Merge branch 'linus' into timers/core
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / edac / edac_mc_sysfs.c
1 /*
2 * edac_mc kernel module
3 * (C) 2005-2007 Linux Networx (http://lnxi.com)
4 *
5 * This file may be distributed under the terms of the
6 * GNU General Public License.
7 *
8 * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9 *
10 * (c) 2012-2013 - Mauro Carvalho Chehab <mchehab@redhat.com>
11 * The entire API were re-written, and ported to use struct device
12 *
13 */
14
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21
22 #include "edac_core.h"
23 #include "edac_module.h"
24
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static int edac_mc_poll_msec = 1000;
30
31 /* Getter functions for above */
32 int edac_mc_get_log_ue(void)
33 {
34 return edac_mc_log_ue;
35 }
36
37 int edac_mc_get_log_ce(void)
38 {
39 return edac_mc_log_ce;
40 }
41
42 int edac_mc_get_panic_on_ue(void)
43 {
44 return edac_mc_panic_on_ue;
45 }
46
47 /* this is temporary */
48 int edac_mc_get_poll_msec(void)
49 {
50 return edac_mc_poll_msec;
51 }
52
53 static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
54 {
55 long l;
56 int ret;
57
58 if (!val)
59 return -EINVAL;
60
61 ret = strict_strtol(val, 0, &l);
62 if (ret == -EINVAL || ((int)l != l))
63 return -EINVAL;
64 *((int *)kp->arg) = l;
65
66 /* notify edac_mc engine to reset the poll period */
67 edac_mc_reset_delay_period(l);
68
69 return 0;
70 }
71
72 /* Parameter declarations for above */
73 module_param(edac_mc_panic_on_ue, int, 0644);
74 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
75 module_param(edac_mc_log_ue, int, 0644);
76 MODULE_PARM_DESC(edac_mc_log_ue,
77 "Log uncorrectable error to console: 0=off 1=on");
78 module_param(edac_mc_log_ce, int, 0644);
79 MODULE_PARM_DESC(edac_mc_log_ce,
80 "Log correctable error to console: 0=off 1=on");
81 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
82 &edac_mc_poll_msec, 0644);
83 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
84
85 static struct device *mci_pdev;
86
87 /*
88 * various constants for Memory Controllers
89 */
90 static const char *mem_types[] = {
91 [MEM_EMPTY] = "Empty",
92 [MEM_RESERVED] = "Reserved",
93 [MEM_UNKNOWN] = "Unknown",
94 [MEM_FPM] = "FPM",
95 [MEM_EDO] = "EDO",
96 [MEM_BEDO] = "BEDO",
97 [MEM_SDR] = "Unbuffered-SDR",
98 [MEM_RDR] = "Registered-SDR",
99 [MEM_DDR] = "Unbuffered-DDR",
100 [MEM_RDDR] = "Registered-DDR",
101 [MEM_RMBS] = "RMBS",
102 [MEM_DDR2] = "Unbuffered-DDR2",
103 [MEM_FB_DDR2] = "FullyBuffered-DDR2",
104 [MEM_RDDR2] = "Registered-DDR2",
105 [MEM_XDR] = "XDR",
106 [MEM_DDR3] = "Unbuffered-DDR3",
107 [MEM_RDDR3] = "Registered-DDR3"
108 };
109
110 static const char *dev_types[] = {
111 [DEV_UNKNOWN] = "Unknown",
112 [DEV_X1] = "x1",
113 [DEV_X2] = "x2",
114 [DEV_X4] = "x4",
115 [DEV_X8] = "x8",
116 [DEV_X16] = "x16",
117 [DEV_X32] = "x32",
118 [DEV_X64] = "x64"
119 };
120
121 static const char *edac_caps[] = {
122 [EDAC_UNKNOWN] = "Unknown",
123 [EDAC_NONE] = "None",
124 [EDAC_RESERVED] = "Reserved",
125 [EDAC_PARITY] = "PARITY",
126 [EDAC_EC] = "EC",
127 [EDAC_SECDED] = "SECDED",
128 [EDAC_S2ECD2ED] = "S2ECD2ED",
129 [EDAC_S4ECD4ED] = "S4ECD4ED",
130 [EDAC_S8ECD8ED] = "S8ECD8ED",
131 [EDAC_S16ECD16ED] = "S16ECD16ED"
132 };
133
134 #ifdef CONFIG_EDAC_LEGACY_SYSFS
135 /*
136 * EDAC sysfs CSROW data structures and methods
137 */
138
139 #define to_csrow(k) container_of(k, struct csrow_info, dev)
140
141 /*
142 * We need it to avoid namespace conflicts between the legacy API
143 * and the per-dimm/per-rank one
144 */
145 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
146 static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
147
148 struct dev_ch_attribute {
149 struct device_attribute attr;
150 int channel;
151 };
152
153 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
154 struct dev_ch_attribute dev_attr_legacy_##_name = \
155 { __ATTR(_name, _mode, _show, _store), (_var) }
156
157 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
158
159 /* Set of more default csrow<id> attribute show/store functions */
160 static ssize_t csrow_ue_count_show(struct device *dev,
161 struct device_attribute *mattr, char *data)
162 {
163 struct csrow_info *csrow = to_csrow(dev);
164
165 return sprintf(data, "%u\n", csrow->ue_count);
166 }
167
168 static ssize_t csrow_ce_count_show(struct device *dev,
169 struct device_attribute *mattr, char *data)
170 {
171 struct csrow_info *csrow = to_csrow(dev);
172
173 return sprintf(data, "%u\n", csrow->ce_count);
174 }
175
176 static ssize_t csrow_size_show(struct device *dev,
177 struct device_attribute *mattr, char *data)
178 {
179 struct csrow_info *csrow = to_csrow(dev);
180 int i;
181 u32 nr_pages = 0;
182
183 for (i = 0; i < csrow->nr_channels; i++)
184 nr_pages += csrow->channels[i]->dimm->nr_pages;
185 return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
186 }
187
188 static ssize_t csrow_mem_type_show(struct device *dev,
189 struct device_attribute *mattr, char *data)
190 {
191 struct csrow_info *csrow = to_csrow(dev);
192
193 return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
194 }
195
196 static ssize_t csrow_dev_type_show(struct device *dev,
197 struct device_attribute *mattr, char *data)
198 {
199 struct csrow_info *csrow = to_csrow(dev);
200
201 return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
202 }
203
204 static ssize_t csrow_edac_mode_show(struct device *dev,
205 struct device_attribute *mattr,
206 char *data)
207 {
208 struct csrow_info *csrow = to_csrow(dev);
209
210 return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
211 }
212
213 /* show/store functions for DIMM Label attributes */
214 static ssize_t channel_dimm_label_show(struct device *dev,
215 struct device_attribute *mattr,
216 char *data)
217 {
218 struct csrow_info *csrow = to_csrow(dev);
219 unsigned chan = to_channel(mattr);
220 struct rank_info *rank = csrow->channels[chan];
221
222 /* if field has not been initialized, there is nothing to send */
223 if (!rank->dimm->label[0])
224 return 0;
225
226 return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
227 rank->dimm->label);
228 }
229
230 static ssize_t channel_dimm_label_store(struct device *dev,
231 struct device_attribute *mattr,
232 const char *data, size_t count)
233 {
234 struct csrow_info *csrow = to_csrow(dev);
235 unsigned chan = to_channel(mattr);
236 struct rank_info *rank = csrow->channels[chan];
237
238 ssize_t max_size = 0;
239
240 max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
241 strncpy(rank->dimm->label, data, max_size);
242 rank->dimm->label[max_size] = '\0';
243
244 return max_size;
245 }
246
247 /* show function for dynamic chX_ce_count attribute */
248 static ssize_t channel_ce_count_show(struct device *dev,
249 struct device_attribute *mattr, char *data)
250 {
251 struct csrow_info *csrow = to_csrow(dev);
252 unsigned chan = to_channel(mattr);
253 struct rank_info *rank = csrow->channels[chan];
254
255 return sprintf(data, "%u\n", rank->ce_count);
256 }
257
258 /* cwrow<id>/attribute files */
259 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
260 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
261 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
262 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
263 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
264 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
265
266 /* default attributes of the CSROW<id> object */
267 static struct attribute *csrow_attrs[] = {
268 &dev_attr_legacy_dev_type.attr,
269 &dev_attr_legacy_mem_type.attr,
270 &dev_attr_legacy_edac_mode.attr,
271 &dev_attr_legacy_size_mb.attr,
272 &dev_attr_legacy_ue_count.attr,
273 &dev_attr_legacy_ce_count.attr,
274 NULL,
275 };
276
277 static struct attribute_group csrow_attr_grp = {
278 .attrs = csrow_attrs,
279 };
280
281 static const struct attribute_group *csrow_attr_groups[] = {
282 &csrow_attr_grp,
283 NULL
284 };
285
286 static void csrow_attr_release(struct device *dev)
287 {
288 struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
289
290 edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
291 kfree(csrow);
292 }
293
294 static struct device_type csrow_attr_type = {
295 .groups = csrow_attr_groups,
296 .release = csrow_attr_release,
297 };
298
299 /*
300 * possible dynamic channel DIMM Label attribute files
301 *
302 */
303
304 #define EDAC_NR_CHANNELS 6
305
306 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
307 channel_dimm_label_show, channel_dimm_label_store, 0);
308 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
309 channel_dimm_label_show, channel_dimm_label_store, 1);
310 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
311 channel_dimm_label_show, channel_dimm_label_store, 2);
312 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
313 channel_dimm_label_show, channel_dimm_label_store, 3);
314 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
315 channel_dimm_label_show, channel_dimm_label_store, 4);
316 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
317 channel_dimm_label_show, channel_dimm_label_store, 5);
318
319 /* Total possible dynamic DIMM Label attribute file table */
320 static struct device_attribute *dynamic_csrow_dimm_attr[] = {
321 &dev_attr_legacy_ch0_dimm_label.attr,
322 &dev_attr_legacy_ch1_dimm_label.attr,
323 &dev_attr_legacy_ch2_dimm_label.attr,
324 &dev_attr_legacy_ch3_dimm_label.attr,
325 &dev_attr_legacy_ch4_dimm_label.attr,
326 &dev_attr_legacy_ch5_dimm_label.attr
327 };
328
329 /* possible dynamic channel ce_count attribute files */
330 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO | S_IWUSR,
331 channel_ce_count_show, NULL, 0);
332 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO | S_IWUSR,
333 channel_ce_count_show, NULL, 1);
334 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO | S_IWUSR,
335 channel_ce_count_show, NULL, 2);
336 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO | S_IWUSR,
337 channel_ce_count_show, NULL, 3);
338 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO | S_IWUSR,
339 channel_ce_count_show, NULL, 4);
340 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO | S_IWUSR,
341 channel_ce_count_show, NULL, 5);
342
343 /* Total possible dynamic ce_count attribute file table */
344 static struct device_attribute *dynamic_csrow_ce_count_attr[] = {
345 &dev_attr_legacy_ch0_ce_count.attr,
346 &dev_attr_legacy_ch1_ce_count.attr,
347 &dev_attr_legacy_ch2_ce_count.attr,
348 &dev_attr_legacy_ch3_ce_count.attr,
349 &dev_attr_legacy_ch4_ce_count.attr,
350 &dev_attr_legacy_ch5_ce_count.attr
351 };
352
353 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
354 {
355 int chan, nr_pages = 0;
356
357 for (chan = 0; chan < csrow->nr_channels; chan++)
358 nr_pages += csrow->channels[chan]->dimm->nr_pages;
359
360 return nr_pages;
361 }
362
363 /* Create a CSROW object under specifed edac_mc_device */
364 static int edac_create_csrow_object(struct mem_ctl_info *mci,
365 struct csrow_info *csrow, int index)
366 {
367 int err, chan;
368
369 if (csrow->nr_channels >= EDAC_NR_CHANNELS)
370 return -ENODEV;
371
372 csrow->dev.type = &csrow_attr_type;
373 csrow->dev.bus = &mci->bus;
374 device_initialize(&csrow->dev);
375 csrow->dev.parent = &mci->dev;
376 csrow->mci = mci;
377 dev_set_name(&csrow->dev, "csrow%d", index);
378 dev_set_drvdata(&csrow->dev, csrow);
379
380 edac_dbg(0, "creating (virtual) csrow node %s\n",
381 dev_name(&csrow->dev));
382
383 err = device_add(&csrow->dev);
384 if (err < 0)
385 return err;
386
387 for (chan = 0; chan < csrow->nr_channels; chan++) {
388 /* Only expose populated DIMMs */
389 if (!csrow->channels[chan]->dimm->nr_pages)
390 continue;
391 err = device_create_file(&csrow->dev,
392 dynamic_csrow_dimm_attr[chan]);
393 if (err < 0)
394 goto error;
395 err = device_create_file(&csrow->dev,
396 dynamic_csrow_ce_count_attr[chan]);
397 if (err < 0) {
398 device_remove_file(&csrow->dev,
399 dynamic_csrow_dimm_attr[chan]);
400 goto error;
401 }
402 }
403
404 return 0;
405
406 error:
407 for (--chan; chan >= 0; chan--) {
408 device_remove_file(&csrow->dev,
409 dynamic_csrow_dimm_attr[chan]);
410 device_remove_file(&csrow->dev,
411 dynamic_csrow_ce_count_attr[chan]);
412 }
413 put_device(&csrow->dev);
414
415 return err;
416 }
417
418 /* Create a CSROW object under specifed edac_mc_device */
419 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
420 {
421 int err, i, chan;
422 struct csrow_info *csrow;
423
424 for (i = 0; i < mci->nr_csrows; i++) {
425 csrow = mci->csrows[i];
426 if (!nr_pages_per_csrow(csrow))
427 continue;
428 err = edac_create_csrow_object(mci, mci->csrows[i], i);
429 if (err < 0) {
430 edac_dbg(1,
431 "failure: create csrow objects for csrow %d\n",
432 i);
433 goto error;
434 }
435 }
436 return 0;
437
438 error:
439 for (--i; i >= 0; i--) {
440 csrow = mci->csrows[i];
441 if (!nr_pages_per_csrow(csrow))
442 continue;
443 for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
444 if (!csrow->channels[chan]->dimm->nr_pages)
445 continue;
446 device_remove_file(&csrow->dev,
447 dynamic_csrow_dimm_attr[chan]);
448 device_remove_file(&csrow->dev,
449 dynamic_csrow_ce_count_attr[chan]);
450 }
451 put_device(&mci->csrows[i]->dev);
452 }
453
454 return err;
455 }
456
457 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
458 {
459 int i, chan;
460 struct csrow_info *csrow;
461
462 for (i = mci->nr_csrows - 1; i >= 0; i--) {
463 csrow = mci->csrows[i];
464 if (!nr_pages_per_csrow(csrow))
465 continue;
466 for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
467 if (!csrow->channels[chan]->dimm->nr_pages)
468 continue;
469 edac_dbg(1, "Removing csrow %d channel %d sysfs nodes\n",
470 i, chan);
471 device_remove_file(&csrow->dev,
472 dynamic_csrow_dimm_attr[chan]);
473 device_remove_file(&csrow->dev,
474 dynamic_csrow_ce_count_attr[chan]);
475 }
476 device_unregister(&mci->csrows[i]->dev);
477 }
478 }
479 #endif
480
481 /*
482 * Per-dimm (or per-rank) devices
483 */
484
485 #define to_dimm(k) container_of(k, struct dimm_info, dev)
486
487 /* show/store functions for DIMM Label attributes */
488 static ssize_t dimmdev_location_show(struct device *dev,
489 struct device_attribute *mattr, char *data)
490 {
491 struct dimm_info *dimm = to_dimm(dev);
492
493 return edac_dimm_info_location(dimm, data, PAGE_SIZE);
494 }
495
496 static ssize_t dimmdev_label_show(struct device *dev,
497 struct device_attribute *mattr, char *data)
498 {
499 struct dimm_info *dimm = to_dimm(dev);
500
501 /* if field has not been initialized, there is nothing to send */
502 if (!dimm->label[0])
503 return 0;
504
505 return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", dimm->label);
506 }
507
508 static ssize_t dimmdev_label_store(struct device *dev,
509 struct device_attribute *mattr,
510 const char *data,
511 size_t count)
512 {
513 struct dimm_info *dimm = to_dimm(dev);
514
515 ssize_t max_size = 0;
516
517 max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
518 strncpy(dimm->label, data, max_size);
519 dimm->label[max_size] = '\0';
520
521 return max_size;
522 }
523
524 static ssize_t dimmdev_size_show(struct device *dev,
525 struct device_attribute *mattr, char *data)
526 {
527 struct dimm_info *dimm = to_dimm(dev);
528
529 return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
530 }
531
532 static ssize_t dimmdev_mem_type_show(struct device *dev,
533 struct device_attribute *mattr, char *data)
534 {
535 struct dimm_info *dimm = to_dimm(dev);
536
537 return sprintf(data, "%s\n", mem_types[dimm->mtype]);
538 }
539
540 static ssize_t dimmdev_dev_type_show(struct device *dev,
541 struct device_attribute *mattr, char *data)
542 {
543 struct dimm_info *dimm = to_dimm(dev);
544
545 return sprintf(data, "%s\n", dev_types[dimm->dtype]);
546 }
547
548 static ssize_t dimmdev_edac_mode_show(struct device *dev,
549 struct device_attribute *mattr,
550 char *data)
551 {
552 struct dimm_info *dimm = to_dimm(dev);
553
554 return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
555 }
556
557 /* dimm/rank attribute files */
558 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
559 dimmdev_label_show, dimmdev_label_store);
560 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
561 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
562 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
563 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
564 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
565
566 /* attributes of the dimm<id>/rank<id> object */
567 static struct attribute *dimm_attrs[] = {
568 &dev_attr_dimm_label.attr,
569 &dev_attr_dimm_location.attr,
570 &dev_attr_size.attr,
571 &dev_attr_dimm_mem_type.attr,
572 &dev_attr_dimm_dev_type.attr,
573 &dev_attr_dimm_edac_mode.attr,
574 NULL,
575 };
576
577 static struct attribute_group dimm_attr_grp = {
578 .attrs = dimm_attrs,
579 };
580
581 static const struct attribute_group *dimm_attr_groups[] = {
582 &dimm_attr_grp,
583 NULL
584 };
585
586 static void dimm_attr_release(struct device *dev)
587 {
588 struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
589
590 edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
591 kfree(dimm);
592 }
593
594 static struct device_type dimm_attr_type = {
595 .groups = dimm_attr_groups,
596 .release = dimm_attr_release,
597 };
598
599 /* Create a DIMM object under specifed memory controller device */
600 static int edac_create_dimm_object(struct mem_ctl_info *mci,
601 struct dimm_info *dimm,
602 int index)
603 {
604 int err;
605 dimm->mci = mci;
606
607 dimm->dev.type = &dimm_attr_type;
608 dimm->dev.bus = &mci->bus;
609 device_initialize(&dimm->dev);
610
611 dimm->dev.parent = &mci->dev;
612 if (mci->csbased)
613 dev_set_name(&dimm->dev, "rank%d", index);
614 else
615 dev_set_name(&dimm->dev, "dimm%d", index);
616 dev_set_drvdata(&dimm->dev, dimm);
617 pm_runtime_forbid(&mci->dev);
618
619 err = device_add(&dimm->dev);
620
621 edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
622
623 return err;
624 }
625
626 /*
627 * Memory controller device
628 */
629
630 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
631
632 static ssize_t mci_reset_counters_store(struct device *dev,
633 struct device_attribute *mattr,
634 const char *data, size_t count)
635 {
636 struct mem_ctl_info *mci = to_mci(dev);
637 int cnt, row, chan, i;
638 mci->ue_mc = 0;
639 mci->ce_mc = 0;
640 mci->ue_noinfo_count = 0;
641 mci->ce_noinfo_count = 0;
642
643 for (row = 0; row < mci->nr_csrows; row++) {
644 struct csrow_info *ri = mci->csrows[row];
645
646 ri->ue_count = 0;
647 ri->ce_count = 0;
648
649 for (chan = 0; chan < ri->nr_channels; chan++)
650 ri->channels[chan]->ce_count = 0;
651 }
652
653 cnt = 1;
654 for (i = 0; i < mci->n_layers; i++) {
655 cnt *= mci->layers[i].size;
656 memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
657 memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
658 }
659
660 mci->start_time = jiffies;
661 return count;
662 }
663
664 /* Memory scrubbing interface:
665 *
666 * A MC driver can limit the scrubbing bandwidth based on the CPU type.
667 * Therefore, ->set_sdram_scrub_rate should be made to return the actual
668 * bandwidth that is accepted or 0 when scrubbing is to be disabled.
669 *
670 * Negative value still means that an error has occurred while setting
671 * the scrub rate.
672 */
673 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
674 struct device_attribute *mattr,
675 const char *data, size_t count)
676 {
677 struct mem_ctl_info *mci = to_mci(dev);
678 unsigned long bandwidth = 0;
679 int new_bw = 0;
680
681 if (strict_strtoul(data, 10, &bandwidth) < 0)
682 return -EINVAL;
683
684 new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
685 if (new_bw < 0) {
686 edac_printk(KERN_WARNING, EDAC_MC,
687 "Error setting scrub rate to: %lu\n", bandwidth);
688 return -EINVAL;
689 }
690
691 return count;
692 }
693
694 /*
695 * ->get_sdram_scrub_rate() return value semantics same as above.
696 */
697 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
698 struct device_attribute *mattr,
699 char *data)
700 {
701 struct mem_ctl_info *mci = to_mci(dev);
702 int bandwidth = 0;
703
704 bandwidth = mci->get_sdram_scrub_rate(mci);
705 if (bandwidth < 0) {
706 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
707 return bandwidth;
708 }
709
710 return sprintf(data, "%d\n", bandwidth);
711 }
712
713 /* default attribute files for the MCI object */
714 static ssize_t mci_ue_count_show(struct device *dev,
715 struct device_attribute *mattr,
716 char *data)
717 {
718 struct mem_ctl_info *mci = to_mci(dev);
719
720 return sprintf(data, "%d\n", mci->ue_mc);
721 }
722
723 static ssize_t mci_ce_count_show(struct device *dev,
724 struct device_attribute *mattr,
725 char *data)
726 {
727 struct mem_ctl_info *mci = to_mci(dev);
728
729 return sprintf(data, "%d\n", mci->ce_mc);
730 }
731
732 static ssize_t mci_ce_noinfo_show(struct device *dev,
733 struct device_attribute *mattr,
734 char *data)
735 {
736 struct mem_ctl_info *mci = to_mci(dev);
737
738 return sprintf(data, "%d\n", mci->ce_noinfo_count);
739 }
740
741 static ssize_t mci_ue_noinfo_show(struct device *dev,
742 struct device_attribute *mattr,
743 char *data)
744 {
745 struct mem_ctl_info *mci = to_mci(dev);
746
747 return sprintf(data, "%d\n", mci->ue_noinfo_count);
748 }
749
750 static ssize_t mci_seconds_show(struct device *dev,
751 struct device_attribute *mattr,
752 char *data)
753 {
754 struct mem_ctl_info *mci = to_mci(dev);
755
756 return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
757 }
758
759 static ssize_t mci_ctl_name_show(struct device *dev,
760 struct device_attribute *mattr,
761 char *data)
762 {
763 struct mem_ctl_info *mci = to_mci(dev);
764
765 return sprintf(data, "%s\n", mci->ctl_name);
766 }
767
768 static ssize_t mci_size_mb_show(struct device *dev,
769 struct device_attribute *mattr,
770 char *data)
771 {
772 struct mem_ctl_info *mci = to_mci(dev);
773 int total_pages = 0, csrow_idx, j;
774
775 for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
776 struct csrow_info *csrow = mci->csrows[csrow_idx];
777
778 for (j = 0; j < csrow->nr_channels; j++) {
779 struct dimm_info *dimm = csrow->channels[j]->dimm;
780
781 total_pages += dimm->nr_pages;
782 }
783 }
784
785 return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
786 }
787
788 static ssize_t mci_max_location_show(struct device *dev,
789 struct device_attribute *mattr,
790 char *data)
791 {
792 struct mem_ctl_info *mci = to_mci(dev);
793 int i;
794 char *p = data;
795
796 for (i = 0; i < mci->n_layers; i++) {
797 p += sprintf(p, "%s %d ",
798 edac_layer_name[mci->layers[i].type],
799 mci->layers[i].size - 1);
800 }
801
802 return p - data;
803 }
804
805 #ifdef CONFIG_EDAC_DEBUG
806 static ssize_t edac_fake_inject_write(struct file *file,
807 const char __user *data,
808 size_t count, loff_t *ppos)
809 {
810 struct device *dev = file->private_data;
811 struct mem_ctl_info *mci = to_mci(dev);
812 static enum hw_event_mc_err_type type;
813 u16 errcount = mci->fake_inject_count;
814
815 if (!errcount)
816 errcount = 1;
817
818 type = mci->fake_inject_ue ? HW_EVENT_ERR_UNCORRECTED
819 : HW_EVENT_ERR_CORRECTED;
820
821 printk(KERN_DEBUG
822 "Generating %d %s fake error%s to %d.%d.%d to test core handling. NOTE: this won't test the driver-specific decoding logic.\n",
823 errcount,
824 (type == HW_EVENT_ERR_UNCORRECTED) ? "UE" : "CE",
825 errcount > 1 ? "s" : "",
826 mci->fake_inject_layer[0],
827 mci->fake_inject_layer[1],
828 mci->fake_inject_layer[2]
829 );
830 edac_mc_handle_error(type, mci, errcount, 0, 0, 0,
831 mci->fake_inject_layer[0],
832 mci->fake_inject_layer[1],
833 mci->fake_inject_layer[2],
834 "FAKE ERROR", "for EDAC testing only");
835
836 return count;
837 }
838
839 static const struct file_operations debug_fake_inject_fops = {
840 .open = simple_open,
841 .write = edac_fake_inject_write,
842 .llseek = generic_file_llseek,
843 };
844 #endif
845
846 /* default Control file */
847 DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
848
849 /* default Attribute files */
850 DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
851 DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
852 DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
853 DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
854 DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
855 DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
856 DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
857 DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
858
859 /* memory scrubber attribute file */
860 DEVICE_ATTR(sdram_scrub_rate, 0, NULL, NULL);
861
862 static struct attribute *mci_attrs[] = {
863 &dev_attr_reset_counters.attr,
864 &dev_attr_mc_name.attr,
865 &dev_attr_size_mb.attr,
866 &dev_attr_seconds_since_reset.attr,
867 &dev_attr_ue_noinfo_count.attr,
868 &dev_attr_ce_noinfo_count.attr,
869 &dev_attr_ue_count.attr,
870 &dev_attr_ce_count.attr,
871 &dev_attr_max_location.attr,
872 NULL
873 };
874
875 static struct attribute_group mci_attr_grp = {
876 .attrs = mci_attrs,
877 };
878
879 static const struct attribute_group *mci_attr_groups[] = {
880 &mci_attr_grp,
881 NULL
882 };
883
884 static void mci_attr_release(struct device *dev)
885 {
886 struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
887
888 edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
889 kfree(mci);
890 }
891
892 static struct device_type mci_attr_type = {
893 .groups = mci_attr_groups,
894 .release = mci_attr_release,
895 };
896
897 #ifdef CONFIG_EDAC_DEBUG
898 static struct dentry *edac_debugfs;
899
900 int __init edac_debugfs_init(void)
901 {
902 edac_debugfs = debugfs_create_dir("edac", NULL);
903 if (IS_ERR(edac_debugfs)) {
904 edac_debugfs = NULL;
905 return -ENOMEM;
906 }
907 return 0;
908 }
909
910 void __exit edac_debugfs_exit(void)
911 {
912 debugfs_remove(edac_debugfs);
913 }
914
915 int edac_create_debug_nodes(struct mem_ctl_info *mci)
916 {
917 struct dentry *d, *parent;
918 char name[80];
919 int i;
920
921 if (!edac_debugfs)
922 return -ENODEV;
923
924 d = debugfs_create_dir(mci->dev.kobj.name, edac_debugfs);
925 if (!d)
926 return -ENOMEM;
927 parent = d;
928
929 for (i = 0; i < mci->n_layers; i++) {
930 sprintf(name, "fake_inject_%s",
931 edac_layer_name[mci->layers[i].type]);
932 d = debugfs_create_u8(name, S_IRUGO | S_IWUSR, parent,
933 &mci->fake_inject_layer[i]);
934 if (!d)
935 goto nomem;
936 }
937
938 d = debugfs_create_bool("fake_inject_ue", S_IRUGO | S_IWUSR, parent,
939 &mci->fake_inject_ue);
940 if (!d)
941 goto nomem;
942
943 d = debugfs_create_u16("fake_inject_count", S_IRUGO | S_IWUSR, parent,
944 &mci->fake_inject_count);
945 if (!d)
946 goto nomem;
947
948 d = debugfs_create_file("fake_inject", S_IWUSR, parent,
949 &mci->dev,
950 &debug_fake_inject_fops);
951 if (!d)
952 goto nomem;
953
954 mci->debugfs = parent;
955 return 0;
956 nomem:
957 debugfs_remove(mci->debugfs);
958 return -ENOMEM;
959 }
960 #endif
961
962 /*
963 * Create a new Memory Controller kobject instance,
964 * mc<id> under the 'mc' directory
965 *
966 * Return:
967 * 0 Success
968 * !0 Failure
969 */
970 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
971 {
972 int i, err;
973
974 /*
975 * The memory controller needs its own bus, in order to avoid
976 * namespace conflicts at /sys/bus/edac.
977 */
978 mci->bus.name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
979 if (!mci->bus.name)
980 return -ENOMEM;
981 edac_dbg(0, "creating bus %s\n", mci->bus.name);
982 err = bus_register(&mci->bus);
983 if (err < 0)
984 return err;
985
986 /* get the /sys/devices/system/edac subsys reference */
987 mci->dev.type = &mci_attr_type;
988 device_initialize(&mci->dev);
989
990 mci->dev.parent = mci_pdev;
991 mci->dev.bus = &mci->bus;
992 dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
993 dev_set_drvdata(&mci->dev, mci);
994 pm_runtime_forbid(&mci->dev);
995
996 edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
997 err = device_add(&mci->dev);
998 if (err < 0) {
999 edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
1000 bus_unregister(&mci->bus);
1001 kfree(mci->bus.name);
1002 return err;
1003 }
1004
1005 if (mci->set_sdram_scrub_rate || mci->get_sdram_scrub_rate) {
1006 if (mci->get_sdram_scrub_rate) {
1007 dev_attr_sdram_scrub_rate.attr.mode |= S_IRUGO;
1008 dev_attr_sdram_scrub_rate.show = &mci_sdram_scrub_rate_show;
1009 }
1010 if (mci->set_sdram_scrub_rate) {
1011 dev_attr_sdram_scrub_rate.attr.mode |= S_IWUSR;
1012 dev_attr_sdram_scrub_rate.store = &mci_sdram_scrub_rate_store;
1013 }
1014 err = device_create_file(&mci->dev,
1015 &dev_attr_sdram_scrub_rate);
1016 if (err) {
1017 edac_dbg(1, "failure: create sdram_scrub_rate\n");
1018 goto fail2;
1019 }
1020 }
1021 /*
1022 * Create the dimm/rank devices
1023 */
1024 for (i = 0; i < mci->tot_dimms; i++) {
1025 struct dimm_info *dimm = mci->dimms[i];
1026 /* Only expose populated DIMMs */
1027 if (dimm->nr_pages == 0)
1028 continue;
1029 #ifdef CONFIG_EDAC_DEBUG
1030 edac_dbg(1, "creating dimm%d, located at ", i);
1031 if (edac_debug_level >= 1) {
1032 int lay;
1033 for (lay = 0; lay < mci->n_layers; lay++)
1034 printk(KERN_CONT "%s %d ",
1035 edac_layer_name[mci->layers[lay].type],
1036 dimm->location[lay]);
1037 printk(KERN_CONT "\n");
1038 }
1039 #endif
1040 err = edac_create_dimm_object(mci, dimm, i);
1041 if (err) {
1042 edac_dbg(1, "failure: create dimm %d obj\n", i);
1043 goto fail;
1044 }
1045 }
1046
1047 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1048 err = edac_create_csrow_objects(mci);
1049 if (err < 0)
1050 goto fail;
1051 #endif
1052
1053 #ifdef CONFIG_EDAC_DEBUG
1054 edac_create_debug_nodes(mci);
1055 #endif
1056 return 0;
1057
1058 fail:
1059 for (i--; i >= 0; i--) {
1060 struct dimm_info *dimm = mci->dimms[i];
1061 if (dimm->nr_pages == 0)
1062 continue;
1063 device_unregister(&dimm->dev);
1064 }
1065 fail2:
1066 device_unregister(&mci->dev);
1067 bus_unregister(&mci->bus);
1068 kfree(mci->bus.name);
1069 return err;
1070 }
1071
1072 /*
1073 * remove a Memory Controller instance
1074 */
1075 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1076 {
1077 int i;
1078
1079 edac_dbg(0, "\n");
1080
1081 #ifdef CONFIG_EDAC_DEBUG
1082 debugfs_remove(mci->debugfs);
1083 #endif
1084 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1085 edac_delete_csrow_objects(mci);
1086 #endif
1087
1088 for (i = 0; i < mci->tot_dimms; i++) {
1089 struct dimm_info *dimm = mci->dimms[i];
1090 if (dimm->nr_pages == 0)
1091 continue;
1092 edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1093 device_unregister(&dimm->dev);
1094 }
1095 }
1096
1097 void edac_unregister_sysfs(struct mem_ctl_info *mci)
1098 {
1099 edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1100 device_unregister(&mci->dev);
1101 bus_unregister(&mci->bus);
1102 kfree(mci->bus.name);
1103 }
1104
1105 static void mc_attr_release(struct device *dev)
1106 {
1107 /*
1108 * There's no container structure here, as this is just the mci
1109 * parent device, used to create the /sys/devices/mc sysfs node.
1110 * So, there are no attributes on it.
1111 */
1112 edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1113 kfree(dev);
1114 }
1115
1116 static struct device_type mc_attr_type = {
1117 .release = mc_attr_release,
1118 };
1119 /*
1120 * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1121 */
1122 int __init edac_mc_sysfs_init(void)
1123 {
1124 struct bus_type *edac_subsys;
1125 int err;
1126
1127 /* get the /sys/devices/system/edac subsys reference */
1128 edac_subsys = edac_get_sysfs_subsys();
1129 if (edac_subsys == NULL) {
1130 edac_dbg(1, "no edac_subsys\n");
1131 err = -EINVAL;
1132 goto out;
1133 }
1134
1135 mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1136 if (!mci_pdev) {
1137 err = -ENOMEM;
1138 goto out_put_sysfs;
1139 }
1140
1141 mci_pdev->bus = edac_subsys;
1142 mci_pdev->type = &mc_attr_type;
1143 device_initialize(mci_pdev);
1144 dev_set_name(mci_pdev, "mc");
1145
1146 err = device_add(mci_pdev);
1147 if (err < 0)
1148 goto out_dev_free;
1149
1150 edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1151
1152 return 0;
1153
1154 out_dev_free:
1155 kfree(mci_pdev);
1156 out_put_sysfs:
1157 edac_put_sysfs_subsys();
1158 out:
1159 return err;
1160 }
1161
1162 void __exit edac_mc_sysfs_exit(void)
1163 {
1164 device_unregister(mci_pdev);
1165 edac_put_sysfs_subsys();
1166 }