powerpc/pseries: Rename RAS_VECTOR_OFFSET to RTAS_VECTOR_EXTERNAL_INTERRUPT and move...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / edac / amd64_edac.c
1 #include "amd64_edac.h"
2 #include <asm/k8.h>
3
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
8
9 /*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
15
16 static struct msr __percpu *msrs;
17
18 /* Lookup table for all possible MC control instances */
19 struct amd64_pvt;
20 static struct mem_ctl_info *mci_lookup[EDAC_MAX_NUMNODES];
21 static struct amd64_pvt *pvt_lookup[EDAC_MAX_NUMNODES];
22
23 /*
24 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
25 * later.
26 */
27 static int ddr2_dbam_revCG[] = {
28 [0] = 32,
29 [1] = 64,
30 [2] = 128,
31 [3] = 256,
32 [4] = 512,
33 [5] = 1024,
34 [6] = 2048,
35 };
36
37 static int ddr2_dbam_revD[] = {
38 [0] = 32,
39 [1] = 64,
40 [2 ... 3] = 128,
41 [4] = 256,
42 [5] = 512,
43 [6] = 256,
44 [7] = 512,
45 [8 ... 9] = 1024,
46 [10] = 2048,
47 };
48
49 static int ddr2_dbam[] = { [0] = 128,
50 [1] = 256,
51 [2 ... 4] = 512,
52 [5 ... 6] = 1024,
53 [7 ... 8] = 2048,
54 [9 ... 10] = 4096,
55 [11] = 8192,
56 };
57
58 static int ddr3_dbam[] = { [0] = -1,
59 [1] = 256,
60 [2] = 512,
61 [3 ... 4] = -1,
62 [5 ... 6] = 1024,
63 [7 ... 8] = 2048,
64 [9 ... 10] = 4096,
65 [11] = 8192,
66 };
67
68 /*
69 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
70 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
71 * or higher value'.
72 *
73 *FIXME: Produce a better mapping/linearisation.
74 */
75
76 struct scrubrate scrubrates[] = {
77 { 0x01, 1600000000UL},
78 { 0x02, 800000000UL},
79 { 0x03, 400000000UL},
80 { 0x04, 200000000UL},
81 { 0x05, 100000000UL},
82 { 0x06, 50000000UL},
83 { 0x07, 25000000UL},
84 { 0x08, 12284069UL},
85 { 0x09, 6274509UL},
86 { 0x0A, 3121951UL},
87 { 0x0B, 1560975UL},
88 { 0x0C, 781440UL},
89 { 0x0D, 390720UL},
90 { 0x0E, 195300UL},
91 { 0x0F, 97650UL},
92 { 0x10, 48854UL},
93 { 0x11, 24427UL},
94 { 0x12, 12213UL},
95 { 0x13, 6101UL},
96 { 0x14, 3051UL},
97 { 0x15, 1523UL},
98 { 0x16, 761UL},
99 { 0x00, 0UL}, /* scrubbing off */
100 };
101
102 /*
103 * Memory scrubber control interface. For K8, memory scrubbing is handled by
104 * hardware and can involve L2 cache, dcache as well as the main memory. With
105 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
106 * functionality.
107 *
108 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
109 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
110 * bytes/sec for the setting.
111 *
112 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
113 * other archs, we might not have access to the caches directly.
114 */
115
116 /*
117 * scan the scrub rate mapping table for a close or matching bandwidth value to
118 * issue. If requested is too big, then use last maximum value found.
119 */
120 static int amd64_search_set_scrub_rate(struct pci_dev *ctl, u32 new_bw,
121 u32 min_scrubrate)
122 {
123 u32 scrubval;
124 int i;
125
126 /*
127 * map the configured rate (new_bw) to a value specific to the AMD64
128 * memory controller and apply to register. Search for the first
129 * bandwidth entry that is greater or equal than the setting requested
130 * and program that. If at last entry, turn off DRAM scrubbing.
131 */
132 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
133 /*
134 * skip scrub rates which aren't recommended
135 * (see F10 BKDG, F3x58)
136 */
137 if (scrubrates[i].scrubval < min_scrubrate)
138 continue;
139
140 if (scrubrates[i].bandwidth <= new_bw)
141 break;
142
143 /*
144 * if no suitable bandwidth found, turn off DRAM scrubbing
145 * entirely by falling back to the last element in the
146 * scrubrates array.
147 */
148 }
149
150 scrubval = scrubrates[i].scrubval;
151 if (scrubval)
152 edac_printk(KERN_DEBUG, EDAC_MC,
153 "Setting scrub rate bandwidth: %u\n",
154 scrubrates[i].bandwidth);
155 else
156 edac_printk(KERN_DEBUG, EDAC_MC, "Turning scrubbing off.\n");
157
158 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
159
160 return 0;
161 }
162
163 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 *bandwidth)
164 {
165 struct amd64_pvt *pvt = mci->pvt_info;
166 u32 min_scrubrate = 0x0;
167
168 switch (boot_cpu_data.x86) {
169 case 0xf:
170 min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
171 break;
172 case 0x10:
173 min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
174 break;
175 case 0x11:
176 min_scrubrate = F11_MIN_SCRUB_RATE_BITS;
177 break;
178
179 default:
180 amd64_printk(KERN_ERR, "Unsupported family!\n");
181 break;
182 }
183 return amd64_search_set_scrub_rate(pvt->misc_f3_ctl, *bandwidth,
184 min_scrubrate);
185 }
186
187 static int amd64_get_scrub_rate(struct mem_ctl_info *mci, u32 *bw)
188 {
189 struct amd64_pvt *pvt = mci->pvt_info;
190 u32 scrubval = 0;
191 int status = -1, i;
192
193 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_SCRCTRL, &scrubval);
194
195 scrubval = scrubval & 0x001F;
196
197 edac_printk(KERN_DEBUG, EDAC_MC,
198 "pci-read, sdram scrub control value: %d \n", scrubval);
199
200 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
201 if (scrubrates[i].scrubval == scrubval) {
202 *bw = scrubrates[i].bandwidth;
203 status = 0;
204 break;
205 }
206 }
207
208 return status;
209 }
210
211 /* Map from a CSROW entry to the mask entry that operates on it */
212 static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
213 {
214 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
215 return csrow;
216 else
217 return csrow >> 1;
218 }
219
220 /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
221 static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
222 {
223 if (dct == 0)
224 return pvt->dcsb0[csrow];
225 else
226 return pvt->dcsb1[csrow];
227 }
228
229 /*
230 * Return the 'mask' address the i'th CS entry. This function is needed because
231 * there number of DCSM registers on Rev E and prior vs Rev F and later is
232 * different.
233 */
234 static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
235 {
236 if (dct == 0)
237 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
238 else
239 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
240 }
241
242
243 /*
244 * In *base and *limit, pass back the full 40-bit base and limit physical
245 * addresses for the node given by node_id. This information is obtained from
246 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
247 * base and limit addresses are of type SysAddr, as defined at the start of
248 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
249 * in the address range they represent.
250 */
251 static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
252 u64 *base, u64 *limit)
253 {
254 *base = pvt->dram_base[node_id];
255 *limit = pvt->dram_limit[node_id];
256 }
257
258 /*
259 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
260 * with node_id
261 */
262 static int amd64_base_limit_match(struct amd64_pvt *pvt,
263 u64 sys_addr, int node_id)
264 {
265 u64 base, limit, addr;
266
267 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
268
269 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
270 * all ones if the most significant implemented address bit is 1.
271 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
272 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
273 * Application Programming.
274 */
275 addr = sys_addr & 0x000000ffffffffffull;
276
277 return (addr >= base) && (addr <= limit);
278 }
279
280 /*
281 * Attempt to map a SysAddr to a node. On success, return a pointer to the
282 * mem_ctl_info structure for the node that the SysAddr maps to.
283 *
284 * On failure, return NULL.
285 */
286 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
287 u64 sys_addr)
288 {
289 struct amd64_pvt *pvt;
290 int node_id;
291 u32 intlv_en, bits;
292
293 /*
294 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
295 * 3.4.4.2) registers to map the SysAddr to a node ID.
296 */
297 pvt = mci->pvt_info;
298
299 /*
300 * The value of this field should be the same for all DRAM Base
301 * registers. Therefore we arbitrarily choose to read it from the
302 * register for node 0.
303 */
304 intlv_en = pvt->dram_IntlvEn[0];
305
306 if (intlv_en == 0) {
307 for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
308 if (amd64_base_limit_match(pvt, sys_addr, node_id))
309 goto found;
310 }
311 goto err_no_match;
312 }
313
314 if (unlikely((intlv_en != 0x01) &&
315 (intlv_en != 0x03) &&
316 (intlv_en != 0x07))) {
317 amd64_printk(KERN_WARNING, "junk value of 0x%x extracted from "
318 "IntlvEn field of DRAM Base Register for node 0: "
319 "this probably indicates a BIOS bug.\n", intlv_en);
320 return NULL;
321 }
322
323 bits = (((u32) sys_addr) >> 12) & intlv_en;
324
325 for (node_id = 0; ; ) {
326 if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
327 break; /* intlv_sel field matches */
328
329 if (++node_id >= DRAM_REG_COUNT)
330 goto err_no_match;
331 }
332
333 /* sanity test for sys_addr */
334 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
335 amd64_printk(KERN_WARNING,
336 "%s(): sys_addr 0x%llx falls outside base/limit "
337 "address range for node %d with node interleaving "
338 "enabled.\n",
339 __func__, sys_addr, node_id);
340 return NULL;
341 }
342
343 found:
344 return edac_mc_find(node_id);
345
346 err_no_match:
347 debugf2("sys_addr 0x%lx doesn't match any node\n",
348 (unsigned long)sys_addr);
349
350 return NULL;
351 }
352
353 /*
354 * Extract the DRAM CS base address from selected csrow register.
355 */
356 static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
357 {
358 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
359 pvt->dcs_shift;
360 }
361
362 /*
363 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
364 */
365 static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
366 {
367 u64 dcsm_bits, other_bits;
368 u64 mask;
369
370 /* Extract bits from DRAM CS Mask. */
371 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
372
373 other_bits = pvt->dcsm_mask;
374 other_bits = ~(other_bits << pvt->dcs_shift);
375
376 /*
377 * The extracted bits from DCSM belong in the spaces represented by
378 * the cleared bits in other_bits.
379 */
380 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
381
382 return mask;
383 }
384
385 /*
386 * @input_addr is an InputAddr associated with the node given by mci. Return the
387 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
388 */
389 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
390 {
391 struct amd64_pvt *pvt;
392 int csrow;
393 u64 base, mask;
394
395 pvt = mci->pvt_info;
396
397 /*
398 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
399 * base/mask register pair, test the condition shown near the start of
400 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
401 */
402 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
403
404 /* This DRAM chip select is disabled on this node */
405 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
406 continue;
407
408 base = base_from_dct_base(pvt, csrow);
409 mask = ~mask_from_dct_mask(pvt, csrow);
410
411 if ((input_addr & mask) == (base & mask)) {
412 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
413 (unsigned long)input_addr, csrow,
414 pvt->mc_node_id);
415
416 return csrow;
417 }
418 }
419
420 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
421 (unsigned long)input_addr, pvt->mc_node_id);
422
423 return -1;
424 }
425
426 /*
427 * Return the base value defined by the DRAM Base register for the node
428 * represented by mci. This function returns the full 40-bit value despite the
429 * fact that the register only stores bits 39-24 of the value. See section
430 * 3.4.4.1 (BKDG #26094, K8, revA-E)
431 */
432 static inline u64 get_dram_base(struct mem_ctl_info *mci)
433 {
434 struct amd64_pvt *pvt = mci->pvt_info;
435
436 return pvt->dram_base[pvt->mc_node_id];
437 }
438
439 /*
440 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
441 * for the node represented by mci. Info is passed back in *hole_base,
442 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
443 * info is invalid. Info may be invalid for either of the following reasons:
444 *
445 * - The revision of the node is not E or greater. In this case, the DRAM Hole
446 * Address Register does not exist.
447 *
448 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
449 * indicating that its contents are not valid.
450 *
451 * The values passed back in *hole_base, *hole_offset, and *hole_size are
452 * complete 32-bit values despite the fact that the bitfields in the DHAR
453 * only represent bits 31-24 of the base and offset values.
454 */
455 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
456 u64 *hole_offset, u64 *hole_size)
457 {
458 struct amd64_pvt *pvt = mci->pvt_info;
459 u64 base;
460
461 /* only revE and later have the DRAM Hole Address Register */
462 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
463 debugf1(" revision %d for node %d does not support DHAR\n",
464 pvt->ext_model, pvt->mc_node_id);
465 return 1;
466 }
467
468 /* only valid for Fam10h */
469 if (boot_cpu_data.x86 == 0x10 &&
470 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
471 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
472 return 1;
473 }
474
475 if ((pvt->dhar & DHAR_VALID) == 0) {
476 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
477 pvt->mc_node_id);
478 return 1;
479 }
480
481 /* This node has Memory Hoisting */
482
483 /* +------------------+--------------------+--------------------+-----
484 * | memory | DRAM hole | relocated |
485 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
486 * | | | DRAM hole |
487 * | | | [0x100000000, |
488 * | | | (0x100000000+ |
489 * | | | (0xffffffff-x))] |
490 * +------------------+--------------------+--------------------+-----
491 *
492 * Above is a diagram of physical memory showing the DRAM hole and the
493 * relocated addresses from the DRAM hole. As shown, the DRAM hole
494 * starts at address x (the base address) and extends through address
495 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
496 * addresses in the hole so that they start at 0x100000000.
497 */
498
499 base = dhar_base(pvt->dhar);
500
501 *hole_base = base;
502 *hole_size = (0x1ull << 32) - base;
503
504 if (boot_cpu_data.x86 > 0xf)
505 *hole_offset = f10_dhar_offset(pvt->dhar);
506 else
507 *hole_offset = k8_dhar_offset(pvt->dhar);
508
509 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
510 pvt->mc_node_id, (unsigned long)*hole_base,
511 (unsigned long)*hole_offset, (unsigned long)*hole_size);
512
513 return 0;
514 }
515 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
516
517 /*
518 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
519 * assumed that sys_addr maps to the node given by mci.
520 *
521 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
522 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
523 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
524 * then it is also involved in translating a SysAddr to a DramAddr. Sections
525 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
526 * These parts of the documentation are unclear. I interpret them as follows:
527 *
528 * When node n receives a SysAddr, it processes the SysAddr as follows:
529 *
530 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
531 * Limit registers for node n. If the SysAddr is not within the range
532 * specified by the base and limit values, then node n ignores the Sysaddr
533 * (since it does not map to node n). Otherwise continue to step 2 below.
534 *
535 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
536 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
537 * the range of relocated addresses (starting at 0x100000000) from the DRAM
538 * hole. If not, skip to step 3 below. Else get the value of the
539 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
540 * offset defined by this value from the SysAddr.
541 *
542 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
543 * Base register for node n. To obtain the DramAddr, subtract the base
544 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
545 */
546 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
547 {
548 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
549 int ret = 0;
550
551 dram_base = get_dram_base(mci);
552
553 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
554 &hole_size);
555 if (!ret) {
556 if ((sys_addr >= (1ull << 32)) &&
557 (sys_addr < ((1ull << 32) + hole_size))) {
558 /* use DHAR to translate SysAddr to DramAddr */
559 dram_addr = sys_addr - hole_offset;
560
561 debugf2("using DHAR to translate SysAddr 0x%lx to "
562 "DramAddr 0x%lx\n",
563 (unsigned long)sys_addr,
564 (unsigned long)dram_addr);
565
566 return dram_addr;
567 }
568 }
569
570 /*
571 * Translate the SysAddr to a DramAddr as shown near the start of
572 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
573 * only deals with 40-bit values. Therefore we discard bits 63-40 of
574 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
575 * discard are all 1s. Otherwise the bits we discard are all 0s. See
576 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
577 * Programmer's Manual Volume 1 Application Programming.
578 */
579 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
580
581 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
582 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
583 (unsigned long)dram_addr);
584 return dram_addr;
585 }
586
587 /*
588 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
589 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
590 * for node interleaving.
591 */
592 static int num_node_interleave_bits(unsigned intlv_en)
593 {
594 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
595 int n;
596
597 BUG_ON(intlv_en > 7);
598 n = intlv_shift_table[intlv_en];
599 return n;
600 }
601
602 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
603 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
604 {
605 struct amd64_pvt *pvt;
606 int intlv_shift;
607 u64 input_addr;
608
609 pvt = mci->pvt_info;
610
611 /*
612 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
613 * concerning translating a DramAddr to an InputAddr.
614 */
615 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
616 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
617 (dram_addr & 0xfff);
618
619 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
620 intlv_shift, (unsigned long)dram_addr,
621 (unsigned long)input_addr);
622
623 return input_addr;
624 }
625
626 /*
627 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
628 * assumed that @sys_addr maps to the node given by mci.
629 */
630 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
631 {
632 u64 input_addr;
633
634 input_addr =
635 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
636
637 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
638 (unsigned long)sys_addr, (unsigned long)input_addr);
639
640 return input_addr;
641 }
642
643
644 /*
645 * @input_addr is an InputAddr associated with the node represented by mci.
646 * Translate @input_addr to a DramAddr and return the result.
647 */
648 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
649 {
650 struct amd64_pvt *pvt;
651 int node_id, intlv_shift;
652 u64 bits, dram_addr;
653 u32 intlv_sel;
654
655 /*
656 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
657 * shows how to translate a DramAddr to an InputAddr. Here we reverse
658 * this procedure. When translating from a DramAddr to an InputAddr, the
659 * bits used for node interleaving are discarded. Here we recover these
660 * bits from the IntlvSel field of the DRAM Limit register (section
661 * 3.4.4.2) for the node that input_addr is associated with.
662 */
663 pvt = mci->pvt_info;
664 node_id = pvt->mc_node_id;
665 BUG_ON((node_id < 0) || (node_id > 7));
666
667 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
668
669 if (intlv_shift == 0) {
670 debugf1(" InputAddr 0x%lx translates to DramAddr of "
671 "same value\n", (unsigned long)input_addr);
672
673 return input_addr;
674 }
675
676 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
677 (input_addr & 0xfff);
678
679 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
680 dram_addr = bits + (intlv_sel << 12);
681
682 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
683 "(%d node interleave bits)\n", (unsigned long)input_addr,
684 (unsigned long)dram_addr, intlv_shift);
685
686 return dram_addr;
687 }
688
689 /*
690 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
691 * @dram_addr to a SysAddr.
692 */
693 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
694 {
695 struct amd64_pvt *pvt = mci->pvt_info;
696 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
697 int ret = 0;
698
699 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
700 &hole_size);
701 if (!ret) {
702 if ((dram_addr >= hole_base) &&
703 (dram_addr < (hole_base + hole_size))) {
704 sys_addr = dram_addr + hole_offset;
705
706 debugf1("using DHAR to translate DramAddr 0x%lx to "
707 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
708 (unsigned long)sys_addr);
709
710 return sys_addr;
711 }
712 }
713
714 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
715 sys_addr = dram_addr + base;
716
717 /*
718 * The sys_addr we have computed up to this point is a 40-bit value
719 * because the k8 deals with 40-bit values. However, the value we are
720 * supposed to return is a full 64-bit physical address. The AMD
721 * x86-64 architecture specifies that the most significant implemented
722 * address bit through bit 63 of a physical address must be either all
723 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
724 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
725 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
726 * Programming.
727 */
728 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
729
730 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
731 pvt->mc_node_id, (unsigned long)dram_addr,
732 (unsigned long)sys_addr);
733
734 return sys_addr;
735 }
736
737 /*
738 * @input_addr is an InputAddr associated with the node given by mci. Translate
739 * @input_addr to a SysAddr.
740 */
741 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
742 u64 input_addr)
743 {
744 return dram_addr_to_sys_addr(mci,
745 input_addr_to_dram_addr(mci, input_addr));
746 }
747
748 /*
749 * Find the minimum and maximum InputAddr values that map to the given @csrow.
750 * Pass back these values in *input_addr_min and *input_addr_max.
751 */
752 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
753 u64 *input_addr_min, u64 *input_addr_max)
754 {
755 struct amd64_pvt *pvt;
756 u64 base, mask;
757
758 pvt = mci->pvt_info;
759 BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
760
761 base = base_from_dct_base(pvt, csrow);
762 mask = mask_from_dct_mask(pvt, csrow);
763
764 *input_addr_min = base & ~mask;
765 *input_addr_max = base | mask | pvt->dcs_mask_notused;
766 }
767
768 /* Map the Error address to a PAGE and PAGE OFFSET. */
769 static inline void error_address_to_page_and_offset(u64 error_address,
770 u32 *page, u32 *offset)
771 {
772 *page = (u32) (error_address >> PAGE_SHIFT);
773 *offset = ((u32) error_address) & ~PAGE_MASK;
774 }
775
776 /*
777 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
778 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
779 * of a node that detected an ECC memory error. mci represents the node that
780 * the error address maps to (possibly different from the node that detected
781 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
782 * error.
783 */
784 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
785 {
786 int csrow;
787
788 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
789
790 if (csrow == -1)
791 amd64_mc_printk(mci, KERN_ERR,
792 "Failed to translate InputAddr to csrow for "
793 "address 0x%lx\n", (unsigned long)sys_addr);
794 return csrow;
795 }
796
797 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
798
799 static void amd64_cpu_display_info(struct amd64_pvt *pvt)
800 {
801 if (boot_cpu_data.x86 == 0x11)
802 edac_printk(KERN_DEBUG, EDAC_MC, "F11h CPU detected\n");
803 else if (boot_cpu_data.x86 == 0x10)
804 edac_printk(KERN_DEBUG, EDAC_MC, "F10h CPU detected\n");
805 else if (boot_cpu_data.x86 == 0xf)
806 edac_printk(KERN_DEBUG, EDAC_MC, "%s detected\n",
807 (pvt->ext_model >= K8_REV_F) ?
808 "Rev F or later" : "Rev E or earlier");
809 else
810 /* we'll hardly ever ever get here */
811 edac_printk(KERN_ERR, EDAC_MC, "Unknown cpu!\n");
812 }
813
814 /*
815 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
816 * are ECC capable.
817 */
818 static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
819 {
820 int bit;
821 enum dev_type edac_cap = EDAC_FLAG_NONE;
822
823 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
824 ? 19
825 : 17;
826
827 if (pvt->dclr0 & BIT(bit))
828 edac_cap = EDAC_FLAG_SECDED;
829
830 return edac_cap;
831 }
832
833
834 static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
835
836 static void amd64_dump_dramcfg_low(u32 dclr, int chan)
837 {
838 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
839
840 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
841 (dclr & BIT(16)) ? "un" : "",
842 (dclr & BIT(19)) ? "yes" : "no");
843
844 debugf1(" PAR/ERR parity: %s\n",
845 (dclr & BIT(8)) ? "enabled" : "disabled");
846
847 debugf1(" DCT 128bit mode width: %s\n",
848 (dclr & BIT(11)) ? "128b" : "64b");
849
850 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
851 (dclr & BIT(12)) ? "yes" : "no",
852 (dclr & BIT(13)) ? "yes" : "no",
853 (dclr & BIT(14)) ? "yes" : "no",
854 (dclr & BIT(15)) ? "yes" : "no");
855 }
856
857 /* Display and decode various NB registers for debug purposes. */
858 static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
859 {
860 int ganged;
861
862 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
863
864 debugf1(" NB two channel DRAM capable: %s\n",
865 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
866
867 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
868 (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
869 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
870
871 amd64_dump_dramcfg_low(pvt->dclr0, 0);
872
873 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
874
875 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
876 "offset: 0x%08x\n",
877 pvt->dhar,
878 dhar_base(pvt->dhar),
879 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
880 : f10_dhar_offset(pvt->dhar));
881
882 debugf1(" DramHoleValid: %s\n",
883 (pvt->dhar & DHAR_VALID) ? "yes" : "no");
884
885 /* everything below this point is Fam10h and above */
886 if (boot_cpu_data.x86 == 0xf) {
887 amd64_debug_display_dimm_sizes(0, pvt);
888 return;
889 }
890
891 /* Only if NOT ganged does dclr1 have valid info */
892 if (!dct_ganging_enabled(pvt))
893 amd64_dump_dramcfg_low(pvt->dclr1, 1);
894
895 /*
896 * Determine if ganged and then dump memory sizes for first controller,
897 * and if NOT ganged dump info for 2nd controller.
898 */
899 ganged = dct_ganging_enabled(pvt);
900
901 amd64_debug_display_dimm_sizes(0, pvt);
902
903 if (!ganged)
904 amd64_debug_display_dimm_sizes(1, pvt);
905 }
906
907 /* Read in both of DBAM registers */
908 static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
909 {
910 amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM0, &pvt->dbam0);
911
912 if (boot_cpu_data.x86 >= 0x10)
913 amd64_read_pci_cfg(pvt->dram_f2_ctl, DBAM1, &pvt->dbam1);
914 }
915
916 /*
917 * NOTE: CPU Revision Dependent code: Rev E and Rev F
918 *
919 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
920 * set the shift factor for the DCSB and DCSM values.
921 *
922 * ->dcs_mask_notused, RevE:
923 *
924 * To find the max InputAddr for the csrow, start with the base address and set
925 * all bits that are "don't care" bits in the test at the start of section
926 * 3.5.4 (p. 84).
927 *
928 * The "don't care" bits are all set bits in the mask and all bits in the gaps
929 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
930 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
931 * gaps.
932 *
933 * ->dcs_mask_notused, RevF and later:
934 *
935 * To find the max InputAddr for the csrow, start with the base address and set
936 * all bits that are "don't care" bits in the test at the start of NPT section
937 * 4.5.4 (p. 87).
938 *
939 * The "don't care" bits are all set bits in the mask and all bits in the gaps
940 * between bit ranges [36:27] and [21:13].
941 *
942 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
943 * which are all bits in the above-mentioned gaps.
944 */
945 static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
946 {
947
948 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
949 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
950 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
951 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
952 pvt->dcs_shift = REV_E_DCS_SHIFT;
953 pvt->cs_count = 8;
954 pvt->num_dcsm = 8;
955 } else {
956 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
957 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
958 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
959 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
960
961 if (boot_cpu_data.x86 == 0x11) {
962 pvt->cs_count = 4;
963 pvt->num_dcsm = 2;
964 } else {
965 pvt->cs_count = 8;
966 pvt->num_dcsm = 4;
967 }
968 }
969 }
970
971 /*
972 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
973 */
974 static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
975 {
976 int cs, reg;
977
978 amd64_set_dct_base_and_mask(pvt);
979
980 for (cs = 0; cs < pvt->cs_count; cs++) {
981 reg = K8_DCSB0 + (cs * 4);
982 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsb0[cs]))
983 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
984 cs, pvt->dcsb0[cs], reg);
985
986 /* If DCT are NOT ganged, then read in DCT1's base */
987 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
988 reg = F10_DCSB1 + (cs * 4);
989 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
990 &pvt->dcsb1[cs]))
991 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
992 cs, pvt->dcsb1[cs], reg);
993 } else {
994 pvt->dcsb1[cs] = 0;
995 }
996 }
997
998 for (cs = 0; cs < pvt->num_dcsm; cs++) {
999 reg = K8_DCSM0 + (cs * 4);
1000 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg, &pvt->dcsm0[cs]))
1001 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
1002 cs, pvt->dcsm0[cs], reg);
1003
1004 /* If DCT are NOT ganged, then read in DCT1's mask */
1005 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
1006 reg = F10_DCSM1 + (cs * 4);
1007 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, reg,
1008 &pvt->dcsm1[cs]))
1009 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
1010 cs, pvt->dcsm1[cs], reg);
1011 } else {
1012 pvt->dcsm1[cs] = 0;
1013 }
1014 }
1015 }
1016
1017 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt)
1018 {
1019 enum mem_type type;
1020
1021 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
1022 if (pvt->dchr0 & DDR3_MODE)
1023 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
1024 else
1025 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
1026 } else {
1027 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
1028 }
1029
1030 debugf1(" Memory type is: %s\n", edac_mem_types[type]);
1031
1032 return type;
1033 }
1034
1035 /*
1036 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1037 * and the later RevF memory controllers (DDR vs DDR2)
1038 *
1039 * Return:
1040 * number of memory channels in operation
1041 * Pass back:
1042 * contents of the DCL0_LOW register
1043 */
1044 static int k8_early_channel_count(struct amd64_pvt *pvt)
1045 {
1046 int flag, err = 0;
1047
1048 err = amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
1049 if (err)
1050 return err;
1051
1052 if ((boot_cpu_data.x86_model >> 4) >= K8_REV_F) {
1053 /* RevF (NPT) and later */
1054 flag = pvt->dclr0 & F10_WIDTH_128;
1055 } else {
1056 /* RevE and earlier */
1057 flag = pvt->dclr0 & REVE_WIDTH_128;
1058 }
1059
1060 /* not used */
1061 pvt->dclr1 = 0;
1062
1063 return (flag) ? 2 : 1;
1064 }
1065
1066 /* extract the ERROR ADDRESS for the K8 CPUs */
1067 static u64 k8_get_error_address(struct mem_ctl_info *mci,
1068 struct err_regs *info)
1069 {
1070 return (((u64) (info->nbeah & 0xff)) << 32) +
1071 (info->nbeal & ~0x03);
1072 }
1073
1074 /*
1075 * Read the Base and Limit registers for K8 based Memory controllers; extract
1076 * fields from the 'raw' reg into separate data fields
1077 *
1078 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1079 */
1080 static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1081 {
1082 u32 low;
1083 u32 off = dram << 3; /* 8 bytes between DRAM entries */
1084
1085 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_BASE_LOW + off, &low);
1086
1087 /* Extract parts into separate data entries */
1088 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
1089 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1090 pvt->dram_rw_en[dram] = (low & 0x3);
1091
1092 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DRAM_LIMIT_LOW + off, &low);
1093
1094 /*
1095 * Extract parts into separate data entries. Limit is the HIGHEST memory
1096 * location of the region, so lower 24 bits need to be all ones
1097 */
1098 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
1099 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1100 pvt->dram_DstNode[dram] = (low & 0x7);
1101 }
1102
1103 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1104 struct err_regs *info,
1105 u64 sys_addr)
1106 {
1107 struct mem_ctl_info *src_mci;
1108 unsigned short syndrome;
1109 int channel, csrow;
1110 u32 page, offset;
1111
1112 /* Extract the syndrome parts and form a 16-bit syndrome */
1113 syndrome = HIGH_SYNDROME(info->nbsl) << 8;
1114 syndrome |= LOW_SYNDROME(info->nbsh);
1115
1116 /* CHIPKILL enabled */
1117 if (info->nbcfg & K8_NBCFG_CHIPKILL) {
1118 channel = get_channel_from_ecc_syndrome(mci, syndrome);
1119 if (channel < 0) {
1120 /*
1121 * Syndrome didn't map, so we don't know which of the
1122 * 2 DIMMs is in error. So we need to ID 'both' of them
1123 * as suspect.
1124 */
1125 amd64_mc_printk(mci, KERN_WARNING,
1126 "unknown syndrome 0x%x - possible error "
1127 "reporting race\n", syndrome);
1128 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1129 return;
1130 }
1131 } else {
1132 /*
1133 * non-chipkill ecc mode
1134 *
1135 * The k8 documentation is unclear about how to determine the
1136 * channel number when using non-chipkill memory. This method
1137 * was obtained from email communication with someone at AMD.
1138 * (Wish the email was placed in this comment - norsk)
1139 */
1140 channel = ((sys_addr & BIT(3)) != 0);
1141 }
1142
1143 /*
1144 * Find out which node the error address belongs to. This may be
1145 * different from the node that detected the error.
1146 */
1147 src_mci = find_mc_by_sys_addr(mci, sys_addr);
1148 if (!src_mci) {
1149 amd64_mc_printk(mci, KERN_ERR,
1150 "failed to map error address 0x%lx to a node\n",
1151 (unsigned long)sys_addr);
1152 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1153 return;
1154 }
1155
1156 /* Now map the sys_addr to a CSROW */
1157 csrow = sys_addr_to_csrow(src_mci, sys_addr);
1158 if (csrow < 0) {
1159 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1160 } else {
1161 error_address_to_page_and_offset(sys_addr, &page, &offset);
1162
1163 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1164 channel, EDAC_MOD_STR);
1165 }
1166 }
1167
1168 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1169 {
1170 int *dbam_map;
1171
1172 if (pvt->ext_model >= K8_REV_F)
1173 dbam_map = ddr2_dbam;
1174 else if (pvt->ext_model >= K8_REV_D)
1175 dbam_map = ddr2_dbam_revD;
1176 else
1177 dbam_map = ddr2_dbam_revCG;
1178
1179 return dbam_map[cs_mode];
1180 }
1181
1182 /*
1183 * Get the number of DCT channels in use.
1184 *
1185 * Return:
1186 * number of Memory Channels in operation
1187 * Pass back:
1188 * contents of the DCL0_LOW register
1189 */
1190 static int f10_early_channel_count(struct amd64_pvt *pvt)
1191 {
1192 int dbams[] = { DBAM0, DBAM1 };
1193 int i, j, channels = 0;
1194 u32 dbam;
1195
1196 /* If we are in 128 bit mode, then we are using 2 channels */
1197 if (pvt->dclr0 & F10_WIDTH_128) {
1198 channels = 2;
1199 return channels;
1200 }
1201
1202 /*
1203 * Need to check if in unganged mode: In such, there are 2 channels,
1204 * but they are not in 128 bit mode and thus the above 'dclr0' status
1205 * bit will be OFF.
1206 *
1207 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1208 * their CSEnable bit on. If so, then SINGLE DIMM case.
1209 */
1210 debugf0("Data width is not 128 bits - need more decoding\n");
1211
1212 /*
1213 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1214 * is more than just one DIMM present in unganged mode. Need to check
1215 * both controllers since DIMMs can be placed in either one.
1216 */
1217 for (i = 0; i < ARRAY_SIZE(dbams); i++) {
1218 if (amd64_read_pci_cfg(pvt->dram_f2_ctl, dbams[i], &dbam))
1219 goto err_reg;
1220
1221 for (j = 0; j < 4; j++) {
1222 if (DBAM_DIMM(j, dbam) > 0) {
1223 channels++;
1224 break;
1225 }
1226 }
1227 }
1228
1229 if (channels > 2)
1230 channels = 2;
1231
1232 debugf0("MCT channel count: %d\n", channels);
1233
1234 return channels;
1235
1236 err_reg:
1237 return -1;
1238
1239 }
1240
1241 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1242 {
1243 int *dbam_map;
1244
1245 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1246 dbam_map = ddr3_dbam;
1247 else
1248 dbam_map = ddr2_dbam;
1249
1250 return dbam_map[cs_mode];
1251 }
1252
1253 /* Enable extended configuration access via 0xCF8 feature */
1254 static void amd64_setup(struct amd64_pvt *pvt)
1255 {
1256 u32 reg;
1257
1258 amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1259
1260 pvt->flags.cf8_extcfg = !!(reg & F10_NB_CFG_LOW_ENABLE_EXT_CFG);
1261 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1262 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1263 }
1264
1265 /* Restore the extended configuration access via 0xCF8 feature */
1266 static void amd64_teardown(struct amd64_pvt *pvt)
1267 {
1268 u32 reg;
1269
1270 amd64_read_pci_cfg(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, &reg);
1271
1272 reg &= ~F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1273 if (pvt->flags.cf8_extcfg)
1274 reg |= F10_NB_CFG_LOW_ENABLE_EXT_CFG;
1275 pci_write_config_dword(pvt->misc_f3_ctl, F10_NB_CFG_HIGH, reg);
1276 }
1277
1278 static u64 f10_get_error_address(struct mem_ctl_info *mci,
1279 struct err_regs *info)
1280 {
1281 return (((u64) (info->nbeah & 0xffff)) << 32) +
1282 (info->nbeal & ~0x01);
1283 }
1284
1285 /*
1286 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1287 * fields from the 'raw' reg into separate data fields.
1288 *
1289 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1290 */
1291 static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1292 {
1293 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1294
1295 low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1296 high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1297
1298 /* read the 'raw' DRAM BASE Address register */
1299 amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_base);
1300
1301 /* Read from the ECS data register */
1302 amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_base);
1303
1304 /* Extract parts into separate data entries */
1305 pvt->dram_rw_en[dram] = (low_base & 0x3);
1306
1307 if (pvt->dram_rw_en[dram] == 0)
1308 return;
1309
1310 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1311
1312 pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
1313 (((u64)low_base & 0xFFFF0000) << 8);
1314
1315 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1316 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1317
1318 /* read the 'raw' LIMIT registers */
1319 amd64_read_pci_cfg(pvt->addr_f1_ctl, low_offset, &low_limit);
1320
1321 /* Read from the ECS data register for the HIGH portion */
1322 amd64_read_pci_cfg(pvt->addr_f1_ctl, high_offset, &high_limit);
1323
1324 pvt->dram_DstNode[dram] = (low_limit & 0x7);
1325 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1326
1327 /*
1328 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1329 * memory location of the region, so low 24 bits need to be all ones.
1330 */
1331 pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
1332 (((u64) low_limit & 0xFFFF0000) << 8) |
1333 0x00FFFFFF;
1334 }
1335
1336 static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1337 {
1338
1339 if (!amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_LOW,
1340 &pvt->dram_ctl_select_low)) {
1341 debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
1342 "High range addresses at: 0x%x\n",
1343 pvt->dram_ctl_select_low,
1344 dct_sel_baseaddr(pvt));
1345
1346 debugf0(" DCT mode: %s, All DCTs on: %s\n",
1347 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1348 (dct_dram_enabled(pvt) ? "yes" : "no"));
1349
1350 if (!dct_ganging_enabled(pvt))
1351 debugf0(" Address range split per DCT: %s\n",
1352 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1353
1354 debugf0(" DCT data interleave for ECC: %s, "
1355 "DRAM cleared since last warm reset: %s\n",
1356 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1357 (dct_memory_cleared(pvt) ? "yes" : "no"));
1358
1359 debugf0(" DCT channel interleave: %s, "
1360 "DCT interleave bits selector: 0x%x\n",
1361 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1362 dct_sel_interleave_addr(pvt));
1363 }
1364
1365 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCTL_SEL_HIGH,
1366 &pvt->dram_ctl_select_high);
1367 }
1368
1369 /*
1370 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1371 * Interleaving Modes.
1372 */
1373 static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1374 int hi_range_sel, u32 intlv_en)
1375 {
1376 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1377
1378 if (dct_ganging_enabled(pvt))
1379 cs = 0;
1380 else if (hi_range_sel)
1381 cs = dct_sel_high;
1382 else if (dct_interleave_enabled(pvt)) {
1383 /*
1384 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1385 */
1386 if (dct_sel_interleave_addr(pvt) == 0)
1387 cs = sys_addr >> 6 & 1;
1388 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1389 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1390
1391 if (dct_sel_interleave_addr(pvt) & 1)
1392 cs = (sys_addr >> 9 & 1) ^ temp;
1393 else
1394 cs = (sys_addr >> 6 & 1) ^ temp;
1395 } else if (intlv_en & 4)
1396 cs = sys_addr >> 15 & 1;
1397 else if (intlv_en & 2)
1398 cs = sys_addr >> 14 & 1;
1399 else if (intlv_en & 1)
1400 cs = sys_addr >> 13 & 1;
1401 else
1402 cs = sys_addr >> 12 & 1;
1403 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1404 cs = ~dct_sel_high & 1;
1405 else
1406 cs = 0;
1407
1408 return cs;
1409 }
1410
1411 static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1412 {
1413 if (intlv_en == 1)
1414 return 1;
1415 else if (intlv_en == 3)
1416 return 2;
1417 else if (intlv_en == 7)
1418 return 3;
1419
1420 return 0;
1421 }
1422
1423 /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1424 static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
1425 u32 dct_sel_base_addr,
1426 u64 dct_sel_base_off,
1427 u32 hole_valid, u32 hole_off,
1428 u64 dram_base)
1429 {
1430 u64 chan_off;
1431
1432 if (hi_range_sel) {
1433 if (!(dct_sel_base_addr & 0xFFFFF800) &&
1434 hole_valid && (sys_addr >= 0x100000000ULL))
1435 chan_off = hole_off << 16;
1436 else
1437 chan_off = dct_sel_base_off;
1438 } else {
1439 if (hole_valid && (sys_addr >= 0x100000000ULL))
1440 chan_off = hole_off << 16;
1441 else
1442 chan_off = dram_base & 0xFFFFF8000000ULL;
1443 }
1444
1445 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1446 (chan_off & 0x0000FFFFFF800000ULL);
1447 }
1448
1449 /* Hack for the time being - Can we get this from BIOS?? */
1450 #define CH0SPARE_RANK 0
1451 #define CH1SPARE_RANK 1
1452
1453 /*
1454 * checks if the csrow passed in is marked as SPARED, if so returns the new
1455 * spare row
1456 */
1457 static inline int f10_process_possible_spare(int csrow,
1458 u32 cs, struct amd64_pvt *pvt)
1459 {
1460 u32 swap_done;
1461 u32 bad_dram_cs;
1462
1463 /* Depending on channel, isolate respective SPARING info */
1464 if (cs) {
1465 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1466 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1467 if (swap_done && (csrow == bad_dram_cs))
1468 csrow = CH1SPARE_RANK;
1469 } else {
1470 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1471 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1472 if (swap_done && (csrow == bad_dram_cs))
1473 csrow = CH0SPARE_RANK;
1474 }
1475 return csrow;
1476 }
1477
1478 /*
1479 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1480 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1481 *
1482 * Return:
1483 * -EINVAL: NOT FOUND
1484 * 0..csrow = Chip-Select Row
1485 */
1486 static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1487 {
1488 struct mem_ctl_info *mci;
1489 struct amd64_pvt *pvt;
1490 u32 cs_base, cs_mask;
1491 int cs_found = -EINVAL;
1492 int csrow;
1493
1494 mci = mci_lookup[nid];
1495 if (!mci)
1496 return cs_found;
1497
1498 pvt = mci->pvt_info;
1499
1500 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
1501
1502 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
1503
1504 cs_base = amd64_get_dct_base(pvt, cs, csrow);
1505 if (!(cs_base & K8_DCSB_CS_ENABLE))
1506 continue;
1507
1508 /*
1509 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1510 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1511 * of the actual address.
1512 */
1513 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1514
1515 /*
1516 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1517 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1518 */
1519 cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1520
1521 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1522 csrow, cs_base, cs_mask);
1523
1524 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1525
1526 debugf1(" Final CSMask=0x%x\n", cs_mask);
1527 debugf1(" (InputAddr & ~CSMask)=0x%x "
1528 "(CSBase & ~CSMask)=0x%x\n",
1529 (in_addr & ~cs_mask), (cs_base & ~cs_mask));
1530
1531 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1532 cs_found = f10_process_possible_spare(csrow, cs, pvt);
1533
1534 debugf1(" MATCH csrow=%d\n", cs_found);
1535 break;
1536 }
1537 }
1538 return cs_found;
1539 }
1540
1541 /* For a given @dram_range, check if @sys_addr falls within it. */
1542 static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1543 u64 sys_addr, int *nid, int *chan_sel)
1544 {
1545 int node_id, cs_found = -EINVAL, high_range = 0;
1546 u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1547 u32 hole_valid, tmp, dct_sel_base, channel;
1548 u64 dram_base, chan_addr, dct_sel_base_off;
1549
1550 dram_base = pvt->dram_base[dram_range];
1551 intlv_en = pvt->dram_IntlvEn[dram_range];
1552
1553 node_id = pvt->dram_DstNode[dram_range];
1554 intlv_sel = pvt->dram_IntlvSel[dram_range];
1555
1556 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1557 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1558
1559 /*
1560 * This assumes that one node's DHAR is the same as all the other
1561 * nodes' DHAR.
1562 */
1563 hole_off = (pvt->dhar & 0x0000FF80);
1564 hole_valid = (pvt->dhar & 0x1);
1565 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1566
1567 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
1568 hole_off, hole_valid, intlv_sel);
1569
1570 if (intlv_en ||
1571 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1572 return -EINVAL;
1573
1574 dct_sel_base = dct_sel_baseaddr(pvt);
1575
1576 /*
1577 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1578 * select between DCT0 and DCT1.
1579 */
1580 if (dct_high_range_enabled(pvt) &&
1581 !dct_ganging_enabled(pvt) &&
1582 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1583 high_range = 1;
1584
1585 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1586
1587 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1588 dct_sel_base_off, hole_valid,
1589 hole_off, dram_base);
1590
1591 intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1592
1593 /* remove Node ID (in case of memory interleaving) */
1594 tmp = chan_addr & 0xFC0;
1595
1596 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1597
1598 /* remove channel interleave and hash */
1599 if (dct_interleave_enabled(pvt) &&
1600 !dct_high_range_enabled(pvt) &&
1601 !dct_ganging_enabled(pvt)) {
1602 if (dct_sel_interleave_addr(pvt) != 1)
1603 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1604 else {
1605 tmp = chan_addr & 0xFC0;
1606 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1607 | tmp;
1608 }
1609 }
1610
1611 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1612 chan_addr, (u32)(chan_addr >> 8));
1613
1614 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1615
1616 if (cs_found >= 0) {
1617 *nid = node_id;
1618 *chan_sel = channel;
1619 }
1620 return cs_found;
1621 }
1622
1623 static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1624 int *node, int *chan_sel)
1625 {
1626 int dram_range, cs_found = -EINVAL;
1627 u64 dram_base, dram_limit;
1628
1629 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1630
1631 if (!pvt->dram_rw_en[dram_range])
1632 continue;
1633
1634 dram_base = pvt->dram_base[dram_range];
1635 dram_limit = pvt->dram_limit[dram_range];
1636
1637 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1638
1639 cs_found = f10_match_to_this_node(pvt, dram_range,
1640 sys_addr, node,
1641 chan_sel);
1642 if (cs_found >= 0)
1643 break;
1644 }
1645 }
1646 return cs_found;
1647 }
1648
1649 /*
1650 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1651 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1652 *
1653 * The @sys_addr is usually an error address received from the hardware
1654 * (MCX_ADDR).
1655 */
1656 static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1657 struct err_regs *info,
1658 u64 sys_addr)
1659 {
1660 struct amd64_pvt *pvt = mci->pvt_info;
1661 u32 page, offset;
1662 unsigned short syndrome;
1663 int nid, csrow, chan = 0;
1664
1665 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1666
1667 if (csrow < 0) {
1668 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1669 return;
1670 }
1671
1672 error_address_to_page_and_offset(sys_addr, &page, &offset);
1673
1674 syndrome = HIGH_SYNDROME(info->nbsl) << 8;
1675 syndrome |= LOW_SYNDROME(info->nbsh);
1676
1677 /*
1678 * We need the syndromes for channel detection only when we're
1679 * ganged. Otherwise @chan should already contain the channel at
1680 * this point.
1681 */
1682 if (dct_ganging_enabled(pvt) && pvt->nbcfg & K8_NBCFG_CHIPKILL)
1683 chan = get_channel_from_ecc_syndrome(mci, syndrome);
1684
1685 if (chan >= 0)
1686 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1687 EDAC_MOD_STR);
1688 else
1689 /*
1690 * Channel unknown, report all channels on this CSROW as failed.
1691 */
1692 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1693 edac_mc_handle_ce(mci, page, offset, syndrome,
1694 csrow, chan, EDAC_MOD_STR);
1695 }
1696
1697 /*
1698 * debug routine to display the memory sizes of all logical DIMMs and its
1699 * CSROWs as well
1700 */
1701 static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
1702 {
1703 int dimm, size0, size1, factor = 0;
1704 u32 dbam;
1705 u32 *dcsb;
1706
1707 if (boot_cpu_data.x86 == 0xf) {
1708 if (pvt->dclr0 & F10_WIDTH_128)
1709 factor = 1;
1710
1711 /* K8 families < revF not supported yet */
1712 if (pvt->ext_model < K8_REV_F)
1713 return;
1714 else
1715 WARN_ON(ctrl != 0);
1716 }
1717
1718 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1719 ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
1720
1721 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1722 dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1723
1724 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1725
1726 /* Dump memory sizes for DIMM and its CSROWs */
1727 for (dimm = 0; dimm < 4; dimm++) {
1728
1729 size0 = 0;
1730 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1731 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1732
1733 size1 = 0;
1734 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1735 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1736
1737 edac_printk(KERN_DEBUG, EDAC_MC, " %d: %5dMB %d: %5dMB\n",
1738 dimm * 2, size0 << factor,
1739 dimm * 2 + 1, size1 << factor);
1740 }
1741 }
1742
1743 /*
1744 * There currently are 3 types type of MC devices for AMD Athlon/Opterons
1745 * (as per PCI DEVICE_IDs):
1746 *
1747 * Family K8: That is the Athlon64 and Opteron CPUs. They all have the same PCI
1748 * DEVICE ID, even though there is differences between the different Revisions
1749 * (CG,D,E,F).
1750 *
1751 * Family F10h and F11h.
1752 *
1753 */
1754 static struct amd64_family_type amd64_family_types[] = {
1755 [K8_CPUS] = {
1756 .ctl_name = "RevF",
1757 .addr_f1_ctl = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1758 .misc_f3_ctl = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1759 .ops = {
1760 .early_channel_count = k8_early_channel_count,
1761 .get_error_address = k8_get_error_address,
1762 .read_dram_base_limit = k8_read_dram_base_limit,
1763 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1764 .dbam_to_cs = k8_dbam_to_chip_select,
1765 }
1766 },
1767 [F10_CPUS] = {
1768 .ctl_name = "Family 10h",
1769 .addr_f1_ctl = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1770 .misc_f3_ctl = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1771 .ops = {
1772 .early_channel_count = f10_early_channel_count,
1773 .get_error_address = f10_get_error_address,
1774 .read_dram_base_limit = f10_read_dram_base_limit,
1775 .read_dram_ctl_register = f10_read_dram_ctl_register,
1776 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1777 .dbam_to_cs = f10_dbam_to_chip_select,
1778 }
1779 },
1780 [F11_CPUS] = {
1781 .ctl_name = "Family 11h",
1782 .addr_f1_ctl = PCI_DEVICE_ID_AMD_11H_NB_MAP,
1783 .misc_f3_ctl = PCI_DEVICE_ID_AMD_11H_NB_MISC,
1784 .ops = {
1785 .early_channel_count = f10_early_channel_count,
1786 .get_error_address = f10_get_error_address,
1787 .read_dram_base_limit = f10_read_dram_base_limit,
1788 .read_dram_ctl_register = f10_read_dram_ctl_register,
1789 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1790 .dbam_to_cs = f10_dbam_to_chip_select,
1791 }
1792 },
1793 };
1794
1795 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1796 unsigned int device,
1797 struct pci_dev *related)
1798 {
1799 struct pci_dev *dev = NULL;
1800
1801 dev = pci_get_device(vendor, device, dev);
1802 while (dev) {
1803 if ((dev->bus->number == related->bus->number) &&
1804 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1805 break;
1806 dev = pci_get_device(vendor, device, dev);
1807 }
1808
1809 return dev;
1810 }
1811
1812 /*
1813 * These are tables of eigenvectors (one per line) which can be used for the
1814 * construction of the syndrome tables. The modified syndrome search algorithm
1815 * uses those to find the symbol in error and thus the DIMM.
1816 *
1817 * Algorithm courtesy of Ross LaFetra from AMD.
1818 */
1819 static u16 x4_vectors[] = {
1820 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1821 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1822 0x0001, 0x0002, 0x0004, 0x0008,
1823 0x1013, 0x3032, 0x4044, 0x8088,
1824 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1825 0x4857, 0xc4fe, 0x13cc, 0x3288,
1826 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1827 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1828 0x15c1, 0x2a42, 0x89ac, 0x4758,
1829 0x2b03, 0x1602, 0x4f0c, 0xca08,
1830 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1831 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1832 0x2b87, 0x164e, 0x642c, 0xdc18,
1833 0x40b9, 0x80de, 0x1094, 0x20e8,
1834 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1835 0x11c1, 0x2242, 0x84ac, 0x4c58,
1836 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1837 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1838 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1839 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1840 0x16b3, 0x3d62, 0x4f34, 0x8518,
1841 0x1e2f, 0x391a, 0x5cac, 0xf858,
1842 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1843 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1844 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1845 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1846 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1847 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1848 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1849 0x185d, 0x2ca6, 0x7914, 0x9e28,
1850 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1851 0x4199, 0x82ee, 0x19f4, 0x2e58,
1852 0x4807, 0xc40e, 0x130c, 0x3208,
1853 0x1905, 0x2e0a, 0x5804, 0xac08,
1854 0x213f, 0x132a, 0xadfc, 0x5ba8,
1855 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1856 };
1857
1858 static u16 x8_vectors[] = {
1859 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1860 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1861 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1862 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1863 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1864 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1865 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1866 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1867 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1868 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1869 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1870 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1871 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1872 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1873 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1874 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1875 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1876 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1877 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1878 };
1879
1880 static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
1881 int v_dim)
1882 {
1883 unsigned int i, err_sym;
1884
1885 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1886 u16 s = syndrome;
1887 int v_idx = err_sym * v_dim;
1888 int v_end = (err_sym + 1) * v_dim;
1889
1890 /* walk over all 16 bits of the syndrome */
1891 for (i = 1; i < (1U << 16); i <<= 1) {
1892
1893 /* if bit is set in that eigenvector... */
1894 if (v_idx < v_end && vectors[v_idx] & i) {
1895 u16 ev_comp = vectors[v_idx++];
1896
1897 /* ... and bit set in the modified syndrome, */
1898 if (s & i) {
1899 /* remove it. */
1900 s ^= ev_comp;
1901
1902 if (!s)
1903 return err_sym;
1904 }
1905
1906 } else if (s & i)
1907 /* can't get to zero, move to next symbol */
1908 break;
1909 }
1910 }
1911
1912 debugf0("syndrome(%x) not found\n", syndrome);
1913 return -1;
1914 }
1915
1916 static int map_err_sym_to_channel(int err_sym, int sym_size)
1917 {
1918 if (sym_size == 4)
1919 switch (err_sym) {
1920 case 0x20:
1921 case 0x21:
1922 return 0;
1923 break;
1924 case 0x22:
1925 case 0x23:
1926 return 1;
1927 break;
1928 default:
1929 return err_sym >> 4;
1930 break;
1931 }
1932 /* x8 symbols */
1933 else
1934 switch (err_sym) {
1935 /* imaginary bits not in a DIMM */
1936 case 0x10:
1937 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1938 err_sym);
1939 return -1;
1940 break;
1941
1942 case 0x11:
1943 return 0;
1944 break;
1945 case 0x12:
1946 return 1;
1947 break;
1948 default:
1949 return err_sym >> 3;
1950 break;
1951 }
1952 return -1;
1953 }
1954
1955 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1956 {
1957 struct amd64_pvt *pvt = mci->pvt_info;
1958 u32 value = 0;
1959 int err_sym = 0;
1960
1961 if (boot_cpu_data.x86 == 0x10) {
1962
1963 amd64_read_pci_cfg(pvt->misc_f3_ctl, 0x180, &value);
1964
1965 /* F3x180[EccSymbolSize]=1 => x8 symbols */
1966 if (boot_cpu_data.x86_model > 7 &&
1967 value & BIT(25)) {
1968 err_sym = decode_syndrome(syndrome, x8_vectors,
1969 ARRAY_SIZE(x8_vectors), 8);
1970 return map_err_sym_to_channel(err_sym, 8);
1971 }
1972 }
1973 err_sym = decode_syndrome(syndrome, x4_vectors, ARRAY_SIZE(x4_vectors), 4);
1974 return map_err_sym_to_channel(err_sym, 4);
1975 }
1976
1977 /*
1978 * Check for valid error in the NB Status High register. If so, proceed to read
1979 * NB Status Low, NB Address Low and NB Address High registers and store data
1980 * into error structure.
1981 *
1982 * Returns:
1983 * - 1: if hardware regs contains valid error info
1984 * - 0: if no valid error is indicated
1985 */
1986 static int amd64_get_error_info_regs(struct mem_ctl_info *mci,
1987 struct err_regs *regs)
1988 {
1989 struct amd64_pvt *pvt;
1990 struct pci_dev *misc_f3_ctl;
1991
1992 pvt = mci->pvt_info;
1993 misc_f3_ctl = pvt->misc_f3_ctl;
1994
1995 if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSH, &regs->nbsh))
1996 return 0;
1997
1998 if (!(regs->nbsh & K8_NBSH_VALID_BIT))
1999 return 0;
2000
2001 /* valid error, read remaining error information registers */
2002 if (amd64_read_pci_cfg(misc_f3_ctl, K8_NBSL, &regs->nbsl) ||
2003 amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAL, &regs->nbeal) ||
2004 amd64_read_pci_cfg(misc_f3_ctl, K8_NBEAH, &regs->nbeah) ||
2005 amd64_read_pci_cfg(misc_f3_ctl, K8_NBCFG, &regs->nbcfg))
2006 return 0;
2007
2008 return 1;
2009 }
2010
2011 /*
2012 * This function is called to retrieve the error data from hardware and store it
2013 * in the info structure.
2014 *
2015 * Returns:
2016 * - 1: if a valid error is found
2017 * - 0: if no error is found
2018 */
2019 static int amd64_get_error_info(struct mem_ctl_info *mci,
2020 struct err_regs *info)
2021 {
2022 struct amd64_pvt *pvt;
2023 struct err_regs regs;
2024
2025 pvt = mci->pvt_info;
2026
2027 if (!amd64_get_error_info_regs(mci, info))
2028 return 0;
2029
2030 /*
2031 * Here's the problem with the K8's EDAC reporting: There are four
2032 * registers which report pieces of error information. They are shared
2033 * between CEs and UEs. Furthermore, contrary to what is stated in the
2034 * BKDG, the overflow bit is never used! Every error always updates the
2035 * reporting registers.
2036 *
2037 * Can you see the race condition? All four error reporting registers
2038 * must be read before a new error updates them! There is no way to read
2039 * all four registers atomically. The best than can be done is to detect
2040 * that a race has occured and then report the error without any kind of
2041 * precision.
2042 *
2043 * What is still positive is that errors are still reported and thus
2044 * problems can still be detected - just not localized because the
2045 * syndrome and address are spread out across registers.
2046 *
2047 * Grrrrr!!!!! Here's hoping that AMD fixes this in some future K8 rev.
2048 * UEs and CEs should have separate register sets with proper overflow
2049 * bits that are used! At very least the problem can be fixed by
2050 * honoring the ErrValid bit in 'nbsh' and not updating registers - just
2051 * set the overflow bit - unless the current error is CE and the new
2052 * error is UE which would be the only situation for overwriting the
2053 * current values.
2054 */
2055
2056 regs = *info;
2057
2058 /* Use info from the second read - most current */
2059 if (unlikely(!amd64_get_error_info_regs(mci, info)))
2060 return 0;
2061
2062 /* clear the error bits in hardware */
2063 pci_write_bits32(pvt->misc_f3_ctl, K8_NBSH, 0, K8_NBSH_VALID_BIT);
2064
2065 /* Check for the possible race condition */
2066 if ((regs.nbsh != info->nbsh) ||
2067 (regs.nbsl != info->nbsl) ||
2068 (regs.nbeah != info->nbeah) ||
2069 (regs.nbeal != info->nbeal)) {
2070 amd64_mc_printk(mci, KERN_WARNING,
2071 "hardware STATUS read access race condition "
2072 "detected!\n");
2073 return 0;
2074 }
2075 return 1;
2076 }
2077
2078 /*
2079 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
2080 * ADDRESS and process.
2081 */
2082 static void amd64_handle_ce(struct mem_ctl_info *mci,
2083 struct err_regs *info)
2084 {
2085 struct amd64_pvt *pvt = mci->pvt_info;
2086 u64 sys_addr;
2087
2088 /* Ensure that the Error Address is VALID */
2089 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2090 amd64_mc_printk(mci, KERN_ERR,
2091 "HW has no ERROR_ADDRESS available\n");
2092 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
2093 return;
2094 }
2095
2096 sys_addr = pvt->ops->get_error_address(mci, info);
2097
2098 amd64_mc_printk(mci, KERN_ERR,
2099 "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
2100
2101 pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
2102 }
2103
2104 /* Handle any Un-correctable Errors (UEs) */
2105 static void amd64_handle_ue(struct mem_ctl_info *mci,
2106 struct err_regs *info)
2107 {
2108 struct amd64_pvt *pvt = mci->pvt_info;
2109 struct mem_ctl_info *log_mci, *src_mci = NULL;
2110 int csrow;
2111 u64 sys_addr;
2112 u32 page, offset;
2113
2114 log_mci = mci;
2115
2116 if ((info->nbsh & K8_NBSH_VALID_ERROR_ADDR) == 0) {
2117 amd64_mc_printk(mci, KERN_CRIT,
2118 "HW has no ERROR_ADDRESS available\n");
2119 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2120 return;
2121 }
2122
2123 sys_addr = pvt->ops->get_error_address(mci, info);
2124
2125 /*
2126 * Find out which node the error address belongs to. This may be
2127 * different from the node that detected the error.
2128 */
2129 src_mci = find_mc_by_sys_addr(mci, sys_addr);
2130 if (!src_mci) {
2131 amd64_mc_printk(mci, KERN_CRIT,
2132 "ERROR ADDRESS (0x%lx) value NOT mapped to a MC\n",
2133 (unsigned long)sys_addr);
2134 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2135 return;
2136 }
2137
2138 log_mci = src_mci;
2139
2140 csrow = sys_addr_to_csrow(log_mci, sys_addr);
2141 if (csrow < 0) {
2142 amd64_mc_printk(mci, KERN_CRIT,
2143 "ERROR_ADDRESS (0x%lx) value NOT mapped to 'csrow'\n",
2144 (unsigned long)sys_addr);
2145 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
2146 } else {
2147 error_address_to_page_and_offset(sys_addr, &page, &offset);
2148 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
2149 }
2150 }
2151
2152 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
2153 struct err_regs *info)
2154 {
2155 u32 ec = ERROR_CODE(info->nbsl);
2156 u32 xec = EXT_ERROR_CODE(info->nbsl);
2157 int ecc_type = (info->nbsh >> 13) & 0x3;
2158
2159 /* Bail early out if this was an 'observed' error */
2160 if (PP(ec) == K8_NBSL_PP_OBS)
2161 return;
2162
2163 /* Do only ECC errors */
2164 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
2165 return;
2166
2167 if (ecc_type == 2)
2168 amd64_handle_ce(mci, info);
2169 else if (ecc_type == 1)
2170 amd64_handle_ue(mci, info);
2171
2172 /*
2173 * If main error is CE then overflow must be CE. If main error is UE
2174 * then overflow is unknown. We'll call the overflow a CE - if
2175 * panic_on_ue is set then we're already panic'ed and won't arrive
2176 * here. Else, then apparently someone doesn't think that UE's are
2177 * catastrophic.
2178 */
2179 if (info->nbsh & K8_NBSH_OVERFLOW)
2180 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR "Error Overflow");
2181 }
2182
2183 void amd64_decode_bus_error(int node_id, struct err_regs *regs)
2184 {
2185 struct mem_ctl_info *mci = mci_lookup[node_id];
2186
2187 __amd64_decode_bus_error(mci, regs);
2188
2189 /*
2190 * Check the UE bit of the NB status high register, if set generate some
2191 * logs. If NOT a GART error, then process the event as a NO-INFO event.
2192 * If it was a GART error, skip that process.
2193 *
2194 * FIXME: this should go somewhere else, if at all.
2195 */
2196 if (regs->nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
2197 edac_mc_handle_ue_no_info(mci, "UE bit is set");
2198
2199 }
2200
2201 /*
2202 * The main polling 'check' function, called FROM the edac core to perform the
2203 * error checking and if an error is encountered, error processing.
2204 */
2205 static void amd64_check(struct mem_ctl_info *mci)
2206 {
2207 struct err_regs regs;
2208
2209 if (amd64_get_error_info(mci, &regs)) {
2210 struct amd64_pvt *pvt = mci->pvt_info;
2211 amd_decode_nb_mce(pvt->mc_node_id, &regs, 1);
2212 }
2213 }
2214
2215 /*
2216 * Input:
2217 * 1) struct amd64_pvt which contains pvt->dram_f2_ctl pointer
2218 * 2) AMD Family index value
2219 *
2220 * Ouput:
2221 * Upon return of 0, the following filled in:
2222 *
2223 * struct pvt->addr_f1_ctl
2224 * struct pvt->misc_f3_ctl
2225 *
2226 * Filled in with related device funcitions of 'dram_f2_ctl'
2227 * These devices are "reserved" via the pci_get_device()
2228 *
2229 * Upon return of 1 (error status):
2230 *
2231 * Nothing reserved
2232 */
2233 static int amd64_reserve_mc_sibling_devices(struct amd64_pvt *pvt, int mc_idx)
2234 {
2235 const struct amd64_family_type *amd64_dev = &amd64_family_types[mc_idx];
2236
2237 /* Reserve the ADDRESS MAP Device */
2238 pvt->addr_f1_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2239 amd64_dev->addr_f1_ctl,
2240 pvt->dram_f2_ctl);
2241
2242 if (!pvt->addr_f1_ctl) {
2243 amd64_printk(KERN_ERR, "error address map device not found: "
2244 "vendor %x device 0x%x (broken BIOS?)\n",
2245 PCI_VENDOR_ID_AMD, amd64_dev->addr_f1_ctl);
2246 return 1;
2247 }
2248
2249 /* Reserve the MISC Device */
2250 pvt->misc_f3_ctl = pci_get_related_function(pvt->dram_f2_ctl->vendor,
2251 amd64_dev->misc_f3_ctl,
2252 pvt->dram_f2_ctl);
2253
2254 if (!pvt->misc_f3_ctl) {
2255 pci_dev_put(pvt->addr_f1_ctl);
2256 pvt->addr_f1_ctl = NULL;
2257
2258 amd64_printk(KERN_ERR, "error miscellaneous device not found: "
2259 "vendor %x device 0x%x (broken BIOS?)\n",
2260 PCI_VENDOR_ID_AMD, amd64_dev->misc_f3_ctl);
2261 return 1;
2262 }
2263
2264 debugf1(" Addr Map device PCI Bus ID:\t%s\n",
2265 pci_name(pvt->addr_f1_ctl));
2266 debugf1(" DRAM MEM-CTL PCI Bus ID:\t%s\n",
2267 pci_name(pvt->dram_f2_ctl));
2268 debugf1(" Misc device PCI Bus ID:\t%s\n",
2269 pci_name(pvt->misc_f3_ctl));
2270
2271 return 0;
2272 }
2273
2274 static void amd64_free_mc_sibling_devices(struct amd64_pvt *pvt)
2275 {
2276 pci_dev_put(pvt->addr_f1_ctl);
2277 pci_dev_put(pvt->misc_f3_ctl);
2278 }
2279
2280 /*
2281 * Retrieve the hardware registers of the memory controller (this includes the
2282 * 'Address Map' and 'Misc' device regs)
2283 */
2284 static void amd64_read_mc_registers(struct amd64_pvt *pvt)
2285 {
2286 u64 msr_val;
2287 int dram;
2288
2289 /*
2290 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2291 * those are Read-As-Zero
2292 */
2293 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2294 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
2295
2296 /* check first whether TOP_MEM2 is enabled */
2297 rdmsrl(MSR_K8_SYSCFG, msr_val);
2298 if (msr_val & (1U << 21)) {
2299 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2300 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2301 } else
2302 debugf0(" TOP_MEM2 disabled.\n");
2303
2304 amd64_cpu_display_info(pvt);
2305
2306 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCAP, &pvt->nbcap);
2307
2308 if (pvt->ops->read_dram_ctl_register)
2309 pvt->ops->read_dram_ctl_register(pvt);
2310
2311 for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2312 /*
2313 * Call CPU specific READ function to get the DRAM Base and
2314 * Limit values from the DCT.
2315 */
2316 pvt->ops->read_dram_base_limit(pvt, dram);
2317
2318 /*
2319 * Only print out debug info on rows with both R and W Enabled.
2320 * Normal processing, compiler should optimize this whole 'if'
2321 * debug output block away.
2322 */
2323 if (pvt->dram_rw_en[dram] != 0) {
2324 debugf1(" DRAM-BASE[%d]: 0x%016llx "
2325 "DRAM-LIMIT: 0x%016llx\n",
2326 dram,
2327 pvt->dram_base[dram],
2328 pvt->dram_limit[dram]);
2329
2330 debugf1(" IntlvEn=%s %s %s "
2331 "IntlvSel=%d DstNode=%d\n",
2332 pvt->dram_IntlvEn[dram] ?
2333 "Enabled" : "Disabled",
2334 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2335 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2336 pvt->dram_IntlvSel[dram],
2337 pvt->dram_DstNode[dram]);
2338 }
2339 }
2340
2341 amd64_read_dct_base_mask(pvt);
2342
2343 amd64_read_pci_cfg(pvt->addr_f1_ctl, K8_DHAR, &pvt->dhar);
2344 amd64_read_dbam_reg(pvt);
2345
2346 amd64_read_pci_cfg(pvt->misc_f3_ctl,
2347 F10_ONLINE_SPARE, &pvt->online_spare);
2348
2349 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_0, &pvt->dclr0);
2350 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_0, &pvt->dchr0);
2351
2352 if (!dct_ganging_enabled(pvt) && boot_cpu_data.x86 >= 0x10) {
2353 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCLR_1, &pvt->dclr1);
2354 amd64_read_pci_cfg(pvt->dram_f2_ctl, F10_DCHR_1, &pvt->dchr1);
2355 }
2356 amd64_dump_misc_regs(pvt);
2357 }
2358
2359 /*
2360 * NOTE: CPU Revision Dependent code
2361 *
2362 * Input:
2363 * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
2364 * k8 private pointer to -->
2365 * DRAM Bank Address mapping register
2366 * node_id
2367 * DCL register where dual_channel_active is
2368 *
2369 * The DBAM register consists of 4 sets of 4 bits each definitions:
2370 *
2371 * Bits: CSROWs
2372 * 0-3 CSROWs 0 and 1
2373 * 4-7 CSROWs 2 and 3
2374 * 8-11 CSROWs 4 and 5
2375 * 12-15 CSROWs 6 and 7
2376 *
2377 * Values range from: 0 to 15
2378 * The meaning of the values depends on CPU revision and dual-channel state,
2379 * see relevant BKDG more info.
2380 *
2381 * The memory controller provides for total of only 8 CSROWs in its current
2382 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2383 * single channel or two (2) DIMMs in dual channel mode.
2384 *
2385 * The following code logic collapses the various tables for CSROW based on CPU
2386 * revision.
2387 *
2388 * Returns:
2389 * The number of PAGE_SIZE pages on the specified CSROW number it
2390 * encompasses
2391 *
2392 */
2393 static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2394 {
2395 u32 cs_mode, nr_pages;
2396
2397 /*
2398 * The math on this doesn't look right on the surface because x/2*4 can
2399 * be simplified to x*2 but this expression makes use of the fact that
2400 * it is integral math where 1/2=0. This intermediate value becomes the
2401 * number of bits to shift the DBAM register to extract the proper CSROW
2402 * field.
2403 */
2404 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2405
2406 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
2407
2408 /*
2409 * If dual channel then double the memory size of single channel.
2410 * Channel count is 1 or 2
2411 */
2412 nr_pages <<= (pvt->channel_count - 1);
2413
2414 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2415 debugf0(" nr_pages= %u channel-count = %d\n",
2416 nr_pages, pvt->channel_count);
2417
2418 return nr_pages;
2419 }
2420
2421 /*
2422 * Initialize the array of csrow attribute instances, based on the values
2423 * from pci config hardware registers.
2424 */
2425 static int amd64_init_csrows(struct mem_ctl_info *mci)
2426 {
2427 struct csrow_info *csrow;
2428 struct amd64_pvt *pvt;
2429 u64 input_addr_min, input_addr_max, sys_addr;
2430 int i, empty = 1;
2431
2432 pvt = mci->pvt_info;
2433
2434 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &pvt->nbcfg);
2435
2436 debugf0("NBCFG= 0x%x CHIPKILL= %s DRAM ECC= %s\n", pvt->nbcfg,
2437 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2438 (pvt->nbcfg & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled"
2439 );
2440
2441 for (i = 0; i < pvt->cs_count; i++) {
2442 csrow = &mci->csrows[i];
2443
2444 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2445 debugf1("----CSROW %d EMPTY for node %d\n", i,
2446 pvt->mc_node_id);
2447 continue;
2448 }
2449
2450 debugf1("----CSROW %d VALID for MC node %d\n",
2451 i, pvt->mc_node_id);
2452
2453 empty = 0;
2454 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2455 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2456 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2457 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2458 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2459 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2460 csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2461 /* 8 bytes of resolution */
2462
2463 csrow->mtype = amd64_determine_memory_type(pvt);
2464
2465 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2466 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2467 (unsigned long)input_addr_min,
2468 (unsigned long)input_addr_max);
2469 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2470 (unsigned long)sys_addr, csrow->page_mask);
2471 debugf1(" nr_pages: %u first_page: 0x%lx "
2472 "last_page: 0x%lx\n",
2473 (unsigned)csrow->nr_pages,
2474 csrow->first_page, csrow->last_page);
2475
2476 /*
2477 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2478 */
2479 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2480 csrow->edac_mode =
2481 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2482 EDAC_S4ECD4ED : EDAC_SECDED;
2483 else
2484 csrow->edac_mode = EDAC_NONE;
2485 }
2486
2487 return empty;
2488 }
2489
2490 /* get all cores on this DCT */
2491 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2492 {
2493 int cpu;
2494
2495 for_each_online_cpu(cpu)
2496 if (amd_get_nb_id(cpu) == nid)
2497 cpumask_set_cpu(cpu, mask);
2498 }
2499
2500 /* check MCG_CTL on all the cpus on this node */
2501 static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2502 {
2503 cpumask_var_t mask;
2504 int cpu, nbe;
2505 bool ret = false;
2506
2507 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2508 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2509 __func__);
2510 return false;
2511 }
2512
2513 get_cpus_on_this_dct_cpumask(mask, nid);
2514
2515 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2516
2517 for_each_cpu(cpu, mask) {
2518 struct msr *reg = per_cpu_ptr(msrs, cpu);
2519 nbe = reg->l & K8_MSR_MCGCTL_NBE;
2520
2521 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2522 cpu, reg->q,
2523 (nbe ? "enabled" : "disabled"));
2524
2525 if (!nbe)
2526 goto out;
2527 }
2528 ret = true;
2529
2530 out:
2531 free_cpumask_var(mask);
2532 return ret;
2533 }
2534
2535 static int amd64_toggle_ecc_err_reporting(struct amd64_pvt *pvt, bool on)
2536 {
2537 cpumask_var_t cmask;
2538 int cpu;
2539
2540 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2541 amd64_printk(KERN_WARNING, "%s: error allocating mask\n",
2542 __func__);
2543 return false;
2544 }
2545
2546 get_cpus_on_this_dct_cpumask(cmask, pvt->mc_node_id);
2547
2548 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2549
2550 for_each_cpu(cpu, cmask) {
2551
2552 struct msr *reg = per_cpu_ptr(msrs, cpu);
2553
2554 if (on) {
2555 if (reg->l & K8_MSR_MCGCTL_NBE)
2556 pvt->flags.nb_mce_enable = 1;
2557
2558 reg->l |= K8_MSR_MCGCTL_NBE;
2559 } else {
2560 /*
2561 * Turn off NB MCE reporting only when it was off before
2562 */
2563 if (!pvt->flags.nb_mce_enable)
2564 reg->l &= ~K8_MSR_MCGCTL_NBE;
2565 }
2566 }
2567 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2568
2569 free_cpumask_var(cmask);
2570
2571 return 0;
2572 }
2573
2574 static void amd64_enable_ecc_error_reporting(struct mem_ctl_info *mci)
2575 {
2576 struct amd64_pvt *pvt = mci->pvt_info;
2577 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2578
2579 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
2580
2581 /* turn on UECCn and CECCEn bits */
2582 pvt->old_nbctl = value & mask;
2583 pvt->nbctl_mcgctl_saved = 1;
2584
2585 value |= mask;
2586 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2587
2588 if (amd64_toggle_ecc_err_reporting(pvt, ON))
2589 amd64_printk(KERN_WARNING, "Error enabling ECC reporting over "
2590 "MCGCTL!\n");
2591
2592 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2593
2594 debugf0("NBCFG(1)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2595 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2596 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2597
2598 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2599 amd64_printk(KERN_WARNING,
2600 "This node reports that DRAM ECC is "
2601 "currently Disabled; ENABLING now\n");
2602
2603 pvt->flags.nb_ecc_prev = 0;
2604
2605 /* Attempt to turn on DRAM ECC Enable */
2606 value |= K8_NBCFG_ECC_ENABLE;
2607 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2608
2609 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2610
2611 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2612 amd64_printk(KERN_WARNING,
2613 "Hardware rejects Enabling DRAM ECC checking\n"
2614 "Check memory DIMM configuration\n");
2615 } else {
2616 amd64_printk(KERN_DEBUG,
2617 "Hardware accepted DRAM ECC Enable\n");
2618 }
2619 } else {
2620 pvt->flags.nb_ecc_prev = 1;
2621 }
2622
2623 debugf0("NBCFG(2)= 0x%x CHIPKILL= %s ECC_ENABLE= %s\n", value,
2624 (value & K8_NBCFG_CHIPKILL) ? "Enabled" : "Disabled",
2625 (value & K8_NBCFG_ECC_ENABLE) ? "Enabled" : "Disabled");
2626
2627 pvt->ctl_error_info.nbcfg = value;
2628 }
2629
2630 static void amd64_restore_ecc_error_reporting(struct amd64_pvt *pvt)
2631 {
2632 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2633
2634 if (!pvt->nbctl_mcgctl_saved)
2635 return;
2636
2637 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCTL, &value);
2638 value &= ~mask;
2639 value |= pvt->old_nbctl;
2640
2641 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCTL, value);
2642
2643 /* restore previous BIOS DRAM ECC "off" setting which we force-enabled */
2644 if (!pvt->flags.nb_ecc_prev) {
2645 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2646 value &= ~K8_NBCFG_ECC_ENABLE;
2647 pci_write_config_dword(pvt->misc_f3_ctl, K8_NBCFG, value);
2648 }
2649
2650 /* restore the NB Enable MCGCTL bit */
2651 if (amd64_toggle_ecc_err_reporting(pvt, OFF))
2652 amd64_printk(KERN_WARNING, "Error restoring NB MCGCTL settings!\n");
2653 }
2654
2655 /*
2656 * EDAC requires that the BIOS have ECC enabled before taking over the
2657 * processing of ECC errors. This is because the BIOS can properly initialize
2658 * the memory system completely. A command line option allows to force-enable
2659 * hardware ECC later in amd64_enable_ecc_error_reporting().
2660 */
2661 static const char *ecc_msg =
2662 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2663 " Either enable ECC checking or force module loading by setting "
2664 "'ecc_enable_override'.\n"
2665 " (Note that use of the override may cause unknown side effects.)\n";
2666
2667 static int amd64_check_ecc_enabled(struct amd64_pvt *pvt)
2668 {
2669 u32 value;
2670 u8 ecc_enabled = 0;
2671 bool nb_mce_en = false;
2672
2673 amd64_read_pci_cfg(pvt->misc_f3_ctl, K8_NBCFG, &value);
2674
2675 ecc_enabled = !!(value & K8_NBCFG_ECC_ENABLE);
2676 if (!ecc_enabled)
2677 amd64_printk(KERN_NOTICE, "This node reports that Memory ECC "
2678 "is currently disabled, set F3x%x[22] (%s).\n",
2679 K8_NBCFG, pci_name(pvt->misc_f3_ctl));
2680 else
2681 amd64_printk(KERN_INFO, "ECC is enabled by BIOS.\n");
2682
2683 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(pvt->mc_node_id);
2684 if (!nb_mce_en)
2685 amd64_printk(KERN_NOTICE, "NB MCE bank disabled, set MSR "
2686 "0x%08x[4] on node %d to enable.\n",
2687 MSR_IA32_MCG_CTL, pvt->mc_node_id);
2688
2689 if (!ecc_enabled || !nb_mce_en) {
2690 if (!ecc_enable_override) {
2691 amd64_printk(KERN_NOTICE, "%s", ecc_msg);
2692 return -ENODEV;
2693 } else {
2694 amd64_printk(KERN_WARNING, "Forcing ECC checking on!\n");
2695 }
2696 }
2697
2698 return 0;
2699 }
2700
2701 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2702 ARRAY_SIZE(amd64_inj_attrs) +
2703 1];
2704
2705 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2706
2707 static void amd64_set_mc_sysfs_attributes(struct mem_ctl_info *mci)
2708 {
2709 unsigned int i = 0, j = 0;
2710
2711 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2712 sysfs_attrs[i] = amd64_dbg_attrs[i];
2713
2714 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2715 sysfs_attrs[i] = amd64_inj_attrs[j];
2716
2717 sysfs_attrs[i] = terminator;
2718
2719 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2720 }
2721
2722 static void amd64_setup_mci_misc_attributes(struct mem_ctl_info *mci)
2723 {
2724 struct amd64_pvt *pvt = mci->pvt_info;
2725
2726 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2727 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2728
2729 if (pvt->nbcap & K8_NBCAP_SECDED)
2730 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2731
2732 if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2733 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2734
2735 mci->edac_cap = amd64_determine_edac_cap(pvt);
2736 mci->mod_name = EDAC_MOD_STR;
2737 mci->mod_ver = EDAC_AMD64_VERSION;
2738 mci->ctl_name = get_amd_family_name(pvt->mc_type_index);
2739 mci->dev_name = pci_name(pvt->dram_f2_ctl);
2740 mci->ctl_page_to_phys = NULL;
2741
2742 /* IMPORTANT: Set the polling 'check' function in this module */
2743 mci->edac_check = amd64_check;
2744
2745 /* memory scrubber interface */
2746 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2747 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2748 }
2749
2750 /*
2751 * Init stuff for this DRAM Controller device.
2752 *
2753 * Due to a hardware feature on Fam10h CPUs, the Enable Extended Configuration
2754 * Space feature MUST be enabled on ALL Processors prior to actually reading
2755 * from the ECS registers. Since the loading of the module can occur on any
2756 * 'core', and cores don't 'see' all the other processors ECS data when the
2757 * others are NOT enabled. Our solution is to first enable ECS access in this
2758 * routine on all processors, gather some data in a amd64_pvt structure and
2759 * later come back in a finish-setup function to perform that final
2760 * initialization. See also amd64_init_2nd_stage() for that.
2761 */
2762 static int amd64_probe_one_instance(struct pci_dev *dram_f2_ctl,
2763 int mc_type_index)
2764 {
2765 struct amd64_pvt *pvt = NULL;
2766 int err = 0, ret;
2767
2768 ret = -ENOMEM;
2769 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2770 if (!pvt)
2771 goto err_exit;
2772
2773 pvt->mc_node_id = get_node_id(dram_f2_ctl);
2774
2775 pvt->dram_f2_ctl = dram_f2_ctl;
2776 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2777 pvt->mc_type_index = mc_type_index;
2778 pvt->ops = family_ops(mc_type_index);
2779
2780 /*
2781 * We have the dram_f2_ctl device as an argument, now go reserve its
2782 * sibling devices from the PCI system.
2783 */
2784 ret = -ENODEV;
2785 err = amd64_reserve_mc_sibling_devices(pvt, mc_type_index);
2786 if (err)
2787 goto err_free;
2788
2789 ret = -EINVAL;
2790 err = amd64_check_ecc_enabled(pvt);
2791 if (err)
2792 goto err_put;
2793
2794 /*
2795 * Key operation here: setup of HW prior to performing ops on it. Some
2796 * setup is required to access ECS data. After this is performed, the
2797 * 'teardown' function must be called upon error and normal exit paths.
2798 */
2799 if (boot_cpu_data.x86 >= 0x10)
2800 amd64_setup(pvt);
2801
2802 /*
2803 * Save the pointer to the private data for use in 2nd initialization
2804 * stage
2805 */
2806 pvt_lookup[pvt->mc_node_id] = pvt;
2807
2808 return 0;
2809
2810 err_put:
2811 amd64_free_mc_sibling_devices(pvt);
2812
2813 err_free:
2814 kfree(pvt);
2815
2816 err_exit:
2817 return ret;
2818 }
2819
2820 /*
2821 * This is the finishing stage of the init code. Needs to be performed after all
2822 * MCs' hardware have been prepped for accessing extended config space.
2823 */
2824 static int amd64_init_2nd_stage(struct amd64_pvt *pvt)
2825 {
2826 int node_id = pvt->mc_node_id;
2827 struct mem_ctl_info *mci;
2828 int ret = -ENODEV;
2829
2830 amd64_read_mc_registers(pvt);
2831
2832 /*
2833 * We need to determine how many memory channels there are. Then use
2834 * that information for calculating the size of the dynamic instance
2835 * tables in the 'mci' structure
2836 */
2837 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2838 if (pvt->channel_count < 0)
2839 goto err_exit;
2840
2841 ret = -ENOMEM;
2842 mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, node_id);
2843 if (!mci)
2844 goto err_exit;
2845
2846 mci->pvt_info = pvt;
2847
2848 mci->dev = &pvt->dram_f2_ctl->dev;
2849 amd64_setup_mci_misc_attributes(mci);
2850
2851 if (amd64_init_csrows(mci))
2852 mci->edac_cap = EDAC_FLAG_NONE;
2853
2854 amd64_enable_ecc_error_reporting(mci);
2855 amd64_set_mc_sysfs_attributes(mci);
2856
2857 ret = -ENODEV;
2858 if (edac_mc_add_mc(mci)) {
2859 debugf1("failed edac_mc_add_mc()\n");
2860 goto err_add_mc;
2861 }
2862
2863 mci_lookup[node_id] = mci;
2864 pvt_lookup[node_id] = NULL;
2865
2866 /* register stuff with EDAC MCE */
2867 if (report_gart_errors)
2868 amd_report_gart_errors(true);
2869
2870 amd_register_ecc_decoder(amd64_decode_bus_error);
2871
2872 return 0;
2873
2874 err_add_mc:
2875 edac_mc_free(mci);
2876
2877 err_exit:
2878 debugf0("failure to init 2nd stage: ret=%d\n", ret);
2879
2880 amd64_restore_ecc_error_reporting(pvt);
2881
2882 if (boot_cpu_data.x86 > 0xf)
2883 amd64_teardown(pvt);
2884
2885 amd64_free_mc_sibling_devices(pvt);
2886
2887 kfree(pvt_lookup[pvt->mc_node_id]);
2888 pvt_lookup[node_id] = NULL;
2889
2890 return ret;
2891 }
2892
2893
2894 static int __devinit amd64_init_one_instance(struct pci_dev *pdev,
2895 const struct pci_device_id *mc_type)
2896 {
2897 int ret = 0;
2898
2899 debugf0("(MC node=%d,mc_type='%s')\n", get_node_id(pdev),
2900 get_amd_family_name(mc_type->driver_data));
2901
2902 ret = pci_enable_device(pdev);
2903 if (ret < 0)
2904 ret = -EIO;
2905 else
2906 ret = amd64_probe_one_instance(pdev, mc_type->driver_data);
2907
2908 if (ret < 0)
2909 debugf0("ret=%d\n", ret);
2910
2911 return ret;
2912 }
2913
2914 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2915 {
2916 struct mem_ctl_info *mci;
2917 struct amd64_pvt *pvt;
2918
2919 /* Remove from EDAC CORE tracking list */
2920 mci = edac_mc_del_mc(&pdev->dev);
2921 if (!mci)
2922 return;
2923
2924 pvt = mci->pvt_info;
2925
2926 amd64_restore_ecc_error_reporting(pvt);
2927
2928 if (boot_cpu_data.x86 > 0xf)
2929 amd64_teardown(pvt);
2930
2931 amd64_free_mc_sibling_devices(pvt);
2932
2933 /* unregister from EDAC MCE */
2934 amd_report_gart_errors(false);
2935 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2936
2937 /* Free the EDAC CORE resources */
2938 mci->pvt_info = NULL;
2939 mci_lookup[pvt->mc_node_id] = NULL;
2940
2941 kfree(pvt);
2942 edac_mc_free(mci);
2943 }
2944
2945 /*
2946 * This table is part of the interface for loading drivers for PCI devices. The
2947 * PCI core identifies what devices are on a system during boot, and then
2948 * inquiry this table to see if this driver is for a given device found.
2949 */
2950 static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2951 {
2952 .vendor = PCI_VENDOR_ID_AMD,
2953 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2954 .subvendor = PCI_ANY_ID,
2955 .subdevice = PCI_ANY_ID,
2956 .class = 0,
2957 .class_mask = 0,
2958 .driver_data = K8_CPUS
2959 },
2960 {
2961 .vendor = PCI_VENDOR_ID_AMD,
2962 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2963 .subvendor = PCI_ANY_ID,
2964 .subdevice = PCI_ANY_ID,
2965 .class = 0,
2966 .class_mask = 0,
2967 .driver_data = F10_CPUS
2968 },
2969 {
2970 .vendor = PCI_VENDOR_ID_AMD,
2971 .device = PCI_DEVICE_ID_AMD_11H_NB_DRAM,
2972 .subvendor = PCI_ANY_ID,
2973 .subdevice = PCI_ANY_ID,
2974 .class = 0,
2975 .class_mask = 0,
2976 .driver_data = F11_CPUS
2977 },
2978 {0, }
2979 };
2980 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2981
2982 static struct pci_driver amd64_pci_driver = {
2983 .name = EDAC_MOD_STR,
2984 .probe = amd64_init_one_instance,
2985 .remove = __devexit_p(amd64_remove_one_instance),
2986 .id_table = amd64_pci_table,
2987 };
2988
2989 static void amd64_setup_pci_device(void)
2990 {
2991 struct mem_ctl_info *mci;
2992 struct amd64_pvt *pvt;
2993
2994 if (amd64_ctl_pci)
2995 return;
2996
2997 mci = mci_lookup[0];
2998 if (mci) {
2999
3000 pvt = mci->pvt_info;
3001 amd64_ctl_pci =
3002 edac_pci_create_generic_ctl(&pvt->dram_f2_ctl->dev,
3003 EDAC_MOD_STR);
3004
3005 if (!amd64_ctl_pci) {
3006 pr_warning("%s(): Unable to create PCI control\n",
3007 __func__);
3008
3009 pr_warning("%s(): PCI error report via EDAC not set\n",
3010 __func__);
3011 }
3012 }
3013 }
3014
3015 static int __init amd64_edac_init(void)
3016 {
3017 int nb, err = -ENODEV;
3018 bool load_ok = false;
3019
3020 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
3021
3022 opstate_init();
3023
3024 if (cache_k8_northbridges() < 0)
3025 goto err_ret;
3026
3027 msrs = msrs_alloc();
3028 if (!msrs)
3029 goto err_ret;
3030
3031 err = pci_register_driver(&amd64_pci_driver);
3032 if (err)
3033 goto err_pci;
3034
3035 /*
3036 * At this point, the array 'pvt_lookup[]' contains pointers to alloc'd
3037 * amd64_pvt structs. These will be used in the 2nd stage init function
3038 * to finish initialization of the MC instances.
3039 */
3040 err = -ENODEV;
3041 for (nb = 0; nb < num_k8_northbridges; nb++) {
3042 if (!pvt_lookup[nb])
3043 continue;
3044
3045 err = amd64_init_2nd_stage(pvt_lookup[nb]);
3046 if (err)
3047 goto err_2nd_stage;
3048
3049 load_ok = true;
3050 }
3051
3052 if (load_ok) {
3053 amd64_setup_pci_device();
3054 return 0;
3055 }
3056
3057 err_2nd_stage:
3058 pci_unregister_driver(&amd64_pci_driver);
3059 err_pci:
3060 msrs_free(msrs);
3061 msrs = NULL;
3062 err_ret:
3063 return err;
3064 }
3065
3066 static void __exit amd64_edac_exit(void)
3067 {
3068 if (amd64_ctl_pci)
3069 edac_pci_release_generic_ctl(amd64_ctl_pci);
3070
3071 pci_unregister_driver(&amd64_pci_driver);
3072
3073 msrs_free(msrs);
3074 msrs = NULL;
3075 }
3076
3077 module_init(amd64_edac_init);
3078 module_exit(amd64_edac_exit);
3079
3080 MODULE_LICENSE("GPL");
3081 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
3082 "Dave Peterson, Thayne Harbaugh");
3083 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
3084 EDAC_AMD64_VERSION);
3085
3086 module_param(edac_op_state, int, 0444);
3087 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");