Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/jikos/trivial
[GitHub/LineageOS/android_kernel_samsung_universal7580.git] / drivers / firewire / ohci.c
1 /*
2 * Driver for OHCI 1394 controllers
3 *
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/init.h>
28 #include <linux/interrupt.h>
29 #include <linux/io.h>
30 #include <linux/kernel.h>
31 #include <linux/list.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/pci_ids.h>
37 #include <linux/slab.h>
38 #include <linux/spinlock.h>
39 #include <linux/string.h>
40
41 #include <asm/byteorder.h>
42 #include <asm/page.h>
43 #include <asm/system.h>
44
45 #ifdef CONFIG_PPC_PMAC
46 #include <asm/pmac_feature.h>
47 #endif
48
49 #include "core.h"
50 #include "ohci.h"
51
52 #define DESCRIPTOR_OUTPUT_MORE 0
53 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
54 #define DESCRIPTOR_INPUT_MORE (2 << 12)
55 #define DESCRIPTOR_INPUT_LAST (3 << 12)
56 #define DESCRIPTOR_STATUS (1 << 11)
57 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
58 #define DESCRIPTOR_PING (1 << 7)
59 #define DESCRIPTOR_YY (1 << 6)
60 #define DESCRIPTOR_NO_IRQ (0 << 4)
61 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
62 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
63 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
64 #define DESCRIPTOR_WAIT (3 << 0)
65
66 struct descriptor {
67 __le16 req_count;
68 __le16 control;
69 __le32 data_address;
70 __le32 branch_address;
71 __le16 res_count;
72 __le16 transfer_status;
73 } __attribute__((aligned(16)));
74
75 #define CONTROL_SET(regs) (regs)
76 #define CONTROL_CLEAR(regs) ((regs) + 4)
77 #define COMMAND_PTR(regs) ((regs) + 12)
78 #define CONTEXT_MATCH(regs) ((regs) + 16)
79
80 struct ar_buffer {
81 struct descriptor descriptor;
82 struct ar_buffer *next;
83 __le32 data[0];
84 };
85
86 struct ar_context {
87 struct fw_ohci *ohci;
88 struct ar_buffer *current_buffer;
89 struct ar_buffer *last_buffer;
90 void *pointer;
91 u32 regs;
92 struct tasklet_struct tasklet;
93 };
94
95 struct context;
96
97 typedef int (*descriptor_callback_t)(struct context *ctx,
98 struct descriptor *d,
99 struct descriptor *last);
100
101 /*
102 * A buffer that contains a block of DMA-able coherent memory used for
103 * storing a portion of a DMA descriptor program.
104 */
105 struct descriptor_buffer {
106 struct list_head list;
107 dma_addr_t buffer_bus;
108 size_t buffer_size;
109 size_t used;
110 struct descriptor buffer[0];
111 };
112
113 struct context {
114 struct fw_ohci *ohci;
115 u32 regs;
116 int total_allocation;
117
118 /*
119 * List of page-sized buffers for storing DMA descriptors.
120 * Head of list contains buffers in use and tail of list contains
121 * free buffers.
122 */
123 struct list_head buffer_list;
124
125 /*
126 * Pointer to a buffer inside buffer_list that contains the tail
127 * end of the current DMA program.
128 */
129 struct descriptor_buffer *buffer_tail;
130
131 /*
132 * The descriptor containing the branch address of the first
133 * descriptor that has not yet been filled by the device.
134 */
135 struct descriptor *last;
136
137 /*
138 * The last descriptor in the DMA program. It contains the branch
139 * address that must be updated upon appending a new descriptor.
140 */
141 struct descriptor *prev;
142
143 descriptor_callback_t callback;
144
145 struct tasklet_struct tasklet;
146 };
147
148 #define IT_HEADER_SY(v) ((v) << 0)
149 #define IT_HEADER_TCODE(v) ((v) << 4)
150 #define IT_HEADER_CHANNEL(v) ((v) << 8)
151 #define IT_HEADER_TAG(v) ((v) << 14)
152 #define IT_HEADER_SPEED(v) ((v) << 16)
153 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
154
155 struct iso_context {
156 struct fw_iso_context base;
157 struct context context;
158 int excess_bytes;
159 void *header;
160 size_t header_length;
161 };
162
163 #define CONFIG_ROM_SIZE 1024
164
165 struct fw_ohci {
166 struct fw_card card;
167
168 __iomem char *registers;
169 int node_id;
170 int generation;
171 int request_generation; /* for timestamping incoming requests */
172 unsigned quirks;
173
174 /*
175 * Spinlock for accessing fw_ohci data. Never call out of
176 * this driver with this lock held.
177 */
178 spinlock_t lock;
179
180 struct ar_context ar_request_ctx;
181 struct ar_context ar_response_ctx;
182 struct context at_request_ctx;
183 struct context at_response_ctx;
184
185 u32 it_context_mask;
186 struct iso_context *it_context_list;
187 u64 ir_context_channels;
188 u32 ir_context_mask;
189 struct iso_context *ir_context_list;
190
191 __be32 *config_rom;
192 dma_addr_t config_rom_bus;
193 __be32 *next_config_rom;
194 dma_addr_t next_config_rom_bus;
195 __be32 next_header;
196
197 __le32 *self_id_cpu;
198 dma_addr_t self_id_bus;
199 struct tasklet_struct bus_reset_tasklet;
200
201 u32 self_id_buffer[512];
202 };
203
204 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
205 {
206 return container_of(card, struct fw_ohci, card);
207 }
208
209 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
210 #define IR_CONTEXT_BUFFER_FILL 0x80000000
211 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
212 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
213 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
214 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
215
216 #define CONTEXT_RUN 0x8000
217 #define CONTEXT_WAKE 0x1000
218 #define CONTEXT_DEAD 0x0800
219 #define CONTEXT_ACTIVE 0x0400
220
221 #define OHCI1394_MAX_AT_REQ_RETRIES 0xf
222 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
223 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
224
225 #define OHCI1394_REGISTER_SIZE 0x800
226 #define OHCI_LOOP_COUNT 500
227 #define OHCI1394_PCI_HCI_Control 0x40
228 #define SELF_ID_BUF_SIZE 0x800
229 #define OHCI_TCODE_PHY_PACKET 0x0e
230 #define OHCI_VERSION_1_1 0x010010
231
232 static char ohci_driver_name[] = KBUILD_MODNAME;
233
234 #define PCI_DEVICE_ID_TI_TSB12LV22 0x8009
235
236 #define QUIRK_CYCLE_TIMER 1
237 #define QUIRK_RESET_PACKET 2
238 #define QUIRK_BE_HEADERS 4
239
240 /* In case of multiple matches in ohci_quirks[], only the first one is used. */
241 static const struct {
242 unsigned short vendor, device, flags;
243 } ohci_quirks[] = {
244 {PCI_VENDOR_ID_TI, PCI_DEVICE_ID_TI_TSB12LV22, QUIRK_CYCLE_TIMER |
245 QUIRK_RESET_PACKET},
246 {PCI_VENDOR_ID_TI, PCI_ANY_ID, QUIRK_RESET_PACKET},
247 {PCI_VENDOR_ID_AL, PCI_ANY_ID, QUIRK_CYCLE_TIMER},
248 {PCI_VENDOR_ID_NEC, PCI_ANY_ID, QUIRK_CYCLE_TIMER},
249 {PCI_VENDOR_ID_VIA, PCI_ANY_ID, QUIRK_CYCLE_TIMER},
250 {PCI_VENDOR_ID_APPLE, PCI_DEVICE_ID_APPLE_UNI_N_FW, QUIRK_BE_HEADERS},
251 };
252
253 /* This overrides anything that was found in ohci_quirks[]. */
254 static int param_quirks;
255 module_param_named(quirks, param_quirks, int, 0644);
256 MODULE_PARM_DESC(quirks, "Chip quirks (default = 0"
257 ", nonatomic cycle timer = " __stringify(QUIRK_CYCLE_TIMER)
258 ", reset packet generation = " __stringify(QUIRK_RESET_PACKET)
259 ", AR/selfID endianess = " __stringify(QUIRK_BE_HEADERS)
260 ")");
261
262 #ifdef CONFIG_FIREWIRE_OHCI_DEBUG
263
264 #define OHCI_PARAM_DEBUG_AT_AR 1
265 #define OHCI_PARAM_DEBUG_SELFIDS 2
266 #define OHCI_PARAM_DEBUG_IRQS 4
267 #define OHCI_PARAM_DEBUG_BUSRESETS 8 /* only effective before chip init */
268
269 static int param_debug;
270 module_param_named(debug, param_debug, int, 0644);
271 MODULE_PARM_DESC(debug, "Verbose logging (default = 0"
272 ", AT/AR events = " __stringify(OHCI_PARAM_DEBUG_AT_AR)
273 ", self-IDs = " __stringify(OHCI_PARAM_DEBUG_SELFIDS)
274 ", IRQs = " __stringify(OHCI_PARAM_DEBUG_IRQS)
275 ", busReset events = " __stringify(OHCI_PARAM_DEBUG_BUSRESETS)
276 ", or a combination, or all = -1)");
277
278 static void log_irqs(u32 evt)
279 {
280 if (likely(!(param_debug &
281 (OHCI_PARAM_DEBUG_IRQS | OHCI_PARAM_DEBUG_BUSRESETS))))
282 return;
283
284 if (!(param_debug & OHCI_PARAM_DEBUG_IRQS) &&
285 !(evt & OHCI1394_busReset))
286 return;
287
288 fw_notify("IRQ %08x%s%s%s%s%s%s%s%s%s%s%s%s%s\n", evt,
289 evt & OHCI1394_selfIDComplete ? " selfID" : "",
290 evt & OHCI1394_RQPkt ? " AR_req" : "",
291 evt & OHCI1394_RSPkt ? " AR_resp" : "",
292 evt & OHCI1394_reqTxComplete ? " AT_req" : "",
293 evt & OHCI1394_respTxComplete ? " AT_resp" : "",
294 evt & OHCI1394_isochRx ? " IR" : "",
295 evt & OHCI1394_isochTx ? " IT" : "",
296 evt & OHCI1394_postedWriteErr ? " postedWriteErr" : "",
297 evt & OHCI1394_cycleTooLong ? " cycleTooLong" : "",
298 evt & OHCI1394_cycleInconsistent ? " cycleInconsistent" : "",
299 evt & OHCI1394_regAccessFail ? " regAccessFail" : "",
300 evt & OHCI1394_busReset ? " busReset" : "",
301 evt & ~(OHCI1394_selfIDComplete | OHCI1394_RQPkt |
302 OHCI1394_RSPkt | OHCI1394_reqTxComplete |
303 OHCI1394_respTxComplete | OHCI1394_isochRx |
304 OHCI1394_isochTx | OHCI1394_postedWriteErr |
305 OHCI1394_cycleTooLong | OHCI1394_cycleInconsistent |
306 OHCI1394_regAccessFail | OHCI1394_busReset)
307 ? " ?" : "");
308 }
309
310 static const char *speed[] = {
311 [0] = "S100", [1] = "S200", [2] = "S400", [3] = "beta",
312 };
313 static const char *power[] = {
314 [0] = "+0W", [1] = "+15W", [2] = "+30W", [3] = "+45W",
315 [4] = "-3W", [5] = " ?W", [6] = "-3..-6W", [7] = "-3..-10W",
316 };
317 static const char port[] = { '.', '-', 'p', 'c', };
318
319 static char _p(u32 *s, int shift)
320 {
321 return port[*s >> shift & 3];
322 }
323
324 static void log_selfids(int node_id, int generation, int self_id_count, u32 *s)
325 {
326 if (likely(!(param_debug & OHCI_PARAM_DEBUG_SELFIDS)))
327 return;
328
329 fw_notify("%d selfIDs, generation %d, local node ID %04x\n",
330 self_id_count, generation, node_id);
331
332 for (; self_id_count--; ++s)
333 if ((*s & 1 << 23) == 0)
334 fw_notify("selfID 0: %08x, phy %d [%c%c%c] "
335 "%s gc=%d %s %s%s%s\n",
336 *s, *s >> 24 & 63, _p(s, 6), _p(s, 4), _p(s, 2),
337 speed[*s >> 14 & 3], *s >> 16 & 63,
338 power[*s >> 8 & 7], *s >> 22 & 1 ? "L" : "",
339 *s >> 11 & 1 ? "c" : "", *s & 2 ? "i" : "");
340 else
341 fw_notify("selfID n: %08x, phy %d [%c%c%c%c%c%c%c%c]\n",
342 *s, *s >> 24 & 63,
343 _p(s, 16), _p(s, 14), _p(s, 12), _p(s, 10),
344 _p(s, 8), _p(s, 6), _p(s, 4), _p(s, 2));
345 }
346
347 static const char *evts[] = {
348 [0x00] = "evt_no_status", [0x01] = "-reserved-",
349 [0x02] = "evt_long_packet", [0x03] = "evt_missing_ack",
350 [0x04] = "evt_underrun", [0x05] = "evt_overrun",
351 [0x06] = "evt_descriptor_read", [0x07] = "evt_data_read",
352 [0x08] = "evt_data_write", [0x09] = "evt_bus_reset",
353 [0x0a] = "evt_timeout", [0x0b] = "evt_tcode_err",
354 [0x0c] = "-reserved-", [0x0d] = "-reserved-",
355 [0x0e] = "evt_unknown", [0x0f] = "evt_flushed",
356 [0x10] = "-reserved-", [0x11] = "ack_complete",
357 [0x12] = "ack_pending ", [0x13] = "-reserved-",
358 [0x14] = "ack_busy_X", [0x15] = "ack_busy_A",
359 [0x16] = "ack_busy_B", [0x17] = "-reserved-",
360 [0x18] = "-reserved-", [0x19] = "-reserved-",
361 [0x1a] = "-reserved-", [0x1b] = "ack_tardy",
362 [0x1c] = "-reserved-", [0x1d] = "ack_data_error",
363 [0x1e] = "ack_type_error", [0x1f] = "-reserved-",
364 [0x20] = "pending/cancelled",
365 };
366 static const char *tcodes[] = {
367 [0x0] = "QW req", [0x1] = "BW req",
368 [0x2] = "W resp", [0x3] = "-reserved-",
369 [0x4] = "QR req", [0x5] = "BR req",
370 [0x6] = "QR resp", [0x7] = "BR resp",
371 [0x8] = "cycle start", [0x9] = "Lk req",
372 [0xa] = "async stream packet", [0xb] = "Lk resp",
373 [0xc] = "-reserved-", [0xd] = "-reserved-",
374 [0xe] = "link internal", [0xf] = "-reserved-",
375 };
376 static const char *phys[] = {
377 [0x0] = "phy config packet", [0x1] = "link-on packet",
378 [0x2] = "self-id packet", [0x3] = "-reserved-",
379 };
380
381 static void log_ar_at_event(char dir, int speed, u32 *header, int evt)
382 {
383 int tcode = header[0] >> 4 & 0xf;
384 char specific[12];
385
386 if (likely(!(param_debug & OHCI_PARAM_DEBUG_AT_AR)))
387 return;
388
389 if (unlikely(evt >= ARRAY_SIZE(evts)))
390 evt = 0x1f;
391
392 if (evt == OHCI1394_evt_bus_reset) {
393 fw_notify("A%c evt_bus_reset, generation %d\n",
394 dir, (header[2] >> 16) & 0xff);
395 return;
396 }
397
398 if (header[0] == ~header[1]) {
399 fw_notify("A%c %s, %s, %08x\n",
400 dir, evts[evt], phys[header[0] >> 30 & 0x3], header[0]);
401 return;
402 }
403
404 switch (tcode) {
405 case 0x0: case 0x6: case 0x8:
406 snprintf(specific, sizeof(specific), " = %08x",
407 be32_to_cpu((__force __be32)header[3]));
408 break;
409 case 0x1: case 0x5: case 0x7: case 0x9: case 0xb:
410 snprintf(specific, sizeof(specific), " %x,%x",
411 header[3] >> 16, header[3] & 0xffff);
412 break;
413 default:
414 specific[0] = '\0';
415 }
416
417 switch (tcode) {
418 case 0xe: case 0xa:
419 fw_notify("A%c %s, %s\n", dir, evts[evt], tcodes[tcode]);
420 break;
421 case 0x0: case 0x1: case 0x4: case 0x5: case 0x9:
422 fw_notify("A%c spd %x tl %02x, "
423 "%04x -> %04x, %s, "
424 "%s, %04x%08x%s\n",
425 dir, speed, header[0] >> 10 & 0x3f,
426 header[1] >> 16, header[0] >> 16, evts[evt],
427 tcodes[tcode], header[1] & 0xffff, header[2], specific);
428 break;
429 default:
430 fw_notify("A%c spd %x tl %02x, "
431 "%04x -> %04x, %s, "
432 "%s%s\n",
433 dir, speed, header[0] >> 10 & 0x3f,
434 header[1] >> 16, header[0] >> 16, evts[evt],
435 tcodes[tcode], specific);
436 }
437 }
438
439 #else
440
441 #define log_irqs(evt)
442 #define log_selfids(node_id, generation, self_id_count, sid)
443 #define log_ar_at_event(dir, speed, header, evt)
444
445 #endif /* CONFIG_FIREWIRE_OHCI_DEBUG */
446
447 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
448 {
449 writel(data, ohci->registers + offset);
450 }
451
452 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
453 {
454 return readl(ohci->registers + offset);
455 }
456
457 static inline void flush_writes(const struct fw_ohci *ohci)
458 {
459 /* Do a dummy read to flush writes. */
460 reg_read(ohci, OHCI1394_Version);
461 }
462
463 static int ohci_update_phy_reg(struct fw_card *card, int addr,
464 int clear_bits, int set_bits)
465 {
466 struct fw_ohci *ohci = fw_ohci(card);
467 u32 val, old;
468
469 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
470 flush_writes(ohci);
471 msleep(2);
472 val = reg_read(ohci, OHCI1394_PhyControl);
473 if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
474 fw_error("failed to set phy reg bits.\n");
475 return -EBUSY;
476 }
477
478 old = OHCI1394_PhyControl_ReadData(val);
479 old = (old & ~clear_bits) | set_bits;
480 reg_write(ohci, OHCI1394_PhyControl,
481 OHCI1394_PhyControl_Write(addr, old));
482
483 return 0;
484 }
485
486 static int ar_context_add_page(struct ar_context *ctx)
487 {
488 struct device *dev = ctx->ohci->card.device;
489 struct ar_buffer *ab;
490 dma_addr_t uninitialized_var(ab_bus);
491 size_t offset;
492
493 ab = dma_alloc_coherent(dev, PAGE_SIZE, &ab_bus, GFP_ATOMIC);
494 if (ab == NULL)
495 return -ENOMEM;
496
497 ab->next = NULL;
498 memset(&ab->descriptor, 0, sizeof(ab->descriptor));
499 ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
500 DESCRIPTOR_STATUS |
501 DESCRIPTOR_BRANCH_ALWAYS);
502 offset = offsetof(struct ar_buffer, data);
503 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
504 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
505 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
506 ab->descriptor.branch_address = 0;
507
508 ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
509 ctx->last_buffer->next = ab;
510 ctx->last_buffer = ab;
511
512 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
513 flush_writes(ctx->ohci);
514
515 return 0;
516 }
517
518 static void ar_context_release(struct ar_context *ctx)
519 {
520 struct ar_buffer *ab, *ab_next;
521 size_t offset;
522 dma_addr_t ab_bus;
523
524 for (ab = ctx->current_buffer; ab; ab = ab_next) {
525 ab_next = ab->next;
526 offset = offsetof(struct ar_buffer, data);
527 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
528 dma_free_coherent(ctx->ohci->card.device, PAGE_SIZE,
529 ab, ab_bus);
530 }
531 }
532
533 #if defined(CONFIG_PPC_PMAC) && defined(CONFIG_PPC32)
534 #define cond_le32_to_cpu(v) \
535 (ohci->quirks & QUIRK_BE_HEADERS ? (__force __u32)(v) : le32_to_cpu(v))
536 #else
537 #define cond_le32_to_cpu(v) le32_to_cpu(v)
538 #endif
539
540 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
541 {
542 struct fw_ohci *ohci = ctx->ohci;
543 struct fw_packet p;
544 u32 status, length, tcode;
545 int evt;
546
547 p.header[0] = cond_le32_to_cpu(buffer[0]);
548 p.header[1] = cond_le32_to_cpu(buffer[1]);
549 p.header[2] = cond_le32_to_cpu(buffer[2]);
550
551 tcode = (p.header[0] >> 4) & 0x0f;
552 switch (tcode) {
553 case TCODE_WRITE_QUADLET_REQUEST:
554 case TCODE_READ_QUADLET_RESPONSE:
555 p.header[3] = (__force __u32) buffer[3];
556 p.header_length = 16;
557 p.payload_length = 0;
558 break;
559
560 case TCODE_READ_BLOCK_REQUEST :
561 p.header[3] = cond_le32_to_cpu(buffer[3]);
562 p.header_length = 16;
563 p.payload_length = 0;
564 break;
565
566 case TCODE_WRITE_BLOCK_REQUEST:
567 case TCODE_READ_BLOCK_RESPONSE:
568 case TCODE_LOCK_REQUEST:
569 case TCODE_LOCK_RESPONSE:
570 p.header[3] = cond_le32_to_cpu(buffer[3]);
571 p.header_length = 16;
572 p.payload_length = p.header[3] >> 16;
573 break;
574
575 case TCODE_WRITE_RESPONSE:
576 case TCODE_READ_QUADLET_REQUEST:
577 case OHCI_TCODE_PHY_PACKET:
578 p.header_length = 12;
579 p.payload_length = 0;
580 break;
581
582 default:
583 /* FIXME: Stop context, discard everything, and restart? */
584 p.header_length = 0;
585 p.payload_length = 0;
586 }
587
588 p.payload = (void *) buffer + p.header_length;
589
590 /* FIXME: What to do about evt_* errors? */
591 length = (p.header_length + p.payload_length + 3) / 4;
592 status = cond_le32_to_cpu(buffer[length]);
593 evt = (status >> 16) & 0x1f;
594
595 p.ack = evt - 16;
596 p.speed = (status >> 21) & 0x7;
597 p.timestamp = status & 0xffff;
598 p.generation = ohci->request_generation;
599
600 log_ar_at_event('R', p.speed, p.header, evt);
601
602 /*
603 * The OHCI bus reset handler synthesizes a phy packet with
604 * the new generation number when a bus reset happens (see
605 * section 8.4.2.3). This helps us determine when a request
606 * was received and make sure we send the response in the same
607 * generation. We only need this for requests; for responses
608 * we use the unique tlabel for finding the matching
609 * request.
610 *
611 * Alas some chips sometimes emit bus reset packets with a
612 * wrong generation. We set the correct generation for these
613 * at a slightly incorrect time (in bus_reset_tasklet).
614 */
615 if (evt == OHCI1394_evt_bus_reset) {
616 if (!(ohci->quirks & QUIRK_RESET_PACKET))
617 ohci->request_generation = (p.header[2] >> 16) & 0xff;
618 } else if (ctx == &ohci->ar_request_ctx) {
619 fw_core_handle_request(&ohci->card, &p);
620 } else {
621 fw_core_handle_response(&ohci->card, &p);
622 }
623
624 return buffer + length + 1;
625 }
626
627 static void ar_context_tasklet(unsigned long data)
628 {
629 struct ar_context *ctx = (struct ar_context *)data;
630 struct fw_ohci *ohci = ctx->ohci;
631 struct ar_buffer *ab;
632 struct descriptor *d;
633 void *buffer, *end;
634
635 ab = ctx->current_buffer;
636 d = &ab->descriptor;
637
638 if (d->res_count == 0) {
639 size_t size, rest, offset;
640 dma_addr_t start_bus;
641 void *start;
642
643 /*
644 * This descriptor is finished and we may have a
645 * packet split across this and the next buffer. We
646 * reuse the page for reassembling the split packet.
647 */
648
649 offset = offsetof(struct ar_buffer, data);
650 start = buffer = ab;
651 start_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
652
653 ab = ab->next;
654 d = &ab->descriptor;
655 size = buffer + PAGE_SIZE - ctx->pointer;
656 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
657 memmove(buffer, ctx->pointer, size);
658 memcpy(buffer + size, ab->data, rest);
659 ctx->current_buffer = ab;
660 ctx->pointer = (void *) ab->data + rest;
661 end = buffer + size + rest;
662
663 while (buffer < end)
664 buffer = handle_ar_packet(ctx, buffer);
665
666 dma_free_coherent(ohci->card.device, PAGE_SIZE,
667 start, start_bus);
668 ar_context_add_page(ctx);
669 } else {
670 buffer = ctx->pointer;
671 ctx->pointer = end =
672 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
673
674 while (buffer < end)
675 buffer = handle_ar_packet(ctx, buffer);
676 }
677 }
678
679 static int ar_context_init(struct ar_context *ctx,
680 struct fw_ohci *ohci, u32 regs)
681 {
682 struct ar_buffer ab;
683
684 ctx->regs = regs;
685 ctx->ohci = ohci;
686 ctx->last_buffer = &ab;
687 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
688
689 ar_context_add_page(ctx);
690 ar_context_add_page(ctx);
691 ctx->current_buffer = ab.next;
692 ctx->pointer = ctx->current_buffer->data;
693
694 return 0;
695 }
696
697 static void ar_context_run(struct ar_context *ctx)
698 {
699 struct ar_buffer *ab = ctx->current_buffer;
700 dma_addr_t ab_bus;
701 size_t offset;
702
703 offset = offsetof(struct ar_buffer, data);
704 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
705
706 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
707 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
708 flush_writes(ctx->ohci);
709 }
710
711 static struct descriptor *find_branch_descriptor(struct descriptor *d, int z)
712 {
713 int b, key;
714
715 b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
716 key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
717
718 /* figure out which descriptor the branch address goes in */
719 if (z == 2 && (b == 3 || key == 2))
720 return d;
721 else
722 return d + z - 1;
723 }
724
725 static void context_tasklet(unsigned long data)
726 {
727 struct context *ctx = (struct context *) data;
728 struct descriptor *d, *last;
729 u32 address;
730 int z;
731 struct descriptor_buffer *desc;
732
733 desc = list_entry(ctx->buffer_list.next,
734 struct descriptor_buffer, list);
735 last = ctx->last;
736 while (last->branch_address != 0) {
737 struct descriptor_buffer *old_desc = desc;
738 address = le32_to_cpu(last->branch_address);
739 z = address & 0xf;
740 address &= ~0xf;
741
742 /* If the branch address points to a buffer outside of the
743 * current buffer, advance to the next buffer. */
744 if (address < desc->buffer_bus ||
745 address >= desc->buffer_bus + desc->used)
746 desc = list_entry(desc->list.next,
747 struct descriptor_buffer, list);
748 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
749 last = find_branch_descriptor(d, z);
750
751 if (!ctx->callback(ctx, d, last))
752 break;
753
754 if (old_desc != desc) {
755 /* If we've advanced to the next buffer, move the
756 * previous buffer to the free list. */
757 unsigned long flags;
758 old_desc->used = 0;
759 spin_lock_irqsave(&ctx->ohci->lock, flags);
760 list_move_tail(&old_desc->list, &ctx->buffer_list);
761 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
762 }
763 ctx->last = last;
764 }
765 }
766
767 /*
768 * Allocate a new buffer and add it to the list of free buffers for this
769 * context. Must be called with ohci->lock held.
770 */
771 static int context_add_buffer(struct context *ctx)
772 {
773 struct descriptor_buffer *desc;
774 dma_addr_t uninitialized_var(bus_addr);
775 int offset;
776
777 /*
778 * 16MB of descriptors should be far more than enough for any DMA
779 * program. This will catch run-away userspace or DoS attacks.
780 */
781 if (ctx->total_allocation >= 16*1024*1024)
782 return -ENOMEM;
783
784 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
785 &bus_addr, GFP_ATOMIC);
786 if (!desc)
787 return -ENOMEM;
788
789 offset = (void *)&desc->buffer - (void *)desc;
790 desc->buffer_size = PAGE_SIZE - offset;
791 desc->buffer_bus = bus_addr + offset;
792 desc->used = 0;
793
794 list_add_tail(&desc->list, &ctx->buffer_list);
795 ctx->total_allocation += PAGE_SIZE;
796
797 return 0;
798 }
799
800 static int context_init(struct context *ctx, struct fw_ohci *ohci,
801 u32 regs, descriptor_callback_t callback)
802 {
803 ctx->ohci = ohci;
804 ctx->regs = regs;
805 ctx->total_allocation = 0;
806
807 INIT_LIST_HEAD(&ctx->buffer_list);
808 if (context_add_buffer(ctx) < 0)
809 return -ENOMEM;
810
811 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
812 struct descriptor_buffer, list);
813
814 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
815 ctx->callback = callback;
816
817 /*
818 * We put a dummy descriptor in the buffer that has a NULL
819 * branch address and looks like it's been sent. That way we
820 * have a descriptor to append DMA programs to.
821 */
822 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
823 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
824 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
825 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
826 ctx->last = ctx->buffer_tail->buffer;
827 ctx->prev = ctx->buffer_tail->buffer;
828
829 return 0;
830 }
831
832 static void context_release(struct context *ctx)
833 {
834 struct fw_card *card = &ctx->ohci->card;
835 struct descriptor_buffer *desc, *tmp;
836
837 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
838 dma_free_coherent(card->device, PAGE_SIZE, desc,
839 desc->buffer_bus -
840 ((void *)&desc->buffer - (void *)desc));
841 }
842
843 /* Must be called with ohci->lock held */
844 static struct descriptor *context_get_descriptors(struct context *ctx,
845 int z, dma_addr_t *d_bus)
846 {
847 struct descriptor *d = NULL;
848 struct descriptor_buffer *desc = ctx->buffer_tail;
849
850 if (z * sizeof(*d) > desc->buffer_size)
851 return NULL;
852
853 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
854 /* No room for the descriptor in this buffer, so advance to the
855 * next one. */
856
857 if (desc->list.next == &ctx->buffer_list) {
858 /* If there is no free buffer next in the list,
859 * allocate one. */
860 if (context_add_buffer(ctx) < 0)
861 return NULL;
862 }
863 desc = list_entry(desc->list.next,
864 struct descriptor_buffer, list);
865 ctx->buffer_tail = desc;
866 }
867
868 d = desc->buffer + desc->used / sizeof(*d);
869 memset(d, 0, z * sizeof(*d));
870 *d_bus = desc->buffer_bus + desc->used;
871
872 return d;
873 }
874
875 static void context_run(struct context *ctx, u32 extra)
876 {
877 struct fw_ohci *ohci = ctx->ohci;
878
879 reg_write(ohci, COMMAND_PTR(ctx->regs),
880 le32_to_cpu(ctx->last->branch_address));
881 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
882 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
883 flush_writes(ohci);
884 }
885
886 static void context_append(struct context *ctx,
887 struct descriptor *d, int z, int extra)
888 {
889 dma_addr_t d_bus;
890 struct descriptor_buffer *desc = ctx->buffer_tail;
891
892 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
893
894 desc->used += (z + extra) * sizeof(*d);
895 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
896 ctx->prev = find_branch_descriptor(d, z);
897
898 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
899 flush_writes(ctx->ohci);
900 }
901
902 static void context_stop(struct context *ctx)
903 {
904 u32 reg;
905 int i;
906
907 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
908 flush_writes(ctx->ohci);
909
910 for (i = 0; i < 10; i++) {
911 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
912 if ((reg & CONTEXT_ACTIVE) == 0)
913 return;
914
915 mdelay(1);
916 }
917 fw_error("Error: DMA context still active (0x%08x)\n", reg);
918 }
919
920 struct driver_data {
921 struct fw_packet *packet;
922 };
923
924 /*
925 * This function apppends a packet to the DMA queue for transmission.
926 * Must always be called with the ochi->lock held to ensure proper
927 * generation handling and locking around packet queue manipulation.
928 */
929 static int at_context_queue_packet(struct context *ctx,
930 struct fw_packet *packet)
931 {
932 struct fw_ohci *ohci = ctx->ohci;
933 dma_addr_t d_bus, uninitialized_var(payload_bus);
934 struct driver_data *driver_data;
935 struct descriptor *d, *last;
936 __le32 *header;
937 int z, tcode;
938 u32 reg;
939
940 d = context_get_descriptors(ctx, 4, &d_bus);
941 if (d == NULL) {
942 packet->ack = RCODE_SEND_ERROR;
943 return -1;
944 }
945
946 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
947 d[0].res_count = cpu_to_le16(packet->timestamp);
948
949 /*
950 * The DMA format for asyncronous link packets is different
951 * from the IEEE1394 layout, so shift the fields around
952 * accordingly. If header_length is 8, it's a PHY packet, to
953 * which we need to prepend an extra quadlet.
954 */
955
956 header = (__le32 *) &d[1];
957 switch (packet->header_length) {
958 case 16:
959 case 12:
960 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
961 (packet->speed << 16));
962 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
963 (packet->header[0] & 0xffff0000));
964 header[2] = cpu_to_le32(packet->header[2]);
965
966 tcode = (packet->header[0] >> 4) & 0x0f;
967 if (TCODE_IS_BLOCK_PACKET(tcode))
968 header[3] = cpu_to_le32(packet->header[3]);
969 else
970 header[3] = (__force __le32) packet->header[3];
971
972 d[0].req_count = cpu_to_le16(packet->header_length);
973 break;
974
975 case 8:
976 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
977 (packet->speed << 16));
978 header[1] = cpu_to_le32(packet->header[0]);
979 header[2] = cpu_to_le32(packet->header[1]);
980 d[0].req_count = cpu_to_le16(12);
981 break;
982
983 case 4:
984 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
985 (packet->speed << 16));
986 header[1] = cpu_to_le32(packet->header[0] & 0xffff0000);
987 d[0].req_count = cpu_to_le16(8);
988 break;
989
990 default:
991 /* BUG(); */
992 packet->ack = RCODE_SEND_ERROR;
993 return -1;
994 }
995
996 driver_data = (struct driver_data *) &d[3];
997 driver_data->packet = packet;
998 packet->driver_data = driver_data;
999
1000 if (packet->payload_length > 0) {
1001 payload_bus =
1002 dma_map_single(ohci->card.device, packet->payload,
1003 packet->payload_length, DMA_TO_DEVICE);
1004 if (dma_mapping_error(ohci->card.device, payload_bus)) {
1005 packet->ack = RCODE_SEND_ERROR;
1006 return -1;
1007 }
1008 packet->payload_bus = payload_bus;
1009 packet->payload_mapped = true;
1010
1011 d[2].req_count = cpu_to_le16(packet->payload_length);
1012 d[2].data_address = cpu_to_le32(payload_bus);
1013 last = &d[2];
1014 z = 3;
1015 } else {
1016 last = &d[0];
1017 z = 2;
1018 }
1019
1020 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1021 DESCRIPTOR_IRQ_ALWAYS |
1022 DESCRIPTOR_BRANCH_ALWAYS);
1023
1024 /*
1025 * If the controller and packet generations don't match, we need to
1026 * bail out and try again. If IntEvent.busReset is set, the AT context
1027 * is halted, so appending to the context and trying to run it is
1028 * futile. Most controllers do the right thing and just flush the AT
1029 * queue (per section 7.2.3.2 of the OHCI 1.1 specification), but
1030 * some controllers (like a JMicron JMB381 PCI-e) misbehave and wind
1031 * up stalling out. So we just bail out in software and try again
1032 * later, and everyone is happy.
1033 * FIXME: Document how the locking works.
1034 */
1035 if (ohci->generation != packet->generation ||
1036 reg_read(ohci, OHCI1394_IntEventSet) & OHCI1394_busReset) {
1037 if (packet->payload_mapped)
1038 dma_unmap_single(ohci->card.device, payload_bus,
1039 packet->payload_length, DMA_TO_DEVICE);
1040 packet->ack = RCODE_GENERATION;
1041 return -1;
1042 }
1043
1044 context_append(ctx, d, z, 4 - z);
1045
1046 /* If the context isn't already running, start it up. */
1047 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
1048 if ((reg & CONTEXT_RUN) == 0)
1049 context_run(ctx, 0);
1050
1051 return 0;
1052 }
1053
1054 static int handle_at_packet(struct context *context,
1055 struct descriptor *d,
1056 struct descriptor *last)
1057 {
1058 struct driver_data *driver_data;
1059 struct fw_packet *packet;
1060 struct fw_ohci *ohci = context->ohci;
1061 int evt;
1062
1063 if (last->transfer_status == 0)
1064 /* This descriptor isn't done yet, stop iteration. */
1065 return 0;
1066
1067 driver_data = (struct driver_data *) &d[3];
1068 packet = driver_data->packet;
1069 if (packet == NULL)
1070 /* This packet was cancelled, just continue. */
1071 return 1;
1072
1073 if (packet->payload_mapped)
1074 dma_unmap_single(ohci->card.device, packet->payload_bus,
1075 packet->payload_length, DMA_TO_DEVICE);
1076
1077 evt = le16_to_cpu(last->transfer_status) & 0x1f;
1078 packet->timestamp = le16_to_cpu(last->res_count);
1079
1080 log_ar_at_event('T', packet->speed, packet->header, evt);
1081
1082 switch (evt) {
1083 case OHCI1394_evt_timeout:
1084 /* Async response transmit timed out. */
1085 packet->ack = RCODE_CANCELLED;
1086 break;
1087
1088 case OHCI1394_evt_flushed:
1089 /*
1090 * The packet was flushed should give same error as
1091 * when we try to use a stale generation count.
1092 */
1093 packet->ack = RCODE_GENERATION;
1094 break;
1095
1096 case OHCI1394_evt_missing_ack:
1097 /*
1098 * Using a valid (current) generation count, but the
1099 * node is not on the bus or not sending acks.
1100 */
1101 packet->ack = RCODE_NO_ACK;
1102 break;
1103
1104 case ACK_COMPLETE + 0x10:
1105 case ACK_PENDING + 0x10:
1106 case ACK_BUSY_X + 0x10:
1107 case ACK_BUSY_A + 0x10:
1108 case ACK_BUSY_B + 0x10:
1109 case ACK_DATA_ERROR + 0x10:
1110 case ACK_TYPE_ERROR + 0x10:
1111 packet->ack = evt - 0x10;
1112 break;
1113
1114 default:
1115 packet->ack = RCODE_SEND_ERROR;
1116 break;
1117 }
1118
1119 packet->callback(packet, &ohci->card, packet->ack);
1120
1121 return 1;
1122 }
1123
1124 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
1125 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
1126 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
1127 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
1128 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
1129
1130 static void handle_local_rom(struct fw_ohci *ohci,
1131 struct fw_packet *packet, u32 csr)
1132 {
1133 struct fw_packet response;
1134 int tcode, length, i;
1135
1136 tcode = HEADER_GET_TCODE(packet->header[0]);
1137 if (TCODE_IS_BLOCK_PACKET(tcode))
1138 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1139 else
1140 length = 4;
1141
1142 i = csr - CSR_CONFIG_ROM;
1143 if (i + length > CONFIG_ROM_SIZE) {
1144 fw_fill_response(&response, packet->header,
1145 RCODE_ADDRESS_ERROR, NULL, 0);
1146 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
1147 fw_fill_response(&response, packet->header,
1148 RCODE_TYPE_ERROR, NULL, 0);
1149 } else {
1150 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
1151 (void *) ohci->config_rom + i, length);
1152 }
1153
1154 fw_core_handle_response(&ohci->card, &response);
1155 }
1156
1157 static void handle_local_lock(struct fw_ohci *ohci,
1158 struct fw_packet *packet, u32 csr)
1159 {
1160 struct fw_packet response;
1161 int tcode, length, ext_tcode, sel, try;
1162 __be32 *payload, lock_old;
1163 u32 lock_arg, lock_data;
1164
1165 tcode = HEADER_GET_TCODE(packet->header[0]);
1166 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
1167 payload = packet->payload;
1168 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
1169
1170 if (tcode == TCODE_LOCK_REQUEST &&
1171 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
1172 lock_arg = be32_to_cpu(payload[0]);
1173 lock_data = be32_to_cpu(payload[1]);
1174 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
1175 lock_arg = 0;
1176 lock_data = 0;
1177 } else {
1178 fw_fill_response(&response, packet->header,
1179 RCODE_TYPE_ERROR, NULL, 0);
1180 goto out;
1181 }
1182
1183 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
1184 reg_write(ohci, OHCI1394_CSRData, lock_data);
1185 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
1186 reg_write(ohci, OHCI1394_CSRControl, sel);
1187
1188 for (try = 0; try < 20; try++)
1189 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000) {
1190 lock_old = cpu_to_be32(reg_read(ohci,
1191 OHCI1394_CSRData));
1192 fw_fill_response(&response, packet->header,
1193 RCODE_COMPLETE,
1194 &lock_old, sizeof(lock_old));
1195 goto out;
1196 }
1197
1198 fw_error("swap not done (CSR lock timeout)\n");
1199 fw_fill_response(&response, packet->header, RCODE_BUSY, NULL, 0);
1200
1201 out:
1202 fw_core_handle_response(&ohci->card, &response);
1203 }
1204
1205 static void handle_local_request(struct context *ctx, struct fw_packet *packet)
1206 {
1207 u64 offset, csr;
1208
1209 if (ctx == &ctx->ohci->at_request_ctx) {
1210 packet->ack = ACK_PENDING;
1211 packet->callback(packet, &ctx->ohci->card, packet->ack);
1212 }
1213
1214 offset =
1215 ((unsigned long long)
1216 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
1217 packet->header[2];
1218 csr = offset - CSR_REGISTER_BASE;
1219
1220 /* Handle config rom reads. */
1221 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
1222 handle_local_rom(ctx->ohci, packet, csr);
1223 else switch (csr) {
1224 case CSR_BUS_MANAGER_ID:
1225 case CSR_BANDWIDTH_AVAILABLE:
1226 case CSR_CHANNELS_AVAILABLE_HI:
1227 case CSR_CHANNELS_AVAILABLE_LO:
1228 handle_local_lock(ctx->ohci, packet, csr);
1229 break;
1230 default:
1231 if (ctx == &ctx->ohci->at_request_ctx)
1232 fw_core_handle_request(&ctx->ohci->card, packet);
1233 else
1234 fw_core_handle_response(&ctx->ohci->card, packet);
1235 break;
1236 }
1237
1238 if (ctx == &ctx->ohci->at_response_ctx) {
1239 packet->ack = ACK_COMPLETE;
1240 packet->callback(packet, &ctx->ohci->card, packet->ack);
1241 }
1242 }
1243
1244 static void at_context_transmit(struct context *ctx, struct fw_packet *packet)
1245 {
1246 unsigned long flags;
1247 int ret;
1248
1249 spin_lock_irqsave(&ctx->ohci->lock, flags);
1250
1251 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
1252 ctx->ohci->generation == packet->generation) {
1253 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1254 handle_local_request(ctx, packet);
1255 return;
1256 }
1257
1258 ret = at_context_queue_packet(ctx, packet);
1259 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
1260
1261 if (ret < 0)
1262 packet->callback(packet, &ctx->ohci->card, packet->ack);
1263
1264 }
1265
1266 static void bus_reset_tasklet(unsigned long data)
1267 {
1268 struct fw_ohci *ohci = (struct fw_ohci *)data;
1269 int self_id_count, i, j, reg;
1270 int generation, new_generation;
1271 unsigned long flags;
1272 void *free_rom = NULL;
1273 dma_addr_t free_rom_bus = 0;
1274
1275 reg = reg_read(ohci, OHCI1394_NodeID);
1276 if (!(reg & OHCI1394_NodeID_idValid)) {
1277 fw_notify("node ID not valid, new bus reset in progress\n");
1278 return;
1279 }
1280 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1281 fw_notify("malconfigured bus\n");
1282 return;
1283 }
1284 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1285 OHCI1394_NodeID_nodeNumber);
1286
1287 reg = reg_read(ohci, OHCI1394_SelfIDCount);
1288 if (reg & OHCI1394_SelfIDCount_selfIDError) {
1289 fw_notify("inconsistent self IDs\n");
1290 return;
1291 }
1292 /*
1293 * The count in the SelfIDCount register is the number of
1294 * bytes in the self ID receive buffer. Since we also receive
1295 * the inverted quadlets and a header quadlet, we shift one
1296 * bit extra to get the actual number of self IDs.
1297 */
1298 self_id_count = (reg >> 3) & 0xff;
1299 if (self_id_count == 0 || self_id_count > 252) {
1300 fw_notify("inconsistent self IDs\n");
1301 return;
1302 }
1303 generation = (cond_le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1304 rmb();
1305
1306 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1307 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1]) {
1308 fw_notify("inconsistent self IDs\n");
1309 return;
1310 }
1311 ohci->self_id_buffer[j] =
1312 cond_le32_to_cpu(ohci->self_id_cpu[i]);
1313 }
1314 rmb();
1315
1316 /*
1317 * Check the consistency of the self IDs we just read. The
1318 * problem we face is that a new bus reset can start while we
1319 * read out the self IDs from the DMA buffer. If this happens,
1320 * the DMA buffer will be overwritten with new self IDs and we
1321 * will read out inconsistent data. The OHCI specification
1322 * (section 11.2) recommends a technique similar to
1323 * linux/seqlock.h, where we remember the generation of the
1324 * self IDs in the buffer before reading them out and compare
1325 * it to the current generation after reading them out. If
1326 * the two generations match we know we have a consistent set
1327 * of self IDs.
1328 */
1329
1330 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1331 if (new_generation != generation) {
1332 fw_notify("recursive bus reset detected, "
1333 "discarding self ids\n");
1334 return;
1335 }
1336
1337 /* FIXME: Document how the locking works. */
1338 spin_lock_irqsave(&ohci->lock, flags);
1339
1340 ohci->generation = generation;
1341 context_stop(&ohci->at_request_ctx);
1342 context_stop(&ohci->at_response_ctx);
1343 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1344
1345 if (ohci->quirks & QUIRK_RESET_PACKET)
1346 ohci->request_generation = generation;
1347
1348 /*
1349 * This next bit is unrelated to the AT context stuff but we
1350 * have to do it under the spinlock also. If a new config rom
1351 * was set up before this reset, the old one is now no longer
1352 * in use and we can free it. Update the config rom pointers
1353 * to point to the current config rom and clear the
1354 * next_config_rom pointer so a new update can take place.
1355 */
1356
1357 if (ohci->next_config_rom != NULL) {
1358 if (ohci->next_config_rom != ohci->config_rom) {
1359 free_rom = ohci->config_rom;
1360 free_rom_bus = ohci->config_rom_bus;
1361 }
1362 ohci->config_rom = ohci->next_config_rom;
1363 ohci->config_rom_bus = ohci->next_config_rom_bus;
1364 ohci->next_config_rom = NULL;
1365
1366 /*
1367 * Restore config_rom image and manually update
1368 * config_rom registers. Writing the header quadlet
1369 * will indicate that the config rom is ready, so we
1370 * do that last.
1371 */
1372 reg_write(ohci, OHCI1394_BusOptions,
1373 be32_to_cpu(ohci->config_rom[2]));
1374 ohci->config_rom[0] = ohci->next_header;
1375 reg_write(ohci, OHCI1394_ConfigROMhdr,
1376 be32_to_cpu(ohci->next_header));
1377 }
1378
1379 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1380 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, ~0);
1381 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, ~0);
1382 #endif
1383
1384 spin_unlock_irqrestore(&ohci->lock, flags);
1385
1386 if (free_rom)
1387 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1388 free_rom, free_rom_bus);
1389
1390 log_selfids(ohci->node_id, generation,
1391 self_id_count, ohci->self_id_buffer);
1392
1393 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1394 self_id_count, ohci->self_id_buffer);
1395 }
1396
1397 static irqreturn_t irq_handler(int irq, void *data)
1398 {
1399 struct fw_ohci *ohci = data;
1400 u32 event, iso_event;
1401 int i;
1402
1403 event = reg_read(ohci, OHCI1394_IntEventClear);
1404
1405 if (!event || !~event)
1406 return IRQ_NONE;
1407
1408 /* busReset must not be cleared yet, see OHCI 1.1 clause 7.2.3.2 */
1409 reg_write(ohci, OHCI1394_IntEventClear, event & ~OHCI1394_busReset);
1410 log_irqs(event);
1411
1412 if (event & OHCI1394_selfIDComplete)
1413 tasklet_schedule(&ohci->bus_reset_tasklet);
1414
1415 if (event & OHCI1394_RQPkt)
1416 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1417
1418 if (event & OHCI1394_RSPkt)
1419 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1420
1421 if (event & OHCI1394_reqTxComplete)
1422 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1423
1424 if (event & OHCI1394_respTxComplete)
1425 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1426
1427 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1428 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1429
1430 while (iso_event) {
1431 i = ffs(iso_event) - 1;
1432 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1433 iso_event &= ~(1 << i);
1434 }
1435
1436 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1437 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1438
1439 while (iso_event) {
1440 i = ffs(iso_event) - 1;
1441 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1442 iso_event &= ~(1 << i);
1443 }
1444
1445 if (unlikely(event & OHCI1394_regAccessFail))
1446 fw_error("Register access failure - "
1447 "please notify linux1394-devel@lists.sf.net\n");
1448
1449 if (unlikely(event & OHCI1394_postedWriteErr))
1450 fw_error("PCI posted write error\n");
1451
1452 if (unlikely(event & OHCI1394_cycleTooLong)) {
1453 if (printk_ratelimit())
1454 fw_notify("isochronous cycle too long\n");
1455 reg_write(ohci, OHCI1394_LinkControlSet,
1456 OHCI1394_LinkControl_cycleMaster);
1457 }
1458
1459 if (unlikely(event & OHCI1394_cycleInconsistent)) {
1460 /*
1461 * We need to clear this event bit in order to make
1462 * cycleMatch isochronous I/O work. In theory we should
1463 * stop active cycleMatch iso contexts now and restart
1464 * them at least two cycles later. (FIXME?)
1465 */
1466 if (printk_ratelimit())
1467 fw_notify("isochronous cycle inconsistent\n");
1468 }
1469
1470 return IRQ_HANDLED;
1471 }
1472
1473 static int software_reset(struct fw_ohci *ohci)
1474 {
1475 int i;
1476
1477 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1478
1479 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1480 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1481 OHCI1394_HCControl_softReset) == 0)
1482 return 0;
1483 msleep(1);
1484 }
1485
1486 return -EBUSY;
1487 }
1488
1489 static void copy_config_rom(__be32 *dest, const __be32 *src, size_t length)
1490 {
1491 size_t size = length * 4;
1492
1493 memcpy(dest, src, size);
1494 if (size < CONFIG_ROM_SIZE)
1495 memset(&dest[length], 0, CONFIG_ROM_SIZE - size);
1496 }
1497
1498 static int ohci_enable(struct fw_card *card,
1499 const __be32 *config_rom, size_t length)
1500 {
1501 struct fw_ohci *ohci = fw_ohci(card);
1502 struct pci_dev *dev = to_pci_dev(card->device);
1503 u32 lps;
1504 int i;
1505
1506 if (software_reset(ohci)) {
1507 fw_error("Failed to reset ohci card.\n");
1508 return -EBUSY;
1509 }
1510
1511 /*
1512 * Now enable LPS, which we need in order to start accessing
1513 * most of the registers. In fact, on some cards (ALI M5251),
1514 * accessing registers in the SClk domain without LPS enabled
1515 * will lock up the machine. Wait 50msec to make sure we have
1516 * full link enabled. However, with some cards (well, at least
1517 * a JMicron PCIe card), we have to try again sometimes.
1518 */
1519 reg_write(ohci, OHCI1394_HCControlSet,
1520 OHCI1394_HCControl_LPS |
1521 OHCI1394_HCControl_postedWriteEnable);
1522 flush_writes(ohci);
1523
1524 for (lps = 0, i = 0; !lps && i < 3; i++) {
1525 msleep(50);
1526 lps = reg_read(ohci, OHCI1394_HCControlSet) &
1527 OHCI1394_HCControl_LPS;
1528 }
1529
1530 if (!lps) {
1531 fw_error("Failed to set Link Power Status\n");
1532 return -EIO;
1533 }
1534
1535 reg_write(ohci, OHCI1394_HCControlClear,
1536 OHCI1394_HCControl_noByteSwapData);
1537
1538 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1539 reg_write(ohci, OHCI1394_LinkControlClear,
1540 OHCI1394_LinkControl_rcvPhyPkt);
1541 reg_write(ohci, OHCI1394_LinkControlSet,
1542 OHCI1394_LinkControl_rcvSelfID |
1543 OHCI1394_LinkControl_cycleTimerEnable |
1544 OHCI1394_LinkControl_cycleMaster);
1545
1546 reg_write(ohci, OHCI1394_ATRetries,
1547 OHCI1394_MAX_AT_REQ_RETRIES |
1548 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1549 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1550
1551 ar_context_run(&ohci->ar_request_ctx);
1552 ar_context_run(&ohci->ar_response_ctx);
1553
1554 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1555 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1556 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1557 reg_write(ohci, OHCI1394_IntMaskSet,
1558 OHCI1394_selfIDComplete |
1559 OHCI1394_RQPkt | OHCI1394_RSPkt |
1560 OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1561 OHCI1394_isochRx | OHCI1394_isochTx |
1562 OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1563 OHCI1394_cycleInconsistent | OHCI1394_regAccessFail |
1564 OHCI1394_masterIntEnable);
1565 if (param_debug & OHCI_PARAM_DEBUG_BUSRESETS)
1566 reg_write(ohci, OHCI1394_IntMaskSet, OHCI1394_busReset);
1567
1568 /* Activate link_on bit and contender bit in our self ID packets.*/
1569 if (ohci_update_phy_reg(card, 4, 0,
1570 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1571 return -EIO;
1572
1573 /*
1574 * When the link is not yet enabled, the atomic config rom
1575 * update mechanism described below in ohci_set_config_rom()
1576 * is not active. We have to update ConfigRomHeader and
1577 * BusOptions manually, and the write to ConfigROMmap takes
1578 * effect immediately. We tie this to the enabling of the
1579 * link, so we have a valid config rom before enabling - the
1580 * OHCI requires that ConfigROMhdr and BusOptions have valid
1581 * values before enabling.
1582 *
1583 * However, when the ConfigROMmap is written, some controllers
1584 * always read back quadlets 0 and 2 from the config rom to
1585 * the ConfigRomHeader and BusOptions registers on bus reset.
1586 * They shouldn't do that in this initial case where the link
1587 * isn't enabled. This means we have to use the same
1588 * workaround here, setting the bus header to 0 and then write
1589 * the right values in the bus reset tasklet.
1590 */
1591
1592 if (config_rom) {
1593 ohci->next_config_rom =
1594 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1595 &ohci->next_config_rom_bus,
1596 GFP_KERNEL);
1597 if (ohci->next_config_rom == NULL)
1598 return -ENOMEM;
1599
1600 copy_config_rom(ohci->next_config_rom, config_rom, length);
1601 } else {
1602 /*
1603 * In the suspend case, config_rom is NULL, which
1604 * means that we just reuse the old config rom.
1605 */
1606 ohci->next_config_rom = ohci->config_rom;
1607 ohci->next_config_rom_bus = ohci->config_rom_bus;
1608 }
1609
1610 ohci->next_header = ohci->next_config_rom[0];
1611 ohci->next_config_rom[0] = 0;
1612 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1613 reg_write(ohci, OHCI1394_BusOptions,
1614 be32_to_cpu(ohci->next_config_rom[2]));
1615 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1616
1617 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1618
1619 if (request_irq(dev->irq, irq_handler,
1620 IRQF_SHARED, ohci_driver_name, ohci)) {
1621 fw_error("Failed to allocate shared interrupt %d.\n",
1622 dev->irq);
1623 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1624 ohci->config_rom, ohci->config_rom_bus);
1625 return -EIO;
1626 }
1627
1628 reg_write(ohci, OHCI1394_HCControlSet,
1629 OHCI1394_HCControl_linkEnable |
1630 OHCI1394_HCControl_BIBimageValid);
1631 flush_writes(ohci);
1632
1633 /*
1634 * We are ready to go, initiate bus reset to finish the
1635 * initialization.
1636 */
1637
1638 fw_core_initiate_bus_reset(&ohci->card, 1);
1639
1640 return 0;
1641 }
1642
1643 static int ohci_set_config_rom(struct fw_card *card,
1644 const __be32 *config_rom, size_t length)
1645 {
1646 struct fw_ohci *ohci;
1647 unsigned long flags;
1648 int ret = -EBUSY;
1649 __be32 *next_config_rom;
1650 dma_addr_t uninitialized_var(next_config_rom_bus);
1651
1652 ohci = fw_ohci(card);
1653
1654 /*
1655 * When the OHCI controller is enabled, the config rom update
1656 * mechanism is a bit tricky, but easy enough to use. See
1657 * section 5.5.6 in the OHCI specification.
1658 *
1659 * The OHCI controller caches the new config rom address in a
1660 * shadow register (ConfigROMmapNext) and needs a bus reset
1661 * for the changes to take place. When the bus reset is
1662 * detected, the controller loads the new values for the
1663 * ConfigRomHeader and BusOptions registers from the specified
1664 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1665 * shadow register. All automatically and atomically.
1666 *
1667 * Now, there's a twist to this story. The automatic load of
1668 * ConfigRomHeader and BusOptions doesn't honor the
1669 * noByteSwapData bit, so with a be32 config rom, the
1670 * controller will load be32 values in to these registers
1671 * during the atomic update, even on litte endian
1672 * architectures. The workaround we use is to put a 0 in the
1673 * header quadlet; 0 is endian agnostic and means that the
1674 * config rom isn't ready yet. In the bus reset tasklet we
1675 * then set up the real values for the two registers.
1676 *
1677 * We use ohci->lock to avoid racing with the code that sets
1678 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1679 */
1680
1681 next_config_rom =
1682 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1683 &next_config_rom_bus, GFP_KERNEL);
1684 if (next_config_rom == NULL)
1685 return -ENOMEM;
1686
1687 spin_lock_irqsave(&ohci->lock, flags);
1688
1689 if (ohci->next_config_rom == NULL) {
1690 ohci->next_config_rom = next_config_rom;
1691 ohci->next_config_rom_bus = next_config_rom_bus;
1692
1693 copy_config_rom(ohci->next_config_rom, config_rom, length);
1694
1695 ohci->next_header = config_rom[0];
1696 ohci->next_config_rom[0] = 0;
1697
1698 reg_write(ohci, OHCI1394_ConfigROMmap,
1699 ohci->next_config_rom_bus);
1700 ret = 0;
1701 }
1702
1703 spin_unlock_irqrestore(&ohci->lock, flags);
1704
1705 /*
1706 * Now initiate a bus reset to have the changes take
1707 * effect. We clean up the old config rom memory and DMA
1708 * mappings in the bus reset tasklet, since the OHCI
1709 * controller could need to access it before the bus reset
1710 * takes effect.
1711 */
1712 if (ret == 0)
1713 fw_core_initiate_bus_reset(&ohci->card, 1);
1714 else
1715 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1716 next_config_rom, next_config_rom_bus);
1717
1718 return ret;
1719 }
1720
1721 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1722 {
1723 struct fw_ohci *ohci = fw_ohci(card);
1724
1725 at_context_transmit(&ohci->at_request_ctx, packet);
1726 }
1727
1728 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1729 {
1730 struct fw_ohci *ohci = fw_ohci(card);
1731
1732 at_context_transmit(&ohci->at_response_ctx, packet);
1733 }
1734
1735 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1736 {
1737 struct fw_ohci *ohci = fw_ohci(card);
1738 struct context *ctx = &ohci->at_request_ctx;
1739 struct driver_data *driver_data = packet->driver_data;
1740 int ret = -ENOENT;
1741
1742 tasklet_disable(&ctx->tasklet);
1743
1744 if (packet->ack != 0)
1745 goto out;
1746
1747 if (packet->payload_mapped)
1748 dma_unmap_single(ohci->card.device, packet->payload_bus,
1749 packet->payload_length, DMA_TO_DEVICE);
1750
1751 log_ar_at_event('T', packet->speed, packet->header, 0x20);
1752 driver_data->packet = NULL;
1753 packet->ack = RCODE_CANCELLED;
1754 packet->callback(packet, &ohci->card, packet->ack);
1755 ret = 0;
1756 out:
1757 tasklet_enable(&ctx->tasklet);
1758
1759 return ret;
1760 }
1761
1762 static int ohci_enable_phys_dma(struct fw_card *card,
1763 int node_id, int generation)
1764 {
1765 #ifdef CONFIG_FIREWIRE_OHCI_REMOTE_DMA
1766 return 0;
1767 #else
1768 struct fw_ohci *ohci = fw_ohci(card);
1769 unsigned long flags;
1770 int n, ret = 0;
1771
1772 /*
1773 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1774 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1775 */
1776
1777 spin_lock_irqsave(&ohci->lock, flags);
1778
1779 if (ohci->generation != generation) {
1780 ret = -ESTALE;
1781 goto out;
1782 }
1783
1784 /*
1785 * Note, if the node ID contains a non-local bus ID, physical DMA is
1786 * enabled for _all_ nodes on remote buses.
1787 */
1788
1789 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1790 if (n < 32)
1791 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1792 else
1793 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1794
1795 flush_writes(ohci);
1796 out:
1797 spin_unlock_irqrestore(&ohci->lock, flags);
1798
1799 return ret;
1800 #endif /* CONFIG_FIREWIRE_OHCI_REMOTE_DMA */
1801 }
1802
1803 static u32 cycle_timer_ticks(u32 cycle_timer)
1804 {
1805 u32 ticks;
1806
1807 ticks = cycle_timer & 0xfff;
1808 ticks += 3072 * ((cycle_timer >> 12) & 0x1fff);
1809 ticks += (3072 * 8000) * (cycle_timer >> 25);
1810
1811 return ticks;
1812 }
1813
1814 /*
1815 * Some controllers exhibit one or more of the following bugs when updating the
1816 * iso cycle timer register:
1817 * - When the lowest six bits are wrapping around to zero, a read that happens
1818 * at the same time will return garbage in the lowest ten bits.
1819 * - When the cycleOffset field wraps around to zero, the cycleCount field is
1820 * not incremented for about 60 ns.
1821 * - Occasionally, the entire register reads zero.
1822 *
1823 * To catch these, we read the register three times and ensure that the
1824 * difference between each two consecutive reads is approximately the same, i.e.
1825 * less than twice the other. Furthermore, any negative difference indicates an
1826 * error. (A PCI read should take at least 20 ticks of the 24.576 MHz timer to
1827 * execute, so we have enough precision to compute the ratio of the differences.)
1828 */
1829 static u32 ohci_get_cycle_time(struct fw_card *card)
1830 {
1831 struct fw_ohci *ohci = fw_ohci(card);
1832 u32 c0, c1, c2;
1833 u32 t0, t1, t2;
1834 s32 diff01, diff12;
1835 int i;
1836
1837 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1838
1839 if (ohci->quirks & QUIRK_CYCLE_TIMER) {
1840 i = 0;
1841 c1 = c2;
1842 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1843 do {
1844 c0 = c1;
1845 c1 = c2;
1846 c2 = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1847 t0 = cycle_timer_ticks(c0);
1848 t1 = cycle_timer_ticks(c1);
1849 t2 = cycle_timer_ticks(c2);
1850 diff01 = t1 - t0;
1851 diff12 = t2 - t1;
1852 } while ((diff01 <= 0 || diff12 <= 0 ||
1853 diff01 / diff12 >= 2 || diff12 / diff01 >= 2)
1854 && i++ < 20);
1855 }
1856
1857 return c2;
1858 }
1859
1860 static void copy_iso_headers(struct iso_context *ctx, void *p)
1861 {
1862 int i = ctx->header_length;
1863
1864 if (i + ctx->base.header_size > PAGE_SIZE)
1865 return;
1866
1867 /*
1868 * The iso header is byteswapped to little endian by
1869 * the controller, but the remaining header quadlets
1870 * are big endian. We want to present all the headers
1871 * as big endian, so we have to swap the first quadlet.
1872 */
1873 if (ctx->base.header_size > 0)
1874 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1875 if (ctx->base.header_size > 4)
1876 *(u32 *) (ctx->header + i + 4) = __swab32(*(u32 *) p);
1877 if (ctx->base.header_size > 8)
1878 memcpy(ctx->header + i + 8, p + 8, ctx->base.header_size - 8);
1879 ctx->header_length += ctx->base.header_size;
1880 }
1881
1882 static int handle_ir_packet_per_buffer(struct context *context,
1883 struct descriptor *d,
1884 struct descriptor *last)
1885 {
1886 struct iso_context *ctx =
1887 container_of(context, struct iso_context, context);
1888 struct descriptor *pd;
1889 __le32 *ir_header;
1890 void *p;
1891
1892 for (pd = d; pd <= last; pd++) {
1893 if (pd->transfer_status)
1894 break;
1895 }
1896 if (pd > last)
1897 /* Descriptor(s) not done yet, stop iteration */
1898 return 0;
1899
1900 p = last + 1;
1901 copy_iso_headers(ctx, p);
1902
1903 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1904 ir_header = (__le32 *) p;
1905 ctx->base.callback(&ctx->base,
1906 le32_to_cpu(ir_header[0]) & 0xffff,
1907 ctx->header_length, ctx->header,
1908 ctx->base.callback_data);
1909 ctx->header_length = 0;
1910 }
1911
1912 return 1;
1913 }
1914
1915 static int handle_it_packet(struct context *context,
1916 struct descriptor *d,
1917 struct descriptor *last)
1918 {
1919 struct iso_context *ctx =
1920 container_of(context, struct iso_context, context);
1921 int i;
1922 struct descriptor *pd;
1923
1924 for (pd = d; pd <= last; pd++)
1925 if (pd->transfer_status)
1926 break;
1927 if (pd > last)
1928 /* Descriptor(s) not done yet, stop iteration */
1929 return 0;
1930
1931 i = ctx->header_length;
1932 if (i + 4 < PAGE_SIZE) {
1933 /* Present this value as big-endian to match the receive code */
1934 *(__be32 *)(ctx->header + i) = cpu_to_be32(
1935 ((u32)le16_to_cpu(pd->transfer_status) << 16) |
1936 le16_to_cpu(pd->res_count));
1937 ctx->header_length += 4;
1938 }
1939 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1940 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1941 ctx->header_length, ctx->header,
1942 ctx->base.callback_data);
1943 ctx->header_length = 0;
1944 }
1945 return 1;
1946 }
1947
1948 static struct fw_iso_context *ohci_allocate_iso_context(struct fw_card *card,
1949 int type, int channel, size_t header_size)
1950 {
1951 struct fw_ohci *ohci = fw_ohci(card);
1952 struct iso_context *ctx, *list;
1953 descriptor_callback_t callback;
1954 u64 *channels, dont_care = ~0ULL;
1955 u32 *mask, regs;
1956 unsigned long flags;
1957 int index, ret = -ENOMEM;
1958
1959 if (type == FW_ISO_CONTEXT_TRANSMIT) {
1960 channels = &dont_care;
1961 mask = &ohci->it_context_mask;
1962 list = ohci->it_context_list;
1963 callback = handle_it_packet;
1964 } else {
1965 channels = &ohci->ir_context_channels;
1966 mask = &ohci->ir_context_mask;
1967 list = ohci->ir_context_list;
1968 callback = handle_ir_packet_per_buffer;
1969 }
1970
1971 spin_lock_irqsave(&ohci->lock, flags);
1972 index = *channels & 1ULL << channel ? ffs(*mask) - 1 : -1;
1973 if (index >= 0) {
1974 *channels &= ~(1ULL << channel);
1975 *mask &= ~(1 << index);
1976 }
1977 spin_unlock_irqrestore(&ohci->lock, flags);
1978
1979 if (index < 0)
1980 return ERR_PTR(-EBUSY);
1981
1982 if (type == FW_ISO_CONTEXT_TRANSMIT)
1983 regs = OHCI1394_IsoXmitContextBase(index);
1984 else
1985 regs = OHCI1394_IsoRcvContextBase(index);
1986
1987 ctx = &list[index];
1988 memset(ctx, 0, sizeof(*ctx));
1989 ctx->header_length = 0;
1990 ctx->header = (void *) __get_free_page(GFP_KERNEL);
1991 if (ctx->header == NULL)
1992 goto out;
1993
1994 ret = context_init(&ctx->context, ohci, regs, callback);
1995 if (ret < 0)
1996 goto out_with_header;
1997
1998 return &ctx->base;
1999
2000 out_with_header:
2001 free_page((unsigned long)ctx->header);
2002 out:
2003 spin_lock_irqsave(&ohci->lock, flags);
2004 *mask |= 1 << index;
2005 spin_unlock_irqrestore(&ohci->lock, flags);
2006
2007 return ERR_PTR(ret);
2008 }
2009
2010 static int ohci_start_iso(struct fw_iso_context *base,
2011 s32 cycle, u32 sync, u32 tags)
2012 {
2013 struct iso_context *ctx = container_of(base, struct iso_context, base);
2014 struct fw_ohci *ohci = ctx->context.ohci;
2015 u32 control, match;
2016 int index;
2017
2018 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2019 index = ctx - ohci->it_context_list;
2020 match = 0;
2021 if (cycle >= 0)
2022 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
2023 (cycle & 0x7fff) << 16;
2024
2025 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
2026 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
2027 context_run(&ctx->context, match);
2028 } else {
2029 index = ctx - ohci->ir_context_list;
2030 control = IR_CONTEXT_ISOCH_HEADER;
2031 match = (tags << 28) | (sync << 8) | ctx->base.channel;
2032 if (cycle >= 0) {
2033 match |= (cycle & 0x07fff) << 12;
2034 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
2035 }
2036
2037 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
2038 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
2039 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
2040 context_run(&ctx->context, control);
2041 }
2042
2043 return 0;
2044 }
2045
2046 static int ohci_stop_iso(struct fw_iso_context *base)
2047 {
2048 struct fw_ohci *ohci = fw_ohci(base->card);
2049 struct iso_context *ctx = container_of(base, struct iso_context, base);
2050 int index;
2051
2052 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2053 index = ctx - ohci->it_context_list;
2054 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
2055 } else {
2056 index = ctx - ohci->ir_context_list;
2057 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
2058 }
2059 flush_writes(ohci);
2060 context_stop(&ctx->context);
2061
2062 return 0;
2063 }
2064
2065 static void ohci_free_iso_context(struct fw_iso_context *base)
2066 {
2067 struct fw_ohci *ohci = fw_ohci(base->card);
2068 struct iso_context *ctx = container_of(base, struct iso_context, base);
2069 unsigned long flags;
2070 int index;
2071
2072 ohci_stop_iso(base);
2073 context_release(&ctx->context);
2074 free_page((unsigned long)ctx->header);
2075
2076 spin_lock_irqsave(&ohci->lock, flags);
2077
2078 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
2079 index = ctx - ohci->it_context_list;
2080 ohci->it_context_mask |= 1 << index;
2081 } else {
2082 index = ctx - ohci->ir_context_list;
2083 ohci->ir_context_mask |= 1 << index;
2084 ohci->ir_context_channels |= 1ULL << base->channel;
2085 }
2086
2087 spin_unlock_irqrestore(&ohci->lock, flags);
2088 }
2089
2090 static int ohci_queue_iso_transmit(struct fw_iso_context *base,
2091 struct fw_iso_packet *packet,
2092 struct fw_iso_buffer *buffer,
2093 unsigned long payload)
2094 {
2095 struct iso_context *ctx = container_of(base, struct iso_context, base);
2096 struct descriptor *d, *last, *pd;
2097 struct fw_iso_packet *p;
2098 __le32 *header;
2099 dma_addr_t d_bus, page_bus;
2100 u32 z, header_z, payload_z, irq;
2101 u32 payload_index, payload_end_index, next_page_index;
2102 int page, end_page, i, length, offset;
2103
2104 p = packet;
2105 payload_index = payload;
2106
2107 if (p->skip)
2108 z = 1;
2109 else
2110 z = 2;
2111 if (p->header_length > 0)
2112 z++;
2113
2114 /* Determine the first page the payload isn't contained in. */
2115 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
2116 if (p->payload_length > 0)
2117 payload_z = end_page - (payload_index >> PAGE_SHIFT);
2118 else
2119 payload_z = 0;
2120
2121 z += payload_z;
2122
2123 /* Get header size in number of descriptors. */
2124 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
2125
2126 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
2127 if (d == NULL)
2128 return -ENOMEM;
2129
2130 if (!p->skip) {
2131 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
2132 d[0].req_count = cpu_to_le16(8);
2133 /*
2134 * Link the skip address to this descriptor itself. This causes
2135 * a context to skip a cycle whenever lost cycles or FIFO
2136 * overruns occur, without dropping the data. The application
2137 * should then decide whether this is an error condition or not.
2138 * FIXME: Make the context's cycle-lost behaviour configurable?
2139 */
2140 d[0].branch_address = cpu_to_le32(d_bus | z);
2141
2142 header = (__le32 *) &d[1];
2143 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
2144 IT_HEADER_TAG(p->tag) |
2145 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
2146 IT_HEADER_CHANNEL(ctx->base.channel) |
2147 IT_HEADER_SPEED(ctx->base.speed));
2148 header[1] =
2149 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
2150 p->payload_length));
2151 }
2152
2153 if (p->header_length > 0) {
2154 d[2].req_count = cpu_to_le16(p->header_length);
2155 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
2156 memcpy(&d[z], p->header, p->header_length);
2157 }
2158
2159 pd = d + z - payload_z;
2160 payload_end_index = payload_index + p->payload_length;
2161 for (i = 0; i < payload_z; i++) {
2162 page = payload_index >> PAGE_SHIFT;
2163 offset = payload_index & ~PAGE_MASK;
2164 next_page_index = (page + 1) << PAGE_SHIFT;
2165 length =
2166 min(next_page_index, payload_end_index) - payload_index;
2167 pd[i].req_count = cpu_to_le16(length);
2168
2169 page_bus = page_private(buffer->pages[page]);
2170 pd[i].data_address = cpu_to_le32(page_bus + offset);
2171
2172 payload_index += length;
2173 }
2174
2175 if (p->interrupt)
2176 irq = DESCRIPTOR_IRQ_ALWAYS;
2177 else
2178 irq = DESCRIPTOR_NO_IRQ;
2179
2180 last = z == 2 ? d : d + z - 1;
2181 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
2182 DESCRIPTOR_STATUS |
2183 DESCRIPTOR_BRANCH_ALWAYS |
2184 irq);
2185
2186 context_append(&ctx->context, d, z, header_z);
2187
2188 return 0;
2189 }
2190
2191 static int ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
2192 struct fw_iso_packet *packet,
2193 struct fw_iso_buffer *buffer,
2194 unsigned long payload)
2195 {
2196 struct iso_context *ctx = container_of(base, struct iso_context, base);
2197 struct descriptor *d, *pd;
2198 struct fw_iso_packet *p = packet;
2199 dma_addr_t d_bus, page_bus;
2200 u32 z, header_z, rest;
2201 int i, j, length;
2202 int page, offset, packet_count, header_size, payload_per_buffer;
2203
2204 /*
2205 * The OHCI controller puts the isochronous header and trailer in the
2206 * buffer, so we need at least 8 bytes.
2207 */
2208 packet_count = p->header_length / ctx->base.header_size;
2209 header_size = max(ctx->base.header_size, (size_t)8);
2210
2211 /* Get header size in number of descriptors. */
2212 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
2213 page = payload >> PAGE_SHIFT;
2214 offset = payload & ~PAGE_MASK;
2215 payload_per_buffer = p->payload_length / packet_count;
2216
2217 for (i = 0; i < packet_count; i++) {
2218 /* d points to the header descriptor */
2219 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
2220 d = context_get_descriptors(&ctx->context,
2221 z + header_z, &d_bus);
2222 if (d == NULL)
2223 return -ENOMEM;
2224
2225 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
2226 DESCRIPTOR_INPUT_MORE);
2227 if (p->skip && i == 0)
2228 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
2229 d->req_count = cpu_to_le16(header_size);
2230 d->res_count = d->req_count;
2231 d->transfer_status = 0;
2232 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
2233
2234 rest = payload_per_buffer;
2235 pd = d;
2236 for (j = 1; j < z; j++) {
2237 pd++;
2238 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2239 DESCRIPTOR_INPUT_MORE);
2240
2241 if (offset + rest < PAGE_SIZE)
2242 length = rest;
2243 else
2244 length = PAGE_SIZE - offset;
2245 pd->req_count = cpu_to_le16(length);
2246 pd->res_count = pd->req_count;
2247 pd->transfer_status = 0;
2248
2249 page_bus = page_private(buffer->pages[page]);
2250 pd->data_address = cpu_to_le32(page_bus + offset);
2251
2252 offset = (offset + length) & ~PAGE_MASK;
2253 rest -= length;
2254 if (offset == 0)
2255 page++;
2256 }
2257 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
2258 DESCRIPTOR_INPUT_LAST |
2259 DESCRIPTOR_BRANCH_ALWAYS);
2260 if (p->interrupt && i == packet_count - 1)
2261 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
2262
2263 context_append(&ctx->context, d, z, header_z);
2264 }
2265
2266 return 0;
2267 }
2268
2269 static int ohci_queue_iso(struct fw_iso_context *base,
2270 struct fw_iso_packet *packet,
2271 struct fw_iso_buffer *buffer,
2272 unsigned long payload)
2273 {
2274 struct iso_context *ctx = container_of(base, struct iso_context, base);
2275 unsigned long flags;
2276 int ret;
2277
2278 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2279 if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2280 ret = ohci_queue_iso_transmit(base, packet, buffer, payload);
2281 else
2282 ret = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2283 buffer, payload);
2284 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2285
2286 return ret;
2287 }
2288
2289 static const struct fw_card_driver ohci_driver = {
2290 .enable = ohci_enable,
2291 .update_phy_reg = ohci_update_phy_reg,
2292 .set_config_rom = ohci_set_config_rom,
2293 .send_request = ohci_send_request,
2294 .send_response = ohci_send_response,
2295 .cancel_packet = ohci_cancel_packet,
2296 .enable_phys_dma = ohci_enable_phys_dma,
2297 .get_cycle_time = ohci_get_cycle_time,
2298
2299 .allocate_iso_context = ohci_allocate_iso_context,
2300 .free_iso_context = ohci_free_iso_context,
2301 .queue_iso = ohci_queue_iso,
2302 .start_iso = ohci_start_iso,
2303 .stop_iso = ohci_stop_iso,
2304 };
2305
2306 #ifdef CONFIG_PPC_PMAC
2307 static void ohci_pmac_on(struct pci_dev *dev)
2308 {
2309 if (machine_is(powermac)) {
2310 struct device_node *ofn = pci_device_to_OF_node(dev);
2311
2312 if (ofn) {
2313 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2314 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2315 }
2316 }
2317 }
2318
2319 static void ohci_pmac_off(struct pci_dev *dev)
2320 {
2321 if (machine_is(powermac)) {
2322 struct device_node *ofn = pci_device_to_OF_node(dev);
2323
2324 if (ofn) {
2325 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2326 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2327 }
2328 }
2329 }
2330 #else
2331 #define ohci_pmac_on(dev)
2332 #define ohci_pmac_off(dev)
2333 #endif /* CONFIG_PPC_PMAC */
2334
2335 static int __devinit pci_probe(struct pci_dev *dev,
2336 const struct pci_device_id *ent)
2337 {
2338 struct fw_ohci *ohci;
2339 u32 bus_options, max_receive, link_speed, version;
2340 u64 guid;
2341 int i, err, n_ir, n_it;
2342 size_t size;
2343
2344 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2345 if (ohci == NULL) {
2346 err = -ENOMEM;
2347 goto fail;
2348 }
2349
2350 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2351
2352 ohci_pmac_on(dev);
2353
2354 err = pci_enable_device(dev);
2355 if (err) {
2356 fw_error("Failed to enable OHCI hardware\n");
2357 goto fail_free;
2358 }
2359
2360 pci_set_master(dev);
2361 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2362 pci_set_drvdata(dev, ohci);
2363
2364 spin_lock_init(&ohci->lock);
2365
2366 tasklet_init(&ohci->bus_reset_tasklet,
2367 bus_reset_tasklet, (unsigned long)ohci);
2368
2369 err = pci_request_region(dev, 0, ohci_driver_name);
2370 if (err) {
2371 fw_error("MMIO resource unavailable\n");
2372 goto fail_disable;
2373 }
2374
2375 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2376 if (ohci->registers == NULL) {
2377 fw_error("Failed to remap registers\n");
2378 err = -ENXIO;
2379 goto fail_iomem;
2380 }
2381
2382 for (i = 0; i < ARRAY_SIZE(ohci_quirks); i++)
2383 if (ohci_quirks[i].vendor == dev->vendor &&
2384 (ohci_quirks[i].device == dev->device ||
2385 ohci_quirks[i].device == (unsigned short)PCI_ANY_ID)) {
2386 ohci->quirks = ohci_quirks[i].flags;
2387 break;
2388 }
2389 if (param_quirks)
2390 ohci->quirks = param_quirks;
2391
2392 ar_context_init(&ohci->ar_request_ctx, ohci,
2393 OHCI1394_AsReqRcvContextControlSet);
2394
2395 ar_context_init(&ohci->ar_response_ctx, ohci,
2396 OHCI1394_AsRspRcvContextControlSet);
2397
2398 context_init(&ohci->at_request_ctx, ohci,
2399 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2400
2401 context_init(&ohci->at_response_ctx, ohci,
2402 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2403
2404 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2405 ohci->ir_context_channels = ~0ULL;
2406 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2407 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2408 n_ir = hweight32(ohci->ir_context_mask);
2409 size = sizeof(struct iso_context) * n_ir;
2410 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2411
2412 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2413 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2414 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2415 n_it = hweight32(ohci->it_context_mask);
2416 size = sizeof(struct iso_context) * n_it;
2417 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2418
2419 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2420 err = -ENOMEM;
2421 goto fail_contexts;
2422 }
2423
2424 /* self-id dma buffer allocation */
2425 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2426 SELF_ID_BUF_SIZE,
2427 &ohci->self_id_bus,
2428 GFP_KERNEL);
2429 if (ohci->self_id_cpu == NULL) {
2430 err = -ENOMEM;
2431 goto fail_contexts;
2432 }
2433
2434 bus_options = reg_read(ohci, OHCI1394_BusOptions);
2435 max_receive = (bus_options >> 12) & 0xf;
2436 link_speed = bus_options & 0x7;
2437 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2438 reg_read(ohci, OHCI1394_GUIDLo);
2439
2440 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2441 if (err)
2442 goto fail_self_id;
2443
2444 version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2445 fw_notify("Added fw-ohci device %s, OHCI v%x.%x, "
2446 "%d IR + %d IT contexts, quirks 0x%x\n",
2447 dev_name(&dev->dev), version >> 16, version & 0xff,
2448 n_ir, n_it, ohci->quirks);
2449
2450 return 0;
2451
2452 fail_self_id:
2453 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2454 ohci->self_id_cpu, ohci->self_id_bus);
2455 fail_contexts:
2456 kfree(ohci->ir_context_list);
2457 kfree(ohci->it_context_list);
2458 context_release(&ohci->at_response_ctx);
2459 context_release(&ohci->at_request_ctx);
2460 ar_context_release(&ohci->ar_response_ctx);
2461 ar_context_release(&ohci->ar_request_ctx);
2462 pci_iounmap(dev, ohci->registers);
2463 fail_iomem:
2464 pci_release_region(dev, 0);
2465 fail_disable:
2466 pci_disable_device(dev);
2467 fail_free:
2468 kfree(&ohci->card);
2469 ohci_pmac_off(dev);
2470 fail:
2471 if (err == -ENOMEM)
2472 fw_error("Out of memory\n");
2473
2474 return err;
2475 }
2476
2477 static void pci_remove(struct pci_dev *dev)
2478 {
2479 struct fw_ohci *ohci;
2480
2481 ohci = pci_get_drvdata(dev);
2482 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2483 flush_writes(ohci);
2484 fw_core_remove_card(&ohci->card);
2485
2486 /*
2487 * FIXME: Fail all pending packets here, now that the upper
2488 * layers can't queue any more.
2489 */
2490
2491 software_reset(ohci);
2492 free_irq(dev->irq, ohci);
2493
2494 if (ohci->next_config_rom && ohci->next_config_rom != ohci->config_rom)
2495 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2496 ohci->next_config_rom, ohci->next_config_rom_bus);
2497 if (ohci->config_rom)
2498 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
2499 ohci->config_rom, ohci->config_rom_bus);
2500 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2501 ohci->self_id_cpu, ohci->self_id_bus);
2502 ar_context_release(&ohci->ar_request_ctx);
2503 ar_context_release(&ohci->ar_response_ctx);
2504 context_release(&ohci->at_request_ctx);
2505 context_release(&ohci->at_response_ctx);
2506 kfree(ohci->it_context_list);
2507 kfree(ohci->ir_context_list);
2508 pci_iounmap(dev, ohci->registers);
2509 pci_release_region(dev, 0);
2510 pci_disable_device(dev);
2511 kfree(&ohci->card);
2512 ohci_pmac_off(dev);
2513
2514 fw_notify("Removed fw-ohci device.\n");
2515 }
2516
2517 #ifdef CONFIG_PM
2518 static int pci_suspend(struct pci_dev *dev, pm_message_t state)
2519 {
2520 struct fw_ohci *ohci = pci_get_drvdata(dev);
2521 int err;
2522
2523 software_reset(ohci);
2524 free_irq(dev->irq, ohci);
2525 err = pci_save_state(dev);
2526 if (err) {
2527 fw_error("pci_save_state failed\n");
2528 return err;
2529 }
2530 err = pci_set_power_state(dev, pci_choose_state(dev, state));
2531 if (err)
2532 fw_error("pci_set_power_state failed with %d\n", err);
2533 ohci_pmac_off(dev);
2534
2535 return 0;
2536 }
2537
2538 static int pci_resume(struct pci_dev *dev)
2539 {
2540 struct fw_ohci *ohci = pci_get_drvdata(dev);
2541 int err;
2542
2543 ohci_pmac_on(dev);
2544 pci_set_power_state(dev, PCI_D0);
2545 pci_restore_state(dev);
2546 err = pci_enable_device(dev);
2547 if (err) {
2548 fw_error("pci_enable_device failed\n");
2549 return err;
2550 }
2551
2552 return ohci_enable(&ohci->card, NULL, 0);
2553 }
2554 #endif
2555
2556 static const struct pci_device_id pci_table[] = {
2557 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2558 { }
2559 };
2560
2561 MODULE_DEVICE_TABLE(pci, pci_table);
2562
2563 static struct pci_driver fw_ohci_pci_driver = {
2564 .name = ohci_driver_name,
2565 .id_table = pci_table,
2566 .probe = pci_probe,
2567 .remove = pci_remove,
2568 #ifdef CONFIG_PM
2569 .resume = pci_resume,
2570 .suspend = pci_suspend,
2571 #endif
2572 };
2573
2574 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2575 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2576 MODULE_LICENSE("GPL");
2577
2578 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2579 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2580 MODULE_ALIAS("ohci1394");
2581 #endif
2582
2583 static int __init fw_ohci_init(void)
2584 {
2585 return pci_register_driver(&fw_ohci_pci_driver);
2586 }
2587
2588 static void __exit fw_ohci_cleanup(void)
2589 {
2590 pci_unregister_driver(&fw_ohci_pci_driver);
2591 }
2592
2593 module_init(fw_ohci_init);
2594 module_exit(fw_ohci_cleanup);