Merge branch 'upstream/wm8974' into for-2.6.33
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / firewire / core-iso.c
1 /*
2 * Isochronous I/O functionality:
3 * - Isochronous DMA context management
4 * - Isochronous bus resource management (channels, bandwidth), client side
5 *
6 * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 */
22
23 #include <linux/dma-mapping.h>
24 #include <linux/errno.h>
25 #include <linux/firewire.h>
26 #include <linux/firewire-constants.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/spinlock.h>
30 #include <linux/vmalloc.h>
31
32 #include <asm/byteorder.h>
33
34 #include "core.h"
35
36 /*
37 * Isochronous DMA context management
38 */
39
40 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
41 int page_count, enum dma_data_direction direction)
42 {
43 int i, j;
44 dma_addr_t address;
45
46 buffer->page_count = page_count;
47 buffer->direction = direction;
48
49 buffer->pages = kmalloc(page_count * sizeof(buffer->pages[0]),
50 GFP_KERNEL);
51 if (buffer->pages == NULL)
52 goto out;
53
54 for (i = 0; i < buffer->page_count; i++) {
55 buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
56 if (buffer->pages[i] == NULL)
57 goto out_pages;
58
59 address = dma_map_page(card->device, buffer->pages[i],
60 0, PAGE_SIZE, direction);
61 if (dma_mapping_error(card->device, address)) {
62 __free_page(buffer->pages[i]);
63 goto out_pages;
64 }
65 set_page_private(buffer->pages[i], address);
66 }
67
68 return 0;
69
70 out_pages:
71 for (j = 0; j < i; j++) {
72 address = page_private(buffer->pages[j]);
73 dma_unmap_page(card->device, address,
74 PAGE_SIZE, direction);
75 __free_page(buffer->pages[j]);
76 }
77 kfree(buffer->pages);
78 out:
79 buffer->pages = NULL;
80
81 return -ENOMEM;
82 }
83 EXPORT_SYMBOL(fw_iso_buffer_init);
84
85 int fw_iso_buffer_map(struct fw_iso_buffer *buffer, struct vm_area_struct *vma)
86 {
87 unsigned long uaddr;
88 int i, err;
89
90 uaddr = vma->vm_start;
91 for (i = 0; i < buffer->page_count; i++) {
92 err = vm_insert_page(vma, uaddr, buffer->pages[i]);
93 if (err)
94 return err;
95
96 uaddr += PAGE_SIZE;
97 }
98
99 return 0;
100 }
101
102 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
103 struct fw_card *card)
104 {
105 int i;
106 dma_addr_t address;
107
108 for (i = 0; i < buffer->page_count; i++) {
109 address = page_private(buffer->pages[i]);
110 dma_unmap_page(card->device, address,
111 PAGE_SIZE, buffer->direction);
112 __free_page(buffer->pages[i]);
113 }
114
115 kfree(buffer->pages);
116 buffer->pages = NULL;
117 }
118 EXPORT_SYMBOL(fw_iso_buffer_destroy);
119
120 struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
121 int type, int channel, int speed, size_t header_size,
122 fw_iso_callback_t callback, void *callback_data)
123 {
124 struct fw_iso_context *ctx;
125
126 ctx = card->driver->allocate_iso_context(card,
127 type, channel, header_size);
128 if (IS_ERR(ctx))
129 return ctx;
130
131 ctx->card = card;
132 ctx->type = type;
133 ctx->channel = channel;
134 ctx->speed = speed;
135 ctx->header_size = header_size;
136 ctx->callback = callback;
137 ctx->callback_data = callback_data;
138
139 return ctx;
140 }
141 EXPORT_SYMBOL(fw_iso_context_create);
142
143 void fw_iso_context_destroy(struct fw_iso_context *ctx)
144 {
145 struct fw_card *card = ctx->card;
146
147 card->driver->free_iso_context(ctx);
148 }
149 EXPORT_SYMBOL(fw_iso_context_destroy);
150
151 int fw_iso_context_start(struct fw_iso_context *ctx,
152 int cycle, int sync, int tags)
153 {
154 return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
155 }
156 EXPORT_SYMBOL(fw_iso_context_start);
157
158 int fw_iso_context_queue(struct fw_iso_context *ctx,
159 struct fw_iso_packet *packet,
160 struct fw_iso_buffer *buffer,
161 unsigned long payload)
162 {
163 struct fw_card *card = ctx->card;
164
165 return card->driver->queue_iso(ctx, packet, buffer, payload);
166 }
167 EXPORT_SYMBOL(fw_iso_context_queue);
168
169 int fw_iso_context_stop(struct fw_iso_context *ctx)
170 {
171 return ctx->card->driver->stop_iso(ctx);
172 }
173 EXPORT_SYMBOL(fw_iso_context_stop);
174
175 /*
176 * Isochronous bus resource management (channels, bandwidth), client side
177 */
178
179 static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
180 int bandwidth, bool allocate)
181 {
182 __be32 data[2];
183 int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
184
185 /*
186 * On a 1394a IRM with low contention, try < 1 is enough.
187 * On a 1394-1995 IRM, we need at least try < 2.
188 * Let's just do try < 5.
189 */
190 for (try = 0; try < 5; try++) {
191 new = allocate ? old - bandwidth : old + bandwidth;
192 if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
193 break;
194
195 data[0] = cpu_to_be32(old);
196 data[1] = cpu_to_be32(new);
197 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
198 irm_id, generation, SCODE_100,
199 CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
200 data, sizeof(data))) {
201 case RCODE_GENERATION:
202 /* A generation change frees all bandwidth. */
203 return allocate ? -EAGAIN : bandwidth;
204
205 case RCODE_COMPLETE:
206 if (be32_to_cpup(data) == old)
207 return bandwidth;
208
209 old = be32_to_cpup(data);
210 /* Fall through. */
211 }
212 }
213
214 return -EIO;
215 }
216
217 static int manage_channel(struct fw_card *card, int irm_id, int generation,
218 u32 channels_mask, u64 offset, bool allocate)
219 {
220 __be32 data[2], c, all, old;
221 int i, retry = 5;
222
223 old = all = allocate ? cpu_to_be32(~0) : 0;
224
225 for (i = 0; i < 32; i++) {
226 if (!(channels_mask & 1 << i))
227 continue;
228
229 c = cpu_to_be32(1 << (31 - i));
230 if ((old & c) != (all & c))
231 continue;
232
233 data[0] = old;
234 data[1] = old ^ c;
235 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
236 irm_id, generation, SCODE_100,
237 offset, data, sizeof(data))) {
238 case RCODE_GENERATION:
239 /* A generation change frees all channels. */
240 return allocate ? -EAGAIN : i;
241
242 case RCODE_COMPLETE:
243 if (data[0] == old)
244 return i;
245
246 old = data[0];
247
248 /* Is the IRM 1394a-2000 compliant? */
249 if ((data[0] & c) == (data[1] & c))
250 continue;
251
252 /* 1394-1995 IRM, fall through to retry. */
253 default:
254 if (retry--)
255 i--;
256 }
257 }
258
259 return -EIO;
260 }
261
262 static void deallocate_channel(struct fw_card *card, int irm_id,
263 int generation, int channel)
264 {
265 u32 mask;
266 u64 offset;
267
268 mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
269 offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
270 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
271
272 manage_channel(card, irm_id, generation, mask, offset, false);
273 }
274
275 /**
276 * fw_iso_resource_manage - Allocate or deallocate a channel and/or bandwidth
277 *
278 * In parameters: card, generation, channels_mask, bandwidth, allocate
279 * Out parameters: channel, bandwidth
280 * This function blocks (sleeps) during communication with the IRM.
281 *
282 * Allocates or deallocates at most one channel out of channels_mask.
283 * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
284 * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
285 * channel 0 and LSB for channel 63.)
286 * Allocates or deallocates as many bandwidth allocation units as specified.
287 *
288 * Returns channel < 0 if no channel was allocated or deallocated.
289 * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
290 *
291 * If generation is stale, deallocations succeed but allocations fail with
292 * channel = -EAGAIN.
293 *
294 * If channel allocation fails, no bandwidth will be allocated either.
295 * If bandwidth allocation fails, no channel will be allocated either.
296 * But deallocations of channel and bandwidth are tried independently
297 * of each other's success.
298 */
299 void fw_iso_resource_manage(struct fw_card *card, int generation,
300 u64 channels_mask, int *channel, int *bandwidth,
301 bool allocate)
302 {
303 u32 channels_hi = channels_mask; /* channels 31...0 */
304 u32 channels_lo = channels_mask >> 32; /* channels 63...32 */
305 int irm_id, ret, c = -EINVAL;
306
307 spin_lock_irq(&card->lock);
308 irm_id = card->irm_node->node_id;
309 spin_unlock_irq(&card->lock);
310
311 if (channels_hi)
312 c = manage_channel(card, irm_id, generation, channels_hi,
313 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI, allocate);
314 if (channels_lo && c < 0) {
315 c = manage_channel(card, irm_id, generation, channels_lo,
316 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO, allocate);
317 if (c >= 0)
318 c += 32;
319 }
320 *channel = c;
321
322 if (allocate && channels_mask != 0 && c < 0)
323 *bandwidth = 0;
324
325 if (*bandwidth == 0)
326 return;
327
328 ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
329 if (ret < 0)
330 *bandwidth = 0;
331
332 if (allocate && ret < 0 && c >= 0) {
333 deallocate_channel(card, irm_id, generation, c);
334 *channel = ret;
335 }
336 }