5739caaaec7b5f8ec621466f2d92b1f7354c9ab5
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / firewire / fw-sbp2.c
1 /*
2 * SBP2 driver (SCSI over IEEE1394)
3 *
4 * Copyright (C) 2005-2007 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 /*
22 * The basic structure of this driver is based on the old storage driver,
23 * drivers/ieee1394/sbp2.c, originally written by
24 * James Goodwin <jamesg@filanet.com>
25 * with later contributions and ongoing maintenance from
26 * Ben Collins <bcollins@debian.org>,
27 * Stefan Richter <stefanr@s5r6.in-berlin.de>
28 * and many others.
29 */
30
31 #include <linux/blkdev.h>
32 #include <linux/bug.h>
33 #include <linux/delay.h>
34 #include <linux/device.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/kernel.h>
37 #include <linux/mod_devicetable.h>
38 #include <linux/module.h>
39 #include <linux/moduleparam.h>
40 #include <linux/scatterlist.h>
41 #include <linux/string.h>
42 #include <linux/stringify.h>
43 #include <linux/timer.h>
44 #include <linux/workqueue.h>
45 #include <asm/system.h>
46
47 #include <scsi/scsi.h>
48 #include <scsi/scsi_cmnd.h>
49 #include <scsi/scsi_device.h>
50 #include <scsi/scsi_host.h>
51
52 #include "fw-device.h"
53 #include "fw-topology.h"
54 #include "fw-transaction.h"
55
56 /*
57 * So far only bridges from Oxford Semiconductor are known to support
58 * concurrent logins. Depending on firmware, four or two concurrent logins
59 * are possible on OXFW911 and newer Oxsemi bridges.
60 *
61 * Concurrent logins are useful together with cluster filesystems.
62 */
63 static int sbp2_param_exclusive_login = 1;
64 module_param_named(exclusive_login, sbp2_param_exclusive_login, bool, 0644);
65 MODULE_PARM_DESC(exclusive_login, "Exclusive login to sbp2 device "
66 "(default = Y, use N for concurrent initiators)");
67
68 /*
69 * Flags for firmware oddities
70 *
71 * - 128kB max transfer
72 * Limit transfer size. Necessary for some old bridges.
73 *
74 * - 36 byte inquiry
75 * When scsi_mod probes the device, let the inquiry command look like that
76 * from MS Windows.
77 *
78 * - skip mode page 8
79 * Suppress sending of mode_sense for mode page 8 if the device pretends to
80 * support the SCSI Primary Block commands instead of Reduced Block Commands.
81 *
82 * - fix capacity
83 * Tell sd_mod to correct the last sector number reported by read_capacity.
84 * Avoids access beyond actual disk limits on devices with an off-by-one bug.
85 * Don't use this with devices which don't have this bug.
86 *
87 * - delay inquiry
88 * Wait extra SBP2_INQUIRY_DELAY seconds after login before SCSI inquiry.
89 *
90 * - power condition
91 * Set the power condition field in the START STOP UNIT commands sent by
92 * sd_mod on suspend, resume, and shutdown (if manage_start_stop is on).
93 * Some disks need this to spin down or to resume properly.
94 *
95 * - override internal blacklist
96 * Instead of adding to the built-in blacklist, use only the workarounds
97 * specified in the module load parameter.
98 * Useful if a blacklist entry interfered with a non-broken device.
99 */
100 #define SBP2_WORKAROUND_128K_MAX_TRANS 0x1
101 #define SBP2_WORKAROUND_INQUIRY_36 0x2
102 #define SBP2_WORKAROUND_MODE_SENSE_8 0x4
103 #define SBP2_WORKAROUND_FIX_CAPACITY 0x8
104 #define SBP2_WORKAROUND_DELAY_INQUIRY 0x10
105 #define SBP2_INQUIRY_DELAY 12
106 #define SBP2_WORKAROUND_POWER_CONDITION 0x20
107 #define SBP2_WORKAROUND_OVERRIDE 0x100
108
109 static int sbp2_param_workarounds;
110 module_param_named(workarounds, sbp2_param_workarounds, int, 0644);
111 MODULE_PARM_DESC(workarounds, "Work around device bugs (default = 0"
112 ", 128kB max transfer = " __stringify(SBP2_WORKAROUND_128K_MAX_TRANS)
113 ", 36 byte inquiry = " __stringify(SBP2_WORKAROUND_INQUIRY_36)
114 ", skip mode page 8 = " __stringify(SBP2_WORKAROUND_MODE_SENSE_8)
115 ", fix capacity = " __stringify(SBP2_WORKAROUND_FIX_CAPACITY)
116 ", delay inquiry = " __stringify(SBP2_WORKAROUND_DELAY_INQUIRY)
117 ", set power condition in start stop unit = "
118 __stringify(SBP2_WORKAROUND_POWER_CONDITION)
119 ", override internal blacklist = " __stringify(SBP2_WORKAROUND_OVERRIDE)
120 ", or a combination)");
121
122 /* I don't know why the SCSI stack doesn't define something like this... */
123 typedef void (*scsi_done_fn_t)(struct scsi_cmnd *);
124
125 static const char sbp2_driver_name[] = "sbp2";
126
127 /*
128 * We create one struct sbp2_logical_unit per SBP-2 Logical Unit Number Entry
129 * and one struct scsi_device per sbp2_logical_unit.
130 */
131 struct sbp2_logical_unit {
132 struct sbp2_target *tgt;
133 struct list_head link;
134 struct fw_address_handler address_handler;
135 struct list_head orb_list;
136
137 u64 command_block_agent_address;
138 u16 lun;
139 int login_id;
140
141 /*
142 * The generation is updated once we've logged in or reconnected
143 * to the logical unit. Thus, I/O to the device will automatically
144 * fail and get retried if it happens in a window where the device
145 * is not ready, e.g. after a bus reset but before we reconnect.
146 */
147 int generation;
148 int retries;
149 struct delayed_work work;
150 bool has_sdev;
151 bool blocked;
152 };
153
154 /*
155 * We create one struct sbp2_target per IEEE 1212 Unit Directory
156 * and one struct Scsi_Host per sbp2_target.
157 */
158 struct sbp2_target {
159 struct kref kref;
160 struct fw_unit *unit;
161 const char *bus_id;
162 struct list_head lu_list;
163
164 u64 management_agent_address;
165 u64 guid;
166 int directory_id;
167 int node_id;
168 int address_high;
169 unsigned int workarounds;
170 unsigned int mgt_orb_timeout;
171 unsigned int max_payload;
172
173 int dont_block; /* counter for each logical unit */
174 int blocked; /* ditto */
175 };
176
177 /* Impossible login_id, to detect logout attempt before successful login */
178 #define INVALID_LOGIN_ID 0x10000
179
180 /*
181 * Per section 7.4.8 of the SBP-2 spec, a mgt_ORB_timeout value can be
182 * provided in the config rom. Most devices do provide a value, which
183 * we'll use for login management orbs, but with some sane limits.
184 */
185 #define SBP2_MIN_LOGIN_ORB_TIMEOUT 5000U /* Timeout in ms */
186 #define SBP2_MAX_LOGIN_ORB_TIMEOUT 40000U /* Timeout in ms */
187 #define SBP2_ORB_TIMEOUT 2000U /* Timeout in ms */
188 #define SBP2_ORB_NULL 0x80000000
189 #define SBP2_RETRY_LIMIT 0xf /* 15 retries */
190 #define SBP2_CYCLE_LIMIT (0xc8 << 12) /* 200 125us cycles */
191
192 /*
193 * The default maximum s/g segment size of a FireWire controller is
194 * usually 0x10000, but SBP-2 only allows 0xffff. Since buffers have to
195 * be quadlet-aligned, we set the length limit to 0xffff & ~3.
196 */
197 #define SBP2_MAX_SEG_SIZE 0xfffc
198
199 /* Unit directory keys */
200 #define SBP2_CSR_UNIT_CHARACTERISTICS 0x3a
201 #define SBP2_CSR_FIRMWARE_REVISION 0x3c
202 #define SBP2_CSR_LOGICAL_UNIT_NUMBER 0x14
203 #define SBP2_CSR_LOGICAL_UNIT_DIRECTORY 0xd4
204
205 /* Management orb opcodes */
206 #define SBP2_LOGIN_REQUEST 0x0
207 #define SBP2_QUERY_LOGINS_REQUEST 0x1
208 #define SBP2_RECONNECT_REQUEST 0x3
209 #define SBP2_SET_PASSWORD_REQUEST 0x4
210 #define SBP2_LOGOUT_REQUEST 0x7
211 #define SBP2_ABORT_TASK_REQUEST 0xb
212 #define SBP2_ABORT_TASK_SET 0xc
213 #define SBP2_LOGICAL_UNIT_RESET 0xe
214 #define SBP2_TARGET_RESET_REQUEST 0xf
215
216 /* Offsets for command block agent registers */
217 #define SBP2_AGENT_STATE 0x00
218 #define SBP2_AGENT_RESET 0x04
219 #define SBP2_ORB_POINTER 0x08
220 #define SBP2_DOORBELL 0x10
221 #define SBP2_UNSOLICITED_STATUS_ENABLE 0x14
222
223 /* Status write response codes */
224 #define SBP2_STATUS_REQUEST_COMPLETE 0x0
225 #define SBP2_STATUS_TRANSPORT_FAILURE 0x1
226 #define SBP2_STATUS_ILLEGAL_REQUEST 0x2
227 #define SBP2_STATUS_VENDOR_DEPENDENT 0x3
228
229 #define STATUS_GET_ORB_HIGH(v) ((v).status & 0xffff)
230 #define STATUS_GET_SBP_STATUS(v) (((v).status >> 16) & 0xff)
231 #define STATUS_GET_LEN(v) (((v).status >> 24) & 0x07)
232 #define STATUS_GET_DEAD(v) (((v).status >> 27) & 0x01)
233 #define STATUS_GET_RESPONSE(v) (((v).status >> 28) & 0x03)
234 #define STATUS_GET_SOURCE(v) (((v).status >> 30) & 0x03)
235 #define STATUS_GET_ORB_LOW(v) ((v).orb_low)
236 #define STATUS_GET_DATA(v) ((v).data)
237
238 struct sbp2_status {
239 u32 status;
240 u32 orb_low;
241 u8 data[24];
242 };
243
244 struct sbp2_pointer {
245 __be32 high;
246 __be32 low;
247 };
248
249 struct sbp2_orb {
250 struct fw_transaction t;
251 struct kref kref;
252 dma_addr_t request_bus;
253 int rcode;
254 struct sbp2_pointer pointer;
255 void (*callback)(struct sbp2_orb * orb, struct sbp2_status * status);
256 struct list_head link;
257 };
258
259 #define MANAGEMENT_ORB_LUN(v) ((v))
260 #define MANAGEMENT_ORB_FUNCTION(v) ((v) << 16)
261 #define MANAGEMENT_ORB_RECONNECT(v) ((v) << 20)
262 #define MANAGEMENT_ORB_EXCLUSIVE(v) ((v) ? 1 << 28 : 0)
263 #define MANAGEMENT_ORB_REQUEST_FORMAT(v) ((v) << 29)
264 #define MANAGEMENT_ORB_NOTIFY ((1) << 31)
265
266 #define MANAGEMENT_ORB_RESPONSE_LENGTH(v) ((v))
267 #define MANAGEMENT_ORB_PASSWORD_LENGTH(v) ((v) << 16)
268
269 struct sbp2_management_orb {
270 struct sbp2_orb base;
271 struct {
272 struct sbp2_pointer password;
273 struct sbp2_pointer response;
274 __be32 misc;
275 __be32 length;
276 struct sbp2_pointer status_fifo;
277 } request;
278 __be32 response[4];
279 dma_addr_t response_bus;
280 struct completion done;
281 struct sbp2_status status;
282 };
283
284 struct sbp2_login_response {
285 __be32 misc;
286 struct sbp2_pointer command_block_agent;
287 __be32 reconnect_hold;
288 };
289 #define COMMAND_ORB_DATA_SIZE(v) ((v))
290 #define COMMAND_ORB_PAGE_SIZE(v) ((v) << 16)
291 #define COMMAND_ORB_PAGE_TABLE_PRESENT ((1) << 19)
292 #define COMMAND_ORB_MAX_PAYLOAD(v) ((v) << 20)
293 #define COMMAND_ORB_SPEED(v) ((v) << 24)
294 #define COMMAND_ORB_DIRECTION ((1) << 27)
295 #define COMMAND_ORB_REQUEST_FORMAT(v) ((v) << 29)
296 #define COMMAND_ORB_NOTIFY ((1) << 31)
297
298 struct sbp2_command_orb {
299 struct sbp2_orb base;
300 struct {
301 struct sbp2_pointer next;
302 struct sbp2_pointer data_descriptor;
303 __be32 misc;
304 u8 command_block[12];
305 } request;
306 struct scsi_cmnd *cmd;
307 scsi_done_fn_t done;
308 struct sbp2_logical_unit *lu;
309
310 struct sbp2_pointer page_table[SG_ALL] __attribute__((aligned(8)));
311 dma_addr_t page_table_bus;
312 };
313
314 #define SBP2_ROM_VALUE_WILDCARD ~0 /* match all */
315 #define SBP2_ROM_VALUE_MISSING 0xff000000 /* not present in the unit dir. */
316
317 /*
318 * List of devices with known bugs.
319 *
320 * The firmware_revision field, masked with 0xffff00, is the best
321 * indicator for the type of bridge chip of a device. It yields a few
322 * false positives but this did not break correctly behaving devices
323 * so far.
324 */
325 static const struct {
326 u32 firmware_revision;
327 u32 model;
328 unsigned int workarounds;
329 } sbp2_workarounds_table[] = {
330 /* DViCO Momobay CX-1 with TSB42AA9 bridge */ {
331 .firmware_revision = 0x002800,
332 .model = 0x001010,
333 .workarounds = SBP2_WORKAROUND_INQUIRY_36 |
334 SBP2_WORKAROUND_MODE_SENSE_8 |
335 SBP2_WORKAROUND_POWER_CONDITION,
336 },
337 /* DViCO Momobay FX-3A with TSB42AA9A bridge */ {
338 .firmware_revision = 0x002800,
339 .model = 0x000000,
340 .workarounds = SBP2_WORKAROUND_DELAY_INQUIRY |
341 SBP2_WORKAROUND_POWER_CONDITION,
342 },
343 /* Initio bridges, actually only needed for some older ones */ {
344 .firmware_revision = 0x000200,
345 .model = SBP2_ROM_VALUE_WILDCARD,
346 .workarounds = SBP2_WORKAROUND_INQUIRY_36,
347 },
348 /* PL-3507 bridge with Prolific firmware */ {
349 .firmware_revision = 0x012800,
350 .model = SBP2_ROM_VALUE_WILDCARD,
351 .workarounds = SBP2_WORKAROUND_POWER_CONDITION,
352 },
353 /* Symbios bridge */ {
354 .firmware_revision = 0xa0b800,
355 .model = SBP2_ROM_VALUE_WILDCARD,
356 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
357 },
358 /* Datafab MD2-FW2 with Symbios/LSILogic SYM13FW500 bridge */ {
359 .firmware_revision = 0x002600,
360 .model = SBP2_ROM_VALUE_WILDCARD,
361 .workarounds = SBP2_WORKAROUND_128K_MAX_TRANS,
362 },
363
364 /*
365 * There are iPods (2nd gen, 3rd gen) with model_id == 0, but
366 * these iPods do not feature the read_capacity bug according
367 * to one report. Read_capacity behaviour as well as model_id
368 * could change due to Apple-supplied firmware updates though.
369 */
370
371 /* iPod 4th generation. */ {
372 .firmware_revision = 0x0a2700,
373 .model = 0x000021,
374 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
375 },
376 /* iPod mini */ {
377 .firmware_revision = 0x0a2700,
378 .model = 0x000022,
379 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
380 },
381 /* iPod mini */ {
382 .firmware_revision = 0x0a2700,
383 .model = 0x000023,
384 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
385 },
386 /* iPod Photo */ {
387 .firmware_revision = 0x0a2700,
388 .model = 0x00007e,
389 .workarounds = SBP2_WORKAROUND_FIX_CAPACITY,
390 }
391 };
392
393 static void
394 free_orb(struct kref *kref)
395 {
396 struct sbp2_orb *orb = container_of(kref, struct sbp2_orb, kref);
397
398 kfree(orb);
399 }
400
401 static void
402 sbp2_status_write(struct fw_card *card, struct fw_request *request,
403 int tcode, int destination, int source,
404 int generation, int speed,
405 unsigned long long offset,
406 void *payload, size_t length, void *callback_data)
407 {
408 struct sbp2_logical_unit *lu = callback_data;
409 struct sbp2_orb *orb;
410 struct sbp2_status status;
411 size_t header_size;
412 unsigned long flags;
413
414 if (tcode != TCODE_WRITE_BLOCK_REQUEST ||
415 length == 0 || length > sizeof(status)) {
416 fw_send_response(card, request, RCODE_TYPE_ERROR);
417 return;
418 }
419
420 header_size = min(length, 2 * sizeof(u32));
421 fw_memcpy_from_be32(&status, payload, header_size);
422 if (length > header_size)
423 memcpy(status.data, payload + 8, length - header_size);
424 if (STATUS_GET_SOURCE(status) == 2 || STATUS_GET_SOURCE(status) == 3) {
425 fw_notify("non-orb related status write, not handled\n");
426 fw_send_response(card, request, RCODE_COMPLETE);
427 return;
428 }
429
430 /* Lookup the orb corresponding to this status write. */
431 spin_lock_irqsave(&card->lock, flags);
432 list_for_each_entry(orb, &lu->orb_list, link) {
433 if (STATUS_GET_ORB_HIGH(status) == 0 &&
434 STATUS_GET_ORB_LOW(status) == orb->request_bus) {
435 orb->rcode = RCODE_COMPLETE;
436 list_del(&orb->link);
437 break;
438 }
439 }
440 spin_unlock_irqrestore(&card->lock, flags);
441
442 if (&orb->link != &lu->orb_list)
443 orb->callback(orb, &status);
444 else
445 fw_error("status write for unknown orb\n");
446
447 kref_put(&orb->kref, free_orb);
448
449 fw_send_response(card, request, RCODE_COMPLETE);
450 }
451
452 static void
453 complete_transaction(struct fw_card *card, int rcode,
454 void *payload, size_t length, void *data)
455 {
456 struct sbp2_orb *orb = data;
457 unsigned long flags;
458
459 /*
460 * This is a little tricky. We can get the status write for
461 * the orb before we get this callback. The status write
462 * handler above will assume the orb pointer transaction was
463 * successful and set the rcode to RCODE_COMPLETE for the orb.
464 * So this callback only sets the rcode if it hasn't already
465 * been set and only does the cleanup if the transaction
466 * failed and we didn't already get a status write.
467 */
468 spin_lock_irqsave(&card->lock, flags);
469
470 if (orb->rcode == -1)
471 orb->rcode = rcode;
472 if (orb->rcode != RCODE_COMPLETE) {
473 list_del(&orb->link);
474 spin_unlock_irqrestore(&card->lock, flags);
475 orb->callback(orb, NULL);
476 } else {
477 spin_unlock_irqrestore(&card->lock, flags);
478 }
479
480 kref_put(&orb->kref, free_orb);
481 }
482
483 static void
484 sbp2_send_orb(struct sbp2_orb *orb, struct sbp2_logical_unit *lu,
485 int node_id, int generation, u64 offset)
486 {
487 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
488 unsigned long flags;
489
490 orb->pointer.high = 0;
491 orb->pointer.low = cpu_to_be32(orb->request_bus);
492
493 spin_lock_irqsave(&device->card->lock, flags);
494 list_add_tail(&orb->link, &lu->orb_list);
495 spin_unlock_irqrestore(&device->card->lock, flags);
496
497 /* Take a ref for the orb list and for the transaction callback. */
498 kref_get(&orb->kref);
499 kref_get(&orb->kref);
500
501 fw_send_request(device->card, &orb->t, TCODE_WRITE_BLOCK_REQUEST,
502 node_id, generation, device->max_speed, offset,
503 &orb->pointer, sizeof(orb->pointer),
504 complete_transaction, orb);
505 }
506
507 static int sbp2_cancel_orbs(struct sbp2_logical_unit *lu)
508 {
509 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
510 struct sbp2_orb *orb, *next;
511 struct list_head list;
512 unsigned long flags;
513 int retval = -ENOENT;
514
515 INIT_LIST_HEAD(&list);
516 spin_lock_irqsave(&device->card->lock, flags);
517 list_splice_init(&lu->orb_list, &list);
518 spin_unlock_irqrestore(&device->card->lock, flags);
519
520 list_for_each_entry_safe(orb, next, &list, link) {
521 retval = 0;
522 if (fw_cancel_transaction(device->card, &orb->t) == 0)
523 continue;
524
525 orb->rcode = RCODE_CANCELLED;
526 orb->callback(orb, NULL);
527 }
528
529 return retval;
530 }
531
532 static void
533 complete_management_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
534 {
535 struct sbp2_management_orb *orb =
536 container_of(base_orb, struct sbp2_management_orb, base);
537
538 if (status)
539 memcpy(&orb->status, status, sizeof(*status));
540 complete(&orb->done);
541 }
542
543 static int
544 sbp2_send_management_orb(struct sbp2_logical_unit *lu, int node_id,
545 int generation, int function, int lun_or_login_id,
546 void *response)
547 {
548 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
549 struct sbp2_management_orb *orb;
550 unsigned int timeout;
551 int retval = -ENOMEM;
552
553 if (function == SBP2_LOGOUT_REQUEST && fw_device_is_shutdown(device))
554 return 0;
555
556 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
557 if (orb == NULL)
558 return -ENOMEM;
559
560 kref_init(&orb->base.kref);
561 orb->response_bus =
562 dma_map_single(device->card->device, &orb->response,
563 sizeof(orb->response), DMA_FROM_DEVICE);
564 if (dma_mapping_error(device->card->device, orb->response_bus))
565 goto fail_mapping_response;
566
567 orb->request.response.high = 0;
568 orb->request.response.low = cpu_to_be32(orb->response_bus);
569
570 orb->request.misc = cpu_to_be32(
571 MANAGEMENT_ORB_NOTIFY |
572 MANAGEMENT_ORB_FUNCTION(function) |
573 MANAGEMENT_ORB_LUN(lun_or_login_id));
574 orb->request.length = cpu_to_be32(
575 MANAGEMENT_ORB_RESPONSE_LENGTH(sizeof(orb->response)));
576
577 orb->request.status_fifo.high =
578 cpu_to_be32(lu->address_handler.offset >> 32);
579 orb->request.status_fifo.low =
580 cpu_to_be32(lu->address_handler.offset);
581
582 if (function == SBP2_LOGIN_REQUEST) {
583 /* Ask for 2^2 == 4 seconds reconnect grace period */
584 orb->request.misc |= cpu_to_be32(
585 MANAGEMENT_ORB_RECONNECT(2) |
586 MANAGEMENT_ORB_EXCLUSIVE(sbp2_param_exclusive_login));
587 timeout = lu->tgt->mgt_orb_timeout;
588 } else {
589 timeout = SBP2_ORB_TIMEOUT;
590 }
591
592 init_completion(&orb->done);
593 orb->base.callback = complete_management_orb;
594
595 orb->base.request_bus =
596 dma_map_single(device->card->device, &orb->request,
597 sizeof(orb->request), DMA_TO_DEVICE);
598 if (dma_mapping_error(device->card->device, orb->base.request_bus))
599 goto fail_mapping_request;
600
601 sbp2_send_orb(&orb->base, lu, node_id, generation,
602 lu->tgt->management_agent_address);
603
604 wait_for_completion_timeout(&orb->done, msecs_to_jiffies(timeout));
605
606 retval = -EIO;
607 if (sbp2_cancel_orbs(lu) == 0) {
608 fw_error("%s: orb reply timed out, rcode=0x%02x\n",
609 lu->tgt->bus_id, orb->base.rcode);
610 goto out;
611 }
612
613 if (orb->base.rcode != RCODE_COMPLETE) {
614 fw_error("%s: management write failed, rcode 0x%02x\n",
615 lu->tgt->bus_id, orb->base.rcode);
616 goto out;
617 }
618
619 if (STATUS_GET_RESPONSE(orb->status) != 0 ||
620 STATUS_GET_SBP_STATUS(orb->status) != 0) {
621 fw_error("%s: error status: %d:%d\n", lu->tgt->bus_id,
622 STATUS_GET_RESPONSE(orb->status),
623 STATUS_GET_SBP_STATUS(orb->status));
624 goto out;
625 }
626
627 retval = 0;
628 out:
629 dma_unmap_single(device->card->device, orb->base.request_bus,
630 sizeof(orb->request), DMA_TO_DEVICE);
631 fail_mapping_request:
632 dma_unmap_single(device->card->device, orb->response_bus,
633 sizeof(orb->response), DMA_FROM_DEVICE);
634 fail_mapping_response:
635 if (response)
636 memcpy(response, orb->response, sizeof(orb->response));
637 kref_put(&orb->base.kref, free_orb);
638
639 return retval;
640 }
641
642 static void sbp2_agent_reset(struct sbp2_logical_unit *lu)
643 {
644 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
645 __be32 d = 0;
646
647 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
648 lu->tgt->node_id, lu->generation, device->max_speed,
649 lu->command_block_agent_address + SBP2_AGENT_RESET,
650 &d, sizeof(d));
651 }
652
653 static void
654 complete_agent_reset_write_no_wait(struct fw_card *card, int rcode,
655 void *payload, size_t length, void *data)
656 {
657 kfree(data);
658 }
659
660 static void sbp2_agent_reset_no_wait(struct sbp2_logical_unit *lu)
661 {
662 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
663 struct fw_transaction *t;
664 static __be32 d;
665
666 t = kmalloc(sizeof(*t), GFP_ATOMIC);
667 if (t == NULL)
668 return;
669
670 fw_send_request(device->card, t, TCODE_WRITE_QUADLET_REQUEST,
671 lu->tgt->node_id, lu->generation, device->max_speed,
672 lu->command_block_agent_address + SBP2_AGENT_RESET,
673 &d, sizeof(d), complete_agent_reset_write_no_wait, t);
674 }
675
676 static inline void sbp2_allow_block(struct sbp2_logical_unit *lu)
677 {
678 /*
679 * We may access dont_block without taking card->lock here:
680 * All callers of sbp2_allow_block() and all callers of sbp2_unblock()
681 * are currently serialized against each other.
682 * And a wrong result in sbp2_conditionally_block()'s access of
683 * dont_block is rather harmless, it simply misses its first chance.
684 */
685 --lu->tgt->dont_block;
686 }
687
688 /*
689 * Blocks lu->tgt if all of the following conditions are met:
690 * - Login, INQUIRY, and high-level SCSI setup of all of the target's
691 * logical units have been finished (indicated by dont_block == 0).
692 * - lu->generation is stale.
693 *
694 * Note, scsi_block_requests() must be called while holding card->lock,
695 * otherwise it might foil sbp2_[conditionally_]unblock()'s attempt to
696 * unblock the target.
697 */
698 static void sbp2_conditionally_block(struct sbp2_logical_unit *lu)
699 {
700 struct sbp2_target *tgt = lu->tgt;
701 struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
702 struct Scsi_Host *shost =
703 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
704 unsigned long flags;
705
706 spin_lock_irqsave(&card->lock, flags);
707 if (!tgt->dont_block && !lu->blocked &&
708 lu->generation != card->generation) {
709 lu->blocked = true;
710 if (++tgt->blocked == 1)
711 scsi_block_requests(shost);
712 }
713 spin_unlock_irqrestore(&card->lock, flags);
714 }
715
716 /*
717 * Unblocks lu->tgt as soon as all its logical units can be unblocked.
718 * Note, it is harmless to run scsi_unblock_requests() outside the
719 * card->lock protected section. On the other hand, running it inside
720 * the section might clash with shost->host_lock.
721 */
722 static void sbp2_conditionally_unblock(struct sbp2_logical_unit *lu)
723 {
724 struct sbp2_target *tgt = lu->tgt;
725 struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
726 struct Scsi_Host *shost =
727 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
728 unsigned long flags;
729 bool unblock = false;
730
731 spin_lock_irqsave(&card->lock, flags);
732 if (lu->blocked && lu->generation == card->generation) {
733 lu->blocked = false;
734 unblock = --tgt->blocked == 0;
735 }
736 spin_unlock_irqrestore(&card->lock, flags);
737
738 if (unblock)
739 scsi_unblock_requests(shost);
740 }
741
742 /*
743 * Prevents future blocking of tgt and unblocks it.
744 * Note, it is harmless to run scsi_unblock_requests() outside the
745 * card->lock protected section. On the other hand, running it inside
746 * the section might clash with shost->host_lock.
747 */
748 static void sbp2_unblock(struct sbp2_target *tgt)
749 {
750 struct fw_card *card = fw_device(tgt->unit->device.parent)->card;
751 struct Scsi_Host *shost =
752 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
753 unsigned long flags;
754
755 spin_lock_irqsave(&card->lock, flags);
756 ++tgt->dont_block;
757 spin_unlock_irqrestore(&card->lock, flags);
758
759 scsi_unblock_requests(shost);
760 }
761
762 static int sbp2_lun2int(u16 lun)
763 {
764 struct scsi_lun eight_bytes_lun;
765
766 memset(&eight_bytes_lun, 0, sizeof(eight_bytes_lun));
767 eight_bytes_lun.scsi_lun[0] = (lun >> 8) & 0xff;
768 eight_bytes_lun.scsi_lun[1] = lun & 0xff;
769
770 return scsilun_to_int(&eight_bytes_lun);
771 }
772
773 static void sbp2_release_target(struct kref *kref)
774 {
775 struct sbp2_target *tgt = container_of(kref, struct sbp2_target, kref);
776 struct sbp2_logical_unit *lu, *next;
777 struct Scsi_Host *shost =
778 container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
779 struct scsi_device *sdev;
780 struct fw_device *device = fw_device(tgt->unit->device.parent);
781
782 /* prevent deadlocks */
783 sbp2_unblock(tgt);
784
785 list_for_each_entry_safe(lu, next, &tgt->lu_list, link) {
786 sdev = scsi_device_lookup(shost, 0, 0, sbp2_lun2int(lu->lun));
787 if (sdev) {
788 scsi_remove_device(sdev);
789 scsi_device_put(sdev);
790 }
791 if (lu->login_id != INVALID_LOGIN_ID) {
792 int generation, node_id;
793 /*
794 * tgt->node_id may be obsolete here if we failed
795 * during initial login or after a bus reset where
796 * the topology changed.
797 */
798 generation = device->generation;
799 smp_rmb(); /* node_id vs. generation */
800 node_id = device->node_id;
801 sbp2_send_management_orb(lu, node_id, generation,
802 SBP2_LOGOUT_REQUEST,
803 lu->login_id, NULL);
804 }
805 fw_core_remove_address_handler(&lu->address_handler);
806 list_del(&lu->link);
807 kfree(lu);
808 }
809 scsi_remove_host(shost);
810 fw_notify("released %s, target %d:0:0\n", tgt->bus_id, shost->host_no);
811
812 fw_unit_put(tgt->unit);
813 scsi_host_put(shost);
814 fw_device_put(device);
815 }
816
817 static struct workqueue_struct *sbp2_wq;
818
819 static void sbp2_target_put(struct sbp2_target *tgt)
820 {
821 kref_put(&tgt->kref, sbp2_release_target);
822 }
823
824 /*
825 * Always get the target's kref when scheduling work on one its units.
826 * Each workqueue job is responsible to call sbp2_target_put() upon return.
827 */
828 static void sbp2_queue_work(struct sbp2_logical_unit *lu, unsigned long delay)
829 {
830 kref_get(&lu->tgt->kref);
831 if (!queue_delayed_work(sbp2_wq, &lu->work, delay))
832 sbp2_target_put(lu->tgt);
833 }
834
835 /*
836 * Write retransmit retry values into the BUSY_TIMEOUT register.
837 * - The single-phase retry protocol is supported by all SBP-2 devices, but the
838 * default retry_limit value is 0 (i.e. never retry transmission). We write a
839 * saner value after logging into the device.
840 * - The dual-phase retry protocol is optional to implement, and if not
841 * supported, writes to the dual-phase portion of the register will be
842 * ignored. We try to write the original 1394-1995 default here.
843 * - In the case of devices that are also SBP-3-compliant, all writes are
844 * ignored, as the register is read-only, but contains single-phase retry of
845 * 15, which is what we're trying to set for all SBP-2 device anyway, so this
846 * write attempt is safe and yields more consistent behavior for all devices.
847 *
848 * See section 8.3.2.3.5 of the 1394-1995 spec, section 6.2 of the SBP-2 spec,
849 * and section 6.4 of the SBP-3 spec for further details.
850 */
851 static void sbp2_set_busy_timeout(struct sbp2_logical_unit *lu)
852 {
853 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
854 __be32 d = cpu_to_be32(SBP2_CYCLE_LIMIT | SBP2_RETRY_LIMIT);
855
856 fw_run_transaction(device->card, TCODE_WRITE_QUADLET_REQUEST,
857 lu->tgt->node_id, lu->generation, device->max_speed,
858 CSR_REGISTER_BASE + CSR_BUSY_TIMEOUT,
859 &d, sizeof(d));
860 }
861
862 static void sbp2_reconnect(struct work_struct *work);
863
864 static void sbp2_login(struct work_struct *work)
865 {
866 struct sbp2_logical_unit *lu =
867 container_of(work, struct sbp2_logical_unit, work.work);
868 struct sbp2_target *tgt = lu->tgt;
869 struct fw_device *device = fw_device(tgt->unit->device.parent);
870 struct Scsi_Host *shost;
871 struct scsi_device *sdev;
872 struct sbp2_login_response response;
873 int generation, node_id, local_node_id;
874
875 if (fw_device_is_shutdown(device))
876 goto out;
877
878 generation = device->generation;
879 smp_rmb(); /* node IDs must not be older than generation */
880 node_id = device->node_id;
881 local_node_id = device->card->node_id;
882
883 /* If this is a re-login attempt, log out, or we might be rejected. */
884 if (lu->has_sdev)
885 sbp2_send_management_orb(lu, device->node_id, generation,
886 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
887
888 if (sbp2_send_management_orb(lu, node_id, generation,
889 SBP2_LOGIN_REQUEST, lu->lun, &response) < 0) {
890 if (lu->retries++ < 5) {
891 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
892 } else {
893 fw_error("%s: failed to login to LUN %04x\n",
894 tgt->bus_id, lu->lun);
895 /* Let any waiting I/O fail from now on. */
896 sbp2_unblock(lu->tgt);
897 }
898 goto out;
899 }
900
901 tgt->node_id = node_id;
902 tgt->address_high = local_node_id << 16;
903 smp_wmb(); /* node IDs must not be older than generation */
904 lu->generation = generation;
905
906 lu->command_block_agent_address =
907 ((u64)(be32_to_cpu(response.command_block_agent.high) & 0xffff)
908 << 32) | be32_to_cpu(response.command_block_agent.low);
909 lu->login_id = be32_to_cpu(response.misc) & 0xffff;
910
911 fw_notify("%s: logged in to LUN %04x (%d retries)\n",
912 tgt->bus_id, lu->lun, lu->retries);
913
914 /* set appropriate retry limit(s) in BUSY_TIMEOUT register */
915 sbp2_set_busy_timeout(lu);
916
917 PREPARE_DELAYED_WORK(&lu->work, sbp2_reconnect);
918 sbp2_agent_reset(lu);
919
920 /* This was a re-login. */
921 if (lu->has_sdev) {
922 sbp2_cancel_orbs(lu);
923 sbp2_conditionally_unblock(lu);
924 goto out;
925 }
926
927 if (lu->tgt->workarounds & SBP2_WORKAROUND_DELAY_INQUIRY)
928 ssleep(SBP2_INQUIRY_DELAY);
929
930 shost = container_of((void *)tgt, struct Scsi_Host, hostdata[0]);
931 sdev = __scsi_add_device(shost, 0, 0, sbp2_lun2int(lu->lun), lu);
932 /*
933 * FIXME: We are unable to perform reconnects while in sbp2_login().
934 * Therefore __scsi_add_device() will get into trouble if a bus reset
935 * happens in parallel. It will either fail or leave us with an
936 * unusable sdev. As a workaround we check for this and retry the
937 * whole login and SCSI probing.
938 */
939
940 /* Reported error during __scsi_add_device() */
941 if (IS_ERR(sdev))
942 goto out_logout_login;
943
944 /* Unreported error during __scsi_add_device() */
945 smp_rmb(); /* get current card generation */
946 if (generation != device->card->generation) {
947 scsi_remove_device(sdev);
948 scsi_device_put(sdev);
949 goto out_logout_login;
950 }
951
952 /* No error during __scsi_add_device() */
953 lu->has_sdev = true;
954 scsi_device_put(sdev);
955 sbp2_allow_block(lu);
956 goto out;
957
958 out_logout_login:
959 smp_rmb(); /* generation may have changed */
960 generation = device->generation;
961 smp_rmb(); /* node_id must not be older than generation */
962
963 sbp2_send_management_orb(lu, device->node_id, generation,
964 SBP2_LOGOUT_REQUEST, lu->login_id, NULL);
965 /*
966 * If a bus reset happened, sbp2_update will have requeued
967 * lu->work already. Reset the work from reconnect to login.
968 */
969 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
970 out:
971 sbp2_target_put(tgt);
972 }
973
974 static int sbp2_add_logical_unit(struct sbp2_target *tgt, int lun_entry)
975 {
976 struct sbp2_logical_unit *lu;
977
978 lu = kmalloc(sizeof(*lu), GFP_KERNEL);
979 if (!lu)
980 return -ENOMEM;
981
982 lu->address_handler.length = 0x100;
983 lu->address_handler.address_callback = sbp2_status_write;
984 lu->address_handler.callback_data = lu;
985
986 if (fw_core_add_address_handler(&lu->address_handler,
987 &fw_high_memory_region) < 0) {
988 kfree(lu);
989 return -ENOMEM;
990 }
991
992 lu->tgt = tgt;
993 lu->lun = lun_entry & 0xffff;
994 lu->login_id = INVALID_LOGIN_ID;
995 lu->retries = 0;
996 lu->has_sdev = false;
997 lu->blocked = false;
998 ++tgt->dont_block;
999 INIT_LIST_HEAD(&lu->orb_list);
1000 INIT_DELAYED_WORK(&lu->work, sbp2_login);
1001
1002 list_add_tail(&lu->link, &tgt->lu_list);
1003 return 0;
1004 }
1005
1006 static int sbp2_scan_logical_unit_dir(struct sbp2_target *tgt, u32 *directory)
1007 {
1008 struct fw_csr_iterator ci;
1009 int key, value;
1010
1011 fw_csr_iterator_init(&ci, directory);
1012 while (fw_csr_iterator_next(&ci, &key, &value))
1013 if (key == SBP2_CSR_LOGICAL_UNIT_NUMBER &&
1014 sbp2_add_logical_unit(tgt, value) < 0)
1015 return -ENOMEM;
1016 return 0;
1017 }
1018
1019 static int sbp2_scan_unit_dir(struct sbp2_target *tgt, u32 *directory,
1020 u32 *model, u32 *firmware_revision)
1021 {
1022 struct fw_csr_iterator ci;
1023 int key, value;
1024 unsigned int timeout;
1025
1026 fw_csr_iterator_init(&ci, directory);
1027 while (fw_csr_iterator_next(&ci, &key, &value)) {
1028 switch (key) {
1029
1030 case CSR_DEPENDENT_INFO | CSR_OFFSET:
1031 tgt->management_agent_address =
1032 CSR_REGISTER_BASE + 4 * value;
1033 break;
1034
1035 case CSR_DIRECTORY_ID:
1036 tgt->directory_id = value;
1037 break;
1038
1039 case CSR_MODEL:
1040 *model = value;
1041 break;
1042
1043 case SBP2_CSR_FIRMWARE_REVISION:
1044 *firmware_revision = value;
1045 break;
1046
1047 case SBP2_CSR_UNIT_CHARACTERISTICS:
1048 /* the timeout value is stored in 500ms units */
1049 timeout = ((unsigned int) value >> 8 & 0xff) * 500;
1050 timeout = max(timeout, SBP2_MIN_LOGIN_ORB_TIMEOUT);
1051 tgt->mgt_orb_timeout =
1052 min(timeout, SBP2_MAX_LOGIN_ORB_TIMEOUT);
1053
1054 if (timeout > tgt->mgt_orb_timeout)
1055 fw_notify("%s: config rom contains %ds "
1056 "management ORB timeout, limiting "
1057 "to %ds\n", tgt->bus_id,
1058 timeout / 1000,
1059 tgt->mgt_orb_timeout / 1000);
1060 break;
1061
1062 case SBP2_CSR_LOGICAL_UNIT_NUMBER:
1063 if (sbp2_add_logical_unit(tgt, value) < 0)
1064 return -ENOMEM;
1065 break;
1066
1067 case SBP2_CSR_LOGICAL_UNIT_DIRECTORY:
1068 /* Adjust for the increment in the iterator */
1069 if (sbp2_scan_logical_unit_dir(tgt, ci.p - 1 + value) < 0)
1070 return -ENOMEM;
1071 break;
1072 }
1073 }
1074 return 0;
1075 }
1076
1077 static void sbp2_init_workarounds(struct sbp2_target *tgt, u32 model,
1078 u32 firmware_revision)
1079 {
1080 int i;
1081 unsigned int w = sbp2_param_workarounds;
1082
1083 if (w)
1084 fw_notify("Please notify linux1394-devel@lists.sourceforge.net "
1085 "if you need the workarounds parameter for %s\n",
1086 tgt->bus_id);
1087
1088 if (w & SBP2_WORKAROUND_OVERRIDE)
1089 goto out;
1090
1091 for (i = 0; i < ARRAY_SIZE(sbp2_workarounds_table); i++) {
1092
1093 if (sbp2_workarounds_table[i].firmware_revision !=
1094 (firmware_revision & 0xffffff00))
1095 continue;
1096
1097 if (sbp2_workarounds_table[i].model != model &&
1098 sbp2_workarounds_table[i].model != SBP2_ROM_VALUE_WILDCARD)
1099 continue;
1100
1101 w |= sbp2_workarounds_table[i].workarounds;
1102 break;
1103 }
1104 out:
1105 if (w)
1106 fw_notify("Workarounds for %s: 0x%x "
1107 "(firmware_revision 0x%06x, model_id 0x%06x)\n",
1108 tgt->bus_id, w, firmware_revision, model);
1109 tgt->workarounds = w;
1110 }
1111
1112 static struct scsi_host_template scsi_driver_template;
1113
1114 static int sbp2_probe(struct device *dev)
1115 {
1116 struct fw_unit *unit = fw_unit(dev);
1117 struct fw_device *device = fw_device(unit->device.parent);
1118 struct sbp2_target *tgt;
1119 struct sbp2_logical_unit *lu;
1120 struct Scsi_Host *shost;
1121 u32 model, firmware_revision;
1122
1123 if (dma_get_max_seg_size(device->card->device) > SBP2_MAX_SEG_SIZE)
1124 BUG_ON(dma_set_max_seg_size(device->card->device,
1125 SBP2_MAX_SEG_SIZE));
1126
1127 shost = scsi_host_alloc(&scsi_driver_template, sizeof(*tgt));
1128 if (shost == NULL)
1129 return -ENOMEM;
1130
1131 tgt = (struct sbp2_target *)shost->hostdata;
1132 unit->device.driver_data = tgt;
1133 tgt->unit = unit;
1134 kref_init(&tgt->kref);
1135 INIT_LIST_HEAD(&tgt->lu_list);
1136 tgt->bus_id = dev_name(&unit->device);
1137 tgt->guid = (u64)device->config_rom[3] << 32 | device->config_rom[4];
1138
1139 if (fw_device_enable_phys_dma(device) < 0)
1140 goto fail_shost_put;
1141
1142 if (scsi_add_host(shost, &unit->device) < 0)
1143 goto fail_shost_put;
1144
1145 fw_device_get(device);
1146 fw_unit_get(unit);
1147
1148 /* implicit directory ID */
1149 tgt->directory_id = ((unit->directory - device->config_rom) * 4
1150 + CSR_CONFIG_ROM) & 0xffffff;
1151
1152 firmware_revision = SBP2_ROM_VALUE_MISSING;
1153 model = SBP2_ROM_VALUE_MISSING;
1154
1155 if (sbp2_scan_unit_dir(tgt, unit->directory, &model,
1156 &firmware_revision) < 0)
1157 goto fail_tgt_put;
1158
1159 sbp2_init_workarounds(tgt, model, firmware_revision);
1160
1161 /*
1162 * At S100 we can do 512 bytes per packet, at S200 1024 bytes,
1163 * and so on up to 4096 bytes. The SBP-2 max_payload field
1164 * specifies the max payload size as 2 ^ (max_payload + 2), so
1165 * if we set this to max_speed + 7, we get the right value.
1166 */
1167 tgt->max_payload = min(device->max_speed + 7, 10U);
1168 tgt->max_payload = min(tgt->max_payload, device->card->max_receive - 1);
1169
1170 /* Do the login in a workqueue so we can easily reschedule retries. */
1171 list_for_each_entry(lu, &tgt->lu_list, link)
1172 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1173 return 0;
1174
1175 fail_tgt_put:
1176 sbp2_target_put(tgt);
1177 return -ENOMEM;
1178
1179 fail_shost_put:
1180 scsi_host_put(shost);
1181 return -ENOMEM;
1182 }
1183
1184 static int sbp2_remove(struct device *dev)
1185 {
1186 struct fw_unit *unit = fw_unit(dev);
1187 struct sbp2_target *tgt = unit->device.driver_data;
1188
1189 sbp2_target_put(tgt);
1190 return 0;
1191 }
1192
1193 static void sbp2_reconnect(struct work_struct *work)
1194 {
1195 struct sbp2_logical_unit *lu =
1196 container_of(work, struct sbp2_logical_unit, work.work);
1197 struct sbp2_target *tgt = lu->tgt;
1198 struct fw_device *device = fw_device(tgt->unit->device.parent);
1199 int generation, node_id, local_node_id;
1200
1201 if (fw_device_is_shutdown(device))
1202 goto out;
1203
1204 generation = device->generation;
1205 smp_rmb(); /* node IDs must not be older than generation */
1206 node_id = device->node_id;
1207 local_node_id = device->card->node_id;
1208
1209 if (sbp2_send_management_orb(lu, node_id, generation,
1210 SBP2_RECONNECT_REQUEST,
1211 lu->login_id, NULL) < 0) {
1212 /*
1213 * If reconnect was impossible even though we are in the
1214 * current generation, fall back and try to log in again.
1215 *
1216 * We could check for "Function rejected" status, but
1217 * looking at the bus generation as simpler and more general.
1218 */
1219 smp_rmb(); /* get current card generation */
1220 if (generation == device->card->generation ||
1221 lu->retries++ >= 5) {
1222 fw_error("%s: failed to reconnect\n", tgt->bus_id);
1223 lu->retries = 0;
1224 PREPARE_DELAYED_WORK(&lu->work, sbp2_login);
1225 }
1226 sbp2_queue_work(lu, DIV_ROUND_UP(HZ, 5));
1227 goto out;
1228 }
1229
1230 tgt->node_id = node_id;
1231 tgt->address_high = local_node_id << 16;
1232 smp_wmb(); /* node IDs must not be older than generation */
1233 lu->generation = generation;
1234
1235 fw_notify("%s: reconnected to LUN %04x (%d retries)\n",
1236 tgt->bus_id, lu->lun, lu->retries);
1237
1238 sbp2_agent_reset(lu);
1239 sbp2_cancel_orbs(lu);
1240 sbp2_conditionally_unblock(lu);
1241 out:
1242 sbp2_target_put(tgt);
1243 }
1244
1245 static void sbp2_update(struct fw_unit *unit)
1246 {
1247 struct sbp2_target *tgt = unit->device.driver_data;
1248 struct sbp2_logical_unit *lu;
1249
1250 fw_device_enable_phys_dma(fw_device(unit->device.parent));
1251
1252 /*
1253 * Fw-core serializes sbp2_update() against sbp2_remove().
1254 * Iteration over tgt->lu_list is therefore safe here.
1255 */
1256 list_for_each_entry(lu, &tgt->lu_list, link) {
1257 sbp2_conditionally_block(lu);
1258 lu->retries = 0;
1259 sbp2_queue_work(lu, 0);
1260 }
1261 }
1262
1263 #define SBP2_UNIT_SPEC_ID_ENTRY 0x0000609e
1264 #define SBP2_SW_VERSION_ENTRY 0x00010483
1265
1266 static const struct fw_device_id sbp2_id_table[] = {
1267 {
1268 .match_flags = FW_MATCH_SPECIFIER_ID | FW_MATCH_VERSION,
1269 .specifier_id = SBP2_UNIT_SPEC_ID_ENTRY,
1270 .version = SBP2_SW_VERSION_ENTRY,
1271 },
1272 { }
1273 };
1274
1275 static struct fw_driver sbp2_driver = {
1276 .driver = {
1277 .owner = THIS_MODULE,
1278 .name = sbp2_driver_name,
1279 .bus = &fw_bus_type,
1280 .probe = sbp2_probe,
1281 .remove = sbp2_remove,
1282 },
1283 .update = sbp2_update,
1284 .id_table = sbp2_id_table,
1285 };
1286
1287 static unsigned int
1288 sbp2_status_to_sense_data(u8 *sbp2_status, u8 *sense_data)
1289 {
1290 int sam_status;
1291
1292 sense_data[0] = 0x70;
1293 sense_data[1] = 0x0;
1294 sense_data[2] = sbp2_status[1];
1295 sense_data[3] = sbp2_status[4];
1296 sense_data[4] = sbp2_status[5];
1297 sense_data[5] = sbp2_status[6];
1298 sense_data[6] = sbp2_status[7];
1299 sense_data[7] = 10;
1300 sense_data[8] = sbp2_status[8];
1301 sense_data[9] = sbp2_status[9];
1302 sense_data[10] = sbp2_status[10];
1303 sense_data[11] = sbp2_status[11];
1304 sense_data[12] = sbp2_status[2];
1305 sense_data[13] = sbp2_status[3];
1306 sense_data[14] = sbp2_status[12];
1307 sense_data[15] = sbp2_status[13];
1308
1309 sam_status = sbp2_status[0] & 0x3f;
1310
1311 switch (sam_status) {
1312 case SAM_STAT_GOOD:
1313 case SAM_STAT_CHECK_CONDITION:
1314 case SAM_STAT_CONDITION_MET:
1315 case SAM_STAT_BUSY:
1316 case SAM_STAT_RESERVATION_CONFLICT:
1317 case SAM_STAT_COMMAND_TERMINATED:
1318 return DID_OK << 16 | sam_status;
1319
1320 default:
1321 return DID_ERROR << 16;
1322 }
1323 }
1324
1325 static void
1326 complete_command_orb(struct sbp2_orb *base_orb, struct sbp2_status *status)
1327 {
1328 struct sbp2_command_orb *orb =
1329 container_of(base_orb, struct sbp2_command_orb, base);
1330 struct fw_device *device = fw_device(orb->lu->tgt->unit->device.parent);
1331 int result;
1332
1333 if (status != NULL) {
1334 if (STATUS_GET_DEAD(*status))
1335 sbp2_agent_reset_no_wait(orb->lu);
1336
1337 switch (STATUS_GET_RESPONSE(*status)) {
1338 case SBP2_STATUS_REQUEST_COMPLETE:
1339 result = DID_OK << 16;
1340 break;
1341 case SBP2_STATUS_TRANSPORT_FAILURE:
1342 result = DID_BUS_BUSY << 16;
1343 break;
1344 case SBP2_STATUS_ILLEGAL_REQUEST:
1345 case SBP2_STATUS_VENDOR_DEPENDENT:
1346 default:
1347 result = DID_ERROR << 16;
1348 break;
1349 }
1350
1351 if (result == DID_OK << 16 && STATUS_GET_LEN(*status) > 1)
1352 result = sbp2_status_to_sense_data(STATUS_GET_DATA(*status),
1353 orb->cmd->sense_buffer);
1354 } else {
1355 /*
1356 * If the orb completes with status == NULL, something
1357 * went wrong, typically a bus reset happened mid-orb
1358 * or when sending the write (less likely).
1359 */
1360 result = DID_BUS_BUSY << 16;
1361 sbp2_conditionally_block(orb->lu);
1362 }
1363
1364 dma_unmap_single(device->card->device, orb->base.request_bus,
1365 sizeof(orb->request), DMA_TO_DEVICE);
1366
1367 if (scsi_sg_count(orb->cmd) > 0)
1368 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1369 scsi_sg_count(orb->cmd),
1370 orb->cmd->sc_data_direction);
1371
1372 if (orb->page_table_bus != 0)
1373 dma_unmap_single(device->card->device, orb->page_table_bus,
1374 sizeof(orb->page_table), DMA_TO_DEVICE);
1375
1376 orb->cmd->result = result;
1377 orb->done(orb->cmd);
1378 }
1379
1380 static int
1381 sbp2_map_scatterlist(struct sbp2_command_orb *orb, struct fw_device *device,
1382 struct sbp2_logical_unit *lu)
1383 {
1384 struct scatterlist *sg = scsi_sglist(orb->cmd);
1385 int i, n;
1386
1387 n = dma_map_sg(device->card->device, sg, scsi_sg_count(orb->cmd),
1388 orb->cmd->sc_data_direction);
1389 if (n == 0)
1390 goto fail;
1391
1392 /*
1393 * Handle the special case where there is only one element in
1394 * the scatter list by converting it to an immediate block
1395 * request. This is also a workaround for broken devices such
1396 * as the second generation iPod which doesn't support page
1397 * tables.
1398 */
1399 if (n == 1) {
1400 orb->request.data_descriptor.high =
1401 cpu_to_be32(lu->tgt->address_high);
1402 orb->request.data_descriptor.low =
1403 cpu_to_be32(sg_dma_address(sg));
1404 orb->request.misc |=
1405 cpu_to_be32(COMMAND_ORB_DATA_SIZE(sg_dma_len(sg)));
1406 return 0;
1407 }
1408
1409 for_each_sg(sg, sg, n, i) {
1410 orb->page_table[i].high = cpu_to_be32(sg_dma_len(sg) << 16);
1411 orb->page_table[i].low = cpu_to_be32(sg_dma_address(sg));
1412 }
1413
1414 orb->page_table_bus =
1415 dma_map_single(device->card->device, orb->page_table,
1416 sizeof(orb->page_table), DMA_TO_DEVICE);
1417 if (dma_mapping_error(device->card->device, orb->page_table_bus))
1418 goto fail_page_table;
1419
1420 /*
1421 * The data_descriptor pointer is the one case where we need
1422 * to fill in the node ID part of the address. All other
1423 * pointers assume that the data referenced reside on the
1424 * initiator (i.e. us), but data_descriptor can refer to data
1425 * on other nodes so we need to put our ID in descriptor.high.
1426 */
1427 orb->request.data_descriptor.high = cpu_to_be32(lu->tgt->address_high);
1428 orb->request.data_descriptor.low = cpu_to_be32(orb->page_table_bus);
1429 orb->request.misc |= cpu_to_be32(COMMAND_ORB_PAGE_TABLE_PRESENT |
1430 COMMAND_ORB_DATA_SIZE(n));
1431
1432 return 0;
1433
1434 fail_page_table:
1435 dma_unmap_sg(device->card->device, scsi_sglist(orb->cmd),
1436 scsi_sg_count(orb->cmd), orb->cmd->sc_data_direction);
1437 fail:
1438 return -ENOMEM;
1439 }
1440
1441 /* SCSI stack integration */
1442
1443 static int sbp2_scsi_queuecommand(struct scsi_cmnd *cmd, scsi_done_fn_t done)
1444 {
1445 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1446 struct fw_device *device = fw_device(lu->tgt->unit->device.parent);
1447 struct sbp2_command_orb *orb;
1448 int generation, retval = SCSI_MLQUEUE_HOST_BUSY;
1449
1450 /*
1451 * Bidirectional commands are not yet implemented, and unknown
1452 * transfer direction not handled.
1453 */
1454 if (cmd->sc_data_direction == DMA_BIDIRECTIONAL) {
1455 fw_error("Can't handle DMA_BIDIRECTIONAL, rejecting command\n");
1456 cmd->result = DID_ERROR << 16;
1457 done(cmd);
1458 return 0;
1459 }
1460
1461 orb = kzalloc(sizeof(*orb), GFP_ATOMIC);
1462 if (orb == NULL) {
1463 fw_notify("failed to alloc orb\n");
1464 return SCSI_MLQUEUE_HOST_BUSY;
1465 }
1466
1467 /* Initialize rcode to something not RCODE_COMPLETE. */
1468 orb->base.rcode = -1;
1469 kref_init(&orb->base.kref);
1470
1471 orb->lu = lu;
1472 orb->done = done;
1473 orb->cmd = cmd;
1474
1475 orb->request.next.high = cpu_to_be32(SBP2_ORB_NULL);
1476 orb->request.misc = cpu_to_be32(
1477 COMMAND_ORB_MAX_PAYLOAD(lu->tgt->max_payload) |
1478 COMMAND_ORB_SPEED(device->max_speed) |
1479 COMMAND_ORB_NOTIFY);
1480
1481 if (cmd->sc_data_direction == DMA_FROM_DEVICE)
1482 orb->request.misc |= cpu_to_be32(COMMAND_ORB_DIRECTION);
1483
1484 generation = device->generation;
1485 smp_rmb(); /* sbp2_map_scatterlist looks at tgt->address_high */
1486
1487 if (scsi_sg_count(cmd) && sbp2_map_scatterlist(orb, device, lu) < 0)
1488 goto out;
1489
1490 memcpy(orb->request.command_block, cmd->cmnd, cmd->cmd_len);
1491
1492 orb->base.callback = complete_command_orb;
1493 orb->base.request_bus =
1494 dma_map_single(device->card->device, &orb->request,
1495 sizeof(orb->request), DMA_TO_DEVICE);
1496 if (dma_mapping_error(device->card->device, orb->base.request_bus))
1497 goto out;
1498
1499 sbp2_send_orb(&orb->base, lu, lu->tgt->node_id, generation,
1500 lu->command_block_agent_address + SBP2_ORB_POINTER);
1501 retval = 0;
1502 out:
1503 kref_put(&orb->base.kref, free_orb);
1504 return retval;
1505 }
1506
1507 static int sbp2_scsi_slave_alloc(struct scsi_device *sdev)
1508 {
1509 struct sbp2_logical_unit *lu = sdev->hostdata;
1510
1511 /* (Re-)Adding logical units via the SCSI stack is not supported. */
1512 if (!lu)
1513 return -ENOSYS;
1514
1515 sdev->allow_restart = 1;
1516
1517 /* SBP-2 requires quadlet alignment of the data buffers. */
1518 blk_queue_update_dma_alignment(sdev->request_queue, 4 - 1);
1519
1520 if (lu->tgt->workarounds & SBP2_WORKAROUND_INQUIRY_36)
1521 sdev->inquiry_len = 36;
1522
1523 return 0;
1524 }
1525
1526 static int sbp2_scsi_slave_configure(struct scsi_device *sdev)
1527 {
1528 struct sbp2_logical_unit *lu = sdev->hostdata;
1529
1530 sdev->use_10_for_rw = 1;
1531
1532 if (sbp2_param_exclusive_login)
1533 sdev->manage_start_stop = 1;
1534
1535 if (sdev->type == TYPE_ROM)
1536 sdev->use_10_for_ms = 1;
1537
1538 if (sdev->type == TYPE_DISK &&
1539 lu->tgt->workarounds & SBP2_WORKAROUND_MODE_SENSE_8)
1540 sdev->skip_ms_page_8 = 1;
1541
1542 if (lu->tgt->workarounds & SBP2_WORKAROUND_FIX_CAPACITY)
1543 sdev->fix_capacity = 1;
1544
1545 if (lu->tgt->workarounds & SBP2_WORKAROUND_POWER_CONDITION)
1546 sdev->start_stop_pwr_cond = 1;
1547
1548 if (lu->tgt->workarounds & SBP2_WORKAROUND_128K_MAX_TRANS)
1549 blk_queue_max_sectors(sdev->request_queue, 128 * 1024 / 512);
1550
1551 blk_queue_max_segment_size(sdev->request_queue, SBP2_MAX_SEG_SIZE);
1552
1553 return 0;
1554 }
1555
1556 /*
1557 * Called by scsi stack when something has really gone wrong. Usually
1558 * called when a command has timed-out for some reason.
1559 */
1560 static int sbp2_scsi_abort(struct scsi_cmnd *cmd)
1561 {
1562 struct sbp2_logical_unit *lu = cmd->device->hostdata;
1563
1564 fw_notify("%s: sbp2_scsi_abort\n", lu->tgt->bus_id);
1565 sbp2_agent_reset(lu);
1566 sbp2_cancel_orbs(lu);
1567
1568 return SUCCESS;
1569 }
1570
1571 /*
1572 * Format of /sys/bus/scsi/devices/.../ieee1394_id:
1573 * u64 EUI-64 : u24 directory_ID : u16 LUN (all printed in hexadecimal)
1574 *
1575 * This is the concatenation of target port identifier and logical unit
1576 * identifier as per SAM-2...SAM-4 annex A.
1577 */
1578 static ssize_t
1579 sbp2_sysfs_ieee1394_id_show(struct device *dev, struct device_attribute *attr,
1580 char *buf)
1581 {
1582 struct scsi_device *sdev = to_scsi_device(dev);
1583 struct sbp2_logical_unit *lu;
1584
1585 if (!sdev)
1586 return 0;
1587
1588 lu = sdev->hostdata;
1589
1590 return sprintf(buf, "%016llx:%06x:%04x\n",
1591 (unsigned long long)lu->tgt->guid,
1592 lu->tgt->directory_id, lu->lun);
1593 }
1594
1595 static DEVICE_ATTR(ieee1394_id, S_IRUGO, sbp2_sysfs_ieee1394_id_show, NULL);
1596
1597 static struct device_attribute *sbp2_scsi_sysfs_attrs[] = {
1598 &dev_attr_ieee1394_id,
1599 NULL
1600 };
1601
1602 static struct scsi_host_template scsi_driver_template = {
1603 .module = THIS_MODULE,
1604 .name = "SBP-2 IEEE-1394",
1605 .proc_name = sbp2_driver_name,
1606 .queuecommand = sbp2_scsi_queuecommand,
1607 .slave_alloc = sbp2_scsi_slave_alloc,
1608 .slave_configure = sbp2_scsi_slave_configure,
1609 .eh_abort_handler = sbp2_scsi_abort,
1610 .this_id = -1,
1611 .sg_tablesize = SG_ALL,
1612 .use_clustering = ENABLE_CLUSTERING,
1613 .cmd_per_lun = 1,
1614 .can_queue = 1,
1615 .sdev_attrs = sbp2_scsi_sysfs_attrs,
1616 };
1617
1618 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
1619 MODULE_DESCRIPTION("SCSI over IEEE1394");
1620 MODULE_LICENSE("GPL");
1621 MODULE_DEVICE_TABLE(ieee1394, sbp2_id_table);
1622
1623 /* Provide a module alias so root-on-sbp2 initrds don't break. */
1624 #ifndef CONFIG_IEEE1394_SBP2_MODULE
1625 MODULE_ALIAS("sbp2");
1626 #endif
1627
1628 static int __init sbp2_init(void)
1629 {
1630 sbp2_wq = create_singlethread_workqueue(KBUILD_MODNAME);
1631 if (!sbp2_wq)
1632 return -ENOMEM;
1633
1634 return driver_register(&sbp2_driver.driver);
1635 }
1636
1637 static void __exit sbp2_cleanup(void)
1638 {
1639 driver_unregister(&sbp2_driver.driver);
1640 destroy_workqueue(sbp2_wq);
1641 }
1642
1643 module_init(sbp2_init);
1644 module_exit(sbp2_cleanup);