Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/ryusuke...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / firewire / core-device.c
1 /*
2 * Device probing and sysfs code.
3 *
4 * Copyright (C) 2005-2006 Kristian Hoegsberg <krh@bitplanet.net>
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
19 */
20
21 #include <linux/bug.h>
22 #include <linux/ctype.h>
23 #include <linux/delay.h>
24 #include <linux/device.h>
25 #include <linux/errno.h>
26 #include <linux/firewire.h>
27 #include <linux/firewire-constants.h>
28 #include <linux/idr.h>
29 #include <linux/jiffies.h>
30 #include <linux/kobject.h>
31 #include <linux/list.h>
32 #include <linux/mod_devicetable.h>
33 #include <linux/module.h>
34 #include <linux/mutex.h>
35 #include <linux/rwsem.h>
36 #include <linux/spinlock.h>
37 #include <linux/string.h>
38 #include <linux/workqueue.h>
39
40 #include <asm/atomic.h>
41 #include <asm/byteorder.h>
42 #include <asm/system.h>
43
44 #include "core.h"
45
46 void fw_csr_iterator_init(struct fw_csr_iterator *ci, const u32 *p)
47 {
48 ci->p = p + 1;
49 ci->end = ci->p + (p[0] >> 16);
50 }
51 EXPORT_SYMBOL(fw_csr_iterator_init);
52
53 int fw_csr_iterator_next(struct fw_csr_iterator *ci, int *key, int *value)
54 {
55 *key = *ci->p >> 24;
56 *value = *ci->p & 0xffffff;
57
58 return ci->p++ < ci->end;
59 }
60 EXPORT_SYMBOL(fw_csr_iterator_next);
61
62 static const u32 *search_leaf(const u32 *directory, int search_key)
63 {
64 struct fw_csr_iterator ci;
65 int last_key = 0, key, value;
66
67 fw_csr_iterator_init(&ci, directory);
68 while (fw_csr_iterator_next(&ci, &key, &value)) {
69 if (last_key == search_key &&
70 key == (CSR_DESCRIPTOR | CSR_LEAF))
71 return ci.p - 1 + value;
72
73 last_key = key;
74 }
75
76 return NULL;
77 }
78
79 static int textual_leaf_to_string(const u32 *block, char *buf, size_t size)
80 {
81 unsigned int quadlets, i;
82 char c;
83
84 if (!size || !buf)
85 return -EINVAL;
86
87 quadlets = min(block[0] >> 16, 256U);
88 if (quadlets < 2)
89 return -ENODATA;
90
91 if (block[1] != 0 || block[2] != 0)
92 /* unknown language/character set */
93 return -ENODATA;
94
95 block += 3;
96 quadlets -= 2;
97 for (i = 0; i < quadlets * 4 && i < size - 1; i++) {
98 c = block[i / 4] >> (24 - 8 * (i % 4));
99 if (c == '\0')
100 break;
101 buf[i] = c;
102 }
103 buf[i] = '\0';
104
105 return i;
106 }
107
108 /**
109 * fw_csr_string - reads a string from the configuration ROM
110 * @directory: e.g. root directory or unit directory
111 * @key: the key of the preceding directory entry
112 * @buf: where to put the string
113 * @size: size of @buf, in bytes
114 *
115 * The string is taken from a minimal ASCII text descriptor leaf after
116 * the immediate entry with @key. The string is zero-terminated.
117 * Returns strlen(buf) or a negative error code.
118 */
119 int fw_csr_string(const u32 *directory, int key, char *buf, size_t size)
120 {
121 const u32 *leaf = search_leaf(directory, key);
122 if (!leaf)
123 return -ENOENT;
124
125 return textual_leaf_to_string(leaf, buf, size);
126 }
127 EXPORT_SYMBOL(fw_csr_string);
128
129 static void get_ids(const u32 *directory, int *id)
130 {
131 struct fw_csr_iterator ci;
132 int key, value;
133
134 fw_csr_iterator_init(&ci, directory);
135 while (fw_csr_iterator_next(&ci, &key, &value)) {
136 switch (key) {
137 case CSR_VENDOR: id[0] = value; break;
138 case CSR_MODEL: id[1] = value; break;
139 case CSR_SPECIFIER_ID: id[2] = value; break;
140 case CSR_VERSION: id[3] = value; break;
141 }
142 }
143 }
144
145 static void get_modalias_ids(struct fw_unit *unit, int *id)
146 {
147 get_ids(&fw_parent_device(unit)->config_rom[5], id);
148 get_ids(unit->directory, id);
149 }
150
151 static bool match_ids(const struct ieee1394_device_id *id_table, int *id)
152 {
153 int match = 0;
154
155 if (id[0] == id_table->vendor_id)
156 match |= IEEE1394_MATCH_VENDOR_ID;
157 if (id[1] == id_table->model_id)
158 match |= IEEE1394_MATCH_MODEL_ID;
159 if (id[2] == id_table->specifier_id)
160 match |= IEEE1394_MATCH_SPECIFIER_ID;
161 if (id[3] == id_table->version)
162 match |= IEEE1394_MATCH_VERSION;
163
164 return (match & id_table->match_flags) == id_table->match_flags;
165 }
166
167 static bool is_fw_unit(struct device *dev);
168
169 static int fw_unit_match(struct device *dev, struct device_driver *drv)
170 {
171 const struct ieee1394_device_id *id_table =
172 container_of(drv, struct fw_driver, driver)->id_table;
173 int id[] = {0, 0, 0, 0};
174
175 /* We only allow binding to fw_units. */
176 if (!is_fw_unit(dev))
177 return 0;
178
179 get_modalias_ids(fw_unit(dev), id);
180
181 for (; id_table->match_flags != 0; id_table++)
182 if (match_ids(id_table, id))
183 return 1;
184
185 return 0;
186 }
187
188 static int get_modalias(struct fw_unit *unit, char *buffer, size_t buffer_size)
189 {
190 int id[] = {0, 0, 0, 0};
191
192 get_modalias_ids(unit, id);
193
194 return snprintf(buffer, buffer_size,
195 "ieee1394:ven%08Xmo%08Xsp%08Xver%08X",
196 id[0], id[1], id[2], id[3]);
197 }
198
199 static int fw_unit_uevent(struct device *dev, struct kobj_uevent_env *env)
200 {
201 struct fw_unit *unit = fw_unit(dev);
202 char modalias[64];
203
204 get_modalias(unit, modalias, sizeof(modalias));
205
206 if (add_uevent_var(env, "MODALIAS=%s", modalias))
207 return -ENOMEM;
208
209 return 0;
210 }
211
212 struct bus_type fw_bus_type = {
213 .name = "firewire",
214 .match = fw_unit_match,
215 };
216 EXPORT_SYMBOL(fw_bus_type);
217
218 int fw_device_enable_phys_dma(struct fw_device *device)
219 {
220 int generation = device->generation;
221
222 /* device->node_id, accessed below, must not be older than generation */
223 smp_rmb();
224
225 return device->card->driver->enable_phys_dma(device->card,
226 device->node_id,
227 generation);
228 }
229 EXPORT_SYMBOL(fw_device_enable_phys_dma);
230
231 struct config_rom_attribute {
232 struct device_attribute attr;
233 u32 key;
234 };
235
236 static ssize_t show_immediate(struct device *dev,
237 struct device_attribute *dattr, char *buf)
238 {
239 struct config_rom_attribute *attr =
240 container_of(dattr, struct config_rom_attribute, attr);
241 struct fw_csr_iterator ci;
242 const u32 *dir;
243 int key, value, ret = -ENOENT;
244
245 down_read(&fw_device_rwsem);
246
247 if (is_fw_unit(dev))
248 dir = fw_unit(dev)->directory;
249 else
250 dir = fw_device(dev)->config_rom + 5;
251
252 fw_csr_iterator_init(&ci, dir);
253 while (fw_csr_iterator_next(&ci, &key, &value))
254 if (attr->key == key) {
255 ret = snprintf(buf, buf ? PAGE_SIZE : 0,
256 "0x%06x\n", value);
257 break;
258 }
259
260 up_read(&fw_device_rwsem);
261
262 return ret;
263 }
264
265 #define IMMEDIATE_ATTR(name, key) \
266 { __ATTR(name, S_IRUGO, show_immediate, NULL), key }
267
268 static ssize_t show_text_leaf(struct device *dev,
269 struct device_attribute *dattr, char *buf)
270 {
271 struct config_rom_attribute *attr =
272 container_of(dattr, struct config_rom_attribute, attr);
273 const u32 *dir;
274 size_t bufsize;
275 char dummy_buf[2];
276 int ret;
277
278 down_read(&fw_device_rwsem);
279
280 if (is_fw_unit(dev))
281 dir = fw_unit(dev)->directory;
282 else
283 dir = fw_device(dev)->config_rom + 5;
284
285 if (buf) {
286 bufsize = PAGE_SIZE - 1;
287 } else {
288 buf = dummy_buf;
289 bufsize = 1;
290 }
291
292 ret = fw_csr_string(dir, attr->key, buf, bufsize);
293
294 if (ret >= 0) {
295 /* Strip trailing whitespace and add newline. */
296 while (ret > 0 && isspace(buf[ret - 1]))
297 ret--;
298 strcpy(buf + ret, "\n");
299 ret++;
300 }
301
302 up_read(&fw_device_rwsem);
303
304 return ret;
305 }
306
307 #define TEXT_LEAF_ATTR(name, key) \
308 { __ATTR(name, S_IRUGO, show_text_leaf, NULL), key }
309
310 static struct config_rom_attribute config_rom_attributes[] = {
311 IMMEDIATE_ATTR(vendor, CSR_VENDOR),
312 IMMEDIATE_ATTR(hardware_version, CSR_HARDWARE_VERSION),
313 IMMEDIATE_ATTR(specifier_id, CSR_SPECIFIER_ID),
314 IMMEDIATE_ATTR(version, CSR_VERSION),
315 IMMEDIATE_ATTR(model, CSR_MODEL),
316 TEXT_LEAF_ATTR(vendor_name, CSR_VENDOR),
317 TEXT_LEAF_ATTR(model_name, CSR_MODEL),
318 TEXT_LEAF_ATTR(hardware_version_name, CSR_HARDWARE_VERSION),
319 };
320
321 static void init_fw_attribute_group(struct device *dev,
322 struct device_attribute *attrs,
323 struct fw_attribute_group *group)
324 {
325 struct device_attribute *attr;
326 int i, j;
327
328 for (j = 0; attrs[j].attr.name != NULL; j++)
329 group->attrs[j] = &attrs[j].attr;
330
331 for (i = 0; i < ARRAY_SIZE(config_rom_attributes); i++) {
332 attr = &config_rom_attributes[i].attr;
333 if (attr->show(dev, attr, NULL) < 0)
334 continue;
335 group->attrs[j++] = &attr->attr;
336 }
337
338 group->attrs[j] = NULL;
339 group->groups[0] = &group->group;
340 group->groups[1] = NULL;
341 group->group.attrs = group->attrs;
342 dev->groups = (const struct attribute_group **) group->groups;
343 }
344
345 static ssize_t modalias_show(struct device *dev,
346 struct device_attribute *attr, char *buf)
347 {
348 struct fw_unit *unit = fw_unit(dev);
349 int length;
350
351 length = get_modalias(unit, buf, PAGE_SIZE);
352 strcpy(buf + length, "\n");
353
354 return length + 1;
355 }
356
357 static ssize_t rom_index_show(struct device *dev,
358 struct device_attribute *attr, char *buf)
359 {
360 struct fw_device *device = fw_device(dev->parent);
361 struct fw_unit *unit = fw_unit(dev);
362
363 return snprintf(buf, PAGE_SIZE, "%d\n",
364 (int)(unit->directory - device->config_rom));
365 }
366
367 static struct device_attribute fw_unit_attributes[] = {
368 __ATTR_RO(modalias),
369 __ATTR_RO(rom_index),
370 __ATTR_NULL,
371 };
372
373 static ssize_t config_rom_show(struct device *dev,
374 struct device_attribute *attr, char *buf)
375 {
376 struct fw_device *device = fw_device(dev);
377 size_t length;
378
379 down_read(&fw_device_rwsem);
380 length = device->config_rom_length * 4;
381 memcpy(buf, device->config_rom, length);
382 up_read(&fw_device_rwsem);
383
384 return length;
385 }
386
387 static ssize_t guid_show(struct device *dev,
388 struct device_attribute *attr, char *buf)
389 {
390 struct fw_device *device = fw_device(dev);
391 int ret;
392
393 down_read(&fw_device_rwsem);
394 ret = snprintf(buf, PAGE_SIZE, "0x%08x%08x\n",
395 device->config_rom[3], device->config_rom[4]);
396 up_read(&fw_device_rwsem);
397
398 return ret;
399 }
400
401 static int units_sprintf(char *buf, const u32 *directory)
402 {
403 struct fw_csr_iterator ci;
404 int key, value;
405 int specifier_id = 0;
406 int version = 0;
407
408 fw_csr_iterator_init(&ci, directory);
409 while (fw_csr_iterator_next(&ci, &key, &value)) {
410 switch (key) {
411 case CSR_SPECIFIER_ID:
412 specifier_id = value;
413 break;
414 case CSR_VERSION:
415 version = value;
416 break;
417 }
418 }
419
420 return sprintf(buf, "0x%06x:0x%06x ", specifier_id, version);
421 }
422
423 static ssize_t units_show(struct device *dev,
424 struct device_attribute *attr, char *buf)
425 {
426 struct fw_device *device = fw_device(dev);
427 struct fw_csr_iterator ci;
428 int key, value, i = 0;
429
430 down_read(&fw_device_rwsem);
431 fw_csr_iterator_init(&ci, &device->config_rom[5]);
432 while (fw_csr_iterator_next(&ci, &key, &value)) {
433 if (key != (CSR_UNIT | CSR_DIRECTORY))
434 continue;
435 i += units_sprintf(&buf[i], ci.p + value - 1);
436 if (i >= PAGE_SIZE - (8 + 1 + 8 + 1))
437 break;
438 }
439 up_read(&fw_device_rwsem);
440
441 if (i)
442 buf[i - 1] = '\n';
443
444 return i;
445 }
446
447 static struct device_attribute fw_device_attributes[] = {
448 __ATTR_RO(config_rom),
449 __ATTR_RO(guid),
450 __ATTR_RO(units),
451 __ATTR_NULL,
452 };
453
454 static int read_rom(struct fw_device *device,
455 int generation, int index, u32 *data)
456 {
457 int rcode;
458
459 /* device->node_id, accessed below, must not be older than generation */
460 smp_rmb();
461
462 rcode = fw_run_transaction(device->card, TCODE_READ_QUADLET_REQUEST,
463 device->node_id, generation, device->max_speed,
464 (CSR_REGISTER_BASE | CSR_CONFIG_ROM) + index * 4,
465 data, 4);
466 be32_to_cpus(data);
467
468 return rcode;
469 }
470
471 #define MAX_CONFIG_ROM_SIZE 256
472
473 /*
474 * Read the bus info block, perform a speed probe, and read all of the rest of
475 * the config ROM. We do all this with a cached bus generation. If the bus
476 * generation changes under us, read_config_rom will fail and get retried.
477 * It's better to start all over in this case because the node from which we
478 * are reading the ROM may have changed the ROM during the reset.
479 */
480 static int read_config_rom(struct fw_device *device, int generation)
481 {
482 const u32 *old_rom, *new_rom;
483 u32 *rom, *stack;
484 u32 sp, key;
485 int i, end, length, ret = -1;
486
487 rom = kmalloc(sizeof(*rom) * MAX_CONFIG_ROM_SIZE +
488 sizeof(*stack) * MAX_CONFIG_ROM_SIZE, GFP_KERNEL);
489 if (rom == NULL)
490 return -ENOMEM;
491
492 stack = &rom[MAX_CONFIG_ROM_SIZE];
493 memset(rom, 0, sizeof(*rom) * MAX_CONFIG_ROM_SIZE);
494
495 device->max_speed = SCODE_100;
496
497 /* First read the bus info block. */
498 for (i = 0; i < 5; i++) {
499 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
500 goto out;
501 /*
502 * As per IEEE1212 7.2, during power-up, devices can
503 * reply with a 0 for the first quadlet of the config
504 * rom to indicate that they are booting (for example,
505 * if the firmware is on the disk of a external
506 * harddisk). In that case we just fail, and the
507 * retry mechanism will try again later.
508 */
509 if (i == 0 && rom[i] == 0)
510 goto out;
511 }
512
513 device->max_speed = device->node->max_speed;
514
515 /*
516 * Determine the speed of
517 * - devices with link speed less than PHY speed,
518 * - devices with 1394b PHY (unless only connected to 1394a PHYs),
519 * - all devices if there are 1394b repeaters.
520 * Note, we cannot use the bus info block's link_spd as starting point
521 * because some buggy firmwares set it lower than necessary and because
522 * 1394-1995 nodes do not have the field.
523 */
524 if ((rom[2] & 0x7) < device->max_speed ||
525 device->max_speed == SCODE_BETA ||
526 device->card->beta_repeaters_present) {
527 u32 dummy;
528
529 /* for S1600 and S3200 */
530 if (device->max_speed == SCODE_BETA)
531 device->max_speed = device->card->link_speed;
532
533 while (device->max_speed > SCODE_100) {
534 if (read_rom(device, generation, 0, &dummy) ==
535 RCODE_COMPLETE)
536 break;
537 device->max_speed--;
538 }
539 }
540
541 /*
542 * Now parse the config rom. The config rom is a recursive
543 * directory structure so we parse it using a stack of
544 * references to the blocks that make up the structure. We
545 * push a reference to the root directory on the stack to
546 * start things off.
547 */
548 length = i;
549 sp = 0;
550 stack[sp++] = 0xc0000005;
551 while (sp > 0) {
552 /*
553 * Pop the next block reference of the stack. The
554 * lower 24 bits is the offset into the config rom,
555 * the upper 8 bits are the type of the reference the
556 * block.
557 */
558 key = stack[--sp];
559 i = key & 0xffffff;
560 if (WARN_ON(i >= MAX_CONFIG_ROM_SIZE))
561 goto out;
562
563 /* Read header quadlet for the block to get the length. */
564 if (read_rom(device, generation, i, &rom[i]) != RCODE_COMPLETE)
565 goto out;
566 end = i + (rom[i] >> 16) + 1;
567 if (end > MAX_CONFIG_ROM_SIZE) {
568 /*
569 * This block extends outside the config ROM which is
570 * a firmware bug. Ignore this whole block, i.e.
571 * simply set a fake block length of 0.
572 */
573 fw_error("skipped invalid ROM block %x at %llx\n",
574 rom[i],
575 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
576 rom[i] = 0;
577 end = i;
578 }
579 i++;
580
581 /*
582 * Now read in the block. If this is a directory
583 * block, check the entries as we read them to see if
584 * it references another block, and push it in that case.
585 */
586 for (; i < end; i++) {
587 if (read_rom(device, generation, i, &rom[i]) !=
588 RCODE_COMPLETE)
589 goto out;
590
591 if ((key >> 30) != 3 || (rom[i] >> 30) < 2)
592 continue;
593 /*
594 * Offset points outside the ROM. May be a firmware
595 * bug or an Extended ROM entry (IEEE 1212-2001 clause
596 * 7.7.18). Simply overwrite this pointer here by a
597 * fake immediate entry so that later iterators over
598 * the ROM don't have to check offsets all the time.
599 */
600 if (i + (rom[i] & 0xffffff) >= MAX_CONFIG_ROM_SIZE) {
601 fw_error("skipped unsupported ROM entry %x at %llx\n",
602 rom[i],
603 i * 4 | CSR_REGISTER_BASE | CSR_CONFIG_ROM);
604 rom[i] = 0;
605 continue;
606 }
607 stack[sp++] = i + rom[i];
608 }
609 if (length < i)
610 length = i;
611 }
612
613 old_rom = device->config_rom;
614 new_rom = kmemdup(rom, length * 4, GFP_KERNEL);
615 if (new_rom == NULL)
616 goto out;
617
618 down_write(&fw_device_rwsem);
619 device->config_rom = new_rom;
620 device->config_rom_length = length;
621 up_write(&fw_device_rwsem);
622
623 kfree(old_rom);
624 ret = 0;
625 device->max_rec = rom[2] >> 12 & 0xf;
626 device->cmc = rom[2] >> 30 & 1;
627 device->irmc = rom[2] >> 31 & 1;
628 out:
629 kfree(rom);
630
631 return ret;
632 }
633
634 static void fw_unit_release(struct device *dev)
635 {
636 struct fw_unit *unit = fw_unit(dev);
637
638 kfree(unit);
639 }
640
641 static struct device_type fw_unit_type = {
642 .uevent = fw_unit_uevent,
643 .release = fw_unit_release,
644 };
645
646 static bool is_fw_unit(struct device *dev)
647 {
648 return dev->type == &fw_unit_type;
649 }
650
651 static void create_units(struct fw_device *device)
652 {
653 struct fw_csr_iterator ci;
654 struct fw_unit *unit;
655 int key, value, i;
656
657 i = 0;
658 fw_csr_iterator_init(&ci, &device->config_rom[5]);
659 while (fw_csr_iterator_next(&ci, &key, &value)) {
660 if (key != (CSR_UNIT | CSR_DIRECTORY))
661 continue;
662
663 /*
664 * Get the address of the unit directory and try to
665 * match the drivers id_tables against it.
666 */
667 unit = kzalloc(sizeof(*unit), GFP_KERNEL);
668 if (unit == NULL) {
669 fw_error("failed to allocate memory for unit\n");
670 continue;
671 }
672
673 unit->directory = ci.p + value - 1;
674 unit->device.bus = &fw_bus_type;
675 unit->device.type = &fw_unit_type;
676 unit->device.parent = &device->device;
677 dev_set_name(&unit->device, "%s.%d", dev_name(&device->device), i++);
678
679 BUILD_BUG_ON(ARRAY_SIZE(unit->attribute_group.attrs) <
680 ARRAY_SIZE(fw_unit_attributes) +
681 ARRAY_SIZE(config_rom_attributes));
682 init_fw_attribute_group(&unit->device,
683 fw_unit_attributes,
684 &unit->attribute_group);
685
686 if (device_register(&unit->device) < 0)
687 goto skip_unit;
688
689 continue;
690
691 skip_unit:
692 kfree(unit);
693 }
694 }
695
696 static int shutdown_unit(struct device *device, void *data)
697 {
698 device_unregister(device);
699
700 return 0;
701 }
702
703 /*
704 * fw_device_rwsem acts as dual purpose mutex:
705 * - serializes accesses to fw_device_idr,
706 * - serializes accesses to fw_device.config_rom/.config_rom_length and
707 * fw_unit.directory, unless those accesses happen at safe occasions
708 */
709 DECLARE_RWSEM(fw_device_rwsem);
710
711 DEFINE_IDR(fw_device_idr);
712 int fw_cdev_major;
713
714 struct fw_device *fw_device_get_by_devt(dev_t devt)
715 {
716 struct fw_device *device;
717
718 down_read(&fw_device_rwsem);
719 device = idr_find(&fw_device_idr, MINOR(devt));
720 if (device)
721 fw_device_get(device);
722 up_read(&fw_device_rwsem);
723
724 return device;
725 }
726
727 /*
728 * These defines control the retry behavior for reading the config
729 * rom. It shouldn't be necessary to tweak these; if the device
730 * doesn't respond to a config rom read within 10 seconds, it's not
731 * going to respond at all. As for the initial delay, a lot of
732 * devices will be able to respond within half a second after bus
733 * reset. On the other hand, it's not really worth being more
734 * aggressive than that, since it scales pretty well; if 10 devices
735 * are plugged in, they're all getting read within one second.
736 */
737
738 #define MAX_RETRIES 10
739 #define RETRY_DELAY (3 * HZ)
740 #define INITIAL_DELAY (HZ / 2)
741 #define SHUTDOWN_DELAY (2 * HZ)
742
743 static void fw_device_shutdown(struct work_struct *work)
744 {
745 struct fw_device *device =
746 container_of(work, struct fw_device, work.work);
747 int minor = MINOR(device->device.devt);
748
749 if (time_is_after_jiffies(device->card->reset_jiffies + SHUTDOWN_DELAY)
750 && !list_empty(&device->card->link)) {
751 schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
752 return;
753 }
754
755 if (atomic_cmpxchg(&device->state,
756 FW_DEVICE_GONE,
757 FW_DEVICE_SHUTDOWN) != FW_DEVICE_GONE)
758 return;
759
760 fw_device_cdev_remove(device);
761 device_for_each_child(&device->device, NULL, shutdown_unit);
762 device_unregister(&device->device);
763
764 down_write(&fw_device_rwsem);
765 idr_remove(&fw_device_idr, minor);
766 up_write(&fw_device_rwsem);
767
768 fw_device_put(device);
769 }
770
771 static void fw_device_release(struct device *dev)
772 {
773 struct fw_device *device = fw_device(dev);
774 struct fw_card *card = device->card;
775 unsigned long flags;
776
777 /*
778 * Take the card lock so we don't set this to NULL while a
779 * FW_NODE_UPDATED callback is being handled or while the
780 * bus manager work looks at this node.
781 */
782 spin_lock_irqsave(&card->lock, flags);
783 device->node->data = NULL;
784 spin_unlock_irqrestore(&card->lock, flags);
785
786 fw_node_put(device->node);
787 kfree(device->config_rom);
788 kfree(device);
789 fw_card_put(card);
790 }
791
792 static struct device_type fw_device_type = {
793 .release = fw_device_release,
794 };
795
796 static bool is_fw_device(struct device *dev)
797 {
798 return dev->type == &fw_device_type;
799 }
800
801 static int update_unit(struct device *dev, void *data)
802 {
803 struct fw_unit *unit = fw_unit(dev);
804 struct fw_driver *driver = (struct fw_driver *)dev->driver;
805
806 if (is_fw_unit(dev) && driver != NULL && driver->update != NULL) {
807 device_lock(dev);
808 driver->update(unit);
809 device_unlock(dev);
810 }
811
812 return 0;
813 }
814
815 static void fw_device_update(struct work_struct *work)
816 {
817 struct fw_device *device =
818 container_of(work, struct fw_device, work.work);
819
820 fw_device_cdev_update(device);
821 device_for_each_child(&device->device, NULL, update_unit);
822 }
823
824 /*
825 * If a device was pending for deletion because its node went away but its
826 * bus info block and root directory header matches that of a newly discovered
827 * device, revive the existing fw_device.
828 * The newly allocated fw_device becomes obsolete instead.
829 */
830 static int lookup_existing_device(struct device *dev, void *data)
831 {
832 struct fw_device *old = fw_device(dev);
833 struct fw_device *new = data;
834 struct fw_card *card = new->card;
835 int match = 0;
836
837 if (!is_fw_device(dev))
838 return 0;
839
840 down_read(&fw_device_rwsem); /* serialize config_rom access */
841 spin_lock_irq(&card->lock); /* serialize node access */
842
843 if (memcmp(old->config_rom, new->config_rom, 6 * 4) == 0 &&
844 atomic_cmpxchg(&old->state,
845 FW_DEVICE_GONE,
846 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
847 struct fw_node *current_node = new->node;
848 struct fw_node *obsolete_node = old->node;
849
850 new->node = obsolete_node;
851 new->node->data = new;
852 old->node = current_node;
853 old->node->data = old;
854
855 old->max_speed = new->max_speed;
856 old->node_id = current_node->node_id;
857 smp_wmb(); /* update node_id before generation */
858 old->generation = card->generation;
859 old->config_rom_retries = 0;
860 fw_notify("rediscovered device %s\n", dev_name(dev));
861
862 PREPARE_DELAYED_WORK(&old->work, fw_device_update);
863 schedule_delayed_work(&old->work, 0);
864
865 if (current_node == card->root_node)
866 fw_schedule_bm_work(card, 0);
867
868 match = 1;
869 }
870
871 spin_unlock_irq(&card->lock);
872 up_read(&fw_device_rwsem);
873
874 return match;
875 }
876
877 enum { BC_UNKNOWN = 0, BC_UNIMPLEMENTED, BC_IMPLEMENTED, };
878
879 static void set_broadcast_channel(struct fw_device *device, int generation)
880 {
881 struct fw_card *card = device->card;
882 __be32 data;
883 int rcode;
884
885 if (!card->broadcast_channel_allocated)
886 return;
887
888 /*
889 * The Broadcast_Channel Valid bit is required by nodes which want to
890 * transmit on this channel. Such transmissions are practically
891 * exclusive to IP over 1394 (RFC 2734). IP capable nodes are required
892 * to be IRM capable and have a max_rec of 8 or more. We use this fact
893 * to narrow down to which nodes we send Broadcast_Channel updates.
894 */
895 if (!device->irmc || device->max_rec < 8)
896 return;
897
898 /*
899 * Some 1394-1995 nodes crash if this 1394a-2000 register is written.
900 * Perform a read test first.
901 */
902 if (device->bc_implemented == BC_UNKNOWN) {
903 rcode = fw_run_transaction(card, TCODE_READ_QUADLET_REQUEST,
904 device->node_id, generation, device->max_speed,
905 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
906 &data, 4);
907 switch (rcode) {
908 case RCODE_COMPLETE:
909 if (data & cpu_to_be32(1 << 31)) {
910 device->bc_implemented = BC_IMPLEMENTED;
911 break;
912 }
913 /* else fall through to case address error */
914 case RCODE_ADDRESS_ERROR:
915 device->bc_implemented = BC_UNIMPLEMENTED;
916 }
917 }
918
919 if (device->bc_implemented == BC_IMPLEMENTED) {
920 data = cpu_to_be32(BROADCAST_CHANNEL_INITIAL |
921 BROADCAST_CHANNEL_VALID);
922 fw_run_transaction(card, TCODE_WRITE_QUADLET_REQUEST,
923 device->node_id, generation, device->max_speed,
924 CSR_REGISTER_BASE + CSR_BROADCAST_CHANNEL,
925 &data, 4);
926 }
927 }
928
929 int fw_device_set_broadcast_channel(struct device *dev, void *gen)
930 {
931 if (is_fw_device(dev))
932 set_broadcast_channel(fw_device(dev), (long)gen);
933
934 return 0;
935 }
936
937 static void fw_device_init(struct work_struct *work)
938 {
939 struct fw_device *device =
940 container_of(work, struct fw_device, work.work);
941 struct device *revived_dev;
942 int minor, ret;
943
944 /*
945 * All failure paths here set node->data to NULL, so that we
946 * don't try to do device_for_each_child() on a kfree()'d
947 * device.
948 */
949
950 if (read_config_rom(device, device->generation) < 0) {
951 if (device->config_rom_retries < MAX_RETRIES &&
952 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
953 device->config_rom_retries++;
954 schedule_delayed_work(&device->work, RETRY_DELAY);
955 } else {
956 fw_notify("giving up on config rom for node id %x\n",
957 device->node_id);
958 if (device->node == device->card->root_node)
959 fw_schedule_bm_work(device->card, 0);
960 fw_device_release(&device->device);
961 }
962 return;
963 }
964
965 revived_dev = device_find_child(device->card->device,
966 device, lookup_existing_device);
967 if (revived_dev) {
968 put_device(revived_dev);
969 fw_device_release(&device->device);
970
971 return;
972 }
973
974 device_initialize(&device->device);
975
976 fw_device_get(device);
977 down_write(&fw_device_rwsem);
978 ret = idr_pre_get(&fw_device_idr, GFP_KERNEL) ?
979 idr_get_new(&fw_device_idr, device, &minor) :
980 -ENOMEM;
981 up_write(&fw_device_rwsem);
982
983 if (ret < 0)
984 goto error;
985
986 device->device.bus = &fw_bus_type;
987 device->device.type = &fw_device_type;
988 device->device.parent = device->card->device;
989 device->device.devt = MKDEV(fw_cdev_major, minor);
990 dev_set_name(&device->device, "fw%d", minor);
991
992 BUILD_BUG_ON(ARRAY_SIZE(device->attribute_group.attrs) <
993 ARRAY_SIZE(fw_device_attributes) +
994 ARRAY_SIZE(config_rom_attributes));
995 init_fw_attribute_group(&device->device,
996 fw_device_attributes,
997 &device->attribute_group);
998
999 if (device_add(&device->device)) {
1000 fw_error("Failed to add device.\n");
1001 goto error_with_cdev;
1002 }
1003
1004 create_units(device);
1005
1006 /*
1007 * Transition the device to running state. If it got pulled
1008 * out from under us while we did the intialization work, we
1009 * have to shut down the device again here. Normally, though,
1010 * fw_node_event will be responsible for shutting it down when
1011 * necessary. We have to use the atomic cmpxchg here to avoid
1012 * racing with the FW_NODE_DESTROYED case in
1013 * fw_node_event().
1014 */
1015 if (atomic_cmpxchg(&device->state,
1016 FW_DEVICE_INITIALIZING,
1017 FW_DEVICE_RUNNING) == FW_DEVICE_GONE) {
1018 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1019 schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
1020 } else {
1021 if (device->config_rom_retries)
1022 fw_notify("created device %s: GUID %08x%08x, S%d00, "
1023 "%d config ROM retries\n",
1024 dev_name(&device->device),
1025 device->config_rom[3], device->config_rom[4],
1026 1 << device->max_speed,
1027 device->config_rom_retries);
1028 else
1029 fw_notify("created device %s: GUID %08x%08x, S%d00\n",
1030 dev_name(&device->device),
1031 device->config_rom[3], device->config_rom[4],
1032 1 << device->max_speed);
1033 device->config_rom_retries = 0;
1034
1035 set_broadcast_channel(device, device->generation);
1036 }
1037
1038 /*
1039 * Reschedule the IRM work if we just finished reading the
1040 * root node config rom. If this races with a bus reset we
1041 * just end up running the IRM work a couple of extra times -
1042 * pretty harmless.
1043 */
1044 if (device->node == device->card->root_node)
1045 fw_schedule_bm_work(device->card, 0);
1046
1047 return;
1048
1049 error_with_cdev:
1050 down_write(&fw_device_rwsem);
1051 idr_remove(&fw_device_idr, minor);
1052 up_write(&fw_device_rwsem);
1053 error:
1054 fw_device_put(device); /* fw_device_idr's reference */
1055
1056 put_device(&device->device); /* our reference */
1057 }
1058
1059 enum {
1060 REREAD_BIB_ERROR,
1061 REREAD_BIB_GONE,
1062 REREAD_BIB_UNCHANGED,
1063 REREAD_BIB_CHANGED,
1064 };
1065
1066 /* Reread and compare bus info block and header of root directory */
1067 static int reread_config_rom(struct fw_device *device, int generation)
1068 {
1069 u32 q;
1070 int i;
1071
1072 for (i = 0; i < 6; i++) {
1073 if (read_rom(device, generation, i, &q) != RCODE_COMPLETE)
1074 return REREAD_BIB_ERROR;
1075
1076 if (i == 0 && q == 0)
1077 return REREAD_BIB_GONE;
1078
1079 if (q != device->config_rom[i])
1080 return REREAD_BIB_CHANGED;
1081 }
1082
1083 return REREAD_BIB_UNCHANGED;
1084 }
1085
1086 static void fw_device_refresh(struct work_struct *work)
1087 {
1088 struct fw_device *device =
1089 container_of(work, struct fw_device, work.work);
1090 struct fw_card *card = device->card;
1091 int node_id = device->node_id;
1092
1093 switch (reread_config_rom(device, device->generation)) {
1094 case REREAD_BIB_ERROR:
1095 if (device->config_rom_retries < MAX_RETRIES / 2 &&
1096 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1097 device->config_rom_retries++;
1098 schedule_delayed_work(&device->work, RETRY_DELAY / 2);
1099
1100 return;
1101 }
1102 goto give_up;
1103
1104 case REREAD_BIB_GONE:
1105 goto gone;
1106
1107 case REREAD_BIB_UNCHANGED:
1108 if (atomic_cmpxchg(&device->state,
1109 FW_DEVICE_INITIALIZING,
1110 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1111 goto gone;
1112
1113 fw_device_update(work);
1114 device->config_rom_retries = 0;
1115 goto out;
1116
1117 case REREAD_BIB_CHANGED:
1118 break;
1119 }
1120
1121 /*
1122 * Something changed. We keep things simple and don't investigate
1123 * further. We just destroy all previous units and create new ones.
1124 */
1125 device_for_each_child(&device->device, NULL, shutdown_unit);
1126
1127 if (read_config_rom(device, device->generation) < 0) {
1128 if (device->config_rom_retries < MAX_RETRIES &&
1129 atomic_read(&device->state) == FW_DEVICE_INITIALIZING) {
1130 device->config_rom_retries++;
1131 schedule_delayed_work(&device->work, RETRY_DELAY);
1132
1133 return;
1134 }
1135 goto give_up;
1136 }
1137
1138 create_units(device);
1139
1140 /* Userspace may want to re-read attributes. */
1141 kobject_uevent(&device->device.kobj, KOBJ_CHANGE);
1142
1143 if (atomic_cmpxchg(&device->state,
1144 FW_DEVICE_INITIALIZING,
1145 FW_DEVICE_RUNNING) == FW_DEVICE_GONE)
1146 goto gone;
1147
1148 fw_notify("refreshed device %s\n", dev_name(&device->device));
1149 device->config_rom_retries = 0;
1150 goto out;
1151
1152 give_up:
1153 fw_notify("giving up on refresh of device %s\n", dev_name(&device->device));
1154 gone:
1155 atomic_set(&device->state, FW_DEVICE_GONE);
1156 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1157 schedule_delayed_work(&device->work, SHUTDOWN_DELAY);
1158 out:
1159 if (node_id == card->root_node->node_id)
1160 fw_schedule_bm_work(card, 0);
1161 }
1162
1163 void fw_node_event(struct fw_card *card, struct fw_node *node, int event)
1164 {
1165 struct fw_device *device;
1166
1167 switch (event) {
1168 case FW_NODE_CREATED:
1169 case FW_NODE_LINK_ON:
1170 if (!node->link_on)
1171 break;
1172 create:
1173 device = kzalloc(sizeof(*device), GFP_ATOMIC);
1174 if (device == NULL)
1175 break;
1176
1177 /*
1178 * Do minimal intialization of the device here, the
1179 * rest will happen in fw_device_init().
1180 *
1181 * Attention: A lot of things, even fw_device_get(),
1182 * cannot be done before fw_device_init() finished!
1183 * You can basically just check device->state and
1184 * schedule work until then, but only while holding
1185 * card->lock.
1186 */
1187 atomic_set(&device->state, FW_DEVICE_INITIALIZING);
1188 device->card = fw_card_get(card);
1189 device->node = fw_node_get(node);
1190 device->node_id = node->node_id;
1191 device->generation = card->generation;
1192 device->is_local = node == card->local_node;
1193 mutex_init(&device->client_list_mutex);
1194 INIT_LIST_HEAD(&device->client_list);
1195
1196 /*
1197 * Set the node data to point back to this device so
1198 * FW_NODE_UPDATED callbacks can update the node_id
1199 * and generation for the device.
1200 */
1201 node->data = device;
1202
1203 /*
1204 * Many devices are slow to respond after bus resets,
1205 * especially if they are bus powered and go through
1206 * power-up after getting plugged in. We schedule the
1207 * first config rom scan half a second after bus reset.
1208 */
1209 INIT_DELAYED_WORK(&device->work, fw_device_init);
1210 schedule_delayed_work(&device->work, INITIAL_DELAY);
1211 break;
1212
1213 case FW_NODE_INITIATED_RESET:
1214 device = node->data;
1215 if (device == NULL)
1216 goto create;
1217
1218 device->node_id = node->node_id;
1219 smp_wmb(); /* update node_id before generation */
1220 device->generation = card->generation;
1221 if (atomic_cmpxchg(&device->state,
1222 FW_DEVICE_RUNNING,
1223 FW_DEVICE_INITIALIZING) == FW_DEVICE_RUNNING) {
1224 PREPARE_DELAYED_WORK(&device->work, fw_device_refresh);
1225 schedule_delayed_work(&device->work,
1226 device->is_local ? 0 : INITIAL_DELAY);
1227 }
1228 break;
1229
1230 case FW_NODE_UPDATED:
1231 if (!node->link_on || node->data == NULL)
1232 break;
1233
1234 device = node->data;
1235 device->node_id = node->node_id;
1236 smp_wmb(); /* update node_id before generation */
1237 device->generation = card->generation;
1238 if (atomic_read(&device->state) == FW_DEVICE_RUNNING) {
1239 PREPARE_DELAYED_WORK(&device->work, fw_device_update);
1240 schedule_delayed_work(&device->work, 0);
1241 }
1242 break;
1243
1244 case FW_NODE_DESTROYED:
1245 case FW_NODE_LINK_OFF:
1246 if (!node->data)
1247 break;
1248
1249 /*
1250 * Destroy the device associated with the node. There
1251 * are two cases here: either the device is fully
1252 * initialized (FW_DEVICE_RUNNING) or we're in the
1253 * process of reading its config rom
1254 * (FW_DEVICE_INITIALIZING). If it is fully
1255 * initialized we can reuse device->work to schedule a
1256 * full fw_device_shutdown(). If not, there's work
1257 * scheduled to read it's config rom, and we just put
1258 * the device in shutdown state to have that code fail
1259 * to create the device.
1260 */
1261 device = node->data;
1262 if (atomic_xchg(&device->state,
1263 FW_DEVICE_GONE) == FW_DEVICE_RUNNING) {
1264 PREPARE_DELAYED_WORK(&device->work, fw_device_shutdown);
1265 schedule_delayed_work(&device->work,
1266 list_empty(&card->link) ? 0 : SHUTDOWN_DELAY);
1267 }
1268 break;
1269 }
1270 }