Merge branch 'urgent' of git://git.kernel.org/pub/scm/linux/kernel/git/brodo/pcmcia-2.6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / firewire / core-iso.c
1 /*
2 * Isochronous I/O functionality:
3 * - Isochronous DMA context management
4 * - Isochronous bus resource management (channels, bandwidth), client side
5 *
6 * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 */
22
23 #include <linux/dma-mapping.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/spinlock.h>
30 #include <linux/vmalloc.h>
31
32 #include <asm/byteorder.h>
33
34 #include "core.h"
35
36 /*
37 * Isochronous DMA context management
38 */
39
40 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
41 int page_count, enum dma_data_direction direction)
42 {
43 int i, j;
44 dma_addr_t address;
45
46 buffer->page_count = page_count;
47 buffer->direction = direction;
48
49 buffer->pages = kmalloc(page_count * sizeof(buffer->pages[0]),
50 GFP_KERNEL);
51 if (buffer->pages == NULL)
52 goto out;
53
54 for (i = 0; i < buffer->page_count; i++) {
55 buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
56 if (buffer->pages[i] == NULL)
57 goto out_pages;
58
59 address = dma_map_page(card->device, buffer->pages[i],
60 0, PAGE_SIZE, direction);
61 if (dma_mapping_error(card->device, address)) {
62 __free_page(buffer->pages[i]);
63 goto out_pages;
64 }
65 set_page_private(buffer->pages[i], address);
66 }
67
68 return 0;
69
70 out_pages:
71 for (j = 0; j < i; j++) {
72 address = page_private(buffer->pages[j]);
73 dma_unmap_page(card->device, address,
74 PAGE_SIZE, direction);
75 __free_page(buffer->pages[j]);
76 }
77 kfree(buffer->pages);
78 out:
79 buffer->pages = NULL;
80
81 return -ENOMEM;
82 }
83 EXPORT_SYMBOL(fw_iso_buffer_init);
84
85 int fw_iso_buffer_map(struct fw_iso_buffer *buffer, struct vm_area_struct *vma)
86 {
87 unsigned long uaddr;
88 int i, err;
89
90 uaddr = vma->vm_start;
91 for (i = 0; i < buffer->page_count; i++) {
92 err = vm_insert_page(vma, uaddr, buffer->pages[i]);
93 if (err)
94 return err;
95
96 uaddr += PAGE_SIZE;
97 }
98
99 return 0;
100 }
101
102 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
103 struct fw_card *card)
104 {
105 int i;
106 dma_addr_t address;
107
108 for (i = 0; i < buffer->page_count; i++) {
109 address = page_private(buffer->pages[i]);
110 dma_unmap_page(card->device, address,
111 PAGE_SIZE, buffer->direction);
112 __free_page(buffer->pages[i]);
113 }
114
115 kfree(buffer->pages);
116 buffer->pages = NULL;
117 }
118 EXPORT_SYMBOL(fw_iso_buffer_destroy);
119
120 struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
121 int type, int channel, int speed, size_t header_size,
122 fw_iso_callback_t callback, void *callback_data)
123 {
124 struct fw_iso_context *ctx;
125
126 ctx = card->driver->allocate_iso_context(card,
127 type, channel, header_size);
128 if (IS_ERR(ctx))
129 return ctx;
130
131 ctx->card = card;
132 ctx->type = type;
133 ctx->channel = channel;
134 ctx->speed = speed;
135 ctx->header_size = header_size;
136 ctx->callback = callback;
137 ctx->callback_data = callback_data;
138
139 return ctx;
140 }
141 EXPORT_SYMBOL(fw_iso_context_create);
142
143 void fw_iso_context_destroy(struct fw_iso_context *ctx)
144 {
145 struct fw_card *card = ctx->card;
146
147 card->driver->free_iso_context(ctx);
148 }
149 EXPORT_SYMBOL(fw_iso_context_destroy);
150
151 int fw_iso_context_start(struct fw_iso_context *ctx,
152 int cycle, int sync, int tags)
153 {
154 return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
155 }
156 EXPORT_SYMBOL(fw_iso_context_start);
157
158 int fw_iso_context_queue(struct fw_iso_context *ctx,
159 struct fw_iso_packet *packet,
160 struct fw_iso_buffer *buffer,
161 unsigned long payload)
162 {
163 struct fw_card *card = ctx->card;
164
165 return card->driver->queue_iso(ctx, packet, buffer, payload);
166 }
167 EXPORT_SYMBOL(fw_iso_context_queue);
168
169 int fw_iso_context_stop(struct fw_iso_context *ctx)
170 {
171 return ctx->card->driver->stop_iso(ctx);
172 }
173 EXPORT_SYMBOL(fw_iso_context_stop);
174
175 /*
176 * Isochronous bus resource management (channels, bandwidth), client side
177 */
178
179 static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
180 int bandwidth, bool allocate, __be32 data[2])
181 {
182 int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
183
184 /*
185 * On a 1394a IRM with low contention, try < 1 is enough.
186 * On a 1394-1995 IRM, we need at least try < 2.
187 * Let's just do try < 5.
188 */
189 for (try = 0; try < 5; try++) {
190 new = allocate ? old - bandwidth : old + bandwidth;
191 if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
192 break;
193
194 data[0] = cpu_to_be32(old);
195 data[1] = cpu_to_be32(new);
196 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
197 irm_id, generation, SCODE_100,
198 CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
199 data, 8)) {
200 case RCODE_GENERATION:
201 /* A generation change frees all bandwidth. */
202 return allocate ? -EAGAIN : bandwidth;
203
204 case RCODE_COMPLETE:
205 if (be32_to_cpup(data) == old)
206 return bandwidth;
207
208 old = be32_to_cpup(data);
209 /* Fall through. */
210 }
211 }
212
213 return -EIO;
214 }
215
216 static int manage_channel(struct fw_card *card, int irm_id, int generation,
217 u32 channels_mask, u64 offset, bool allocate, __be32 data[2])
218 {
219 __be32 c, all, old;
220 int i, retry = 5;
221
222 old = all = allocate ? cpu_to_be32(~0) : 0;
223
224 for (i = 0; i < 32; i++) {
225 if (!(channels_mask & 1 << i))
226 continue;
227
228 c = cpu_to_be32(1 << (31 - i));
229 if ((old & c) != (all & c))
230 continue;
231
232 data[0] = old;
233 data[1] = old ^ c;
234 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
235 irm_id, generation, SCODE_100,
236 offset, data, 8)) {
237 case RCODE_GENERATION:
238 /* A generation change frees all channels. */
239 return allocate ? -EAGAIN : i;
240
241 case RCODE_COMPLETE:
242 if (data[0] == old)
243 return i;
244
245 old = data[0];
246
247 /* Is the IRM 1394a-2000 compliant? */
248 if ((data[0] & c) == (data[1] & c))
249 continue;
250
251 /* 1394-1995 IRM, fall through to retry. */
252 default:
253 if (retry--)
254 i--;
255 }
256 }
257
258 return -EIO;
259 }
260
261 static void deallocate_channel(struct fw_card *card, int irm_id,
262 int generation, int channel, __be32 buffer[2])
263 {
264 u32 mask;
265 u64 offset;
266
267 mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
268 offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
269 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
270
271 manage_channel(card, irm_id, generation, mask, offset, false, buffer);
272 }
273
274 /**
275 * fw_iso_resource_manage - Allocate or deallocate a channel and/or bandwidth
276 *
277 * In parameters: card, generation, channels_mask, bandwidth, allocate
278 * Out parameters: channel, bandwidth
279 * This function blocks (sleeps) during communication with the IRM.
280 *
281 * Allocates or deallocates at most one channel out of channels_mask.
282 * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
283 * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
284 * channel 0 and LSB for channel 63.)
285 * Allocates or deallocates as many bandwidth allocation units as specified.
286 *
287 * Returns channel < 0 if no channel was allocated or deallocated.
288 * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
289 *
290 * If generation is stale, deallocations succeed but allocations fail with
291 * channel = -EAGAIN.
292 *
293 * If channel allocation fails, no bandwidth will be allocated either.
294 * If bandwidth allocation fails, no channel will be allocated either.
295 * But deallocations of channel and bandwidth are tried independently
296 * of each other's success.
297 */
298 void fw_iso_resource_manage(struct fw_card *card, int generation,
299 u64 channels_mask, int *channel, int *bandwidth,
300 bool allocate, __be32 buffer[2])
301 {
302 u32 channels_hi = channels_mask; /* channels 31...0 */
303 u32 channels_lo = channels_mask >> 32; /* channels 63...32 */
304 int irm_id, ret, c = -EINVAL;
305
306 spin_lock_irq(&card->lock);
307 irm_id = card->irm_node->node_id;
308 spin_unlock_irq(&card->lock);
309
310 if (channels_hi)
311 c = manage_channel(card, irm_id, generation, channels_hi,
312 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
313 allocate, buffer);
314 if (channels_lo && c < 0) {
315 c = manage_channel(card, irm_id, generation, channels_lo,
316 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
317 allocate, buffer);
318 if (c >= 0)
319 c += 32;
320 }
321 *channel = c;
322
323 if (allocate && channels_mask != 0 && c < 0)
324 *bandwidth = 0;
325
326 if (*bandwidth == 0)
327 return;
328
329 ret = manage_bandwidth(card, irm_id, generation, *bandwidth,
330 allocate, buffer);
331 if (ret < 0)
332 *bandwidth = 0;
333
334 if (allocate && ret < 0) {
335 if (c >= 0)
336 deallocate_channel(card, irm_id, generation, c, buffer);
337 *channel = ret;
338 }
339 }