drivers/edac: split out functions to unique files
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / edac / edac_core.h
1 /*
2 * Defines, structures, APIs for edac_core module
3 *
4 * (C) 2007 Linux Networx (http://lnxi.com)
5 * This file may be distributed under the terms of the
6 * GNU General Public License.
7 *
8 * Written by Thayne Harbaugh
9 * Based on work by Dan Hollis <goemon at anime dot net> and others.
10 * http://www.anime.net/~goemon/linux-ecc/
11 *
12 * NMI handling support added by
13 * Dave Peterson <dsp@llnl.gov> <dave_peterson@pobox.com>
14 *
15 * Refactored for multi-source files:
16 * Doug Thompson <norsk5@xmission.com>
17 *
18 */
19
20 #ifndef _EDAC_CORE_H_
21 #define _EDAC_CORE_H_
22
23 #include <linux/kernel.h>
24 #include <linux/types.h>
25 #include <linux/module.h>
26 #include <linux/spinlock.h>
27 #include <linux/smp.h>
28 #include <linux/pci.h>
29 #include <linux/time.h>
30 #include <linux/nmi.h>
31 #include <linux/rcupdate.h>
32 #include <linux/completion.h>
33 #include <linux/kobject.h>
34 #include <linux/platform_device.h>
35
36 #define EDAC_MC_LABEL_LEN 31
37 #define MC_PROC_NAME_MAX_LEN 7
38
39 #if PAGE_SHIFT < 20
40 #define PAGES_TO_MiB( pages ) ( ( pages ) >> ( 20 - PAGE_SHIFT ) )
41 #else /* PAGE_SHIFT > 20 */
42 #define PAGES_TO_MiB( pages ) ( ( pages ) << ( PAGE_SHIFT - 20 ) )
43 #endif
44
45 #define edac_printk(level, prefix, fmt, arg...) \
46 printk(level "EDAC " prefix ": " fmt, ##arg)
47
48 #define edac_mc_printk(mci, level, fmt, arg...) \
49 printk(level "EDAC MC%d: " fmt, mci->mc_idx, ##arg)
50
51 #define edac_mc_chipset_printk(mci, level, prefix, fmt, arg...) \
52 printk(level "EDAC " prefix " MC%d: " fmt, mci->mc_idx, ##arg)
53
54 /* prefixes for edac_printk() and edac_mc_printk() */
55 #define EDAC_MC "MC"
56 #define EDAC_PCI "PCI"
57 #define EDAC_DEBUG "DEBUG"
58
59 #ifdef CONFIG_EDAC_DEBUG
60 extern int edac_debug_level;
61
62 #define edac_debug_printk(level, fmt, arg...) \
63 do { \
64 if (level <= edac_debug_level) \
65 edac_printk(KERN_DEBUG, EDAC_DEBUG, fmt, ##arg); \
66 } while(0)
67
68 #define debugf0( ... ) edac_debug_printk(0, __VA_ARGS__ )
69 #define debugf1( ... ) edac_debug_printk(1, __VA_ARGS__ )
70 #define debugf2( ... ) edac_debug_printk(2, __VA_ARGS__ )
71 #define debugf3( ... ) edac_debug_printk(3, __VA_ARGS__ )
72 #define debugf4( ... ) edac_debug_printk(4, __VA_ARGS__ )
73
74 #else /* !CONFIG_EDAC_DEBUG */
75
76 #define debugf0( ... )
77 #define debugf1( ... )
78 #define debugf2( ... )
79 #define debugf3( ... )
80 #define debugf4( ... )
81
82 #endif /* !CONFIG_EDAC_DEBUG */
83
84 #define BIT(x) (1 << (x))
85
86 #define PCI_VEND_DEV(vend, dev) PCI_VENDOR_ID_ ## vend, \
87 PCI_DEVICE_ID_ ## vend ## _ ## dev
88
89 #if defined(CONFIG_X86) && defined(CONFIG_PCI)
90 #define dev_name(dev) pci_name(to_pci_dev(dev))
91 #else
92 #define dev_name(dev) to_platform_device(dev)->name
93 #endif
94
95 /* memory devices */
96 enum dev_type {
97 DEV_UNKNOWN = 0,
98 DEV_X1,
99 DEV_X2,
100 DEV_X4,
101 DEV_X8,
102 DEV_X16,
103 DEV_X32, /* Do these parts exist? */
104 DEV_X64 /* Do these parts exist? */
105 };
106
107 #define DEV_FLAG_UNKNOWN BIT(DEV_UNKNOWN)
108 #define DEV_FLAG_X1 BIT(DEV_X1)
109 #define DEV_FLAG_X2 BIT(DEV_X2)
110 #define DEV_FLAG_X4 BIT(DEV_X4)
111 #define DEV_FLAG_X8 BIT(DEV_X8)
112 #define DEV_FLAG_X16 BIT(DEV_X16)
113 #define DEV_FLAG_X32 BIT(DEV_X32)
114 #define DEV_FLAG_X64 BIT(DEV_X64)
115
116 /* memory types */
117 enum mem_type {
118 MEM_EMPTY = 0, /* Empty csrow */
119 MEM_RESERVED, /* Reserved csrow type */
120 MEM_UNKNOWN, /* Unknown csrow type */
121 MEM_FPM, /* Fast page mode */
122 MEM_EDO, /* Extended data out */
123 MEM_BEDO, /* Burst Extended data out */
124 MEM_SDR, /* Single data rate SDRAM */
125 MEM_RDR, /* Registered single data rate SDRAM */
126 MEM_DDR, /* Double data rate SDRAM */
127 MEM_RDDR, /* Registered Double data rate SDRAM */
128 MEM_RMBS, /* Rambus DRAM */
129 MEM_DDR2, /* DDR2 RAM */
130 MEM_FB_DDR2, /* fully buffered DDR2 */
131 MEM_RDDR2, /* Registered DDR2 RAM */
132 };
133
134 #define MEM_FLAG_EMPTY BIT(MEM_EMPTY)
135 #define MEM_FLAG_RESERVED BIT(MEM_RESERVED)
136 #define MEM_FLAG_UNKNOWN BIT(MEM_UNKNOWN)
137 #define MEM_FLAG_FPM BIT(MEM_FPM)
138 #define MEM_FLAG_EDO BIT(MEM_EDO)
139 #define MEM_FLAG_BEDO BIT(MEM_BEDO)
140 #define MEM_FLAG_SDR BIT(MEM_SDR)
141 #define MEM_FLAG_RDR BIT(MEM_RDR)
142 #define MEM_FLAG_DDR BIT(MEM_DDR)
143 #define MEM_FLAG_RDDR BIT(MEM_RDDR)
144 #define MEM_FLAG_RMBS BIT(MEM_RMBS)
145 #define MEM_FLAG_DDR2 BIT(MEM_DDR2)
146 #define MEM_FLAG_FB_DDR2 BIT(MEM_FB_DDR2)
147 #define MEM_FLAG_RDDR2 BIT(MEM_RDDR2)
148
149 /* chipset Error Detection and Correction capabilities and mode */
150 enum edac_type {
151 EDAC_UNKNOWN = 0, /* Unknown if ECC is available */
152 EDAC_NONE, /* Doesnt support ECC */
153 EDAC_RESERVED, /* Reserved ECC type */
154 EDAC_PARITY, /* Detects parity errors */
155 EDAC_EC, /* Error Checking - no correction */
156 EDAC_SECDED, /* Single bit error correction, Double detection */
157 EDAC_S2ECD2ED, /* Chipkill x2 devices - do these exist? */
158 EDAC_S4ECD4ED, /* Chipkill x4 devices */
159 EDAC_S8ECD8ED, /* Chipkill x8 devices */
160 EDAC_S16ECD16ED, /* Chipkill x16 devices */
161 };
162
163 #define EDAC_FLAG_UNKNOWN BIT(EDAC_UNKNOWN)
164 #define EDAC_FLAG_NONE BIT(EDAC_NONE)
165 #define EDAC_FLAG_PARITY BIT(EDAC_PARITY)
166 #define EDAC_FLAG_EC BIT(EDAC_EC)
167 #define EDAC_FLAG_SECDED BIT(EDAC_SECDED)
168 #define EDAC_FLAG_S2ECD2ED BIT(EDAC_S2ECD2ED)
169 #define EDAC_FLAG_S4ECD4ED BIT(EDAC_S4ECD4ED)
170 #define EDAC_FLAG_S8ECD8ED BIT(EDAC_S8ECD8ED)
171 #define EDAC_FLAG_S16ECD16ED BIT(EDAC_S16ECD16ED)
172
173 /* scrubbing capabilities */
174 enum scrub_type {
175 SCRUB_UNKNOWN = 0, /* Unknown if scrubber is available */
176 SCRUB_NONE, /* No scrubber */
177 SCRUB_SW_PROG, /* SW progressive (sequential) scrubbing */
178 SCRUB_SW_SRC, /* Software scrub only errors */
179 SCRUB_SW_PROG_SRC, /* Progressive software scrub from an error */
180 SCRUB_SW_TUNABLE, /* Software scrub frequency is tunable */
181 SCRUB_HW_PROG, /* HW progressive (sequential) scrubbing */
182 SCRUB_HW_SRC, /* Hardware scrub only errors */
183 SCRUB_HW_PROG_SRC, /* Progressive hardware scrub from an error */
184 SCRUB_HW_TUNABLE /* Hardware scrub frequency is tunable */
185 };
186
187 #define SCRUB_FLAG_SW_PROG BIT(SCRUB_SW_PROG)
188 #define SCRUB_FLAG_SW_SRC BIT(SCRUB_SW_SRC_CORR)
189 #define SCRUB_FLAG_SW_PROG_SRC BIT(SCRUB_SW_PROG_SRC_CORR)
190 #define SCRUB_FLAG_SW_TUN BIT(SCRUB_SW_SCRUB_TUNABLE)
191 #define SCRUB_FLAG_HW_PROG BIT(SCRUB_HW_PROG)
192 #define SCRUB_FLAG_HW_SRC BIT(SCRUB_HW_SRC_CORR)
193 #define SCRUB_FLAG_HW_PROG_SRC BIT(SCRUB_HW_PROG_SRC_CORR)
194 #define SCRUB_FLAG_HW_TUN BIT(SCRUB_HW_TUNABLE)
195
196 /* FIXME - should have notify capabilities: NMI, LOG, PROC, etc */
197
198 /*
199 * There are several things to be aware of that aren't at all obvious:
200 *
201 *
202 * SOCKETS, SOCKET SETS, BANKS, ROWS, CHIP-SELECT ROWS, CHANNELS, etc..
203 *
204 * These are some of the many terms that are thrown about that don't always
205 * mean what people think they mean (Inconceivable!). In the interest of
206 * creating a common ground for discussion, terms and their definitions
207 * will be established.
208 *
209 * Memory devices: The individual chip on a memory stick. These devices
210 * commonly output 4 and 8 bits each. Grouping several
211 * of these in parallel provides 64 bits which is common
212 * for a memory stick.
213 *
214 * Memory Stick: A printed circuit board that agregates multiple
215 * memory devices in parallel. This is the atomic
216 * memory component that is purchaseable by Joe consumer
217 * and loaded into a memory socket.
218 *
219 * Socket: A physical connector on the motherboard that accepts
220 * a single memory stick.
221 *
222 * Channel: Set of memory devices on a memory stick that must be
223 * grouped in parallel with one or more additional
224 * channels from other memory sticks. This parallel
225 * grouping of the output from multiple channels are
226 * necessary for the smallest granularity of memory access.
227 * Some memory controllers are capable of single channel -
228 * which means that memory sticks can be loaded
229 * individually. Other memory controllers are only
230 * capable of dual channel - which means that memory
231 * sticks must be loaded as pairs (see "socket set").
232 *
233 * Chip-select row: All of the memory devices that are selected together.
234 * for a single, minimum grain of memory access.
235 * This selects all of the parallel memory devices across
236 * all of the parallel channels. Common chip-select rows
237 * for single channel are 64 bits, for dual channel 128
238 * bits.
239 *
240 * Single-Ranked stick: A Single-ranked stick has 1 chip-select row of memmory.
241 * Motherboards commonly drive two chip-select pins to
242 * a memory stick. A single-ranked stick, will occupy
243 * only one of those rows. The other will be unused.
244 *
245 * Double-Ranked stick: A double-ranked stick has two chip-select rows which
246 * access different sets of memory devices. The two
247 * rows cannot be accessed concurrently.
248 *
249 * Double-sided stick: DEPRECATED TERM, see Double-Ranked stick.
250 * A double-sided stick has two chip-select rows which
251 * access different sets of memory devices. The two
252 * rows cannot be accessed concurrently. "Double-sided"
253 * is irrespective of the memory devices being mounted
254 * on both sides of the memory stick.
255 *
256 * Socket set: All of the memory sticks that are required for for
257 * a single memory access or all of the memory sticks
258 * spanned by a chip-select row. A single socket set
259 * has two chip-select rows and if double-sided sticks
260 * are used these will occupy those chip-select rows.
261 *
262 * Bank: This term is avoided because it is unclear when
263 * needing to distinguish between chip-select rows and
264 * socket sets.
265 *
266 * Controller pages:
267 *
268 * Physical pages:
269 *
270 * Virtual pages:
271 *
272 *
273 * STRUCTURE ORGANIZATION AND CHOICES
274 *
275 *
276 *
277 * PS - I enjoyed writing all that about as much as you enjoyed reading it.
278 */
279
280 struct channel_info {
281 int chan_idx; /* channel index */
282 u32 ce_count; /* Correctable Errors for this CHANNEL */
283 char label[EDAC_MC_LABEL_LEN + 1]; /* DIMM label on motherboard */
284 struct csrow_info *csrow; /* the parent */
285 };
286
287 struct csrow_info {
288 unsigned long first_page; /* first page number in dimm */
289 unsigned long last_page; /* last page number in dimm */
290 unsigned long page_mask; /* used for interleaving -
291 * 0UL for non intlv
292 */
293 u32 nr_pages; /* number of pages in csrow */
294 u32 grain; /* granularity of reported error in bytes */
295 int csrow_idx; /* the chip-select row */
296 enum dev_type dtype; /* memory device type */
297 u32 ue_count; /* Uncorrectable Errors for this csrow */
298 u32 ce_count; /* Correctable Errors for this csrow */
299 enum mem_type mtype; /* memory csrow type */
300 enum edac_type edac_mode; /* EDAC mode for this csrow */
301 struct mem_ctl_info *mci; /* the parent */
302
303 struct kobject kobj; /* sysfs kobject for this csrow */
304 struct completion kobj_complete;
305
306 /* FIXME the number of CHANNELs might need to become dynamic */
307 u32 nr_channels;
308 struct channel_info *channels;
309 };
310
311 struct mem_ctl_info {
312 struct list_head link; /* for global list of mem_ctl_info structs */
313 unsigned long mtype_cap; /* memory types supported by mc */
314 unsigned long edac_ctl_cap; /* Mem controller EDAC capabilities */
315 unsigned long edac_cap; /* configuration capabilities - this is
316 * closely related to edac_ctl_cap. The
317 * difference is that the controller may be
318 * capable of s4ecd4ed which would be listed
319 * in edac_ctl_cap, but if channels aren't
320 * capable of s4ecd4ed then the edac_cap would
321 * not have that capability.
322 */
323 unsigned long scrub_cap; /* chipset scrub capabilities */
324 enum scrub_type scrub_mode; /* current scrub mode */
325
326 /* Translates sdram memory scrub rate given in bytes/sec to the
327 internal representation and configures whatever else needs
328 to be configured.
329 */
330 int (*set_sdram_scrub_rate) (struct mem_ctl_info *mci, u32 *bw);
331
332 /* Get the current sdram memory scrub rate from the internal
333 representation and converts it to the closest matching
334 bandwith in bytes/sec.
335 */
336 int (*get_sdram_scrub_rate) (struct mem_ctl_info *mci, u32 *bw);
337
338 /* pointer to edac checking routine */
339 void (*edac_check) (struct mem_ctl_info * mci);
340
341 /*
342 * Remaps memory pages: controller pages to physical pages.
343 * For most MC's, this will be NULL.
344 */
345 /* FIXME - why not send the phys page to begin with? */
346 unsigned long (*ctl_page_to_phys) (struct mem_ctl_info * mci,
347 unsigned long page);
348 int mc_idx;
349 int nr_csrows;
350 struct csrow_info *csrows;
351 /*
352 * FIXME - what about controllers on other busses? - IDs must be
353 * unique. dev pointer should be sufficiently unique, but
354 * BUS:SLOT.FUNC numbers may not be unique.
355 */
356 struct device *dev;
357 const char *mod_name;
358 const char *mod_ver;
359 const char *ctl_name;
360 char proc_name[MC_PROC_NAME_MAX_LEN + 1];
361 void *pvt_info;
362 u32 ue_noinfo_count; /* Uncorrectable Errors w/o info */
363 u32 ce_noinfo_count; /* Correctable Errors w/o info */
364 u32 ue_count; /* Total Uncorrectable Errors for this MC */
365 u32 ce_count; /* Total Correctable Errors for this MC */
366 unsigned long start_time; /* mci load start time (in jiffies) */
367
368 /* this stuff is for safe removal of mc devices from global list while
369 * NMI handlers may be traversing list
370 */
371 struct rcu_head rcu;
372 struct completion complete;
373
374 /* edac sysfs device control */
375 struct kobject edac_mci_kobj;
376 struct completion kobj_complete;
377 };
378
379 #ifdef CONFIG_PCI
380
381 /* write all or some bits in a byte-register*/
382 static inline void pci_write_bits8(struct pci_dev *pdev, int offset, u8 value,
383 u8 mask)
384 {
385 if (mask != 0xff) {
386 u8 buf;
387
388 pci_read_config_byte(pdev, offset, &buf);
389 value &= mask;
390 buf &= ~mask;
391 value |= buf;
392 }
393
394 pci_write_config_byte(pdev, offset, value);
395 }
396
397 /* write all or some bits in a word-register*/
398 static inline void pci_write_bits16(struct pci_dev *pdev, int offset,
399 u16 value, u16 mask)
400 {
401 if (mask != 0xffff) {
402 u16 buf;
403
404 pci_read_config_word(pdev, offset, &buf);
405 value &= mask;
406 buf &= ~mask;
407 value |= buf;
408 }
409
410 pci_write_config_word(pdev, offset, value);
411 }
412
413 /* write all or some bits in a dword-register*/
414 static inline void pci_write_bits32(struct pci_dev *pdev, int offset,
415 u32 value, u32 mask)
416 {
417 if (mask != 0xffff) {
418 u32 buf;
419
420 pci_read_config_dword(pdev, offset, &buf);
421 value &= mask;
422 buf &= ~mask;
423 value |= buf;
424 }
425
426 pci_write_config_dword(pdev, offset, value);
427 }
428
429 #endif /* CONFIG_PCI */
430
431 extern struct mem_ctl_info * edac_mc_find(int idx);
432 extern int edac_mc_add_mc(struct mem_ctl_info *mci,int mc_idx);
433 extern struct mem_ctl_info * edac_mc_del_mc(struct device *dev);
434 extern int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci,
435 unsigned long page);
436
437 /*
438 * The no info errors are used when error overflows are reported.
439 * There are a limited number of error logging registers that can
440 * be exausted. When all registers are exhausted and an additional
441 * error occurs then an error overflow register records that an
442 * error occured and the type of error, but doesn't have any
443 * further information. The ce/ue versions make for cleaner
444 * reporting logic and function interface - reduces conditional
445 * statement clutter and extra function arguments.
446 */
447 extern void edac_mc_handle_ce(struct mem_ctl_info *mci,
448 unsigned long page_frame_number, unsigned long offset_in_page,
449 unsigned long syndrome, int row, int channel,
450 const char *msg);
451 extern void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci,
452 const char *msg);
453 extern void edac_mc_handle_ue(struct mem_ctl_info *mci,
454 unsigned long page_frame_number, unsigned long offset_in_page,
455 int row, const char *msg);
456 extern void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci,
457 const char *msg);
458 extern void edac_mc_handle_fbd_ue(struct mem_ctl_info *mci,
459 unsigned int csrow,
460 unsigned int channel0,
461 unsigned int channel1,
462 char *msg);
463 extern void edac_mc_handle_fbd_ce(struct mem_ctl_info *mci,
464 unsigned int csrow,
465 unsigned int channel,
466 char *msg);
467
468 /*
469 * This kmalloc's and initializes all the structures.
470 * Can't be used if all structures don't have the same lifetime.
471 */
472 extern struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
473 unsigned nr_chans);
474
475 /* Free an mc previously allocated by edac_mc_alloc() */
476 extern void edac_mc_free(struct mem_ctl_info *mci);
477
478 #endif /* _EDAC_CORE_H_ */