. */
1040 if (address < desc->buffer_bus ||
1041 address >= desc->buffer_bus + desc->used)
1042 desc = list_entry(desc->list.next,
1043 struct descriptor_buffer, list);
1044 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
1045 last = find_branch_descriptor(d, z);
1046
1047 if (!ctx->callback(ctx, d, last))
1048 break;
1049
1050 if (old_desc != desc) {
1051 /* If we've advanced to the next buffer, move the
1052 * previous buffer to the free list. */
1053 unsigned long flags;
1054 old_desc->used = 0;
1055 spin_lock_irqsave(&ctx->ohci->lock, flags);
1056 list_move_tail(&old_desc->list, &ctx->buffer_list);
1057 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1058 }
1059 ctx->last = last;
1060 }
1061 }
1062
1063 /*
1064 * Allocate a new buffer and add it to the list of free buffers for this
1065 * context. Must be called with ohci->lock held.
1066 */
1067 static int context_add_buffer(struct context *ctx)
1068 {
1069 struct descriptor_buffer *desc;
1070 dma_addr_t uninitialized_var(bus_addr);
1071 int offset;
1072
1073 /*
1074 * 16MB of descriptors should be far more than enough for any DMA
1075 * program. This will catch run-away userspace or DoS attacks.
1076 */
1077 if (ctx->total_allocation >= 16*1024*1024)
1078 return -ENOMEM;
1079
1080 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
1081 &bus_addr, GFP_ATOMIC);
1082 if (!desc)
1083 return -ENOMEM;
1084
1085 offset = (void *)&desc->buffer - (void *)desc;
1086 desc->buffer_size = PAGE_SIZE - offset;
1087 desc->buffer_bus = bus_addr + offset;
1088 desc->used = 0;
1089
1090 list_add_tail(&desc->list, &ctx->buffer_list);
1091 ctx->total_allocation += PAGE_SIZE;
1092
1093 return 0;
1094 }
1095
1096 static int context_init(struct context *ctx, struct fw_ohci *ohci,
1097 u32 regs, descriptor_callback_t callback)
1098 {
1099 ctx->ohci = ohci;
1100 ctx->regs = regs;
1101 ctx->total_allocation = 0;
1102
1103 INIT_LIST_HEAD(&ctx->buffer_list);
1104 if (context_add_buffer(ctx) < 0)
1105 return -ENOMEM;
1106
1107 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
1108 struct descriptor_buffer, list);
1109
1110 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
1111 ctx->callback = callback;
1112
1113 /*
1114 * We put a dummy descriptor in the buffer that has a NULL
1115 * branch address and looks like it's been sent. That way we
1116 * have a descriptor to append DMA programs to.
1117 */
1118 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
1119 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
1120 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
1121 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
1122 ctx->last = ctx->buffer_tail->buffer;
1123 ctx->prev = ctx->buffer_tail->buffer;
1124
1125 return 0;
1126 }
1127
1128 static void context_release(struct context *ctx)
1129 {
1130 struct fw_card *card = &ctx->ohci->card;
1131 struct descriptor_buffer *desc, *tmp;
1132
1133 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
1134 dma_free_coherent(card->device, PAGE_SIZE, desc,
1135 desc->buffer_bus -
1136 ((void *)&desc->buffer - (void *)desc));
1137 }
1138
1139 /* Must be called with ohci->lock held */
1140 static struct descriptor *context_get_descriptors(struct context *ctx,
1141 int z, dma_addr_t *d_bus)
1142 {
1143 struct descriptor *d = NULL;
1144 struct descriptor_buffer *desc = ctx->buffer_tail;
1145
1146 if (z * sizeof(*d) > desc->buffer_size)
1147 return NULL;
1148
1149 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
1150 /* No room for the descriptor in this buffer, so advance to the
1151 * next one. */
1152
1153 if (desc->list.next == &ctx->buffer_list) {
1154 /* If there is no free buffer next in the list,
1155 * allocate one. */
1156 if (context_add_buffer(ctx) < 0)
1157 return NULL;
1158 }
1159 desc = list_entry(desc->list.next,
1160 struct descriptor_buffer, list);
1161 ctx->buffer_tail = desc;
1162 }
1163
1164 d = desc->buffer + desc->used / sizeof(*d);
1165 memset(d, 0, z * sizeof(*d));
1166 *d_bus = desc->buffer_bus + desc->used;
1167
1168 return d;
1169 }
1170
1171 static void context_run(struct context *ctx, u32 extra)
1172 {
1173 struct fw_ohci *ohci = ctx->ohci;
1174
1175 reg_write(ohci, COMMAND_PTR(ctx->regs),
1176 le32_to_cpu(ctx->last->branch_address));
1177 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
1178 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
1179 ctx->running = true;
1180 flush_writes(ohci);
1181 }
1182
1183 static void context_append(struct context *ctx,
1184 struct descriptor *d, int z, int extra)
1185 {
1186 dma_addr_t d_bus;
1187 struct descriptor_buffer *desc = ctx->buffer_tail;
1188
1189 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
1190
1191 desc->used += (z + extra) * sizeof(*d);
1192
1193 wmb(); /* finish init of new descriptors before branch_address update */
1194 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
1195 ctx->prev = find_branch_descriptor(d, z);
1196
1197 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
1198 flush_writes(ctx->ohci);
1199 }
1200
1201 static void context_stop(struct context *ctx)
1202 {
1203 u32 reg;
1204 int i;
1205
1206 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
1207 ctx->running = false;
1208 flush_writes(ctx->ohci);
1209
1210 for (i = 0; i < 10; i++) {
1211 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1212 if ((reg & CONTEXT_ACTIVE) == 0)
1213 return;
1214
1215 mdelay(1);
1216 }
1217 fw_error("Error: DMA context still active (0x%08x)\n", reg);
1218 }
1219
1220 struct driver_data {
1221 struct fw_packet *packet;
1222 };
1223
1224 /*
1225 * This function apppends a packet to the DMA queue for transmission.
1226 * Must always be called with the ochi->lock held to ensure proper
1227 * generation handling and locking around packet queue manipulation.
1228 */
1229 static int at_context_queue_packet(struct context *ctx,
1230 struct fw_packet *packet)
1231 {
1232 struct fw_ohci *ohci = ctx->ohci;
1233 dma_addr_t d_bus, uninitialized_var(payload_bus);
1234 struct driver_data *driver_data;
1235 struct descriptor *d, *last;
1236 __le32 *header;
1237 int z, tcode;
1238
1239 d = context_get_descriptors(ctx, 4, &d_bus);
1240 if (d == NULL) {
1241 packet->ack = RCODE_SEND_ERROR;
1242 return -1;
1243 }
1244
1245 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1246 d[0].res_count = cpu_to_le16(packet->timestamp);
1247
1248 /*
1249 * The DMA format for asyncronous link packets is different
1250 * from the IEEE1394 layout, so shift the fields around
1251 * accordingly.
1252 */
1253
1254 tcode = (packet->header[0] >> 4) & 0x0f;
1255 header = (__le32 *) &d[1];
1256 switch (tcode) {
1257 case TCODE_WRITE_QUADLET_REQUEST:
1258 case TCODE_WRITE_BLOCK_REQUEST:
1259 case TCODE_WRITE_RESPONSE:
1260 case TCODE_READ_QUADLET_REQUEST:
1261 case TCODE_READ_BLOCK_REQUEST:
1262 case TCODE_READ_QUADLET_RESPONSE:
1263 case TCODE_READ_BLOCK_RESPONSE:
1264 case TCODE_LOCK_REQUEST:
1265 case TCODE_LOCK_RESPONSE:
1266 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1267 (packet->speed << 16));
1268 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
1269 (packet->header[0] & 0xffff0000));
1270 header[2] = cpu_to_le32(packet->header[2]);
1271
1272 if (TCODE_IS_BLOCK_PACKET(tcode))
1273 header[3] = cpu_to_le32(packet->header[3]);
1274 else
1275 header[3] = (__force __le32) packet->header[3];
1276
1277 d[0].req_count = cpu_to_le16(packet->header_length);
1278 break;
1279
1280 case TCODE_LINK_INTERNAL:
1281 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
1282 (packet->speed << 16));
1283 header[1] = cpu_to_le32(packet->header[1]);
1284 header[2] = cpu_to_le32(packet->header[2]);
1285 d[0].req_count = cpu_to_le16(12);
1286
1287 if (is_ping_packet(&packet->header[1]))
1288 d[0].control |= cpu_to_le16(DESCRIPTOR_PING);
1289 break;
1290
1291 case TCODE_STREAM_DATA:
1292 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
1293 (packet->speed << 16));
1294 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
1295 d[0].req_count = cpu_to_le16(8);
1296 break;
1297
1298 default:
1299 /* BUG(); */
1300 packet->ack = RCODE_SEND_ERROR;
1301 return -1;
1302 }
1303
1304 driver_data = (struct driver_data *) &d[3];
1305 driver_data->packet = packet;
1306 packet->driver_data = driver_data;
1307
1308 if (packet->payload_length > 0) {
1309 payload_bus =
1310 dma_map_single(ohci->card.device, packet->payload,
1311 packet->payload_length, DMA_TO_DEVICE);
1312 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1313 packet->ack = RCODE_SEND_ERROR;
1314 return -1;
1315 }
1316 packet->payload_bus = payload_bus;
1317 packet->payload_mapped = true;
1318
1319 d[2].req_count = cpu_to_le16(packet->payload_length);
1320 d[2].data_address = cpu_to_le32(payload_bus);
1321 last = &d[2];
1322 z = 3;
1323 } else {
1324 last = &d[0];
1325 z = 2;
1326 }
1327
1328 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1329 DESCRIPTOR_IRQ_ALWAYS |
1330 DESCRIPTOR_BRANCH_ALWAYS);
1331
1332 /* FIXME: Document how the locking works. */
1333 if (ohci->generation != packet->generation) {
1334 if (packet->payload_mapped)
1335 dma_unmap_single(ohci->card.device, payload_bus,
1336 packet->payload_length, DMA_TO_DEVICE);
1337 packet->ack = RCODE_GENERATION;
1338 return -1;
1339 }
1340
1341 context_append(ctx, d, z, 4 - z);
1342
1343 if (!ctx->running)
1344 context_run(ctx, 0);
1345
1346 return 0;
1347 }
1348
1349 static void at_context_flush(struct context *ctx)
1350 {
1351 tasklet_disable(&ctx->tasklet);
1352
1353 ctx->flushing = true;
1354 context_tasklet((unsigned long)ctx);
1355 ctx->flushing = false;
1356
1357 tasklet_enable(&ctx->tasklet);
1358 }
1359
1360 static int handle_at_packet(struct context *context,
1361 struct descriptor *d,
1362 struct descriptor *last)
1363 {
1364 struct driver_data *driver_data;
1365 struct fw_packet *packet;
1366 struct fw_ohci *ohci = context->ohci;
1367 int evt;
1368
1369 if (last->transfer_status == 0 && !context->flushing)
1370 /* This descriptor isn't done yet, stop iteration. */
1371 return 0;
1372
1373 driver_data = (struct driver_data *) &d[3];
1374 packet = driver_data->packet;
1375 if (packet == NULL)
1376 /* This packet was cancelled, just continue. */
1377 return 1;
1378
1379 if (packet->payload_mapped)
1380 dma_unmap_single(ohci->card.device, packet->payload_bus,
1381 packet->payload_length, DMA_TO_DEVICE);
1382
1383 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1384 packet->timestamp = le16_to_cpu(last->res_count);
1385
1386 log_ar_at_event('T', packet->speed, packet->header, evt);
1387
1388 switch (evt) {
1389 case OHCI1394_evt_timeout:
1390 /* Async response transmit timed out. */
1391 packet->ack = RCODE_CANCELLED;
1392 break;
1393
1394 case OHCI1394_evt_flushed:
1395 /*
1396 * The packet was flushed should give same error as
1397 * when we try to use a stale generation count.
1398 */
1399 packet->ack = RCODE_GENERATION;
1400 break;
1401
1402 case OHCI1394_evt_missing_ack:
1403 if (context->flushing)
1404 packet->ack = RCODE_GENERATION;
1405 else {
1406 /*
1407 * Using a valid (current) generation count, but the
1408 * node is not on the bus or not sending acks.
1409 */
1410 packet->ack = RCODE_NO_ACK;
1411 }
1412 break;
1413
1414 case ACK_COMPLETE + 0x10:
1415 case ACK_PENDING + 0x10:
1416 case ACK_BUSY_X + 0x10:
1417 case ACK_BUSY_A + 0x10:
1418 case ACK_BUSY_B + 0x10:
1419 case ACK_DATA_ERROR + 0x10:
1420 case ACK_TYPE_ERROR + 0x10:
1421 packet->ack = evt - 0x10;
1422 break;
1423
1424 case OHCI1394_evt_no_status:
1425 if (context->flushing) {
1426 packet->ack = RCODE_GENERATION;
1427 break;
1428 }
1429 /* fall through */
1430
1431 default:
1432 packet->ack = RCODE_SEND_ERROR;
1433 break;
1434 }
1435
1436 packet->callback(packet, &ohci->card, packet->ack);
1437
1438 return 1;
1439 }
1440
1441 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1442 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1443 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1444 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1445 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1446
1447 static void handle_local_rom(struct fw_ohci *ohci,
1448 struct fw_packet *packet, u32 csr)
1449 {
1450 struct fw_packet response;
1451 int tcode, length, i;
1452
1453 tcode = HEADER_GET_TCODE(packet->header[0]);
1454 if (TCODE_IS_BLOCK_PACKET(tcode))
1455 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1456 else
1457 length = 4;
1458
1459 i = csr - CSR_CONFIG_ROM;
1460 if (i + length > CONFIG_ROM_SIZE) {
1461 fw_fill_response(&response, packet->header,
1462 RCODE_ADDRESS_ERROR, NULL, 0);
1463 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1464 fw_fill_response(&response, packet->header,
1465 RCODE_TYPE_ERROR, NULL, 0);
1466 } else {
1467 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1468 (void *) ohci->config_rom + i, length);
1469 }
1470
1471 fw_core_handle_response(&ohci->card, &response);
1472 }
1473
1474 static void handle_local_lock(struct fw_ohci *ohci,
1475 struct fw_packet *packet, u32 csr)
1476 {
1477 struct fw_packet response;
1478 int tcode, length, ext_tcode, sel, try;
1479 __be32 *payload, lock_old;
1480 u32 lock_arg, lock_data;
1481
1482 tcode = HEADER_GET_TCODE(packet->header[0]);
1483 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1484 payload = packet->payload;
1485 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1486
1487 if (tcode == TCODE_LOCK_REQUEST &&
1488 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1489 lock_arg = be32_to_cpu(payload[0]);
1490 lock_data = be32_to_cpu(payload[1]);
1491 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1492 lock_arg = 0;
1493 lock_data = 0;
1494 } else {
1495 fw_fill_response(&response, packet->header,
1496 RCODE_TYPE_ERROR, NULL, 0);
1497 goto out;
1498 }
1499
1500 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1501 reg_write(ohci, OHCI1394_CSRData, lock_data);
1502 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1503 reg_write(ohci, OHCI1394_CSRControl, sel);
1504
1505 for (try = 0; try < 20; try++)
1506 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1507 lock_old = cpu_to_be32(reg_read(ohci,
1508 OHCI1394_CSRData));
1509 fw_fill_response(&response, packet->header,
1510 RCODE_COMPLETE,
1511 &lock_old, sizeof(lock_old));
1512 goto out;
1513 }
1514
1515 fw_error("swap not done (CSR lock timeout)\n");
1516 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1517
1518 out:
1519 fw_core_handle_response(&ohci->card, &response);
1520 }
1521
1522 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1523 {
1524 u64 offset, csr;
1525
1526 if (ctx == &ctx->ohci->at_request_ctx) {
1527 packet->ack = ACK_PENDING;
1528 packet->callback(packet, &ctx->ohci->card, packet->ack);
1529 }
1530
1531 offset =
1532 ((unsigned long long)
1533 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1534 packet->header[2];
1535 csr = offset - CSR_REGISTER_BASE;
1536
1537 /* Handle config rom reads. */
1538 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1539 handle_local_rom(ctx->ohci, packet, csr);
1540 else switch (csr) {
1541 case CSR_BUS_MANAGER_ID:
1542 case CSR_BANDWIDTH_AVAILABLE:
1543 case CSR_CHANNELS_AVAILABLE_HI:
1544 case CSR_CHANNELS_AVAILABLE_LO:
1545 handle_local_lock(ctx->ohci, packet, csr);
1546 break;
1547 default:
1548 if (ctx == &ctx->ohci->at_request_ctx)
1549 fw_core_handle_request(&ctx->ohci->card, packet);
1550 else
1551 fw_core_handle_response(&ctx->ohci->card, packet);
1552 break;
1553 }
1554
1555 if (ctx == &ctx->ohci->at_response_ctx) {
1556 packet->ack = ACK_COMPLETE;
1557 packet->callback(packet, &ctx->ohci->card, packet->ack);
1558 }
1559 }
1560
1561 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1562 {
1563 unsigned long flags;
1564 int ret;
1565
1566 spin_lock_irqsave(&ctx->ohci->lock, flags);
1567
1568 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1569 ctx->ohci->generation == packet->generation) {
1570 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1571 handle_local_request(ctx, packet);
1572 return;
1573 }
1574
1575 ret = at_context_queue_packet(ctx, packet);
1576 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1577
1578 if (ret < 0)
1579 packet->callback(packet, &ctx->ohci->card, packet->ack);
1580
1581 }
1582
1583 static void detect_dead_context(struct fw_ohci *ohci,
1584 const char *name, unsigned int regs)
1585 {
1586 u32 ctl;
1587
1588 ctl = reg_read(ohci, CONTROL_SET(regs));
1589 if (ctl & CONTEXT_DEAD) {
1590 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
1591 fw_error("DMA context %s has stopped, error code: %s\n",
1592 name, evts[ctl & 0x1f]);
1593 #else
1594 fw_error("DMA context %s has stopped, error code: %#x\n",
1595 name, ctl & 0x1f);
1596 #endif
1597 }
1598 }
1599
1600 static void handle_dead_contexts(struct fw_ohci *ohci)
1601 {
1602 unsigned int i;
1603 char name[8];
1604
1605 detect_dead_context(ohci, "ATReq", OHCI1394_AsReqTrContextBase);
1606 detect_dead_context(ohci, "ATRsp", OHCI1394_AsRspTrContextBase);
1607 detect_dead_context(ohci, "ARReq", OHCI1394_AsReqRcvContextBase);
1608 detect_dead_context(ohci, "ARRsp", OHCI1394_AsRspRcvContextBase);
1609 for (i = 0; i < 32; ++i) {
1610 if (!(ohci->it_context_support & (1 << i)))
1611 continue;
1612 sprintf(name, "IT%u", i);
1613 detect_dead_context(ohci, name, OHCI1394_IsoXmitContextBase(i));
1614 }
1615 for (i = 0; i < 32; ++i) {
1616 if (!(ohci->ir_context_support & (1 << i)))
1617 continue;
1618 sprintf(name, "IR%u", i);
1619 detect_dead_context(ohci, name, OHCI1394_IsoRcvContextBase(i));
1620 }
1621 /* TODO: maybe try to flush and restart the dead contexts */
1622 }
1623
1624 static u32 cycle_timer_ticks(u32 cycle_timer)
1625 {
1626 u32 ticks;
1627
1628 ticks = cycle_timer & 0xfff;
1629 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1630 ticks += (3072 * 8000) * (cycle_timer >> 25);
1631
1632 return ticks;
1633 }
1634
1635 /*
1636 * Some controllers exhibit one or more of the following bugs when updating the
1637 * iso cycle timer register:
1638 * - When the lowest six bits are wrapping around to zero, a read that happens
1639 * at the same time will return garbage in the lowest ten bits.
1640 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1641 * not incremented for about 60 ns.
1642 * - Occasionally, the entire register reads zero.
1643 *
1644 * To catch these, we read the register three times and ensure that the
1645 * difference between each two consecutive reads is approximately the same, i.e.
1646 * less than twice the other. Furthermore, any negative difference indicates an
1647 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1648 * execute, so we have enough precision to compute the ratio of the differences.)
1649 */
1650 static u32 get_cycle_time(struct fw_ohci *ohci)
1651 {
1652 u32 c0, c1, c2;
1653 u32 t0, t1, t2;
1654 s32 diff01, diff12;
1655 int i;
1656
1657 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1658
1659 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1660 i = 0;
1661 c1 = c2;
1662 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1663 do {
1664 c0 = c1;
1665 c1 = c2;
1666 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1667 t0 = cycle_timer_ticks(c0);
1668 t1 = cycle_timer_ticks(c1);
1669 t2 = cycle_timer_ticks(c2);
1670 diff01 = t1 - t0;
1671 diff12 = t2 - t1;
1672 } while ((diff01 <= 0 || diff12 <= 0 ||
1673 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1674 && i++ < 20);
1675 }
1676
1677 return c2;
1678 }
1679
1680 /*
1681 * This function has to be called at least every 64 seconds. The bus_time
1682 * field stores not only the upper 25 bits of the BUS_TIME register but also
1683 * the most significant bit of the cycle timer in bit 6 so that we can detect
1684 * changes in this bit.
1685 */
1686 static u32 update_bus_time(struct fw_ohci *ohci)
1687 {
1688 u32 cycle_time_seconds = get_cycle_time(ohci) >> 25;
1689
1690 if ((ohci->bus_time & 0x40) != (cycle_time_seconds & 0x40))
1691 ohci->bus_time += 0x40;
1692
1693 return ohci->bus_time | cycle_time_seconds;
1694 }
1695
1696 static void bus_reset_tasklet(unsigned long data)
1697 {
1698 struct fw_ohci *ohci = (struct fw_ohci *)data;
1699 int self_id_count, i, j, reg;
1700 int generation, new_generation;
1701 unsigned long flags;
1702 void *free_rom = NULL;
1703 dma_addr_t free_rom_bus = 0;
1704 bool is_new_root;
1705
1706 reg = reg_read(ohci, OHCI1394_NodeID);
1707 if (!(reg & OHCI1394_NodeID_idValid)) {
1708 fw_notify("node ID not valid, new bus reset in progress\n");
1709 return;
1710 }
1711 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1712 fw_notify("malconfigured bus\n");
1713 return;
1714 }
1715 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1716 OHCI1394_NodeID_nodeNumber);
1717
1718 is_new_root = (reg & OHCI1394_NodeID_root) != 0;
1719 if (!(ohci->is_root && is_new_root))
1720 reg_write(ohci, OHCI1394_LinkControlSet,
1721 OHCI1394_LinkControl_cycleMaster);
1722 ohci->is_root = is_new_root;
1723
1724 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1725 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1726 fw_notify("inconsistent self IDs\n");
1727 return;
1728 }
1729 /*
1730 * The count in the SelfIDCount register is the number of
1731 * bytes in the self ID receive buffer. Since we also receive
1732 * the inverted quadlets and a header quadlet, we shift one
1733 * bit extra to get the actual number of self IDs.
1734 */
1735 self_id_count = (reg >> 3) & 0xff;
1736 if (self_id_count == 0 || self_id_count > 252) {
1737 fw_notify("inconsistent self IDs\n");
1738 return;
1739 }
1740 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1741 rmb();
1742
1743 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1744 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1745 fw_notify("inconsistent self IDs\n");
1746 return;
1747 }
1748 ohci->self_id_buffer[j] =
1749 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1750 }
1751 rmb();
1752
1753 /*
1754 * Check the consistency of the self IDs we just read. The
1755 * problem we face is that a new bus reset can start while we
1756 * read out the self IDs from the DMA buffer. If this happens,
1757 * the DMA buffer will be overwritten with new self IDs and we
1758 * will read out inconsistent data. The OHCI specification
1759 * (section 11.2) recommends a technique similar to
1760 * linux/seqlock.h, where we remember the generation of the
1761 * self IDs in the buffer before reading them out and compare
1762 * it to the current generation after reading them out. If
1763 * the two generations match we know we have a consistent set
1764 * of self IDs.
1765 */
1766
1767 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1768 if (new_generation != generation) {
1769 fw_notify("recursive bus reset detected, "
1770 "discarding self ids\n");
1771 return;
1772 }
1773
1774 /* FIXME: Document how the locking works. */
1775 spin_lock_irqsave(&ohci->lock, flags);
1776
1777 ohci->generation = -1; /* prevent AT packet queueing */
1778 context_stop(&ohci->at_request_ctx);
1779 context_stop(&ohci->at_response_ctx);
1780
1781 spin_unlock_irqrestore(&ohci->lock, flags);
1782
1783 /*
1784 * Per OHCI 1.2 draft, clause 7.2.3.3, hardware may leave unsent
1785 * packets in the AT queues and software needs to drain them.
1786 * Some OHCI 1.1 controllers (JMicron) apparently require this too.
1787 */
1788 at_context_flush(&ohci->at_request_ctx);
1789 at_context_flush(&ohci->at_response_ctx);
1790
1791 spin_lock_irqsave(&ohci->lock, flags);
1792
1793 ohci->generation = generation;
1794 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1795
1796 if (ohci->quirks & QUIRK_RESET_PACKET)
1797 ohci->request_generation = generation;
1798
1799 /*
1800 * This next bit is unrelated to the AT context stuff but we
1801 * have to do it under the spinlock also. If a new config rom
1802 * was set up before this reset, the old one is now no longer
1803 * in use and we can free it. Update the config rom pointers
1804 * to point to the current config rom and clear the
1805 * next_config_rom pointer so a new update can take place.
1806 */
1807
1808 if (ohci->next_config_rom != NULL) {
1809 if (ohci->next_config_rom != ohci->config_rom) {
1810 free_rom = ohci->config_rom;
1811 free_rom_bus = ohci->config_rom_bus;
1812 }
1813 ohci->config_rom = ohci->next_config_rom;
1814 ohci->config_rom_bus = ohci->next_config_rom_bus;
1815 ohci->next_config_rom = NULL;
1816
1817 /*
1818 * Restore config_rom image and manually update
1819 * config_rom registers. Writing the header quadlet
1820 * will indicate that the config rom is ready, so we
1821 * do that last.
1822 */
1823 reg_write(ohci, OHCI1394_BusOptions,
1824 be32_to_cpu(ohci->config_rom[2]));
1825 ohci->config_rom[0] = ohci->next_header;
1826 reg_write(ohci, OHCI1394_ConfigROMhdr,
1827 be32_to_cpu(ohci->next_header));
1828 }
1829
1830 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1831 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1832 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1833 #endif
1834
1835 spin_unlock_irqrestore(&ohci->lock, flags);
1836
1837 if (free_rom)
1838 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1839 free_rom, free_rom_bus);
1840
1841 log_selfids(ohci->node_id, generation,
1842 self_id_count, ohci->self_id_buffer);
1843
1844 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1845 self_id_count, ohci->self_id_buffer,
1846 ohci->csr_state_setclear_abdicate);
1847 ohci->csr_state_setclear_abdicate = false;
1848 }
1849
1850 static irqreturn_t irq_handler(int irq, void *data)
1851 {
1852 struct fw_ohci *ohci = data;
1853 u32 event, iso_event;
1854 int i;
1855
1856 event = reg_read(ohci, OHCI1394_IntEventClear);
1857
1858 if (!event || !~event)
1859 return IRQ_NONE;
1860
1861 /*
1862 * busReset and postedWriteErr must not be cleared yet
1863 * (OHCI 1.1 clauses 7.2.3.2 and 13.2.8.1)
1864 */
1865 reg_write(ohci, OHCI1394_IntEventClear,
1866 event & ~(OHCI1394_busReset | OHCI1394_postedWriteErr));
1867 log_irqs(event);
1868
1869 if (event & OHCI1394_selfIDComplete)
1870 tasklet_schedule(&ohci->bus_reset_tasklet);
1871
1872 if (event & OHCI1394_RQPkt)
1873 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1874
1875 if (event & OHCI1394_RSPkt)
1876 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1877
1878 if (event & OHCI1394_reqTxComplete)
1879 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1880
1881 if (event & OHCI1394_respTxComplete)
1882 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1883
1884 if (event & OHCI1394_isochRx) {
1885 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1886 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1887
1888 while (iso_event) {
1889 i = ffs(iso_event) - 1;
1890 tasklet_schedule(
1891 &ohci->ir_context_list[i].context.tasklet);
1892 iso_event &= ~(1 << i);
1893 }
1894 }
1895
1896 if (event & OHCI1394_isochTx) {
1897 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1898 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1899
1900 while (iso_event) {
1901 i = ffs(iso_event) - 1;
1902 tasklet_schedule(
1903 &ohci->it_context_list[i].context.tasklet);
1904 iso_event &= ~(1 << i);
1905 }
1906 }
1907
1908 if (unlikely(event & OHCI1394_regAccessFail))
1909 fw_error("Register access failure - "
1910 "please notify linux1394-devel@lists.sf.net\n");
1911
1912 if (unlikely(event & OHCI1394_postedWriteErr)) {
1913 reg_read(ohci, OHCI1394_PostedWriteAddressHi);
1914 reg_read(ohci, OHCI1394_PostedWriteAddressLo);
1915 reg_write(ohci, OHCI1394_IntEventClear,
1916 OHCI1394_postedWriteErr);
1917 fw_error("PCI posted write error\n");
1918 }
1919
1920 if (unlikely(event & OHCI1394_cycleTooLong)) {
1921 if (printk_ratelimit())
1922 fw_notify("isochronous cycle too long\n");
1923 reg_write(ohci, OHCI1394_LinkControlSet,
1924 OHCI1394_LinkControl_cycleMaster);
1925 }
1926
1927 if (unlikely(event & OHCI1394_cycleInconsistent)) {
1928 /*
1929 * We need to clear this event bit in order to make
1930 * cycleMatch isochronous I/O work. In theory we should
1931 * stop active cycleMatch iso contexts now and restart
1932 * them at least two cycles later. (FIXME?)
1933 */
1934 if (printk_ratelimit())
1935 fw_notify("isochronous cycle inconsistent\n");
1936 }
1937
1938 if (unlikely(event & OHCI1394_unrecoverableError))
1939 handle_dead_contexts(ohci);
1940
1941 if (event & OHCI1394_cycle64Seconds) {
1942 spin_lock(&ohci->lock);
1943 update_bus_time(ohci);
1944 spin_unlock(&ohci->lock);
1945 } else
1946 flush_writes(ohci);
1947
1948 return IRQ_HANDLED;
1949 }
1950
1951 static int software_reset(struct fw_ohci *ohci)
1952 {
1953 int i;
1954
1955 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1956
1957 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1958 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1959 OHCI1394_HCControl_softReset) == 0)
1960 return 0;
1961 msleep(1);
1962 }
1963
1964 return -EBUSY;
1965 }
1966
1967 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1968 {
1969 size_t size = length * 4;
1970
1971 memcpy(dest, src, size);
1972 if (size < CONFIG_ROM_SIZE)
1973 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1974 }
1975
1976 static int configure_1394a_enhancements(struct fw_ohci *ohci)
1977 {
1978 bool enable_1394a;
1979 int ret, clear, set, offset;
1980
1981 /* Check if the driver should configure link and PHY. */
1982 if (!(reg_read(ohci, OHCI1394_HCControlSet) &
1983 OHCI1394_HCControl_programPhyEnable))
1984 return 0;
1985
1986 /* Paranoia: check whether the PHY supports 1394a, too. */
1987 enable_1394a = false;
1988 ret = read_phy_reg(ohci, 2);
1989 if (ret < 0)
1990 return ret;
1991 if ((ret & PHY_EXTENDED_REGISTERS) == PHY_EXTENDED_REGISTERS) {
1992 ret = read_paged_phy_reg(ohci, 1, 8);
1993 if (ret < 0)
1994 return ret;
1995 if (ret >= 1)
1996 enable_1394a = true;
1997 }
1998
1999 if (ohci->quirks & QUIRK_NO_1394A)
2000 enable_1394a = false;
2001
2002 /* Configure PHY and link consistently. */
2003 if (enable_1394a) {
2004 clear = 0;
2005 set = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2006 } else {
2007 clear = PHY_ENABLE_ACCEL | PHY_ENABLE_MULTI;
2008 set = 0;
2009 }
2010 ret = update_phy_reg(ohci, 5, clear, set);
2011 if (ret < 0)
2012 return ret;
2013
2014 if (enable_1394a)
2015 offset = OHCI1394_HCControlSet;
2016 else
2017 offset = OHCI1394_HCControlClear;
2018 reg_write(ohci, offset, OHCI1394_HCControl_aPhyEnhanceEnable);
2019
2020 /* Clean up: configuration has been taken care of. */
2021 reg_write(ohci, OHCI1394_HCControlClear,
2022 OHCI1394_HCControl_programPhyEnable);
2023
2024 return 0;
2025 }
2026
2027 static int ohci_enable(struct fw_card *card,
2028 const __be32 *config_rom, size_t length)
2029 {
2030 struct fw_ohci *ohci = fw_ohci(card);
2031 struct pci_dev *dev = to_pci_dev(card->device);
2032 u32 lps, seconds, version, irqs;
2033 int i, ret;
2034
2035 if (software_reset(ohci)) {
2036 fw_error("Failed to reset ohci card.\n");
2037 return -EBUSY;
2038 }
2039
2040 /*
2041 * Now enable LPS, which we need in order to start accessing
2042 * most of the registers. In fact, on some cards (ALI M5251),
2043 * accessing registers in the SClk domain without LPS enabled
2044 * will lock up the machine. Wait 50msec to make sure we have
2045 * full link enabled. However, with some cards (well, at least
2046 * a JMicron PCIe card), we have to try again sometimes.
2047 */
2048 reg_write(ohci, OHCI1394_HCControlSet,
2049 OHCI1394_HCControl_LPS |
2050 OHCI1394_HCControl_postedWriteEnable);
2051 flush_writes(ohci);
2052
2053 for (lps = 0, i = 0; !lps && i < 3; i++) {
2054 msleep(50);
2055 lps = reg_read(ohci, OHCI1394_HCControlSet) &
2056 OHCI1394_HCControl_LPS;
2057 }
2058
2059 if (!lps) {
2060 fw_error("Failed to set Link Power Status\n");
2061 return -EIO;
2062 }
2063
2064 reg_write(ohci, OHCI1394_HCControlClear,
2065 OHCI1394_HCControl_noByteSwapData);
2066
2067 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
2068 reg_write(ohci, OHCI1394_LinkControlSet,
2069 OHCI1394_LinkControl_rcvSelfID |
2070 OHCI1394_LinkControl_rcvPhyPkt |
2071 OHCI1394_LinkControl_cycleTimerEnable |
2072 OHCI1394_LinkControl_cycleMaster);
2073
2074 reg_write(ohci, OHCI1394_ATRetries,
2075 OHCI1394_MAX_AT_REQ_RETRIES |
2076 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
2077 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8) |
2078 (200 << 16));
2079
2080 seconds = lower_32_bits(get_seconds());
2081 reg_write(ohci, OHCI1394_IsochronousCycleTimer, seconds << 25);
2082 ohci->bus_time = seconds & ~0x3f;
2083
2084 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2085 if (version >= OHCI_VERSION_1_1) {
2086 reg_write(ohci, OHCI1394_InitialChannelsAvailableHi,
2087 0xfffffffe);
2088 card->broadcast_channel_auto_allocated = true;
2089 }
2090
2091 /* Get implemented bits of the priority arbitration request counter. */
2092 reg_write(ohci, OHCI1394_FairnessControl, 0x3f);
2093 ohci->pri_req_max = reg_read(ohci, OHCI1394_FairnessControl) & 0x3f;
2094 reg_write(ohci, OHCI1394_FairnessControl, 0);
2095 card->priority_budget_implemented = ohci->pri_req_max != 0;
2096
2097 ar_context_run(&ohci->ar_request_ctx);
2098 ar_context_run(&ohci->ar_response_ctx);
2099
2100 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
2101 reg_write(ohci, OHCI1394_IntEventClear, ~0);
2102 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2103
2104 ret = configure_1394a_enhancements(ohci);
2105 if (ret < 0)
2106 return ret;
2107
2108 /* Activate link_on bit and contender bit in our self ID packets.*/
2109 ret = ohci_update_phy_reg(card, 4, 0, PHY_LINK_ACTIVE | PHY_CONTENDER);
2110 if (ret < 0)
2111 return ret;
2112
2113 /*
2114 * When the link is not yet enabled, the atomic config rom
2115 * update mechanism described below in ohci_set_config_rom()
2116 * is not active. We have to update ConfigRomHeader and
2117 * BusOptions manually, and the write to ConfigROMmap takes
2118 * effect immediately. We tie this to the enabling of the
2119 * link, so we have a valid config rom before enabling - the
2120 * OHCI requires that ConfigROMhdr and BusOptions have valid
2121 * values before enabling.
2122 *
2123 * However, when the ConfigROMmap is written, some controllers
2124 * always read back quadlets 0 and 2 from the config rom to
2125 * the ConfigRomHeader and BusOptions registers on bus reset.
2126 * They shouldn't do that in this initial case where the link
2127 * isn't enabled. This means we have to use the same
2128 * workaround here, setting the bus header to 0 and then write
2129 * the right values in the bus reset tasklet.
2130 */
2131
2132 if (config_rom) {
2133 ohci->next_config_rom =
2134 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2135 &ohci->next_config_rom_bus,
2136 GFP_KERNEL);
2137 if (ohci->next_config_rom == NULL)
2138 return -ENOMEM;
2139
2140 copy_config_rom(ohci->next_config_rom, config_rom, length);
2141 } else {
2142 /*
2143 * In the suspend case, config_rom is NULL, which
2144 * means that we just reuse the old config rom.
2145 */
2146 ohci->next_config_rom = ohci->config_rom;
2147 ohci->next_config_rom_bus = ohci->config_rom_bus;
2148 }
2149
2150 ohci->next_header = ohci->next_config_rom[0];
2151 ohci->next_config_rom[0] = 0;
2152 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
2153 reg_write(ohci, OHCI1394_BusOptions,
2154 be32_to_cpu(ohci->next_config_rom[2]));
2155 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
2156
2157 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
2158
2159 if (!(ohci->quirks & QUIRK_NO_MSI))
2160 pci_enable_msi(dev);
2161 if (request_irq(dev->irq, irq_handler,
2162 pci_dev_msi_enabled(dev) ? 0 : IRQF_SHARED,
2163 ohci_driver_name, ohci)) {
2164 fw_error("Failed to allocate interrupt %d.\n", dev->irq);
2165 pci_disable_msi(dev);
2166 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2167 ohci->config_rom, ohci->config_rom_bus);
2168 return -EIO;
2169 }
2170
2171 irqs = OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
2172 OHCI1394_RQPkt | OHCI1394_RSPkt |
2173 OHCI1394_isochTx | OHCI1394_isochRx |
2174 OHCI1394_postedWriteErr |
2175 OHCI1394_selfIDComplete |
2176 OHCI1394_regAccessFail |
2177 OHCI1394_cycle64Seconds |
2178 OHCI1394_cycleInconsistent |
2179 OHCI1394_unrecoverableError |
2180 OHCI1394_cycleTooLong |
2181 OHCI1394_masterIntEnable;
2182 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
2183 irqs |= OHCI1394_busReset;
2184 reg_write(ohci, OHCI1394_IntMaskSet, irqs);
2185
2186 reg_write(ohci, OHCI1394_HCControlSet,
2187 OHCI1394_HCControl_linkEnable |
2188 OHCI1394_HCControl_BIBimageValid);
2189 flush_writes(ohci);
2190
2191 /* We are ready to go, reset bus to finish initialization. */
2192 fw_schedule_bus_reset(&ohci->card, false, true);
2193
2194 return 0;
2195 }
2196
2197 static int ohci_set_config_rom(struct fw_card *card,
2198 const __be32 *config_rom, size_t length)
2199 {
2200 struct fw_ohci *ohci;
2201 unsigned long flags;
2202 int ret = -EBUSY;
2203 __be32 *next_config_rom;
2204 dma_addr_t uninitialized_var(next_config_rom_bus);
2205
2206 ohci = fw_ohci(card);
2207
2208 /*
2209 * When the OHCI controller is enabled, the config rom update
2210 * mechanism is a bit tricky, but easy enough to use. See
2211 * section 5.5.6 in the OHCI specification.
2212 *
2213 * The OHCI controller caches the new config rom address in a
2214 * shadow register (ConfigROMmapNext) and needs a bus reset
2215 * for the changes to take place. When the bus reset is
2216 * detected, the controller loads the new values for the
2217 * ConfigRomHeader and BusOptions registers from the specified
2218 * config rom and loads ConfigROMmap from the ConfigROMmapNext
2219 * shadow register. All automatically and atomically.
2220 *
2221 * Now, there's a twist to this story. The automatic load of
2222 * ConfigRomHeader and BusOptions doesn't honor the
2223 * noByteSwapData bit, so with a be32 config rom, the
2224 * controller will load be32 values in to these registers
2225 * during the atomic update, even on litte endian
2226 * architectures. The workaround we use is to put a 0 in the
2227 * header quadlet; 0 is endian agnostic and means that the
2228 * config rom isn't ready yet. In the bus reset tasklet we
2229 * then set up the real values for the two registers.
2230 *
2231 * We use ohci->lock to avoid racing with the code that sets
2232 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
2233 */
2234
2235 next_config_rom =
2236 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2237 &next_config_rom_bus, GFP_KERNEL);
2238 if (next_config_rom == NULL)
2239 return -ENOMEM;
2240
2241 spin_lock_irqsave(&ohci->lock, flags);
2242
2243 if (ohci->next_config_rom == NULL) {
2244 ohci->next_config_rom = next_config_rom;
2245 ohci->next_config_rom_bus = next_config_rom_bus;
2246
2247 copy_config_rom(ohci->next_config_rom, config_rom, length);
2248
2249 ohci->next_header = config_rom[0];
2250 ohci->next_config_rom[0] = 0;
2251
2252 reg_write(ohci, OHCI1394_ConfigROMmap,
2253 ohci->next_config_rom_bus);
2254 ret = 0;
2255 }
2256
2257 spin_unlock_irqrestore(&ohci->lock, flags);
2258
2259 /*
2260 * Now initiate a bus reset to have the changes take
2261 * effect. We clean up the old config rom memory and DMA
2262 * mappings in the bus reset tasklet, since the OHCI
2263 * controller could need to access it before the bus reset
2264 * takes effect.
2265 */
2266 if (ret == 0)
2267 fw_schedule_bus_reset(&ohci->card, true, true);
2268 else
2269 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2270 next_config_rom, next_config_rom_bus);
2271
2272 return ret;
2273 }
2274
2275 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
2276 {
2277 struct fw_ohci *ohci = fw_ohci(card);
2278
2279 at_context_transmit(&ohci->at_request_ctx, packet);
2280 }
2281
2282 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
2283 {
2284 struct fw_ohci *ohci = fw_ohci(card);
2285
2286 at_context_transmit(&ohci->at_response_ctx, packet);
2287 }
2288
2289 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
2290 {
2291 struct fw_ohci *ohci = fw_ohci(card);
2292 struct context *ctx = &ohci->at_request_ctx;
2293 struct driver_data *driver_data = packet->driver_data;
2294 int ret = -ENOENT;
2295
2296 tasklet_disable(&ctx->tasklet);
2297
2298 if (packet->ack != 0)
2299 goto out;
2300
2301 if (packet->payload_mapped)
2302 dma_unmap_single(ohci->card.device, packet->payload_bus,
2303 packet->payload_length, DMA_TO_DEVICE);
2304
2305 log_ar_at_event('T', packet->speed, packet->header, 0x20);
2306 driver_data->packet = NULL;
2307 packet->ack = RCODE_CANCELLED;
2308 packet->callback(packet, &ohci->card, packet->ack);
2309 ret = 0;
2310 out:
2311 tasklet_enable(&ctx->tasklet);
2312
2313 return ret;
2314 }
2315
2316 static int ohci_enable_phys_dma(struct fw_card *card,
2317 int node_id, int generation)
2318 {
2319 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
2320 return 0;
2321 #else
2322 struct fw_ohci *ohci = fw_ohci(card);
2323 unsigned long flags;
2324 int n, ret = 0;
2325
2326 /*
2327 * FIXME: Make sure this bitmask is cleared when we clear the busReset
2328 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
2329 */
2330
2331 spin_lock_irqsave(&ohci->lock, flags);
2332
2333 if (ohci->generation != generation) {
2334 ret = -ESTALE;
2335 goto out;
2336 }
2337
2338 /*
2339 * Note, if the node ID contains a non-local bus ID, physical DMA is
2340 * enabled for _all_ nodes on remote buses.
2341 */
2342
2343 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
2344 if (n < 32)
2345 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
2346 else
2347 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
2348
2349 flush_writes(ohci);
2350 out:
2351 spin_unlock_irqrestore(&ohci->lock, flags);
2352
2353 return ret;
2354 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
2355 }
2356
2357 static u32 ohci_read_csr(struct fw_card *card, int csr_offset)
2358 {
2359 struct fw_ohci *ohci = fw_ohci(card);
2360 unsigned long flags;
2361 u32 value;
2362
2363 switch (csr_offset) {
2364 case CSR_STATE_CLEAR:
2365 case CSR_STATE_SET:
2366 if (ohci->is_root &&
2367 (reg_read(ohci, OHCI1394_LinkControlSet) &
2368 OHCI1394_LinkControl_cycleMaster))
2369 value = CSR_STATE_BIT_CMSTR;
2370 else
2371 value = 0;
2372 if (ohci->csr_state_setclear_abdicate)
2373 value |= CSR_STATE_BIT_ABDICATE;
2374
2375 return value;
2376
2377 case CSR_NODE_IDS:
2378 return reg_read(ohci, OHCI1394_NodeID) << 16;
2379
2380 case CSR_CYCLE_TIME:
2381 return get_cycle_time(ohci);
2382
2383 case CSR_BUS_TIME:
2384 /*
2385 * We might be called just after the cycle timer has wrapped
2386 * around but just before the cycle64Seconds handler, so we
2387 * better check here, too, if the bus time needs to be updated.
2388 */
2389 spin_lock_irqsave(&ohci->lock, flags);
2390 value = update_bus_time(ohci);
2391 spin_unlock_irqrestore(&ohci->lock, flags);
2392 return value;
2393
2394 case CSR_BUSY_TIMEOUT:
2395 value = reg_read(ohci, OHCI1394_ATRetries);
2396 return (value >> 4) & 0x0ffff00f;
2397
2398 case CSR_PRIORITY_BUDGET:
2399 return (reg_read(ohci, OHCI1394_FairnessControl) & 0x3f) |
2400 (ohci->pri_req_max << 8);
2401
2402 default:
2403 WARN_ON(1);
2404 return 0;
2405 }
2406 }
2407
2408 static void ohci_write_csr(struct fw_card *card, int csr_offset, u32 value)
2409 {
2410 struct fw_ohci *ohci = fw_ohci(card);
2411 unsigned long flags;
2412
2413 switch (csr_offset) {
2414 case CSR_STATE_CLEAR:
2415 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2416 reg_write(ohci, OHCI1394_LinkControlClear,
2417 OHCI1394_LinkControl_cycleMaster);
2418 flush_writes(ohci);
2419 }
2420 if (value & CSR_STATE_BIT_ABDICATE)
2421 ohci->csr_state_setclear_abdicate = false;
2422 break;
2423
2424 case CSR_STATE_SET:
2425 if ((value & CSR_STATE_BIT_CMSTR) && ohci->is_root) {
2426 reg_write(ohci, OHCI1394_LinkControlSet,
2427 OHCI1394_LinkControl_cycleMaster);
2428 flush_writes(ohci);
2429 }
2430 if (value & CSR_STATE_BIT_ABDICATE)
2431 ohci->csr_state_setclear_abdicate = true;
2432 break;
2433
2434 case CSR_NODE_IDS:
2435 reg_write(ohci, OHCI1394_NodeID, value >> 16);
2436 flush_writes(ohci);
2437 break;
2438
2439 case CSR_CYCLE_TIME:
2440 reg_write(ohci, OHCI1394_IsochronousCycleTimer, value);
2441 reg_write(ohci, OHCI1394_IntEventSet,
2442 OHCI1394_cycleInconsistent);
2443 flush_writes(ohci);
2444 break;
2445
2446 case CSR_BUS_TIME:
2447 spin_lock_irqsave(&ohci->lock, flags);
2448 ohci->bus_time = (ohci->bus_time & 0x7f) | (value & ~0x7f);
2449 spin_unlock_irqrestore(&ohci->lock, flags);
2450 break;
2451
2452 case CSR_BUSY_TIMEOUT:
2453 value = (value & 0xf) | ((value & 0xf) << 4) |
2454 ((value & 0xf) << 8) | ((value & 0x0ffff000) << 4);
2455 reg_write(ohci, OHCI1394_ATRetries, value);
2456 flush_writes(ohci);
2457 break;
2458
2459 case CSR_PRIORITY_BUDGET:
2460 reg_write(ohci, OHCI1394_FairnessControl, value & 0x3f);
2461 flush_writes(ohci);
2462 break;
2463
2464 default:
2465 WARN_ON(1);
2466 break;
2467 }
2468 }
2469
2470 static void copy_iso_headers(struct iso_context *ctx, void *p)
2471 {
2472 int i = ctx->header_length;
2473
2474 if (i + ctx->base.header_size > PAGE_SIZE)
2475 return;
2476
2477 /*
2478 * The iso header is byteswapped to little endian by
2479 * the controller, but the remaining header quadlets
2480 * are big endian. We want to present all the headers
2481 * as big endian, so we have to swap the first quadlet.
2482 */
2483 if (ctx->base.header_size > 0)
2484 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
2485 if (ctx->base.header_size > 4)
2486 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
2487 if (ctx->base.header_size > 8)
2488 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
2489 ctx->header_length += ctx->base.header_size;
2490 }
2491
2492 static int handle_ir_packet_per_buffer(struct context *context,
2493 struct descriptor *d,
2494 struct descriptor *last)
2495 {
2496 struct iso_context *ctx =
2497 container_of(context, struct iso_context, context);
2498 struct descriptor *pd;
2499 __le32 *ir_header;
2500 void *p;
2501
2502 for (pd = d; pd <= last; pd++)
2503 if (pd->transfer_status)
2504 break;
2505 if (pd > last)
2506 /* Descriptor(s) not done yet, stop iteration */
2507 return 0;
2508
2509 p = last + 1;
2510 copy_iso_headers(ctx, p);
2511
2512 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2513 ir_header = (__le32 *) p;
2514 ctx->base.callback.sc(&ctx->base,
2515 le32_to_cpu(ir_header[0]) & 0xffff,
2516 ctx->header_length, ctx->header,
2517 ctx->base.callback_data);
2518 ctx->header_length = 0;
2519 }
2520
2521 return 1;
2522 }
2523
2524 /* d == last because each descriptor block is only a single descriptor. */
2525 static int handle_ir_buffer_fill(struct context *context,
2526 struct descriptor *d,
2527 struct descriptor *last)
2528 {
2529 struct iso_context *ctx =
2530 container_of(context, struct iso_context, context);
2531
2532 if (!last->transfer_status)
2533 /* Descriptor(s) not done yet, stop iteration */
2534 return 0;
2535
2536 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
2537 ctx->base.callback.mc(&ctx->base,
2538 le32_to_cpu(last->data_address) +
2539 le16_to_cpu(last->req_count) -
2540 le16_to_cpu(last->res_count),
2541 ctx->base.callback_data);
2542
2543 return 1;
2544 }
2545
2546 static int handle_it_packet(struct context *context,
2547 struct descriptor *d,
2548 struct descriptor *last)
2549 {
2550 struct iso_context *ctx =
2551 container_of(context, struct iso_context, context);
2552 int i;
2553 struct descriptor *pd;
2554
2555 for (pd = d; pd <= last; pd++)
2556 if (pd->transfer_status)
2557 break;
2558 if (pd > last)
2559 /* Descriptor(s) not done yet, stop iteration */
2560 return 0;
2561
2562 i = ctx->header_length;
2563 if (i + 4 < PAGE_SIZE) {
2564 /* Present this value as big-endian to match the receive code */
2565 *(__be32 *)(ctx->header + i) = cpu_to_be32(
2566 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
2567 le16_to_cpu(pd->res_count));
2568 ctx->header_length += 4;
2569 }
2570 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
2571 ctx->base.callback.sc(&ctx->base, le16_to_cpu(last->res_count),
2572 ctx->header_length, ctx->header,
2573 ctx->base.callback_data);
2574 ctx->header_length = 0;
2575 }
2576 return 1;
2577 }
2578
2579 static void set_multichannel_mask(struct fw_ohci *ohci, u64 channels)
2580 {
2581 u32 hi = channels >> 32, lo = channels;
2582
2583 reg_write(ohci, OHCI1394_IRMultiChanMaskHiClear, ~hi);
2584 reg_write(ohci, OHCI1394_IRMultiChanMaskLoClear, ~lo);
2585 reg_write(ohci, OHCI1394_IRMultiChanMaskHiSet, hi);
2586 reg_write(ohci, OHCI1394_IRMultiChanMaskLoSet, lo);
2587 mmiowb();
2588 ohci->mc_channels = channels;
2589 }
2590
2591 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
2592 int type, int channel, size_t header_size)
2593 {
2594 struct fw_ohci *ohci = fw_ohci(card);
2595 struct iso_context *uninitialized_var(ctx);
2596 descriptor_callback_t uninitialized_var(callback);
2597 u64 *uninitialized_var(channels);
2598 u32 *uninitialized_var(mask), uninitialized_var(regs);
2599 unsigned long flags;
2600 int index, ret = -EBUSY;
2601
2602 spin_lock_irqsave(&ohci->lock, flags);
2603
2604 switch (type) {
2605 case FW_ISO_CONTEXT_TRANSMIT:
2606 mask = &ohci->it_context_mask;
2607 callback = handle_it_packet;
2608 index = ffs(*mask) - 1;
2609 if (index >= 0) {
2610 *mask &= ~(1 << index);
2611 regs = OHCI1394_IsoXmitContextBase(index);
2612 ctx = &ohci->it_context_list[index];
2613 }
2614 break;
2615
2616 case FW_ISO_CONTEXT_RECEIVE:
2617 channels = &ohci->ir_context_channels;
2618 mask = &ohci->ir_context_mask;
2619 callback = handle_ir_packet_per_buffer;
2620 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
2621 if (index >= 0) {
2622 *channels &= ~(1ULL << channel);
2623 *mask &= ~(1 << index);
2624 regs = OHCI1394_IsoRcvContextBase(index);
2625 ctx = &ohci->ir_context_list[index];
2626 }
2627 break;
2628
2629 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2630 mask = &ohci->ir_context_mask;
2631 callback = handle_ir_buffer_fill;
2632 index = !ohci->mc_allocated ? ffs(*mask) - 1 : -1;
2633 if (index >= 0) {
2634 ohci->mc_allocated = true;
2635 *mask &= ~(1 << index);
2636 regs = OHCI1394_IsoRcvContextBase(index);
2637 ctx = &ohci->ir_context_list[index];
2638 }
2639 break;
2640
2641 default:
2642 index = -1;
2643 ret = -ENOSYS;
2644 }
2645
2646 spin_unlock_irqrestore(&ohci->lock, flags);
2647
2648 if (index < 0)
2649 return ERR_PTR(ret);
2650
2651 memset(ctx, 0, sizeof(*ctx));
2652 ctx->header_length = 0;
2653 ctx->header = (void *) __get_free_page(GFP_KERNEL);
2654 if (ctx->header == NULL) {
2655 ret = -ENOMEM;
2656 goto out;
2657 }
2658 ret = context_init(&ctx->context, ohci, regs, callback);
2659 if (ret < 0)
2660 goto out_with_header;
2661
2662 if (type == FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL)
2663 set_multichannel_mask(ohci, 0);
2664
2665 return &ctx->base;
2666
2667 out_with_header:
2668 free_page((unsigned long)ctx->header);
2669 out:
2670 spin_lock_irqsave(&ohci->lock, flags);
2671
2672 switch (type) {
2673 case FW_ISO_CONTEXT_RECEIVE:
2674 *channels |= 1ULL << channel;
2675 break;
2676
2677 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2678 ohci->mc_allocated = false;
2679 break;
2680 }
2681 *mask |= 1 << index;
2682
2683 spin_unlock_irqrestore(&ohci->lock, flags);
2684
2685 return ERR_PTR(ret);
2686 }
2687
2688 static int ohci_start_iso(struct fw_iso_context *base,
2689 s32 cycle, u32 sync, u32 tags)
2690 {
2691 struct iso_context *ctx = container_of(base, struct iso_context, base);
2692 struct fw_ohci *ohci = ctx->context.ohci;
2693 u32 control = IR_CONTEXT_ISOCH_HEADER, match;
2694 int index;
2695
2696 /* the controller cannot start without any queued packets */
2697 if (ctx->context.last->branch_address == 0)
2698 return -ENODATA;
2699
2700 switch (ctx->base.type) {
2701 case FW_ISO_CONTEXT_TRANSMIT:
2702 index = ctx - ohci->it_context_list;
2703 match = 0;
2704 if (cycle >= 0)
2705 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2706 (cycle & 0x7fff) << 16;
2707
2708 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2709 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2710 context_run(&ctx->context, match);
2711 break;
2712
2713 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2714 control |= IR_CONTEXT_BUFFER_FILL|IR_CONTEXT_MULTI_CHANNEL_MODE;
2715 /* fall through */
2716 case FW_ISO_CONTEXT_RECEIVE:
2717 index = ctx - ohci->ir_context_list;
2718 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2719 if (cycle >= 0) {
2720 match |= (cycle & 0x07fff) << 12;
2721 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2722 }
2723
2724 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2725 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2726 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2727 context_run(&ctx->context, control);
2728
2729 ctx->sync = sync;
2730 ctx->tags = tags;
2731
2732 break;
2733 }
2734
2735 return 0;
2736 }
2737
2738 static int ohci_stop_iso(struct fw_iso_context *base)
2739 {
2740 struct fw_ohci *ohci = fw_ohci(base->card);
2741 struct iso_context *ctx = container_of(base, struct iso_context, base);
2742 int index;
2743
2744 switch (ctx->base.type) {
2745 case FW_ISO_CONTEXT_TRANSMIT:
2746 index = ctx - ohci->it_context_list;
2747 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2748 break;
2749
2750 case FW_ISO_CONTEXT_RECEIVE:
2751 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2752 index = ctx - ohci->ir_context_list;
2753 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2754 break;
2755 }
2756 flush_writes(ohci);
2757 context_stop(&ctx->context);
2758 tasklet_kill(&ctx->context.tasklet);
2759
2760 return 0;
2761 }
2762
2763 static void ohci_free_iso_context(struct fw_iso_context *base)
2764 {
2765 struct fw_ohci *ohci = fw_ohci(base->card);
2766 struct iso_context *ctx = container_of(base, struct iso_context, base);
2767 unsigned long flags;
2768 int index;
2769
2770 ohci_stop_iso(base);
2771 context_release(&ctx->context);
2772 free_page((unsigned long)ctx->header);
2773
2774 spin_lock_irqsave(&ohci->lock, flags);
2775
2776 switch (base->type) {
2777 case FW_ISO_CONTEXT_TRANSMIT:
2778 index = ctx - ohci->it_context_list;
2779 ohci->it_context_mask |= 1 << index;
2780 break;
2781
2782 case FW_ISO_CONTEXT_RECEIVE:
2783 index = ctx - ohci->ir_context_list;
2784 ohci->ir_context_mask |= 1 << index;
2785 ohci->ir_context_channels |= 1ULL << base->channel;
2786 break;
2787
2788 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2789 index = ctx - ohci->ir_context_list;
2790 ohci->ir_context_mask |= 1 << index;
2791 ohci->ir_context_channels |= ohci->mc_channels;
2792 ohci->mc_channels = 0;
2793 ohci->mc_allocated = false;
2794 break;
2795 }
2796
2797 spin_unlock_irqrestore(&ohci->lock, flags);
2798 }
2799
2800 static int ohci_set_iso_channels(struct fw_iso_context *base, u64 *channels)
2801 {
2802 struct fw_ohci *ohci = fw_ohci(base->card);
2803 unsigned long flags;
2804 int ret;
2805
2806 switch (base->type) {
2807 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
2808
2809 spin_lock_irqsave(&ohci->lock, flags);
2810
2811 /* Don't allow multichannel to grab other contexts' channels. */
2812 if (~ohci->ir_context_channels & ~ohci->mc_channels & *channels) {
2813 *channels = ohci->ir_context_channels;
2814 ret = -EBUSY;
2815 } else {
2816 set_multichannel_mask(ohci, *channels);
2817 ret = 0;
2818 }
2819
2820 spin_unlock_irqrestore(&ohci->lock, flags);
2821
2822 break;
2823 default:
2824 ret = -EINVAL;
2825 }
2826
2827 return ret;
2828 }
2829
2830 #ifdef CONFIG_PM
2831 static void ohci_resume_iso_dma(struct fw_ohci *ohci)
2832 {
2833 int i;
2834 struct iso_context *ctx;
2835
2836 for (i = 0 ; i < ohci->n_ir ; i++) {
2837 ctx = &ohci->ir_context_list[i];
2838 if (ctx->context.running)
2839 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
2840 }
2841
2842 for (i = 0 ; i < ohci->n_it ; i++) {
2843 ctx = &ohci->it_context_list[i];
2844 if (ctx->context.running)
2845 ohci_start_iso(&ctx->base, 0, ctx->sync, ctx->tags);
2846 }
2847 }
2848 #endif
2849
2850 static int queue_iso_transmit(struct iso_context *ctx,
2851 struct fw_iso_packet *packet,
2852 struct fw_iso_buffer *buffer,
2853 unsigned long payload)
2854 {
2855 struct descriptor *d, *last, *pd;
2856 struct fw_iso_packet *p;
2857 __le32 *header;
2858 dma_addr_t d_bus, page_bus;
2859 u32 z, header_z, payload_z, irq;
2860 u32 payload_index, payload_end_index, next_page_index;
2861 int page, end_page, i, length, offset;
2862
2863 p = packet;
2864 payload_index = payload;
2865
2866 if (p->skip)
2867 z = 1;
2868 else
2869 z = 2;
2870 if (p->header_length > 0)
2871 z++;
2872
2873 /* Determine the first page the payload isn't contained in. */
2874 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2875 if (p->payload_length > 0)
2876 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2877 else
2878 payload_z = 0;
2879
2880 z += payload_z;
2881
2882 /* Get header size in number of descriptors. */
2883 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2884
2885 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2886 if (d == NULL)
2887 return -ENOMEM;
2888
2889 if (!p->skip) {
2890 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2891 d[0].req_count = cpu_to_le16(8);
2892 /*
2893 * Link the skip address to this descriptor itself. This causes
2894 * a context to skip a cycle whenever lost cycles or FIFO
2895 * overruns occur, without dropping the data. The application
2896 * should then decide whether this is an error condition or not.
2897 * FIXME: Make the context's cycle-lost behaviour configurable?
2898 */
2899 d[0].branch_address = cpu_to_le32(d_bus | z);
2900
2901 header = (__le32 *) &d[1];
2902 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2903 IT_HEADER_TAG(p->tag) |
2904 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2905 IT_HEADER_CHANNEL(ctx->base.channel) |
2906 IT_HEADER_SPEED(ctx->base.speed));
2907 header[1] =
2908 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2909 p->payload_length));
2910 }
2911
2912 if (p->header_length > 0) {
2913 d[2].req_count = cpu_to_le16(p->header_length);
2914 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2915 memcpy(&d[z], p->header, p->header_length);
2916 }
2917
2918 pd = d + z - payload_z;
2919 payload_end_index = payload_index + p->payload_length;
2920 for (i = 0; i < payload_z; i++) {
2921 page = payload_index >> PAGE_SHIFT;
2922 offset = payload_index & ~PAGE_MASK;
2923 next_page_index = (page + 1) << PAGE_SHIFT;
2924 length =
2925 min(next_page_index, payload_end_index) - payload_index;
2926 pd[i].req_count = cpu_to_le16(length);
2927
2928 page_bus = page_private(buffer->pages[page]);
2929 pd[i].data_address = cpu_to_le32(page_bus + offset);
2930
2931 payload_index += length;
2932 }
2933
2934 if (p->interrupt)
2935 irq = DESCRIPTOR_IRQ_ALWAYS;
2936 else
2937 irq = DESCRIPTOR_NO_IRQ;
2938
2939 last = z == 2 ? d : d + z - 1;
2940 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2941 DESCRIPTOR_STATUS |
2942 DESCRIPTOR_BRANCH_ALWAYS |
2943 irq);
2944
2945 context_append(&ctx->context, d, z, header_z);
2946
2947 return 0;
2948 }
2949
2950 static int queue_iso_packet_per_buffer(struct iso_context *ctx,
2951 struct fw_iso_packet *packet,
2952 struct fw_iso_buffer *buffer,
2953 unsigned long payload)
2954 {
2955 struct descriptor *d, *pd;
2956 dma_addr_t d_bus, page_bus;
2957 u32 z, header_z, rest;
2958 int i, j, length;
2959 int page, offset, packet_count, header_size, payload_per_buffer;
2960
2961 /*
2962 * The OHCI controller puts the isochronous header and trailer in the
2963 * buffer, so we need at least 8 bytes.
2964 */
2965 packet_count = packet->header_length / ctx->base.header_size;
2966 header_size = max(ctx->base.header_size, (size_t)8);
2967
2968 /* Get header size in number of descriptors. */
2969 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2970 page = payload >> PAGE_SHIFT;
2971 offset = payload & ~PAGE_MASK;
2972 payload_per_buffer = packet->payload_length / packet_count;
2973
2974 for (i = 0; i < packet_count; i++) {
2975 /* d points to the header descriptor */
2976 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2977 d = context_get_descriptors(&ctx->context,
2978 z + header_z, &d_bus);
2979 if (d == NULL)
2980 return -ENOMEM;
2981
2982 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
2983 DESCRIPTOR_INPUT_MORE);
2984 if (packet->skip && i == 0)
2985 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2986 d->req_count = cpu_to_le16(header_size);
2987 d->res_count = d->req_count;
2988 d->transfer_status = 0;
2989 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2990
2991 rest = payload_per_buffer;
2992 pd = d;
2993 for (j = 1; j < z; j++) {
2994 pd++;
2995 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2996 DESCRIPTOR_INPUT_MORE);
2997
2998 if (offset + rest < PAGE_SIZE)
2999 length = rest;
3000 else
3001 length = PAGE_SIZE - offset;
3002 pd->req_count = cpu_to_le16(length);
3003 pd->res_count = pd->req_count;
3004 pd->transfer_status = 0;
3005
3006 page_bus = page_private(buffer->pages[page]);
3007 pd->data_address = cpu_to_le32(page_bus + offset);
3008
3009 offset = (offset + length) & ~PAGE_MASK;
3010 rest -= length;
3011 if (offset == 0)
3012 page++;
3013 }
3014 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
3015 DESCRIPTOR_INPUT_LAST |
3016 DESCRIPTOR_BRANCH_ALWAYS);
3017 if (packet->interrupt && i == packet_count - 1)
3018 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3019
3020 context_append(&ctx->context, d, z, header_z);
3021 }
3022
3023 return 0;
3024 }
3025
3026 static int queue_iso_buffer_fill(struct iso_context *ctx,
3027 struct fw_iso_packet *packet,
3028 struct fw_iso_buffer *buffer,
3029 unsigned long payload)
3030 {
3031 struct descriptor *d;
3032 dma_addr_t d_bus, page_bus;
3033 int page, offset, rest, z, i, length;
3034
3035 page = payload >> PAGE_SHIFT;
3036 offset = payload & ~PAGE_MASK;
3037 rest = packet->payload_length;
3038
3039 /* We need one descriptor for each page in the buffer. */
3040 z = DIV_ROUND_UP(offset + rest, PAGE_SIZE);
3041
3042 if (WARN_ON(offset & 3 || rest & 3 || page + z > buffer->page_count))
3043 return -EFAULT;
3044
3045 for (i = 0; i < z; i++) {
3046 d = context_get_descriptors(&ctx->context, 1, &d_bus);
3047 if (d == NULL)
3048 return -ENOMEM;
3049
3050 d->control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
3051 DESCRIPTOR_BRANCH_ALWAYS);
3052 if (packet->skip && i == 0)
3053 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
3054 if (packet->interrupt && i == z - 1)
3055 d->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
3056
3057 if (offset + rest < PAGE_SIZE)
3058 length = rest;
3059 else
3060 length = PAGE_SIZE - offset;
3061 d->req_count = cpu_to_le16(length);
3062 d->res_count = d->req_count;
3063 d->transfer_status = 0;
3064
3065 page_bus = page_private(buffer->pages[page]);
3066 d->data_address = cpu_to_le32(page_bus + offset);
3067
3068 rest -= length;
3069 offset = 0;
3070 page++;
3071
3072 context_append(&ctx->context, d, 1, 0);
3073 }
3074
3075 return 0;
3076 }
3077
3078 static int ohci_queue_iso(struct fw_iso_context *base,
3079 struct fw_iso_packet *packet,
3080 struct fw_iso_buffer *buffer,
3081 unsigned long payload)
3082 {
3083 struct iso_context *ctx = container_of(base, struct iso_context, base);
3084 unsigned long flags;
3085 int ret = -ENOSYS;
3086
3087 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
3088 switch (base->type) {
3089 case FW_ISO_CONTEXT_TRANSMIT:
3090 ret = queue_iso_transmit(ctx, packet, buffer, payload);
3091 break;
3092 case FW_ISO_CONTEXT_RECEIVE:
3093 ret = queue_iso_packet_per_buffer(ctx, packet, buffer, payload);
3094 break;
3095 case FW_ISO_CONTEXT_RECEIVE_MULTICHANNEL:
3096 ret = queue_iso_buffer_fill(ctx, packet, buffer, payload);
3097 break;
3098 }
3099 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
3100
3101 return ret;
3102 }
3103
3104 static const struct fw_card_driver ohci_driver = {
3105 .enable = ohci_enable,
3106 .read_phy_reg = ohci_read_phy_reg,
3107 .update_phy_reg = ohci_update_phy_reg,
3108 .set_config_rom = ohci_set_config_rom,
3109 .send_request = ohci_send_request,
3110 .send_response = ohci_send_response,
3111 .cancel_packet = ohci_cancel_packet,
3112 .enable_phys_dma = ohci_enable_phys_dma,
3113 .read_csr = ohci_read_csr,
3114 .write_csr = ohci_write_csr,
3115
3116 .allocate_iso_context = ohci_allocate_iso_context,
3117 .free_iso_context = ohci_free_iso_context,
3118 .set_iso_channels = ohci_set_iso_channels,
3119 .queue_iso = ohci_queue_iso,
3120 .start_iso = ohci_start_iso,
3121 .stop_iso = ohci_stop_iso,
3122 };
3123
3124 #ifdef CONFIG_PPC_PMAC
3125 static void pmac_ohci_on(struct pci_dev *dev)
3126 {
3127 if (machine_is(powermac)) {
3128 struct device_node *ofn = pci_device_to_OF_node(dev);
3129
3130 if (ofn) {
3131 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
3132 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
3133 }
3134 }
3135 }
3136
3137 static void pmac_ohci_off(struct pci_dev *dev)
3138 {
3139 if (machine_is(powermac)) {
3140 struct device_node *ofn = pci_device_to_OF_node(dev);
3141
3142 if (ofn) {
3143 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
3144 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
3145 }
3146 }
3147 }
3148 #else
3149 static inline void pmac_ohci_on(struct pci_dev *dev) {}
3150 static inline void pmac_ohci_off(struct pci_dev *dev) {}
3151 #endif /* CONFIG_PPC_PMAC */
3152
3153 static int __devinit pci_probe(struct pci_dev *dev,
3154 const struct pci_device_id *ent)
3155 {
3156 struct fw_ohci *ohci;
3157 u32 bus_options, max_receive, link_speed, version;
3158 u64 guid;
3159 int i, err;
3160 size_t size;
3161
3162 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
3163 if (ohci == NULL) {
3164 err = -ENOMEM;
3165 goto fail;
3166 }
3167
3168 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
3169
3170 pmac_ohci_on(dev);
3171
3172 err = pci_enable_device(dev);
3173 if (err) {
3174 fw_error("Failed to enable OHCI hardware\n");
3175 goto fail_free;
3176 }
3177
3178 pci_set_master(dev);
3179 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
3180 pci_set_drvdata(dev, ohci);
3181
3182 spin_lock_init(&ohci->lock);
3183 mutex_init(&ohci->phy_reg_mutex);
3184
3185 tasklet_init(&ohci->bus_reset_tasklet,
3186 bus_reset_tasklet, (unsigned long)ohci);
3187
3188 err = pci_request_region(dev, 0, ohci_driver_name);
3189 if (err) {
3190 fw_error("MMIO resource unavailable\n");
3191 goto fail_disable;
3192 }
3193
3194 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
3195 if (ohci->registers == NULL) {
3196 fw_error("Failed to remap registers\n");
3197 err = -ENXIO;
3198 goto fail_iomem;
3199 }
3200
3201 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
3202 if ((ohci_quirks[i].vendor == dev->vendor) &&
3203 (ohci_quirks[i].device == (unsigned short)PCI_ANY_ID ||
3204 ohci_quirks[i].device == dev->device) &&
3205 (ohci_quirks[i].revision == (unsigned short)PCI_ANY_ID ||
3206 ohci_quirks[i].revision >= dev->revision)) {
3207 ohci->quirks = ohci_quirks[i].flags;
3208 break;
3209 }
3210 if (param_quirks)
3211 ohci->quirks = param_quirks;
3212
3213 /*
3214 * Because dma_alloc_coherent() allocates at least one page,
3215 * we save space by using a common buffer for the AR request/
3216 * response descriptors and the self IDs buffer.
3217 */
3218 BUILD_BUG_ON(AR_BUFFERS * sizeof(struct descriptor) > PAGE_SIZE/4);
3219 BUILD_BUG_ON(SELF_ID_BUF_SIZE > PAGE_SIZE/2);
3220 ohci->misc_buffer = dma_alloc_coherent(ohci->card.device,
3221 PAGE_SIZE,
3222 &ohci->misc_buffer_bus,
3223 GFP_KERNEL);
3224 if (!ohci->misc_buffer) {
3225 err = -ENOMEM;
3226 goto fail_iounmap;
3227 }
3228
3229 err = ar_context_init(&ohci->ar_request_ctx, ohci, 0,
3230 OHCI1394_AsReqRcvContextControlSet);
3231 if (err < 0)
3232 goto fail_misc_buf;
3233
3234 err = ar_context_init(&ohci->ar_response_ctx, ohci, PAGE_SIZE/4,
3235 OHCI1394_AsRspRcvContextControlSet);
3236 if (err < 0)
3237 goto fail_arreq_ctx;
3238
3239 err = context_init(&ohci->at_request_ctx, ohci,
3240 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
3241 if (err < 0)
3242 goto fail_arrsp_ctx;
3243
3244 err = context_init(&ohci->at_response_ctx, ohci,
3245 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
3246 if (err < 0)
3247 goto fail_atreq_ctx;
3248
3249 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
3250 ohci->ir_context_channels = ~0ULL;
3251 ohci->ir_context_support = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
3252 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
3253 ohci->ir_context_mask = ohci->ir_context_support;
3254 ohci->n_ir = hweight32(ohci->ir_context_mask);
3255 size = sizeof(struct iso_context) * ohci->n_ir;
3256 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
3257
3258 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
3259 ohci->it_context_support = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
3260 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
3261 ohci->it_context_mask = ohci->it_context_support;
3262 ohci->n_it = hweight32(ohci->it_context_mask);
3263 size = sizeof(struct iso_context) * ohci->n_it;
3264 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
3265
3266 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
3267 err = -ENOMEM;
3268 goto fail_contexts;
3269 }
3270
3271 ohci->self_id_cpu = ohci->misc_buffer + PAGE_SIZE/2;
3272 ohci->self_id_bus = ohci->misc_buffer_bus + PAGE_SIZE/2;
3273
3274 bus_options = reg_read(ohci, OHCI1394_BusOptions);
3275 max_receive = (bus_options >> 12) & 0xf;
3276 link_speed = bus_options & 0x7;
3277 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
3278 reg_read(ohci, OHCI1394_GUIDLo);
3279
3280 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
3281 if (err)
3282 goto fail_contexts;
3283
3284 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
3285 fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
3286 "%d IR + %d IT contexts, quirks 0x%x\n",
3287 dev_name(&dev->dev), version >> 16, version & 0xff,
3288 ohci->n_ir, ohci->n_it, ohci->quirks);
3289
3290 return 0;
3291
3292 fail_contexts:
3293 kfree(ohci->ir_context_list);
3294 kfree(ohci->it_context_list);
3295 context_release(&ohci->at_response_ctx);
3296 fail_atreq_ctx:
3297 context_release(&ohci->at_request_ctx);
3298 fail_arrsp_ctx:
3299 ar_context_release(&ohci->ar_response_ctx);
3300 fail_arreq_ctx:
3301 ar_context_release(&ohci->ar_request_ctx);
3302 fail_misc_buf:
3303 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3304 ohci->misc_buffer, ohci->misc_buffer_bus);
3305 fail_iounmap:
3306 pci_iounmap(dev, ohci->registers);
3307 fail_iomem:
3308 pci_release_region(dev, 0);
3309 fail_disable:
3310 pci_disable_device(dev);
3311 fail_free:
3312 kfree(ohci);
3313 pmac_ohci_off(dev);
3314 fail:
3315 if (err == -ENOMEM)
3316 fw_error("Out of memory\n");
3317
3318 return err;
3319 }
3320
3321 static void pci_remove(struct pci_dev *dev)
3322 {
3323 struct fw_ohci *ohci;
3324
3325 ohci = pci_get_drvdata(dev);
3326 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
3327 flush_writes(ohci);
3328 fw_core_remove_card(&ohci->card);
3329
3330 /*
3331 * FIXME: Fail all pending packets here, now that the upper
3332 * layers can't queue any more.
3333 */
3334
3335 software_reset(ohci);
3336 free_irq(dev->irq, ohci);
3337
3338 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
3339 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3340 ohci->next_config_rom, ohci->next_config_rom_bus);
3341 if (ohci->config_rom)
3342 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
3343 ohci->config_rom, ohci->config_rom_bus);
3344 ar_context_release(&ohci->ar_request_ctx);
3345 ar_context_release(&ohci->ar_response_ctx);
3346 dma_free_coherent(ohci->card.device, PAGE_SIZE,
3347 ohci->misc_buffer, ohci->misc_buffer_bus);
3348 context_release(&ohci->at_request_ctx);
3349 context_release(&ohci->at_response_ctx);
3350 kfree(ohci->it_context_list);
3351 kfree(ohci->ir_context_list);
3352 pci_disable_msi(dev);
3353 pci_iounmap(dev, ohci->registers);
3354 pci_release_region(dev, 0);
3355 pci_disable_device(dev);
3356 kfree(ohci);
3357 pmac_ohci_off(dev);
3358
3359 fw_notify("Removed fw-ohci device.\n");
3360 }
3361
3362 #ifdef CONFIG_PM
3363 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
3364 {
3365 struct fw_ohci *ohci = pci_get_drvdata(dev);
3366 int err;
3367
3368 software_reset(ohci);
3369 free_irq(dev->irq, ohci);
3370 pci_disable_msi(dev);
3371 err = pci_save_state(dev);
3372 if (err) {
3373 fw_error("pci_save_state failed\n");
3374 return err;
3375 }
3376 err = pci_set_power_state(dev, pci_choose_state(dev, state));
3377 if (err)
3378 fw_error("pci_set_power_state failed with %d\n", err);
3379 pmac_ohci_off(dev);
3380
3381 return 0;
3382 }
3383
3384 static int pci_resume(struct pci_dev *dev)
3385 {
3386 struct fw_ohci *ohci = pci_get_drvdata(dev);
3387 int err;
3388
3389 pmac_ohci_on(dev);
3390 pci_set_power_state(dev, PCI_D0);
3391 pci_restore_state(dev);
3392 err = pci_enable_device(dev);
3393 if (err) {
3394 fw_error("pci_enable_device failed\n");
3395 return err;
3396 }
3397
3398 /* Some systems don't setup GUID register on resume from ram */
3399 if (!reg_read(ohci, OHCI1394_GUIDLo) &&
3400 !reg_read(ohci, OHCI1394_GUIDHi)) {
3401 reg_write(ohci, OHCI1394_GUIDLo, (u32)ohci->card.guid);
3402 reg_write(ohci, OHCI1394_GUIDHi, (u32)(ohci->card.guid >> 32));
3403 }
3404
3405 err = ohci_enable(&ohci->card, NULL, 0);
3406 if (err)
3407 return err;
3408
3409 ohci_resume_iso_dma(ohci);
3410
3411 return 0;
3412 }
3413 #endif
3414
3415 static const struct pci_device_id pci_table[] = {
3416 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
3417 { }
3418 };
3419
3420 MODULE_DEVICE_TABLE(pci, pci_table);
3421
3422 static struct pci_driver fw_ohci_pci_driver = {
3423 .name = ohci_driver_name,
3424 .id_table = pci_table,
3425 .probe = pci_probe,
3426 .remove = pci_remove,
3427 #ifdef CONFIG_PM
3428 .resume = pci_resume,
3429 .suspend = pci_suspend,
3430 #endif
3431 };
3432
3433 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
3434 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
3435 MODULE_LICENSE("GPL");
3436
3437 /* Provide a module alias so root-on-sbp2 initrds don't break. */
3438 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
3439 MODULE_ALIAS("ohci1394");
3440 #endif
3441
3442 static int __init fw_ohci_init(void)
3443 {
3444 return pci_register_driver(&fw_ohci_pci_driver);
3445 }
3446
3447 static void __exit fw_ohci_cleanup(void)
3448 {
3449 pci_unregister_driver(&fw_ohci_pci_driver);
3450 }
3451
3452 module_init(fw_ohci_init);
3453 module_exit(fw_ohci_cleanup);