Merge branch 'master' of /pub/scm/linux/kernel/git/jejb/scsi-post-merge-2.6 into...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / edac / amd64_edac.c
1 #include "amd64_edac.h"
2 #include <asm/amd_nb.h>
3
4 static struct edac_pci_ctl_info *amd64_ctl_pci;
5
6 static int report_gart_errors;
7 module_param(report_gart_errors, int, 0644);
8
9 /*
10 * Set by command line parameter. If BIOS has enabled the ECC, this override is
11 * cleared to prevent re-enabling the hardware by this driver.
12 */
13 static int ecc_enable_override;
14 module_param(ecc_enable_override, int, 0644);
15
16 static struct msr __percpu *msrs;
17
18 /*
19 * count successfully initialized driver instances for setup_pci_device()
20 */
21 static atomic_t drv_instances = ATOMIC_INIT(0);
22
23 /* Per-node driver instances */
24 static struct mem_ctl_info **mcis;
25 static struct ecc_settings **ecc_stngs;
26
27 /*
28 * Address to DRAM bank mapping: see F2x80 for K8 and F2x[1,0]80 for Fam10 and
29 * later.
30 */
31 static int ddr2_dbam_revCG[] = {
32 [0] = 32,
33 [1] = 64,
34 [2] = 128,
35 [3] = 256,
36 [4] = 512,
37 [5] = 1024,
38 [6] = 2048,
39 };
40
41 static int ddr2_dbam_revD[] = {
42 [0] = 32,
43 [1] = 64,
44 [2 ... 3] = 128,
45 [4] = 256,
46 [5] = 512,
47 [6] = 256,
48 [7] = 512,
49 [8 ... 9] = 1024,
50 [10] = 2048,
51 };
52
53 static int ddr2_dbam[] = { [0] = 128,
54 [1] = 256,
55 [2 ... 4] = 512,
56 [5 ... 6] = 1024,
57 [7 ... 8] = 2048,
58 [9 ... 10] = 4096,
59 [11] = 8192,
60 };
61
62 static int ddr3_dbam[] = { [0] = -1,
63 [1] = 256,
64 [2] = 512,
65 [3 ... 4] = -1,
66 [5 ... 6] = 1024,
67 [7 ... 8] = 2048,
68 [9 ... 10] = 4096,
69 [11] = 8192,
70 };
71
72 /*
73 * Valid scrub rates for the K8 hardware memory scrubber. We map the scrubbing
74 * bandwidth to a valid bit pattern. The 'set' operation finds the 'matching-
75 * or higher value'.
76 *
77 *FIXME: Produce a better mapping/linearisation.
78 */
79
80
81 struct scrubrate {
82 u32 scrubval; /* bit pattern for scrub rate */
83 u32 bandwidth; /* bandwidth consumed (bytes/sec) */
84 } scrubrates[] = {
85 { 0x01, 1600000000UL},
86 { 0x02, 800000000UL},
87 { 0x03, 400000000UL},
88 { 0x04, 200000000UL},
89 { 0x05, 100000000UL},
90 { 0x06, 50000000UL},
91 { 0x07, 25000000UL},
92 { 0x08, 12284069UL},
93 { 0x09, 6274509UL},
94 { 0x0A, 3121951UL},
95 { 0x0B, 1560975UL},
96 { 0x0C, 781440UL},
97 { 0x0D, 390720UL},
98 { 0x0E, 195300UL},
99 { 0x0F, 97650UL},
100 { 0x10, 48854UL},
101 { 0x11, 24427UL},
102 { 0x12, 12213UL},
103 { 0x13, 6101UL},
104 { 0x14, 3051UL},
105 { 0x15, 1523UL},
106 { 0x16, 761UL},
107 { 0x00, 0UL}, /* scrubbing off */
108 };
109
110 /*
111 * Memory scrubber control interface. For K8, memory scrubbing is handled by
112 * hardware and can involve L2 cache, dcache as well as the main memory. With
113 * F10, this is extended to L3 cache scrubbing on CPU models sporting that
114 * functionality.
115 *
116 * This causes the "units" for the scrubbing speed to vary from 64 byte blocks
117 * (dram) over to cache lines. This is nasty, so we will use bandwidth in
118 * bytes/sec for the setting.
119 *
120 * Currently, we only do dram scrubbing. If the scrubbing is done in software on
121 * other archs, we might not have access to the caches directly.
122 */
123
124 /*
125 * scan the scrub rate mapping table for a close or matching bandwidth value to
126 * issue. If requested is too big, then use last maximum value found.
127 */
128 static int __amd64_set_scrub_rate(struct pci_dev *ctl, u32 new_bw, u32 min_rate)
129 {
130 u32 scrubval;
131 int i;
132
133 /*
134 * map the configured rate (new_bw) to a value specific to the AMD64
135 * memory controller and apply to register. Search for the first
136 * bandwidth entry that is greater or equal than the setting requested
137 * and program that. If at last entry, turn off DRAM scrubbing.
138 */
139 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
140 /*
141 * skip scrub rates which aren't recommended
142 * (see F10 BKDG, F3x58)
143 */
144 if (scrubrates[i].scrubval < min_rate)
145 continue;
146
147 if (scrubrates[i].bandwidth <= new_bw)
148 break;
149
150 /*
151 * if no suitable bandwidth found, turn off DRAM scrubbing
152 * entirely by falling back to the last element in the
153 * scrubrates array.
154 */
155 }
156
157 scrubval = scrubrates[i].scrubval;
158
159 pci_write_bits32(ctl, K8_SCRCTRL, scrubval, 0x001F);
160
161 if (scrubval)
162 return scrubrates[i].bandwidth;
163
164 return 0;
165 }
166
167 static int amd64_set_scrub_rate(struct mem_ctl_info *mci, u32 bw)
168 {
169 struct amd64_pvt *pvt = mci->pvt_info;
170
171 return __amd64_set_scrub_rate(pvt->F3, bw, pvt->min_scrubrate);
172 }
173
174 static int amd64_get_scrub_rate(struct mem_ctl_info *mci)
175 {
176 struct amd64_pvt *pvt = mci->pvt_info;
177 u32 scrubval = 0;
178 int i, retval = -EINVAL;
179
180 amd64_read_pci_cfg(pvt->F3, K8_SCRCTRL, &scrubval);
181
182 scrubval = scrubval & 0x001F;
183
184 amd64_debug("pci-read, sdram scrub control value: %d\n", scrubval);
185
186 for (i = 0; i < ARRAY_SIZE(scrubrates); i++) {
187 if (scrubrates[i].scrubval == scrubval) {
188 retval = scrubrates[i].bandwidth;
189 break;
190 }
191 }
192 return retval;
193 }
194
195 /* Map from a CSROW entry to the mask entry that operates on it */
196 static inline u32 amd64_map_to_dcs_mask(struct amd64_pvt *pvt, int csrow)
197 {
198 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F)
199 return csrow;
200 else
201 return csrow >> 1;
202 }
203
204 /* return the 'base' address the i'th CS entry of the 'dct' DRAM controller */
205 static u32 amd64_get_dct_base(struct amd64_pvt *pvt, int dct, int csrow)
206 {
207 if (dct == 0)
208 return pvt->dcsb0[csrow];
209 else
210 return pvt->dcsb1[csrow];
211 }
212
213 /*
214 * Return the 'mask' address the i'th CS entry. This function is needed because
215 * there number of DCSM registers on Rev E and prior vs Rev F and later is
216 * different.
217 */
218 static u32 amd64_get_dct_mask(struct amd64_pvt *pvt, int dct, int csrow)
219 {
220 if (dct == 0)
221 return pvt->dcsm0[amd64_map_to_dcs_mask(pvt, csrow)];
222 else
223 return pvt->dcsm1[amd64_map_to_dcs_mask(pvt, csrow)];
224 }
225
226
227 /*
228 * In *base and *limit, pass back the full 40-bit base and limit physical
229 * addresses for the node given by node_id. This information is obtained from
230 * DRAM Base (section 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers. The
231 * base and limit addresses are of type SysAddr, as defined at the start of
232 * section 3.4.4 (p. 70). They are the lowest and highest physical addresses
233 * in the address range they represent.
234 */
235 static void amd64_get_base_and_limit(struct amd64_pvt *pvt, int node_id,
236 u64 *base, u64 *limit)
237 {
238 *base = pvt->dram_base[node_id];
239 *limit = pvt->dram_limit[node_id];
240 }
241
242 /*
243 * Return 1 if the SysAddr given by sys_addr matches the base/limit associated
244 * with node_id
245 */
246 static int amd64_base_limit_match(struct amd64_pvt *pvt,
247 u64 sys_addr, int node_id)
248 {
249 u64 base, limit, addr;
250
251 amd64_get_base_and_limit(pvt, node_id, &base, &limit);
252
253 /* The K8 treats this as a 40-bit value. However, bits 63-40 will be
254 * all ones if the most significant implemented address bit is 1.
255 * Here we discard bits 63-40. See section 3.4.2 of AMD publication
256 * 24592: AMD x86-64 Architecture Programmer's Manual Volume 1
257 * Application Programming.
258 */
259 addr = sys_addr & 0x000000ffffffffffull;
260
261 return (addr >= base) && (addr <= limit);
262 }
263
264 /*
265 * Attempt to map a SysAddr to a node. On success, return a pointer to the
266 * mem_ctl_info structure for the node that the SysAddr maps to.
267 *
268 * On failure, return NULL.
269 */
270 static struct mem_ctl_info *find_mc_by_sys_addr(struct mem_ctl_info *mci,
271 u64 sys_addr)
272 {
273 struct amd64_pvt *pvt;
274 int node_id;
275 u32 intlv_en, bits;
276
277 /*
278 * Here we use the DRAM Base (section 3.4.4.1) and DRAM Limit (section
279 * 3.4.4.2) registers to map the SysAddr to a node ID.
280 */
281 pvt = mci->pvt_info;
282
283 /*
284 * The value of this field should be the same for all DRAM Base
285 * registers. Therefore we arbitrarily choose to read it from the
286 * register for node 0.
287 */
288 intlv_en = pvt->dram_IntlvEn[0];
289
290 if (intlv_en == 0) {
291 for (node_id = 0; node_id < DRAM_REG_COUNT; node_id++) {
292 if (amd64_base_limit_match(pvt, sys_addr, node_id))
293 goto found;
294 }
295 goto err_no_match;
296 }
297
298 if (unlikely((intlv_en != 0x01) &&
299 (intlv_en != 0x03) &&
300 (intlv_en != 0x07))) {
301 amd64_warn("DRAM Base[IntlvEn] junk value: 0x%x, BIOS bug?\n", intlv_en);
302 return NULL;
303 }
304
305 bits = (((u32) sys_addr) >> 12) & intlv_en;
306
307 for (node_id = 0; ; ) {
308 if ((pvt->dram_IntlvSel[node_id] & intlv_en) == bits)
309 break; /* intlv_sel field matches */
310
311 if (++node_id >= DRAM_REG_COUNT)
312 goto err_no_match;
313 }
314
315 /* sanity test for sys_addr */
316 if (unlikely(!amd64_base_limit_match(pvt, sys_addr, node_id))) {
317 amd64_warn("%s: sys_addr 0x%llx falls outside base/limit address"
318 "range for node %d with node interleaving enabled.\n",
319 __func__, sys_addr, node_id);
320 return NULL;
321 }
322
323 found:
324 return edac_mc_find(node_id);
325
326 err_no_match:
327 debugf2("sys_addr 0x%lx doesn't match any node\n",
328 (unsigned long)sys_addr);
329
330 return NULL;
331 }
332
333 /*
334 * Extract the DRAM CS base address from selected csrow register.
335 */
336 static u64 base_from_dct_base(struct amd64_pvt *pvt, int csrow)
337 {
338 return ((u64) (amd64_get_dct_base(pvt, 0, csrow) & pvt->dcsb_base)) <<
339 pvt->dcs_shift;
340 }
341
342 /*
343 * Extract the mask from the dcsb0[csrow] entry in a CPU revision-specific way.
344 */
345 static u64 mask_from_dct_mask(struct amd64_pvt *pvt, int csrow)
346 {
347 u64 dcsm_bits, other_bits;
348 u64 mask;
349
350 /* Extract bits from DRAM CS Mask. */
351 dcsm_bits = amd64_get_dct_mask(pvt, 0, csrow) & pvt->dcsm_mask;
352
353 other_bits = pvt->dcsm_mask;
354 other_bits = ~(other_bits << pvt->dcs_shift);
355
356 /*
357 * The extracted bits from DCSM belong in the spaces represented by
358 * the cleared bits in other_bits.
359 */
360 mask = (dcsm_bits << pvt->dcs_shift) | other_bits;
361
362 return mask;
363 }
364
365 /*
366 * @input_addr is an InputAddr associated with the node given by mci. Return the
367 * csrow that input_addr maps to, or -1 on failure (no csrow claims input_addr).
368 */
369 static int input_addr_to_csrow(struct mem_ctl_info *mci, u64 input_addr)
370 {
371 struct amd64_pvt *pvt;
372 int csrow;
373 u64 base, mask;
374
375 pvt = mci->pvt_info;
376
377 /*
378 * Here we use the DRAM CS Base and DRAM CS Mask registers. For each CS
379 * base/mask register pair, test the condition shown near the start of
380 * section 3.5.4 (p. 84, BKDG #26094, K8, revA-E).
381 */
382 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
383
384 /* This DRAM chip select is disabled on this node */
385 if ((pvt->dcsb0[csrow] & K8_DCSB_CS_ENABLE) == 0)
386 continue;
387
388 base = base_from_dct_base(pvt, csrow);
389 mask = ~mask_from_dct_mask(pvt, csrow);
390
391 if ((input_addr & mask) == (base & mask)) {
392 debugf2("InputAddr 0x%lx matches csrow %d (node %d)\n",
393 (unsigned long)input_addr, csrow,
394 pvt->mc_node_id);
395
396 return csrow;
397 }
398 }
399
400 debugf2("no matching csrow for InputAddr 0x%lx (MC node %d)\n",
401 (unsigned long)input_addr, pvt->mc_node_id);
402
403 return -1;
404 }
405
406 /*
407 * Return the base value defined by the DRAM Base register for the node
408 * represented by mci. This function returns the full 40-bit value despite the
409 * fact that the register only stores bits 39-24 of the value. See section
410 * 3.4.4.1 (BKDG #26094, K8, revA-E)
411 */
412 static inline u64 get_dram_base(struct mem_ctl_info *mci)
413 {
414 struct amd64_pvt *pvt = mci->pvt_info;
415
416 return pvt->dram_base[pvt->mc_node_id];
417 }
418
419 /*
420 * Obtain info from the DRAM Hole Address Register (section 3.4.8, pub #26094)
421 * for the node represented by mci. Info is passed back in *hole_base,
422 * *hole_offset, and *hole_size. Function returns 0 if info is valid or 1 if
423 * info is invalid. Info may be invalid for either of the following reasons:
424 *
425 * - The revision of the node is not E or greater. In this case, the DRAM Hole
426 * Address Register does not exist.
427 *
428 * - The DramHoleValid bit is cleared in the DRAM Hole Address Register,
429 * indicating that its contents are not valid.
430 *
431 * The values passed back in *hole_base, *hole_offset, and *hole_size are
432 * complete 32-bit values despite the fact that the bitfields in the DHAR
433 * only represent bits 31-24 of the base and offset values.
434 */
435 int amd64_get_dram_hole_info(struct mem_ctl_info *mci, u64 *hole_base,
436 u64 *hole_offset, u64 *hole_size)
437 {
438 struct amd64_pvt *pvt = mci->pvt_info;
439 u64 base;
440
441 /* only revE and later have the DRAM Hole Address Register */
442 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_E) {
443 debugf1(" revision %d for node %d does not support DHAR\n",
444 pvt->ext_model, pvt->mc_node_id);
445 return 1;
446 }
447
448 /* only valid for Fam10h */
449 if (boot_cpu_data.x86 == 0x10 &&
450 (pvt->dhar & F10_DRAM_MEM_HOIST_VALID) == 0) {
451 debugf1(" Dram Memory Hoisting is DISABLED on this system\n");
452 return 1;
453 }
454
455 if ((pvt->dhar & DHAR_VALID) == 0) {
456 debugf1(" Dram Memory Hoisting is DISABLED on this node %d\n",
457 pvt->mc_node_id);
458 return 1;
459 }
460
461 /* This node has Memory Hoisting */
462
463 /* +------------------+--------------------+--------------------+-----
464 * | memory | DRAM hole | relocated |
465 * | [0, (x - 1)] | [x, 0xffffffff] | addresses from |
466 * | | | DRAM hole |
467 * | | | [0x100000000, |
468 * | | | (0x100000000+ |
469 * | | | (0xffffffff-x))] |
470 * +------------------+--------------------+--------------------+-----
471 *
472 * Above is a diagram of physical memory showing the DRAM hole and the
473 * relocated addresses from the DRAM hole. As shown, the DRAM hole
474 * starts at address x (the base address) and extends through address
475 * 0xffffffff. The DRAM Hole Address Register (DHAR) relocates the
476 * addresses in the hole so that they start at 0x100000000.
477 */
478
479 base = dhar_base(pvt->dhar);
480
481 *hole_base = base;
482 *hole_size = (0x1ull << 32) - base;
483
484 if (boot_cpu_data.x86 > 0xf)
485 *hole_offset = f10_dhar_offset(pvt->dhar);
486 else
487 *hole_offset = k8_dhar_offset(pvt->dhar);
488
489 debugf1(" DHAR info for node %d base 0x%lx offset 0x%lx size 0x%lx\n",
490 pvt->mc_node_id, (unsigned long)*hole_base,
491 (unsigned long)*hole_offset, (unsigned long)*hole_size);
492
493 return 0;
494 }
495 EXPORT_SYMBOL_GPL(amd64_get_dram_hole_info);
496
497 /*
498 * Return the DramAddr that the SysAddr given by @sys_addr maps to. It is
499 * assumed that sys_addr maps to the node given by mci.
500 *
501 * The first part of section 3.4.4 (p. 70) shows how the DRAM Base (section
502 * 3.4.4.1) and DRAM Limit (section 3.4.4.2) registers are used to translate a
503 * SysAddr to a DramAddr. If the DRAM Hole Address Register (DHAR) is enabled,
504 * then it is also involved in translating a SysAddr to a DramAddr. Sections
505 * 3.4.8 and 3.5.8.2 describe the DHAR and how it is used for memory hoisting.
506 * These parts of the documentation are unclear. I interpret them as follows:
507 *
508 * When node n receives a SysAddr, it processes the SysAddr as follows:
509 *
510 * 1. It extracts the DRAMBase and DRAMLimit values from the DRAM Base and DRAM
511 * Limit registers for node n. If the SysAddr is not within the range
512 * specified by the base and limit values, then node n ignores the Sysaddr
513 * (since it does not map to node n). Otherwise continue to step 2 below.
514 *
515 * 2. If the DramHoleValid bit of the DHAR for node n is clear, the DHAR is
516 * disabled so skip to step 3 below. Otherwise see if the SysAddr is within
517 * the range of relocated addresses (starting at 0x100000000) from the DRAM
518 * hole. If not, skip to step 3 below. Else get the value of the
519 * DramHoleOffset field from the DHAR. To obtain the DramAddr, subtract the
520 * offset defined by this value from the SysAddr.
521 *
522 * 3. Obtain the base address for node n from the DRAMBase field of the DRAM
523 * Base register for node n. To obtain the DramAddr, subtract the base
524 * address from the SysAddr, as shown near the start of section 3.4.4 (p.70).
525 */
526 static u64 sys_addr_to_dram_addr(struct mem_ctl_info *mci, u64 sys_addr)
527 {
528 u64 dram_base, hole_base, hole_offset, hole_size, dram_addr;
529 int ret = 0;
530
531 dram_base = get_dram_base(mci);
532
533 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
534 &hole_size);
535 if (!ret) {
536 if ((sys_addr >= (1ull << 32)) &&
537 (sys_addr < ((1ull << 32) + hole_size))) {
538 /* use DHAR to translate SysAddr to DramAddr */
539 dram_addr = sys_addr - hole_offset;
540
541 debugf2("using DHAR to translate SysAddr 0x%lx to "
542 "DramAddr 0x%lx\n",
543 (unsigned long)sys_addr,
544 (unsigned long)dram_addr);
545
546 return dram_addr;
547 }
548 }
549
550 /*
551 * Translate the SysAddr to a DramAddr as shown near the start of
552 * section 3.4.4 (p. 70). Although sys_addr is a 64-bit value, the k8
553 * only deals with 40-bit values. Therefore we discard bits 63-40 of
554 * sys_addr below. If bit 39 of sys_addr is 1 then the bits we
555 * discard are all 1s. Otherwise the bits we discard are all 0s. See
556 * section 3.4.2 of AMD publication 24592: AMD x86-64 Architecture
557 * Programmer's Manual Volume 1 Application Programming.
558 */
559 dram_addr = (sys_addr & 0xffffffffffull) - dram_base;
560
561 debugf2("using DRAM Base register to translate SysAddr 0x%lx to "
562 "DramAddr 0x%lx\n", (unsigned long)sys_addr,
563 (unsigned long)dram_addr);
564 return dram_addr;
565 }
566
567 /*
568 * @intlv_en is the value of the IntlvEn field from a DRAM Base register
569 * (section 3.4.4.1). Return the number of bits from a SysAddr that are used
570 * for node interleaving.
571 */
572 static int num_node_interleave_bits(unsigned intlv_en)
573 {
574 static const int intlv_shift_table[] = { 0, 1, 0, 2, 0, 0, 0, 3 };
575 int n;
576
577 BUG_ON(intlv_en > 7);
578 n = intlv_shift_table[intlv_en];
579 return n;
580 }
581
582 /* Translate the DramAddr given by @dram_addr to an InputAddr. */
583 static u64 dram_addr_to_input_addr(struct mem_ctl_info *mci, u64 dram_addr)
584 {
585 struct amd64_pvt *pvt;
586 int intlv_shift;
587 u64 input_addr;
588
589 pvt = mci->pvt_info;
590
591 /*
592 * See the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
593 * concerning translating a DramAddr to an InputAddr.
594 */
595 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
596 input_addr = ((dram_addr >> intlv_shift) & 0xffffff000ull) +
597 (dram_addr & 0xfff);
598
599 debugf2(" Intlv Shift=%d DramAddr=0x%lx maps to InputAddr=0x%lx\n",
600 intlv_shift, (unsigned long)dram_addr,
601 (unsigned long)input_addr);
602
603 return input_addr;
604 }
605
606 /*
607 * Translate the SysAddr represented by @sys_addr to an InputAddr. It is
608 * assumed that @sys_addr maps to the node given by mci.
609 */
610 static u64 sys_addr_to_input_addr(struct mem_ctl_info *mci, u64 sys_addr)
611 {
612 u64 input_addr;
613
614 input_addr =
615 dram_addr_to_input_addr(mci, sys_addr_to_dram_addr(mci, sys_addr));
616
617 debugf2("SysAdddr 0x%lx translates to InputAddr 0x%lx\n",
618 (unsigned long)sys_addr, (unsigned long)input_addr);
619
620 return input_addr;
621 }
622
623
624 /*
625 * @input_addr is an InputAddr associated with the node represented by mci.
626 * Translate @input_addr to a DramAddr and return the result.
627 */
628 static u64 input_addr_to_dram_addr(struct mem_ctl_info *mci, u64 input_addr)
629 {
630 struct amd64_pvt *pvt;
631 int node_id, intlv_shift;
632 u64 bits, dram_addr;
633 u32 intlv_sel;
634
635 /*
636 * Near the start of section 3.4.4 (p. 70, BKDG #26094, K8, revA-E)
637 * shows how to translate a DramAddr to an InputAddr. Here we reverse
638 * this procedure. When translating from a DramAddr to an InputAddr, the
639 * bits used for node interleaving are discarded. Here we recover these
640 * bits from the IntlvSel field of the DRAM Limit register (section
641 * 3.4.4.2) for the node that input_addr is associated with.
642 */
643 pvt = mci->pvt_info;
644 node_id = pvt->mc_node_id;
645 BUG_ON((node_id < 0) || (node_id > 7));
646
647 intlv_shift = num_node_interleave_bits(pvt->dram_IntlvEn[0]);
648
649 if (intlv_shift == 0) {
650 debugf1(" InputAddr 0x%lx translates to DramAddr of "
651 "same value\n", (unsigned long)input_addr);
652
653 return input_addr;
654 }
655
656 bits = ((input_addr & 0xffffff000ull) << intlv_shift) +
657 (input_addr & 0xfff);
658
659 intlv_sel = pvt->dram_IntlvSel[node_id] & ((1 << intlv_shift) - 1);
660 dram_addr = bits + (intlv_sel << 12);
661
662 debugf1("InputAddr 0x%lx translates to DramAddr 0x%lx "
663 "(%d node interleave bits)\n", (unsigned long)input_addr,
664 (unsigned long)dram_addr, intlv_shift);
665
666 return dram_addr;
667 }
668
669 /*
670 * @dram_addr is a DramAddr that maps to the node represented by mci. Convert
671 * @dram_addr to a SysAddr.
672 */
673 static u64 dram_addr_to_sys_addr(struct mem_ctl_info *mci, u64 dram_addr)
674 {
675 struct amd64_pvt *pvt = mci->pvt_info;
676 u64 hole_base, hole_offset, hole_size, base, limit, sys_addr;
677 int ret = 0;
678
679 ret = amd64_get_dram_hole_info(mci, &hole_base, &hole_offset,
680 &hole_size);
681 if (!ret) {
682 if ((dram_addr >= hole_base) &&
683 (dram_addr < (hole_base + hole_size))) {
684 sys_addr = dram_addr + hole_offset;
685
686 debugf1("using DHAR to translate DramAddr 0x%lx to "
687 "SysAddr 0x%lx\n", (unsigned long)dram_addr,
688 (unsigned long)sys_addr);
689
690 return sys_addr;
691 }
692 }
693
694 amd64_get_base_and_limit(pvt, pvt->mc_node_id, &base, &limit);
695 sys_addr = dram_addr + base;
696
697 /*
698 * The sys_addr we have computed up to this point is a 40-bit value
699 * because the k8 deals with 40-bit values. However, the value we are
700 * supposed to return is a full 64-bit physical address. The AMD
701 * x86-64 architecture specifies that the most significant implemented
702 * address bit through bit 63 of a physical address must be either all
703 * 0s or all 1s. Therefore we sign-extend the 40-bit sys_addr to a
704 * 64-bit value below. See section 3.4.2 of AMD publication 24592:
705 * AMD x86-64 Architecture Programmer's Manual Volume 1 Application
706 * Programming.
707 */
708 sys_addr |= ~((sys_addr & (1ull << 39)) - 1);
709
710 debugf1(" Node %d, DramAddr 0x%lx to SysAddr 0x%lx\n",
711 pvt->mc_node_id, (unsigned long)dram_addr,
712 (unsigned long)sys_addr);
713
714 return sys_addr;
715 }
716
717 /*
718 * @input_addr is an InputAddr associated with the node given by mci. Translate
719 * @input_addr to a SysAddr.
720 */
721 static inline u64 input_addr_to_sys_addr(struct mem_ctl_info *mci,
722 u64 input_addr)
723 {
724 return dram_addr_to_sys_addr(mci,
725 input_addr_to_dram_addr(mci, input_addr));
726 }
727
728 /*
729 * Find the minimum and maximum InputAddr values that map to the given @csrow.
730 * Pass back these values in *input_addr_min and *input_addr_max.
731 */
732 static void find_csrow_limits(struct mem_ctl_info *mci, int csrow,
733 u64 *input_addr_min, u64 *input_addr_max)
734 {
735 struct amd64_pvt *pvt;
736 u64 base, mask;
737
738 pvt = mci->pvt_info;
739 BUG_ON((csrow < 0) || (csrow >= pvt->cs_count));
740
741 base = base_from_dct_base(pvt, csrow);
742 mask = mask_from_dct_mask(pvt, csrow);
743
744 *input_addr_min = base & ~mask;
745 *input_addr_max = base | mask | pvt->dcs_mask_notused;
746 }
747
748 /* Map the Error address to a PAGE and PAGE OFFSET. */
749 static inline void error_address_to_page_and_offset(u64 error_address,
750 u32 *page, u32 *offset)
751 {
752 *page = (u32) (error_address >> PAGE_SHIFT);
753 *offset = ((u32) error_address) & ~PAGE_MASK;
754 }
755
756 /*
757 * @sys_addr is an error address (a SysAddr) extracted from the MCA NB Address
758 * Low (section 3.6.4.5) and MCA NB Address High (section 3.6.4.6) registers
759 * of a node that detected an ECC memory error. mci represents the node that
760 * the error address maps to (possibly different from the node that detected
761 * the error). Return the number of the csrow that sys_addr maps to, or -1 on
762 * error.
763 */
764 static int sys_addr_to_csrow(struct mem_ctl_info *mci, u64 sys_addr)
765 {
766 int csrow;
767
768 csrow = input_addr_to_csrow(mci, sys_addr_to_input_addr(mci, sys_addr));
769
770 if (csrow == -1)
771 amd64_mc_err(mci, "Failed to translate InputAddr to csrow for "
772 "address 0x%lx\n", (unsigned long)sys_addr);
773 return csrow;
774 }
775
776 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *, u16);
777
778 static u16 extract_syndrome(struct err_regs *err)
779 {
780 return ((err->nbsh >> 15) & 0xff) | ((err->nbsl >> 16) & 0xff00);
781 }
782
783 /*
784 * Determine if the DIMMs have ECC enabled. ECC is enabled ONLY if all the DIMMs
785 * are ECC capable.
786 */
787 static enum edac_type amd64_determine_edac_cap(struct amd64_pvt *pvt)
788 {
789 int bit;
790 enum dev_type edac_cap = EDAC_FLAG_NONE;
791
792 bit = (boot_cpu_data.x86 > 0xf || pvt->ext_model >= K8_REV_F)
793 ? 19
794 : 17;
795
796 if (pvt->dclr0 & BIT(bit))
797 edac_cap = EDAC_FLAG_SECDED;
798
799 return edac_cap;
800 }
801
802
803 static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt);
804
805 static void amd64_dump_dramcfg_low(u32 dclr, int chan)
806 {
807 debugf1("F2x%d90 (DRAM Cfg Low): 0x%08x\n", chan, dclr);
808
809 debugf1(" DIMM type: %sbuffered; all DIMMs support ECC: %s\n",
810 (dclr & BIT(16)) ? "un" : "",
811 (dclr & BIT(19)) ? "yes" : "no");
812
813 debugf1(" PAR/ERR parity: %s\n",
814 (dclr & BIT(8)) ? "enabled" : "disabled");
815
816 debugf1(" DCT 128bit mode width: %s\n",
817 (dclr & BIT(11)) ? "128b" : "64b");
818
819 debugf1(" x4 logical DIMMs present: L0: %s L1: %s L2: %s L3: %s\n",
820 (dclr & BIT(12)) ? "yes" : "no",
821 (dclr & BIT(13)) ? "yes" : "no",
822 (dclr & BIT(14)) ? "yes" : "no",
823 (dclr & BIT(15)) ? "yes" : "no");
824 }
825
826 /* Display and decode various NB registers for debug purposes. */
827 static void amd64_dump_misc_regs(struct amd64_pvt *pvt)
828 {
829 int ganged;
830
831 debugf1("F3xE8 (NB Cap): 0x%08x\n", pvt->nbcap);
832
833 debugf1(" NB two channel DRAM capable: %s\n",
834 (pvt->nbcap & K8_NBCAP_DCT_DUAL) ? "yes" : "no");
835
836 debugf1(" ECC capable: %s, ChipKill ECC capable: %s\n",
837 (pvt->nbcap & K8_NBCAP_SECDED) ? "yes" : "no",
838 (pvt->nbcap & K8_NBCAP_CHIPKILL) ? "yes" : "no");
839
840 amd64_dump_dramcfg_low(pvt->dclr0, 0);
841
842 debugf1("F3xB0 (Online Spare): 0x%08x\n", pvt->online_spare);
843
844 debugf1("F1xF0 (DRAM Hole Address): 0x%08x, base: 0x%08x, "
845 "offset: 0x%08x\n",
846 pvt->dhar,
847 dhar_base(pvt->dhar),
848 (boot_cpu_data.x86 == 0xf) ? k8_dhar_offset(pvt->dhar)
849 : f10_dhar_offset(pvt->dhar));
850
851 debugf1(" DramHoleValid: %s\n",
852 (pvt->dhar & DHAR_VALID) ? "yes" : "no");
853
854 /* everything below this point is Fam10h and above */
855 if (boot_cpu_data.x86 == 0xf) {
856 amd64_debug_display_dimm_sizes(0, pvt);
857 return;
858 }
859
860 amd64_info("using %s syndromes.\n", ((pvt->syn_type == 8) ? "x8" : "x4"));
861
862 /* Only if NOT ganged does dclr1 have valid info */
863 if (!dct_ganging_enabled(pvt))
864 amd64_dump_dramcfg_low(pvt->dclr1, 1);
865
866 /*
867 * Determine if ganged and then dump memory sizes for first controller,
868 * and if NOT ganged dump info for 2nd controller.
869 */
870 ganged = dct_ganging_enabled(pvt);
871
872 amd64_debug_display_dimm_sizes(0, pvt);
873
874 if (!ganged)
875 amd64_debug_display_dimm_sizes(1, pvt);
876 }
877
878 /* Read in both of DBAM registers */
879 static void amd64_read_dbam_reg(struct amd64_pvt *pvt)
880 {
881 amd64_read_pci_cfg(pvt->F2, DBAM0, &pvt->dbam0);
882
883 if (boot_cpu_data.x86 >= 0x10)
884 amd64_read_pci_cfg(pvt->F2, DBAM1, &pvt->dbam1);
885 }
886
887 /*
888 * NOTE: CPU Revision Dependent code: Rev E and Rev F
889 *
890 * Set the DCSB and DCSM mask values depending on the CPU revision value. Also
891 * set the shift factor for the DCSB and DCSM values.
892 *
893 * ->dcs_mask_notused, RevE:
894 *
895 * To find the max InputAddr for the csrow, start with the base address and set
896 * all bits that are "don't care" bits in the test at the start of section
897 * 3.5.4 (p. 84).
898 *
899 * The "don't care" bits are all set bits in the mask and all bits in the gaps
900 * between bit ranges [35:25] and [19:13]. The value REV_E_DCS_NOTUSED_BITS
901 * represents bits [24:20] and [12:0], which are all bits in the above-mentioned
902 * gaps.
903 *
904 * ->dcs_mask_notused, RevF and later:
905 *
906 * To find the max InputAddr for the csrow, start with the base address and set
907 * all bits that are "don't care" bits in the test at the start of NPT section
908 * 4.5.4 (p. 87).
909 *
910 * The "don't care" bits are all set bits in the mask and all bits in the gaps
911 * between bit ranges [36:27] and [21:13].
912 *
913 * The value REV_F_F1Xh_DCS_NOTUSED_BITS represents bits [26:22] and [12:0],
914 * which are all bits in the above-mentioned gaps.
915 */
916 static void amd64_set_dct_base_and_mask(struct amd64_pvt *pvt)
917 {
918
919 if (boot_cpu_data.x86 == 0xf && pvt->ext_model < K8_REV_F) {
920 pvt->dcsb_base = REV_E_DCSB_BASE_BITS;
921 pvt->dcsm_mask = REV_E_DCSM_MASK_BITS;
922 pvt->dcs_mask_notused = REV_E_DCS_NOTUSED_BITS;
923 pvt->dcs_shift = REV_E_DCS_SHIFT;
924 pvt->cs_count = 8;
925 pvt->num_dcsm = 8;
926 } else {
927 pvt->dcsb_base = REV_F_F1Xh_DCSB_BASE_BITS;
928 pvt->dcsm_mask = REV_F_F1Xh_DCSM_MASK_BITS;
929 pvt->dcs_mask_notused = REV_F_F1Xh_DCS_NOTUSED_BITS;
930 pvt->dcs_shift = REV_F_F1Xh_DCS_SHIFT;
931 pvt->cs_count = 8;
932 pvt->num_dcsm = 4;
933 }
934 }
935
936 /*
937 * Function 2 Offset F10_DCSB0; read in the DCS Base and DCS Mask hw registers
938 */
939 static void amd64_read_dct_base_mask(struct amd64_pvt *pvt)
940 {
941 int cs, reg;
942
943 amd64_set_dct_base_and_mask(pvt);
944
945 for (cs = 0; cs < pvt->cs_count; cs++) {
946 reg = K8_DCSB0 + (cs * 4);
947 if (!amd64_read_pci_cfg(pvt->F2, reg, &pvt->dcsb0[cs]))
948 debugf0(" DCSB0[%d]=0x%08x reg: F2x%x\n",
949 cs, pvt->dcsb0[cs], reg);
950
951 /* If DCT are NOT ganged, then read in DCT1's base */
952 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
953 reg = F10_DCSB1 + (cs * 4);
954 if (!amd64_read_pci_cfg(pvt->F2, reg,
955 &pvt->dcsb1[cs]))
956 debugf0(" DCSB1[%d]=0x%08x reg: F2x%x\n",
957 cs, pvt->dcsb1[cs], reg);
958 } else {
959 pvt->dcsb1[cs] = 0;
960 }
961 }
962
963 for (cs = 0; cs < pvt->num_dcsm; cs++) {
964 reg = K8_DCSM0 + (cs * 4);
965 if (!amd64_read_pci_cfg(pvt->F2, reg, &pvt->dcsm0[cs]))
966 debugf0(" DCSM0[%d]=0x%08x reg: F2x%x\n",
967 cs, pvt->dcsm0[cs], reg);
968
969 /* If DCT are NOT ganged, then read in DCT1's mask */
970 if (boot_cpu_data.x86 >= 0x10 && !dct_ganging_enabled(pvt)) {
971 reg = F10_DCSM1 + (cs * 4);
972 if (!amd64_read_pci_cfg(pvt->F2, reg,
973 &pvt->dcsm1[cs]))
974 debugf0(" DCSM1[%d]=0x%08x reg: F2x%x\n",
975 cs, pvt->dcsm1[cs], reg);
976 } else {
977 pvt->dcsm1[cs] = 0;
978 }
979 }
980 }
981
982 static enum mem_type amd64_determine_memory_type(struct amd64_pvt *pvt, int cs)
983 {
984 enum mem_type type;
985
986 if (boot_cpu_data.x86 >= 0x10 || pvt->ext_model >= K8_REV_F) {
987 if (pvt->dchr0 & DDR3_MODE)
988 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR3 : MEM_RDDR3;
989 else
990 type = (pvt->dclr0 & BIT(16)) ? MEM_DDR2 : MEM_RDDR2;
991 } else {
992 type = (pvt->dclr0 & BIT(18)) ? MEM_DDR : MEM_RDDR;
993 }
994
995 amd64_info("CS%d: %s\n", cs, edac_mem_types[type]);
996
997 return type;
998 }
999
1000 /*
1001 * Read the DRAM Configuration Low register. It differs between CG, D & E revs
1002 * and the later RevF memory controllers (DDR vs DDR2)
1003 *
1004 * Return:
1005 * number of memory channels in operation
1006 * Pass back:
1007 * contents of the DCL0_LOW register
1008 */
1009 static int k8_early_channel_count(struct amd64_pvt *pvt)
1010 {
1011 int flag, err = 0;
1012
1013 err = amd64_read_pci_cfg(pvt->F2, F10_DCLR_0, &pvt->dclr0);
1014 if (err)
1015 return err;
1016
1017 if (pvt->ext_model >= K8_REV_F)
1018 /* RevF (NPT) and later */
1019 flag = pvt->dclr0 & F10_WIDTH_128;
1020 else
1021 /* RevE and earlier */
1022 flag = pvt->dclr0 & REVE_WIDTH_128;
1023
1024 /* not used */
1025 pvt->dclr1 = 0;
1026
1027 return (flag) ? 2 : 1;
1028 }
1029
1030 /* extract the ERROR ADDRESS for the K8 CPUs */
1031 static u64 k8_get_error_address(struct mem_ctl_info *mci,
1032 struct err_regs *info)
1033 {
1034 return (((u64) (info->nbeah & 0xff)) << 32) +
1035 (info->nbeal & ~0x03);
1036 }
1037
1038 /*
1039 * Read the Base and Limit registers for K8 based Memory controllers; extract
1040 * fields from the 'raw' reg into separate data fields
1041 *
1042 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN
1043 */
1044 static void k8_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1045 {
1046 u32 low;
1047 u32 off = dram << 3; /* 8 bytes between DRAM entries */
1048
1049 amd64_read_pci_cfg(pvt->F1, K8_DRAM_BASE_LOW + off, &low);
1050
1051 /* Extract parts into separate data entries */
1052 pvt->dram_base[dram] = ((u64) low & 0xFFFF0000) << 8;
1053 pvt->dram_IntlvEn[dram] = (low >> 8) & 0x7;
1054 pvt->dram_rw_en[dram] = (low & 0x3);
1055
1056 amd64_read_pci_cfg(pvt->F1, K8_DRAM_LIMIT_LOW + off, &low);
1057
1058 /*
1059 * Extract parts into separate data entries. Limit is the HIGHEST memory
1060 * location of the region, so lower 24 bits need to be all ones
1061 */
1062 pvt->dram_limit[dram] = (((u64) low & 0xFFFF0000) << 8) | 0x00FFFFFF;
1063 pvt->dram_IntlvSel[dram] = (low >> 8) & 0x7;
1064 pvt->dram_DstNode[dram] = (low & 0x7);
1065 }
1066
1067 static void k8_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1068 struct err_regs *err_info, u64 sys_addr)
1069 {
1070 struct mem_ctl_info *src_mci;
1071 int channel, csrow;
1072 u32 page, offset;
1073 u16 syndrome;
1074
1075 syndrome = extract_syndrome(err_info);
1076
1077 /* CHIPKILL enabled */
1078 if (err_info->nbcfg & K8_NBCFG_CHIPKILL) {
1079 channel = get_channel_from_ecc_syndrome(mci, syndrome);
1080 if (channel < 0) {
1081 /*
1082 * Syndrome didn't map, so we don't know which of the
1083 * 2 DIMMs is in error. So we need to ID 'both' of them
1084 * as suspect.
1085 */
1086 amd64_mc_warn(mci, "unknown syndrome 0x%04x - possible "
1087 "error reporting race\n", syndrome);
1088 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1089 return;
1090 }
1091 } else {
1092 /*
1093 * non-chipkill ecc mode
1094 *
1095 * The k8 documentation is unclear about how to determine the
1096 * channel number when using non-chipkill memory. This method
1097 * was obtained from email communication with someone at AMD.
1098 * (Wish the email was placed in this comment - norsk)
1099 */
1100 channel = ((sys_addr & BIT(3)) != 0);
1101 }
1102
1103 /*
1104 * Find out which node the error address belongs to. This may be
1105 * different from the node that detected the error.
1106 */
1107 src_mci = find_mc_by_sys_addr(mci, sys_addr);
1108 if (!src_mci) {
1109 amd64_mc_err(mci, "failed to map error addr 0x%lx to a node\n",
1110 (unsigned long)sys_addr);
1111 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1112 return;
1113 }
1114
1115 /* Now map the sys_addr to a CSROW */
1116 csrow = sys_addr_to_csrow(src_mci, sys_addr);
1117 if (csrow < 0) {
1118 edac_mc_handle_ce_no_info(src_mci, EDAC_MOD_STR);
1119 } else {
1120 error_address_to_page_and_offset(sys_addr, &page, &offset);
1121
1122 edac_mc_handle_ce(src_mci, page, offset, syndrome, csrow,
1123 channel, EDAC_MOD_STR);
1124 }
1125 }
1126
1127 static int k8_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1128 {
1129 int *dbam_map;
1130
1131 if (pvt->ext_model >= K8_REV_F)
1132 dbam_map = ddr2_dbam;
1133 else if (pvt->ext_model >= K8_REV_D)
1134 dbam_map = ddr2_dbam_revD;
1135 else
1136 dbam_map = ddr2_dbam_revCG;
1137
1138 return dbam_map[cs_mode];
1139 }
1140
1141 /*
1142 * Get the number of DCT channels in use.
1143 *
1144 * Return:
1145 * number of Memory Channels in operation
1146 * Pass back:
1147 * contents of the DCL0_LOW register
1148 */
1149 static int f10_early_channel_count(struct amd64_pvt *pvt)
1150 {
1151 int dbams[] = { DBAM0, DBAM1 };
1152 int i, j, channels = 0;
1153 u32 dbam;
1154
1155 /* If we are in 128 bit mode, then we are using 2 channels */
1156 if (pvt->dclr0 & F10_WIDTH_128) {
1157 channels = 2;
1158 return channels;
1159 }
1160
1161 /*
1162 * Need to check if in unganged mode: In such, there are 2 channels,
1163 * but they are not in 128 bit mode and thus the above 'dclr0' status
1164 * bit will be OFF.
1165 *
1166 * Need to check DCT0[0] and DCT1[0] to see if only one of them has
1167 * their CSEnable bit on. If so, then SINGLE DIMM case.
1168 */
1169 debugf0("Data width is not 128 bits - need more decoding\n");
1170
1171 /*
1172 * Check DRAM Bank Address Mapping values for each DIMM to see if there
1173 * is more than just one DIMM present in unganged mode. Need to check
1174 * both controllers since DIMMs can be placed in either one.
1175 */
1176 for (i = 0; i < ARRAY_SIZE(dbams); i++) {
1177 if (amd64_read_pci_cfg(pvt->F2, dbams[i], &dbam))
1178 goto err_reg;
1179
1180 for (j = 0; j < 4; j++) {
1181 if (DBAM_DIMM(j, dbam) > 0) {
1182 channels++;
1183 break;
1184 }
1185 }
1186 }
1187
1188 if (channels > 2)
1189 channels = 2;
1190
1191 amd64_info("MCT channel count: %d\n", channels);
1192
1193 return channels;
1194
1195 err_reg:
1196 return -1;
1197
1198 }
1199
1200 static int f10_dbam_to_chip_select(struct amd64_pvt *pvt, int cs_mode)
1201 {
1202 int *dbam_map;
1203
1204 if (pvt->dchr0 & DDR3_MODE || pvt->dchr1 & DDR3_MODE)
1205 dbam_map = ddr3_dbam;
1206 else
1207 dbam_map = ddr2_dbam;
1208
1209 return dbam_map[cs_mode];
1210 }
1211
1212 static u64 f10_get_error_address(struct mem_ctl_info *mci,
1213 struct err_regs *info)
1214 {
1215 return (((u64) (info->nbeah & 0xffff)) << 32) +
1216 (info->nbeal & ~0x01);
1217 }
1218
1219 /*
1220 * Read the Base and Limit registers for F10 based Memory controllers. Extract
1221 * fields from the 'raw' reg into separate data fields.
1222 *
1223 * Isolates: BASE, LIMIT, IntlvEn, IntlvSel, RW_EN.
1224 */
1225 static void f10_read_dram_base_limit(struct amd64_pvt *pvt, int dram)
1226 {
1227 u32 high_offset, low_offset, high_base, low_base, high_limit, low_limit;
1228
1229 low_offset = K8_DRAM_BASE_LOW + (dram << 3);
1230 high_offset = F10_DRAM_BASE_HIGH + (dram << 3);
1231
1232 /* read the 'raw' DRAM BASE Address register */
1233 amd64_read_pci_cfg(pvt->F1, low_offset, &low_base);
1234 amd64_read_pci_cfg(pvt->F1, high_offset, &high_base);
1235
1236 /* Extract parts into separate data entries */
1237 pvt->dram_rw_en[dram] = (low_base & 0x3);
1238
1239 if (pvt->dram_rw_en[dram] == 0)
1240 return;
1241
1242 pvt->dram_IntlvEn[dram] = (low_base >> 8) & 0x7;
1243
1244 pvt->dram_base[dram] = (((u64)high_base & 0x000000FF) << 40) |
1245 (((u64)low_base & 0xFFFF0000) << 8);
1246
1247 low_offset = K8_DRAM_LIMIT_LOW + (dram << 3);
1248 high_offset = F10_DRAM_LIMIT_HIGH + (dram << 3);
1249
1250 /* read the 'raw' LIMIT registers */
1251 amd64_read_pci_cfg(pvt->F1, low_offset, &low_limit);
1252 amd64_read_pci_cfg(pvt->F1, high_offset, &high_limit);
1253
1254 pvt->dram_DstNode[dram] = (low_limit & 0x7);
1255 pvt->dram_IntlvSel[dram] = (low_limit >> 8) & 0x7;
1256
1257 /*
1258 * Extract address values and form a LIMIT address. Limit is the HIGHEST
1259 * memory location of the region, so low 24 bits need to be all ones.
1260 */
1261 pvt->dram_limit[dram] = (((u64)high_limit & 0x000000FF) << 40) |
1262 (((u64) low_limit & 0xFFFF0000) << 8) |
1263 0x00FFFFFF;
1264 }
1265
1266 static void f10_read_dram_ctl_register(struct amd64_pvt *pvt)
1267 {
1268
1269 if (!amd64_read_pci_cfg(pvt->F2, F10_DCTL_SEL_LOW,
1270 &pvt->dram_ctl_select_low)) {
1271 debugf0("F2x110 (DCTL Sel. Low): 0x%08x, "
1272 "High range addresses at: 0x%x\n",
1273 pvt->dram_ctl_select_low,
1274 dct_sel_baseaddr(pvt));
1275
1276 debugf0(" DCT mode: %s, All DCTs on: %s\n",
1277 (dct_ganging_enabled(pvt) ? "ganged" : "unganged"),
1278 (dct_dram_enabled(pvt) ? "yes" : "no"));
1279
1280 if (!dct_ganging_enabled(pvt))
1281 debugf0(" Address range split per DCT: %s\n",
1282 (dct_high_range_enabled(pvt) ? "yes" : "no"));
1283
1284 debugf0(" DCT data interleave for ECC: %s, "
1285 "DRAM cleared since last warm reset: %s\n",
1286 (dct_data_intlv_enabled(pvt) ? "enabled" : "disabled"),
1287 (dct_memory_cleared(pvt) ? "yes" : "no"));
1288
1289 debugf0(" DCT channel interleave: %s, "
1290 "DCT interleave bits selector: 0x%x\n",
1291 (dct_interleave_enabled(pvt) ? "enabled" : "disabled"),
1292 dct_sel_interleave_addr(pvt));
1293 }
1294
1295 amd64_read_pci_cfg(pvt->F2, F10_DCTL_SEL_HIGH,
1296 &pvt->dram_ctl_select_high);
1297 }
1298
1299 /*
1300 * determine channel based on the interleaving mode: F10h BKDG, 2.8.9 Memory
1301 * Interleaving Modes.
1302 */
1303 static u32 f10_determine_channel(struct amd64_pvt *pvt, u64 sys_addr,
1304 int hi_range_sel, u32 intlv_en)
1305 {
1306 u32 cs, temp, dct_sel_high = (pvt->dram_ctl_select_low >> 1) & 1;
1307
1308 if (dct_ganging_enabled(pvt))
1309 cs = 0;
1310 else if (hi_range_sel)
1311 cs = dct_sel_high;
1312 else if (dct_interleave_enabled(pvt)) {
1313 /*
1314 * see F2x110[DctSelIntLvAddr] - channel interleave mode
1315 */
1316 if (dct_sel_interleave_addr(pvt) == 0)
1317 cs = sys_addr >> 6 & 1;
1318 else if ((dct_sel_interleave_addr(pvt) >> 1) & 1) {
1319 temp = hweight_long((u32) ((sys_addr >> 16) & 0x1F)) % 2;
1320
1321 if (dct_sel_interleave_addr(pvt) & 1)
1322 cs = (sys_addr >> 9 & 1) ^ temp;
1323 else
1324 cs = (sys_addr >> 6 & 1) ^ temp;
1325 } else if (intlv_en & 4)
1326 cs = sys_addr >> 15 & 1;
1327 else if (intlv_en & 2)
1328 cs = sys_addr >> 14 & 1;
1329 else if (intlv_en & 1)
1330 cs = sys_addr >> 13 & 1;
1331 else
1332 cs = sys_addr >> 12 & 1;
1333 } else if (dct_high_range_enabled(pvt) && !dct_ganging_enabled(pvt))
1334 cs = ~dct_sel_high & 1;
1335 else
1336 cs = 0;
1337
1338 return cs;
1339 }
1340
1341 static inline u32 f10_map_intlv_en_to_shift(u32 intlv_en)
1342 {
1343 if (intlv_en == 1)
1344 return 1;
1345 else if (intlv_en == 3)
1346 return 2;
1347 else if (intlv_en == 7)
1348 return 3;
1349
1350 return 0;
1351 }
1352
1353 /* See F10h BKDG, 2.8.10.2 DctSelBaseOffset Programming */
1354 static inline u64 f10_get_base_addr_offset(u64 sys_addr, int hi_range_sel,
1355 u32 dct_sel_base_addr,
1356 u64 dct_sel_base_off,
1357 u32 hole_valid, u32 hole_off,
1358 u64 dram_base)
1359 {
1360 u64 chan_off;
1361
1362 if (hi_range_sel) {
1363 if (!(dct_sel_base_addr & 0xFFFF0000) &&
1364 hole_valid && (sys_addr >= 0x100000000ULL))
1365 chan_off = hole_off << 16;
1366 else
1367 chan_off = dct_sel_base_off;
1368 } else {
1369 if (hole_valid && (sys_addr >= 0x100000000ULL))
1370 chan_off = hole_off << 16;
1371 else
1372 chan_off = dram_base & 0xFFFFF8000000ULL;
1373 }
1374
1375 return (sys_addr & 0x0000FFFFFFFFFFC0ULL) -
1376 (chan_off & 0x0000FFFFFF800000ULL);
1377 }
1378
1379 /* Hack for the time being - Can we get this from BIOS?? */
1380 #define CH0SPARE_RANK 0
1381 #define CH1SPARE_RANK 1
1382
1383 /*
1384 * checks if the csrow passed in is marked as SPARED, if so returns the new
1385 * spare row
1386 */
1387 static inline int f10_process_possible_spare(int csrow,
1388 u32 cs, struct amd64_pvt *pvt)
1389 {
1390 u32 swap_done;
1391 u32 bad_dram_cs;
1392
1393 /* Depending on channel, isolate respective SPARING info */
1394 if (cs) {
1395 swap_done = F10_ONLINE_SPARE_SWAPDONE1(pvt->online_spare);
1396 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS1(pvt->online_spare);
1397 if (swap_done && (csrow == bad_dram_cs))
1398 csrow = CH1SPARE_RANK;
1399 } else {
1400 swap_done = F10_ONLINE_SPARE_SWAPDONE0(pvt->online_spare);
1401 bad_dram_cs = F10_ONLINE_SPARE_BADDRAM_CS0(pvt->online_spare);
1402 if (swap_done && (csrow == bad_dram_cs))
1403 csrow = CH0SPARE_RANK;
1404 }
1405 return csrow;
1406 }
1407
1408 /*
1409 * Iterate over the DRAM DCT "base" and "mask" registers looking for a
1410 * SystemAddr match on the specified 'ChannelSelect' and 'NodeID'
1411 *
1412 * Return:
1413 * -EINVAL: NOT FOUND
1414 * 0..csrow = Chip-Select Row
1415 */
1416 static int f10_lookup_addr_in_dct(u32 in_addr, u32 nid, u32 cs)
1417 {
1418 struct mem_ctl_info *mci;
1419 struct amd64_pvt *pvt;
1420 u32 cs_base, cs_mask;
1421 int cs_found = -EINVAL;
1422 int csrow;
1423
1424 mci = mcis[nid];
1425 if (!mci)
1426 return cs_found;
1427
1428 pvt = mci->pvt_info;
1429
1430 debugf1("InputAddr=0x%x channelselect=%d\n", in_addr, cs);
1431
1432 for (csrow = 0; csrow < pvt->cs_count; csrow++) {
1433
1434 cs_base = amd64_get_dct_base(pvt, cs, csrow);
1435 if (!(cs_base & K8_DCSB_CS_ENABLE))
1436 continue;
1437
1438 /*
1439 * We have an ENABLED CSROW, Isolate just the MASK bits of the
1440 * target: [28:19] and [13:5], which map to [36:27] and [21:13]
1441 * of the actual address.
1442 */
1443 cs_base &= REV_F_F1Xh_DCSB_BASE_BITS;
1444
1445 /*
1446 * Get the DCT Mask, and ENABLE the reserved bits: [18:16] and
1447 * [4:0] to become ON. Then mask off bits [28:0] ([36:8])
1448 */
1449 cs_mask = amd64_get_dct_mask(pvt, cs, csrow);
1450
1451 debugf1(" CSROW=%d CSBase=0x%x RAW CSMask=0x%x\n",
1452 csrow, cs_base, cs_mask);
1453
1454 cs_mask = (cs_mask | 0x0007C01F) & 0x1FFFFFFF;
1455
1456 debugf1(" Final CSMask=0x%x\n", cs_mask);
1457 debugf1(" (InputAddr & ~CSMask)=0x%x "
1458 "(CSBase & ~CSMask)=0x%x\n",
1459 (in_addr & ~cs_mask), (cs_base & ~cs_mask));
1460
1461 if ((in_addr & ~cs_mask) == (cs_base & ~cs_mask)) {
1462 cs_found = f10_process_possible_spare(csrow, cs, pvt);
1463
1464 debugf1(" MATCH csrow=%d\n", cs_found);
1465 break;
1466 }
1467 }
1468 return cs_found;
1469 }
1470
1471 /* For a given @dram_range, check if @sys_addr falls within it. */
1472 static int f10_match_to_this_node(struct amd64_pvt *pvt, int dram_range,
1473 u64 sys_addr, int *nid, int *chan_sel)
1474 {
1475 int node_id, cs_found = -EINVAL, high_range = 0;
1476 u32 intlv_en, intlv_sel, intlv_shift, hole_off;
1477 u32 hole_valid, tmp, dct_sel_base, channel;
1478 u64 dram_base, chan_addr, dct_sel_base_off;
1479
1480 dram_base = pvt->dram_base[dram_range];
1481 intlv_en = pvt->dram_IntlvEn[dram_range];
1482
1483 node_id = pvt->dram_DstNode[dram_range];
1484 intlv_sel = pvt->dram_IntlvSel[dram_range];
1485
1486 debugf1("(dram=%d) Base=0x%llx SystemAddr= 0x%llx Limit=0x%llx\n",
1487 dram_range, dram_base, sys_addr, pvt->dram_limit[dram_range]);
1488
1489 /*
1490 * This assumes that one node's DHAR is the same as all the other
1491 * nodes' DHAR.
1492 */
1493 hole_off = (pvt->dhar & 0x0000FF80);
1494 hole_valid = (pvt->dhar & 0x1);
1495 dct_sel_base_off = (pvt->dram_ctl_select_high & 0xFFFFFC00) << 16;
1496
1497 debugf1(" HoleOffset=0x%x HoleValid=0x%x IntlvSel=0x%x\n",
1498 hole_off, hole_valid, intlv_sel);
1499
1500 if (intlv_en &&
1501 (intlv_sel != ((sys_addr >> 12) & intlv_en)))
1502 return -EINVAL;
1503
1504 dct_sel_base = dct_sel_baseaddr(pvt);
1505
1506 /*
1507 * check whether addresses >= DctSelBaseAddr[47:27] are to be used to
1508 * select between DCT0 and DCT1.
1509 */
1510 if (dct_high_range_enabled(pvt) &&
1511 !dct_ganging_enabled(pvt) &&
1512 ((sys_addr >> 27) >= (dct_sel_base >> 11)))
1513 high_range = 1;
1514
1515 channel = f10_determine_channel(pvt, sys_addr, high_range, intlv_en);
1516
1517 chan_addr = f10_get_base_addr_offset(sys_addr, high_range, dct_sel_base,
1518 dct_sel_base_off, hole_valid,
1519 hole_off, dram_base);
1520
1521 intlv_shift = f10_map_intlv_en_to_shift(intlv_en);
1522
1523 /* remove Node ID (in case of memory interleaving) */
1524 tmp = chan_addr & 0xFC0;
1525
1526 chan_addr = ((chan_addr >> intlv_shift) & 0xFFFFFFFFF000ULL) | tmp;
1527
1528 /* remove channel interleave and hash */
1529 if (dct_interleave_enabled(pvt) &&
1530 !dct_high_range_enabled(pvt) &&
1531 !dct_ganging_enabled(pvt)) {
1532 if (dct_sel_interleave_addr(pvt) != 1)
1533 chan_addr = (chan_addr >> 1) & 0xFFFFFFFFFFFFFFC0ULL;
1534 else {
1535 tmp = chan_addr & 0xFC0;
1536 chan_addr = ((chan_addr & 0xFFFFFFFFFFFFC000ULL) >> 1)
1537 | tmp;
1538 }
1539 }
1540
1541 debugf1(" (ChannelAddrLong=0x%llx) >> 8 becomes InputAddr=0x%x\n",
1542 chan_addr, (u32)(chan_addr >> 8));
1543
1544 cs_found = f10_lookup_addr_in_dct(chan_addr >> 8, node_id, channel);
1545
1546 if (cs_found >= 0) {
1547 *nid = node_id;
1548 *chan_sel = channel;
1549 }
1550 return cs_found;
1551 }
1552
1553 static int f10_translate_sysaddr_to_cs(struct amd64_pvt *pvt, u64 sys_addr,
1554 int *node, int *chan_sel)
1555 {
1556 int dram_range, cs_found = -EINVAL;
1557 u64 dram_base, dram_limit;
1558
1559 for (dram_range = 0; dram_range < DRAM_REG_COUNT; dram_range++) {
1560
1561 if (!pvt->dram_rw_en[dram_range])
1562 continue;
1563
1564 dram_base = pvt->dram_base[dram_range];
1565 dram_limit = pvt->dram_limit[dram_range];
1566
1567 if ((dram_base <= sys_addr) && (sys_addr <= dram_limit)) {
1568
1569 cs_found = f10_match_to_this_node(pvt, dram_range,
1570 sys_addr, node,
1571 chan_sel);
1572 if (cs_found >= 0)
1573 break;
1574 }
1575 }
1576 return cs_found;
1577 }
1578
1579 /*
1580 * For reference see "2.8.5 Routing DRAM Requests" in F10 BKDG. This code maps
1581 * a @sys_addr to NodeID, DCT (channel) and chip select (CSROW).
1582 *
1583 * The @sys_addr is usually an error address received from the hardware
1584 * (MCX_ADDR).
1585 */
1586 static void f10_map_sysaddr_to_csrow(struct mem_ctl_info *mci,
1587 struct err_regs *err_info,
1588 u64 sys_addr)
1589 {
1590 struct amd64_pvt *pvt = mci->pvt_info;
1591 u32 page, offset;
1592 int nid, csrow, chan = 0;
1593 u16 syndrome;
1594
1595 csrow = f10_translate_sysaddr_to_cs(pvt, sys_addr, &nid, &chan);
1596
1597 if (csrow < 0) {
1598 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1599 return;
1600 }
1601
1602 error_address_to_page_and_offset(sys_addr, &page, &offset);
1603
1604 syndrome = extract_syndrome(err_info);
1605
1606 /*
1607 * We need the syndromes for channel detection only when we're
1608 * ganged. Otherwise @chan should already contain the channel at
1609 * this point.
1610 */
1611 if (dct_ganging_enabled(pvt) && (pvt->nbcfg & K8_NBCFG_CHIPKILL))
1612 chan = get_channel_from_ecc_syndrome(mci, syndrome);
1613
1614 if (chan >= 0)
1615 edac_mc_handle_ce(mci, page, offset, syndrome, csrow, chan,
1616 EDAC_MOD_STR);
1617 else
1618 /*
1619 * Channel unknown, report all channels on this CSROW as failed.
1620 */
1621 for (chan = 0; chan < mci->csrows[csrow].nr_channels; chan++)
1622 edac_mc_handle_ce(mci, page, offset, syndrome,
1623 csrow, chan, EDAC_MOD_STR);
1624 }
1625
1626 /*
1627 * debug routine to display the memory sizes of all logical DIMMs and its
1628 * CSROWs as well
1629 */
1630 static void amd64_debug_display_dimm_sizes(int ctrl, struct amd64_pvt *pvt)
1631 {
1632 int dimm, size0, size1, factor = 0;
1633 u32 dbam;
1634 u32 *dcsb;
1635
1636 if (boot_cpu_data.x86 == 0xf) {
1637 if (pvt->dclr0 & F10_WIDTH_128)
1638 factor = 1;
1639
1640 /* K8 families < revF not supported yet */
1641 if (pvt->ext_model < K8_REV_F)
1642 return;
1643 else
1644 WARN_ON(ctrl != 0);
1645 }
1646
1647 debugf1("F2x%d80 (DRAM Bank Address Mapping): 0x%08x\n",
1648 ctrl, ctrl ? pvt->dbam1 : pvt->dbam0);
1649
1650 dbam = ctrl ? pvt->dbam1 : pvt->dbam0;
1651 dcsb = ctrl ? pvt->dcsb1 : pvt->dcsb0;
1652
1653 edac_printk(KERN_DEBUG, EDAC_MC, "DCT%d chip selects:\n", ctrl);
1654
1655 /* Dump memory sizes for DIMM and its CSROWs */
1656 for (dimm = 0; dimm < 4; dimm++) {
1657
1658 size0 = 0;
1659 if (dcsb[dimm*2] & K8_DCSB_CS_ENABLE)
1660 size0 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1661
1662 size1 = 0;
1663 if (dcsb[dimm*2 + 1] & K8_DCSB_CS_ENABLE)
1664 size1 = pvt->ops->dbam_to_cs(pvt, DBAM_DIMM(dimm, dbam));
1665
1666 amd64_info(EDAC_MC ": %d: %5dMB %d: %5dMB\n",
1667 dimm * 2, size0 << factor,
1668 dimm * 2 + 1, size1 << factor);
1669 }
1670 }
1671
1672 static struct amd64_family_type amd64_family_types[] = {
1673 [K8_CPUS] = {
1674 .ctl_name = "K8",
1675 .f1_id = PCI_DEVICE_ID_AMD_K8_NB_ADDRMAP,
1676 .f3_id = PCI_DEVICE_ID_AMD_K8_NB_MISC,
1677 .ops = {
1678 .early_channel_count = k8_early_channel_count,
1679 .get_error_address = k8_get_error_address,
1680 .read_dram_base_limit = k8_read_dram_base_limit,
1681 .map_sysaddr_to_csrow = k8_map_sysaddr_to_csrow,
1682 .dbam_to_cs = k8_dbam_to_chip_select,
1683 }
1684 },
1685 [F10_CPUS] = {
1686 .ctl_name = "F10h",
1687 .f1_id = PCI_DEVICE_ID_AMD_10H_NB_MAP,
1688 .f3_id = PCI_DEVICE_ID_AMD_10H_NB_MISC,
1689 .ops = {
1690 .early_channel_count = f10_early_channel_count,
1691 .get_error_address = f10_get_error_address,
1692 .read_dram_base_limit = f10_read_dram_base_limit,
1693 .read_dram_ctl_register = f10_read_dram_ctl_register,
1694 .map_sysaddr_to_csrow = f10_map_sysaddr_to_csrow,
1695 .dbam_to_cs = f10_dbam_to_chip_select,
1696 }
1697 },
1698 };
1699
1700 static struct pci_dev *pci_get_related_function(unsigned int vendor,
1701 unsigned int device,
1702 struct pci_dev *related)
1703 {
1704 struct pci_dev *dev = NULL;
1705
1706 dev = pci_get_device(vendor, device, dev);
1707 while (dev) {
1708 if ((dev->bus->number == related->bus->number) &&
1709 (PCI_SLOT(dev->devfn) == PCI_SLOT(related->devfn)))
1710 break;
1711 dev = pci_get_device(vendor, device, dev);
1712 }
1713
1714 return dev;
1715 }
1716
1717 /*
1718 * These are tables of eigenvectors (one per line) which can be used for the
1719 * construction of the syndrome tables. The modified syndrome search algorithm
1720 * uses those to find the symbol in error and thus the DIMM.
1721 *
1722 * Algorithm courtesy of Ross LaFetra from AMD.
1723 */
1724 static u16 x4_vectors[] = {
1725 0x2f57, 0x1afe, 0x66cc, 0xdd88,
1726 0x11eb, 0x3396, 0x7f4c, 0xeac8,
1727 0x0001, 0x0002, 0x0004, 0x0008,
1728 0x1013, 0x3032, 0x4044, 0x8088,
1729 0x106b, 0x30d6, 0x70fc, 0xe0a8,
1730 0x4857, 0xc4fe, 0x13cc, 0x3288,
1731 0x1ac5, 0x2f4a, 0x5394, 0xa1e8,
1732 0x1f39, 0x251e, 0xbd6c, 0x6bd8,
1733 0x15c1, 0x2a42, 0x89ac, 0x4758,
1734 0x2b03, 0x1602, 0x4f0c, 0xca08,
1735 0x1f07, 0x3a0e, 0x6b04, 0xbd08,
1736 0x8ba7, 0x465e, 0x244c, 0x1cc8,
1737 0x2b87, 0x164e, 0x642c, 0xdc18,
1738 0x40b9, 0x80de, 0x1094, 0x20e8,
1739 0x27db, 0x1eb6, 0x9dac, 0x7b58,
1740 0x11c1, 0x2242, 0x84ac, 0x4c58,
1741 0x1be5, 0x2d7a, 0x5e34, 0xa718,
1742 0x4b39, 0x8d1e, 0x14b4, 0x28d8,
1743 0x4c97, 0xc87e, 0x11fc, 0x33a8,
1744 0x8e97, 0x497e, 0x2ffc, 0x1aa8,
1745 0x16b3, 0x3d62, 0x4f34, 0x8518,
1746 0x1e2f, 0x391a, 0x5cac, 0xf858,
1747 0x1d9f, 0x3b7a, 0x572c, 0xfe18,
1748 0x15f5, 0x2a5a, 0x5264, 0xa3b8,
1749 0x1dbb, 0x3b66, 0x715c, 0xe3f8,
1750 0x4397, 0xc27e, 0x17fc, 0x3ea8,
1751 0x1617, 0x3d3e, 0x6464, 0xb8b8,
1752 0x23ff, 0x12aa, 0xab6c, 0x56d8,
1753 0x2dfb, 0x1ba6, 0x913c, 0x7328,
1754 0x185d, 0x2ca6, 0x7914, 0x9e28,
1755 0x171b, 0x3e36, 0x7d7c, 0xebe8,
1756 0x4199, 0x82ee, 0x19f4, 0x2e58,
1757 0x4807, 0xc40e, 0x130c, 0x3208,
1758 0x1905, 0x2e0a, 0x5804, 0xac08,
1759 0x213f, 0x132a, 0xadfc, 0x5ba8,
1760 0x19a9, 0x2efe, 0xb5cc, 0x6f88,
1761 };
1762
1763 static u16 x8_vectors[] = {
1764 0x0145, 0x028a, 0x2374, 0x43c8, 0xa1f0, 0x0520, 0x0a40, 0x1480,
1765 0x0211, 0x0422, 0x0844, 0x1088, 0x01b0, 0x44e0, 0x23c0, 0xed80,
1766 0x1011, 0x0116, 0x022c, 0x0458, 0x08b0, 0x8c60, 0x2740, 0x4e80,
1767 0x0411, 0x0822, 0x1044, 0x0158, 0x02b0, 0x2360, 0x46c0, 0xab80,
1768 0x0811, 0x1022, 0x012c, 0x0258, 0x04b0, 0x4660, 0x8cc0, 0x2780,
1769 0x2071, 0x40e2, 0xa0c4, 0x0108, 0x0210, 0x0420, 0x0840, 0x1080,
1770 0x4071, 0x80e2, 0x0104, 0x0208, 0x0410, 0x0820, 0x1040, 0x2080,
1771 0x8071, 0x0102, 0x0204, 0x0408, 0x0810, 0x1020, 0x2040, 0x4080,
1772 0x019d, 0x03d6, 0x136c, 0x2198, 0x50b0, 0xb2e0, 0x0740, 0x0e80,
1773 0x0189, 0x03ea, 0x072c, 0x0e58, 0x1cb0, 0x56e0, 0x37c0, 0xf580,
1774 0x01fd, 0x0376, 0x06ec, 0x0bb8, 0x1110, 0x2220, 0x4440, 0x8880,
1775 0x0163, 0x02c6, 0x1104, 0x0758, 0x0eb0, 0x2be0, 0x6140, 0xc280,
1776 0x02fd, 0x01c6, 0x0b5c, 0x1108, 0x07b0, 0x25a0, 0x8840, 0x6180,
1777 0x0801, 0x012e, 0x025c, 0x04b8, 0x1370, 0x26e0, 0x57c0, 0xb580,
1778 0x0401, 0x0802, 0x015c, 0x02b8, 0x22b0, 0x13e0, 0x7140, 0xe280,
1779 0x0201, 0x0402, 0x0804, 0x01b8, 0x11b0, 0x31a0, 0x8040, 0x7180,
1780 0x0101, 0x0202, 0x0404, 0x0808, 0x1010, 0x2020, 0x4040, 0x8080,
1781 0x0001, 0x0002, 0x0004, 0x0008, 0x0010, 0x0020, 0x0040, 0x0080,
1782 0x0100, 0x0200, 0x0400, 0x0800, 0x1000, 0x2000, 0x4000, 0x8000,
1783 };
1784
1785 static int decode_syndrome(u16 syndrome, u16 *vectors, int num_vecs,
1786 int v_dim)
1787 {
1788 unsigned int i, err_sym;
1789
1790 for (err_sym = 0; err_sym < num_vecs / v_dim; err_sym++) {
1791 u16 s = syndrome;
1792 int v_idx = err_sym * v_dim;
1793 int v_end = (err_sym + 1) * v_dim;
1794
1795 /* walk over all 16 bits of the syndrome */
1796 for (i = 1; i < (1U << 16); i <<= 1) {
1797
1798 /* if bit is set in that eigenvector... */
1799 if (v_idx < v_end && vectors[v_idx] & i) {
1800 u16 ev_comp = vectors[v_idx++];
1801
1802 /* ... and bit set in the modified syndrome, */
1803 if (s & i) {
1804 /* remove it. */
1805 s ^= ev_comp;
1806
1807 if (!s)
1808 return err_sym;
1809 }
1810
1811 } else if (s & i)
1812 /* can't get to zero, move to next symbol */
1813 break;
1814 }
1815 }
1816
1817 debugf0("syndrome(%x) not found\n", syndrome);
1818 return -1;
1819 }
1820
1821 static int map_err_sym_to_channel(int err_sym, int sym_size)
1822 {
1823 if (sym_size == 4)
1824 switch (err_sym) {
1825 case 0x20:
1826 case 0x21:
1827 return 0;
1828 break;
1829 case 0x22:
1830 case 0x23:
1831 return 1;
1832 break;
1833 default:
1834 return err_sym >> 4;
1835 break;
1836 }
1837 /* x8 symbols */
1838 else
1839 switch (err_sym) {
1840 /* imaginary bits not in a DIMM */
1841 case 0x10:
1842 WARN(1, KERN_ERR "Invalid error symbol: 0x%x\n",
1843 err_sym);
1844 return -1;
1845 break;
1846
1847 case 0x11:
1848 return 0;
1849 break;
1850 case 0x12:
1851 return 1;
1852 break;
1853 default:
1854 return err_sym >> 3;
1855 break;
1856 }
1857 return -1;
1858 }
1859
1860 static int get_channel_from_ecc_syndrome(struct mem_ctl_info *mci, u16 syndrome)
1861 {
1862 struct amd64_pvt *pvt = mci->pvt_info;
1863 int err_sym = -1;
1864
1865 if (pvt->syn_type == 8)
1866 err_sym = decode_syndrome(syndrome, x8_vectors,
1867 ARRAY_SIZE(x8_vectors),
1868 pvt->syn_type);
1869 else if (pvt->syn_type == 4)
1870 err_sym = decode_syndrome(syndrome, x4_vectors,
1871 ARRAY_SIZE(x4_vectors),
1872 pvt->syn_type);
1873 else {
1874 amd64_warn("Illegal syndrome type: %u\n", pvt->syn_type);
1875 return err_sym;
1876 }
1877
1878 return map_err_sym_to_channel(err_sym, pvt->syn_type);
1879 }
1880
1881 /*
1882 * Handle any Correctable Errors (CEs) that have occurred. Check for valid ERROR
1883 * ADDRESS and process.
1884 */
1885 static void amd64_handle_ce(struct mem_ctl_info *mci,
1886 struct err_regs *info)
1887 {
1888 struct amd64_pvt *pvt = mci->pvt_info;
1889 u64 sys_addr;
1890
1891 /* Ensure that the Error Address is VALID */
1892 if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
1893 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1894 edac_mc_handle_ce_no_info(mci, EDAC_MOD_STR);
1895 return;
1896 }
1897
1898 sys_addr = pvt->ops->get_error_address(mci, info);
1899
1900 amd64_mc_err(mci, "CE ERROR_ADDRESS= 0x%llx\n", sys_addr);
1901
1902 pvt->ops->map_sysaddr_to_csrow(mci, info, sys_addr);
1903 }
1904
1905 /* Handle any Un-correctable Errors (UEs) */
1906 static void amd64_handle_ue(struct mem_ctl_info *mci,
1907 struct err_regs *info)
1908 {
1909 struct amd64_pvt *pvt = mci->pvt_info;
1910 struct mem_ctl_info *log_mci, *src_mci = NULL;
1911 int csrow;
1912 u64 sys_addr;
1913 u32 page, offset;
1914
1915 log_mci = mci;
1916
1917 if (!(info->nbsh & K8_NBSH_VALID_ERROR_ADDR)) {
1918 amd64_mc_err(mci, "HW has no ERROR_ADDRESS available\n");
1919 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1920 return;
1921 }
1922
1923 sys_addr = pvt->ops->get_error_address(mci, info);
1924
1925 /*
1926 * Find out which node the error address belongs to. This may be
1927 * different from the node that detected the error.
1928 */
1929 src_mci = find_mc_by_sys_addr(mci, sys_addr);
1930 if (!src_mci) {
1931 amd64_mc_err(mci, "ERROR ADDRESS (0x%lx) NOT mapped to a MC\n",
1932 (unsigned long)sys_addr);
1933 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1934 return;
1935 }
1936
1937 log_mci = src_mci;
1938
1939 csrow = sys_addr_to_csrow(log_mci, sys_addr);
1940 if (csrow < 0) {
1941 amd64_mc_err(mci, "ERROR_ADDRESS (0x%lx) NOT mapped to CS\n",
1942 (unsigned long)sys_addr);
1943 edac_mc_handle_ue_no_info(log_mci, EDAC_MOD_STR);
1944 } else {
1945 error_address_to_page_and_offset(sys_addr, &page, &offset);
1946 edac_mc_handle_ue(log_mci, page, offset, csrow, EDAC_MOD_STR);
1947 }
1948 }
1949
1950 static inline void __amd64_decode_bus_error(struct mem_ctl_info *mci,
1951 struct err_regs *info)
1952 {
1953 u16 ec = EC(info->nbsl);
1954 u8 xec = XEC(info->nbsl, 0x1f);
1955 int ecc_type = (info->nbsh >> 13) & 0x3;
1956
1957 /* Bail early out if this was an 'observed' error */
1958 if (PP(ec) == K8_NBSL_PP_OBS)
1959 return;
1960
1961 /* Do only ECC errors */
1962 if (xec && xec != F10_NBSL_EXT_ERR_ECC)
1963 return;
1964
1965 if (ecc_type == 2)
1966 amd64_handle_ce(mci, info);
1967 else if (ecc_type == 1)
1968 amd64_handle_ue(mci, info);
1969 }
1970
1971 void amd64_decode_bus_error(int node_id, struct mce *m, u32 nbcfg)
1972 {
1973 struct mem_ctl_info *mci = mcis[node_id];
1974 struct err_regs regs;
1975
1976 regs.nbsl = (u32) m->status;
1977 regs.nbsh = (u32)(m->status >> 32);
1978 regs.nbeal = (u32) m->addr;
1979 regs.nbeah = (u32)(m->addr >> 32);
1980 regs.nbcfg = nbcfg;
1981
1982 __amd64_decode_bus_error(mci, &regs);
1983
1984 /*
1985 * Check the UE bit of the NB status high register, if set generate some
1986 * logs. If NOT a GART error, then process the event as a NO-INFO event.
1987 * If it was a GART error, skip that process.
1988 *
1989 * FIXME: this should go somewhere else, if at all.
1990 */
1991 if (regs.nbsh & K8_NBSH_UC_ERR && !report_gart_errors)
1992 edac_mc_handle_ue_no_info(mci, "UE bit is set");
1993
1994 }
1995
1996 /*
1997 * Use pvt->F2 which contains the F2 CPU PCI device to get the related
1998 * F1 (AddrMap) and F3 (Misc) devices. Return negative value on error.
1999 */
2000 static int reserve_mc_sibling_devs(struct amd64_pvt *pvt, u16 f1_id, u16 f3_id)
2001 {
2002 /* Reserve the ADDRESS MAP Device */
2003 pvt->F1 = pci_get_related_function(pvt->F2->vendor, f1_id, pvt->F2);
2004 if (!pvt->F1) {
2005 amd64_err("error address map device not found: "
2006 "vendor %x device 0x%x (broken BIOS?)\n",
2007 PCI_VENDOR_ID_AMD, f1_id);
2008 return -ENODEV;
2009 }
2010
2011 /* Reserve the MISC Device */
2012 pvt->F3 = pci_get_related_function(pvt->F2->vendor, f3_id, pvt->F2);
2013 if (!pvt->F3) {
2014 pci_dev_put(pvt->F1);
2015 pvt->F1 = NULL;
2016
2017 amd64_err("error F3 device not found: "
2018 "vendor %x device 0x%x (broken BIOS?)\n",
2019 PCI_VENDOR_ID_AMD, f3_id);
2020
2021 return -ENODEV;
2022 }
2023 debugf1("F1: %s\n", pci_name(pvt->F1));
2024 debugf1("F2: %s\n", pci_name(pvt->F2));
2025 debugf1("F3: %s\n", pci_name(pvt->F3));
2026
2027 return 0;
2028 }
2029
2030 static void free_mc_sibling_devs(struct amd64_pvt *pvt)
2031 {
2032 pci_dev_put(pvt->F1);
2033 pci_dev_put(pvt->F3);
2034 }
2035
2036 /*
2037 * Retrieve the hardware registers of the memory controller (this includes the
2038 * 'Address Map' and 'Misc' device regs)
2039 */
2040 static void read_mc_regs(struct amd64_pvt *pvt)
2041 {
2042 u64 msr_val;
2043 u32 tmp;
2044 int dram;
2045
2046 /*
2047 * Retrieve TOP_MEM and TOP_MEM2; no masking off of reserved bits since
2048 * those are Read-As-Zero
2049 */
2050 rdmsrl(MSR_K8_TOP_MEM1, pvt->top_mem);
2051 debugf0(" TOP_MEM: 0x%016llx\n", pvt->top_mem);
2052
2053 /* check first whether TOP_MEM2 is enabled */
2054 rdmsrl(MSR_K8_SYSCFG, msr_val);
2055 if (msr_val & (1U << 21)) {
2056 rdmsrl(MSR_K8_TOP_MEM2, pvt->top_mem2);
2057 debugf0(" TOP_MEM2: 0x%016llx\n", pvt->top_mem2);
2058 } else
2059 debugf0(" TOP_MEM2 disabled.\n");
2060
2061 amd64_read_pci_cfg(pvt->F3, K8_NBCAP, &pvt->nbcap);
2062
2063 if (pvt->ops->read_dram_ctl_register)
2064 pvt->ops->read_dram_ctl_register(pvt);
2065
2066 for (dram = 0; dram < DRAM_REG_COUNT; dram++) {
2067 /*
2068 * Call CPU specific READ function to get the DRAM Base and
2069 * Limit values from the DCT.
2070 */
2071 pvt->ops->read_dram_base_limit(pvt, dram);
2072
2073 /*
2074 * Only print out debug info on rows with both R and W Enabled.
2075 * Normal processing, compiler should optimize this whole 'if'
2076 * debug output block away.
2077 */
2078 if (pvt->dram_rw_en[dram] != 0) {
2079 debugf1(" DRAM-BASE[%d]: 0x%016llx "
2080 "DRAM-LIMIT: 0x%016llx\n",
2081 dram,
2082 pvt->dram_base[dram],
2083 pvt->dram_limit[dram]);
2084
2085 debugf1(" IntlvEn=%s %s %s "
2086 "IntlvSel=%d DstNode=%d\n",
2087 pvt->dram_IntlvEn[dram] ?
2088 "Enabled" : "Disabled",
2089 (pvt->dram_rw_en[dram] & 0x2) ? "W" : "!W",
2090 (pvt->dram_rw_en[dram] & 0x1) ? "R" : "!R",
2091 pvt->dram_IntlvSel[dram],
2092 pvt->dram_DstNode[dram]);
2093 }
2094 }
2095
2096 amd64_read_dct_base_mask(pvt);
2097
2098 amd64_read_pci_cfg(pvt->F1, K8_DHAR, &pvt->dhar);
2099 amd64_read_dbam_reg(pvt);
2100
2101 amd64_read_pci_cfg(pvt->F3, F10_ONLINE_SPARE, &pvt->online_spare);
2102
2103 amd64_read_pci_cfg(pvt->F2, F10_DCLR_0, &pvt->dclr0);
2104 amd64_read_pci_cfg(pvt->F2, F10_DCHR_0, &pvt->dchr0);
2105
2106 if (boot_cpu_data.x86 >= 0x10) {
2107 if (!dct_ganging_enabled(pvt)) {
2108 amd64_read_pci_cfg(pvt->F2, F10_DCLR_1, &pvt->dclr1);
2109 amd64_read_pci_cfg(pvt->F2, F10_DCHR_1, &pvt->dchr1);
2110 }
2111 amd64_read_pci_cfg(pvt->F3, EXT_NB_MCA_CFG, &tmp);
2112 }
2113
2114 if (boot_cpu_data.x86 == 0x10 &&
2115 boot_cpu_data.x86_model > 7 &&
2116 /* F3x180[EccSymbolSize]=1 => x8 symbols */
2117 tmp & BIT(25))
2118 pvt->syn_type = 8;
2119 else
2120 pvt->syn_type = 4;
2121
2122 amd64_dump_misc_regs(pvt);
2123 }
2124
2125 /*
2126 * NOTE: CPU Revision Dependent code
2127 *
2128 * Input:
2129 * @csrow_nr ChipSelect Row Number (0..pvt->cs_count-1)
2130 * k8 private pointer to -->
2131 * DRAM Bank Address mapping register
2132 * node_id
2133 * DCL register where dual_channel_active is
2134 *
2135 * The DBAM register consists of 4 sets of 4 bits each definitions:
2136 *
2137 * Bits: CSROWs
2138 * 0-3 CSROWs 0 and 1
2139 * 4-7 CSROWs 2 and 3
2140 * 8-11 CSROWs 4 and 5
2141 * 12-15 CSROWs 6 and 7
2142 *
2143 * Values range from: 0 to 15
2144 * The meaning of the values depends on CPU revision and dual-channel state,
2145 * see relevant BKDG more info.
2146 *
2147 * The memory controller provides for total of only 8 CSROWs in its current
2148 * architecture. Each "pair" of CSROWs normally represents just one DIMM in
2149 * single channel or two (2) DIMMs in dual channel mode.
2150 *
2151 * The following code logic collapses the various tables for CSROW based on CPU
2152 * revision.
2153 *
2154 * Returns:
2155 * The number of PAGE_SIZE pages on the specified CSROW number it
2156 * encompasses
2157 *
2158 */
2159 static u32 amd64_csrow_nr_pages(int csrow_nr, struct amd64_pvt *pvt)
2160 {
2161 u32 cs_mode, nr_pages;
2162
2163 /*
2164 * The math on this doesn't look right on the surface because x/2*4 can
2165 * be simplified to x*2 but this expression makes use of the fact that
2166 * it is integral math where 1/2=0. This intermediate value becomes the
2167 * number of bits to shift the DBAM register to extract the proper CSROW
2168 * field.
2169 */
2170 cs_mode = (pvt->dbam0 >> ((csrow_nr / 2) * 4)) & 0xF;
2171
2172 nr_pages = pvt->ops->dbam_to_cs(pvt, cs_mode) << (20 - PAGE_SHIFT);
2173
2174 /*
2175 * If dual channel then double the memory size of single channel.
2176 * Channel count is 1 or 2
2177 */
2178 nr_pages <<= (pvt->channel_count - 1);
2179
2180 debugf0(" (csrow=%d) DBAM map index= %d\n", csrow_nr, cs_mode);
2181 debugf0(" nr_pages= %u channel-count = %d\n",
2182 nr_pages, pvt->channel_count);
2183
2184 return nr_pages;
2185 }
2186
2187 /*
2188 * Initialize the array of csrow attribute instances, based on the values
2189 * from pci config hardware registers.
2190 */
2191 static int init_csrows(struct mem_ctl_info *mci)
2192 {
2193 struct csrow_info *csrow;
2194 struct amd64_pvt *pvt = mci->pvt_info;
2195 u64 input_addr_min, input_addr_max, sys_addr;
2196 u32 val;
2197 int i, empty = 1;
2198
2199 amd64_read_pci_cfg(pvt->F3, K8_NBCFG, &val);
2200
2201 pvt->nbcfg = val;
2202 pvt->ctl_error_info.nbcfg = val;
2203
2204 debugf0("node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2205 pvt->mc_node_id, val,
2206 !!(val & K8_NBCFG_CHIPKILL), !!(val & K8_NBCFG_ECC_ENABLE));
2207
2208 for (i = 0; i < pvt->cs_count; i++) {
2209 csrow = &mci->csrows[i];
2210
2211 if ((pvt->dcsb0[i] & K8_DCSB_CS_ENABLE) == 0) {
2212 debugf1("----CSROW %d EMPTY for node %d\n", i,
2213 pvt->mc_node_id);
2214 continue;
2215 }
2216
2217 debugf1("----CSROW %d VALID for MC node %d\n",
2218 i, pvt->mc_node_id);
2219
2220 empty = 0;
2221 csrow->nr_pages = amd64_csrow_nr_pages(i, pvt);
2222 find_csrow_limits(mci, i, &input_addr_min, &input_addr_max);
2223 sys_addr = input_addr_to_sys_addr(mci, input_addr_min);
2224 csrow->first_page = (u32) (sys_addr >> PAGE_SHIFT);
2225 sys_addr = input_addr_to_sys_addr(mci, input_addr_max);
2226 csrow->last_page = (u32) (sys_addr >> PAGE_SHIFT);
2227 csrow->page_mask = ~mask_from_dct_mask(pvt, i);
2228 /* 8 bytes of resolution */
2229
2230 csrow->mtype = amd64_determine_memory_type(pvt, i);
2231
2232 debugf1(" for MC node %d csrow %d:\n", pvt->mc_node_id, i);
2233 debugf1(" input_addr_min: 0x%lx input_addr_max: 0x%lx\n",
2234 (unsigned long)input_addr_min,
2235 (unsigned long)input_addr_max);
2236 debugf1(" sys_addr: 0x%lx page_mask: 0x%lx\n",
2237 (unsigned long)sys_addr, csrow->page_mask);
2238 debugf1(" nr_pages: %u first_page: 0x%lx "
2239 "last_page: 0x%lx\n",
2240 (unsigned)csrow->nr_pages,
2241 csrow->first_page, csrow->last_page);
2242
2243 /*
2244 * determine whether CHIPKILL or JUST ECC or NO ECC is operating
2245 */
2246 if (pvt->nbcfg & K8_NBCFG_ECC_ENABLE)
2247 csrow->edac_mode =
2248 (pvt->nbcfg & K8_NBCFG_CHIPKILL) ?
2249 EDAC_S4ECD4ED : EDAC_SECDED;
2250 else
2251 csrow->edac_mode = EDAC_NONE;
2252 }
2253
2254 return empty;
2255 }
2256
2257 /* get all cores on this DCT */
2258 static void get_cpus_on_this_dct_cpumask(struct cpumask *mask, int nid)
2259 {
2260 int cpu;
2261
2262 for_each_online_cpu(cpu)
2263 if (amd_get_nb_id(cpu) == nid)
2264 cpumask_set_cpu(cpu, mask);
2265 }
2266
2267 /* check MCG_CTL on all the cpus on this node */
2268 static bool amd64_nb_mce_bank_enabled_on_node(int nid)
2269 {
2270 cpumask_var_t mask;
2271 int cpu, nbe;
2272 bool ret = false;
2273
2274 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) {
2275 amd64_warn("%s: Error allocating mask\n", __func__);
2276 return false;
2277 }
2278
2279 get_cpus_on_this_dct_cpumask(mask, nid);
2280
2281 rdmsr_on_cpus(mask, MSR_IA32_MCG_CTL, msrs);
2282
2283 for_each_cpu(cpu, mask) {
2284 struct msr *reg = per_cpu_ptr(msrs, cpu);
2285 nbe = reg->l & K8_MSR_MCGCTL_NBE;
2286
2287 debugf0("core: %u, MCG_CTL: 0x%llx, NB MSR is %s\n",
2288 cpu, reg->q,
2289 (nbe ? "enabled" : "disabled"));
2290
2291 if (!nbe)
2292 goto out;
2293 }
2294 ret = true;
2295
2296 out:
2297 free_cpumask_var(mask);
2298 return ret;
2299 }
2300
2301 static int toggle_ecc_err_reporting(struct ecc_settings *s, u8 nid, bool on)
2302 {
2303 cpumask_var_t cmask;
2304 int cpu;
2305
2306 if (!zalloc_cpumask_var(&cmask, GFP_KERNEL)) {
2307 amd64_warn("%s: error allocating mask\n", __func__);
2308 return false;
2309 }
2310
2311 get_cpus_on_this_dct_cpumask(cmask, nid);
2312
2313 rdmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2314
2315 for_each_cpu(cpu, cmask) {
2316
2317 struct msr *reg = per_cpu_ptr(msrs, cpu);
2318
2319 if (on) {
2320 if (reg->l & K8_MSR_MCGCTL_NBE)
2321 s->flags.nb_mce_enable = 1;
2322
2323 reg->l |= K8_MSR_MCGCTL_NBE;
2324 } else {
2325 /*
2326 * Turn off NB MCE reporting only when it was off before
2327 */
2328 if (!s->flags.nb_mce_enable)
2329 reg->l &= ~K8_MSR_MCGCTL_NBE;
2330 }
2331 }
2332 wrmsr_on_cpus(cmask, MSR_IA32_MCG_CTL, msrs);
2333
2334 free_cpumask_var(cmask);
2335
2336 return 0;
2337 }
2338
2339 static bool enable_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2340 struct pci_dev *F3)
2341 {
2342 bool ret = true;
2343 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2344
2345 if (toggle_ecc_err_reporting(s, nid, ON)) {
2346 amd64_warn("Error enabling ECC reporting over MCGCTL!\n");
2347 return false;
2348 }
2349
2350 amd64_read_pci_cfg(F3, K8_NBCTL, &value);
2351
2352 /* turn on UECCEn and CECCEn bits */
2353 s->old_nbctl = value & mask;
2354 s->nbctl_valid = true;
2355
2356 value |= mask;
2357 pci_write_config_dword(F3, K8_NBCTL, value);
2358
2359 amd64_read_pci_cfg(F3, K8_NBCFG, &value);
2360
2361 debugf0("1: node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2362 nid, value,
2363 !!(value & K8_NBCFG_CHIPKILL), !!(value & K8_NBCFG_ECC_ENABLE));
2364
2365 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2366 amd64_warn("DRAM ECC disabled on this node, enabling...\n");
2367
2368 s->flags.nb_ecc_prev = 0;
2369
2370 /* Attempt to turn on DRAM ECC Enable */
2371 value |= K8_NBCFG_ECC_ENABLE;
2372 pci_write_config_dword(F3, K8_NBCFG, value);
2373
2374 amd64_read_pci_cfg(F3, K8_NBCFG, &value);
2375
2376 if (!(value & K8_NBCFG_ECC_ENABLE)) {
2377 amd64_warn("Hardware rejected DRAM ECC enable,"
2378 "check memory DIMM configuration.\n");
2379 ret = false;
2380 } else {
2381 amd64_info("Hardware accepted DRAM ECC Enable\n");
2382 }
2383 } else {
2384 s->flags.nb_ecc_prev = 1;
2385 }
2386
2387 debugf0("2: node %d, NBCFG=0x%08x[ChipKillEccCap: %d|DramEccEn: %d]\n",
2388 nid, value,
2389 !!(value & K8_NBCFG_CHIPKILL), !!(value & K8_NBCFG_ECC_ENABLE));
2390
2391 return ret;
2392 }
2393
2394 static void restore_ecc_error_reporting(struct ecc_settings *s, u8 nid,
2395 struct pci_dev *F3)
2396 {
2397 u32 value, mask = K8_NBCTL_CECCEn | K8_NBCTL_UECCEn;
2398
2399 if (!s->nbctl_valid)
2400 return;
2401
2402 amd64_read_pci_cfg(F3, K8_NBCTL, &value);
2403 value &= ~mask;
2404 value |= s->old_nbctl;
2405
2406 pci_write_config_dword(F3, K8_NBCTL, value);
2407
2408 /* restore previous BIOS DRAM ECC "off" setting we force-enabled */
2409 if (!s->flags.nb_ecc_prev) {
2410 amd64_read_pci_cfg(F3, K8_NBCFG, &value);
2411 value &= ~K8_NBCFG_ECC_ENABLE;
2412 pci_write_config_dword(F3, K8_NBCFG, value);
2413 }
2414
2415 /* restore the NB Enable MCGCTL bit */
2416 if (toggle_ecc_err_reporting(s, nid, OFF))
2417 amd64_warn("Error restoring NB MCGCTL settings!\n");
2418 }
2419
2420 /*
2421 * EDAC requires that the BIOS have ECC enabled before
2422 * taking over the processing of ECC errors. A command line
2423 * option allows to force-enable hardware ECC later in
2424 * enable_ecc_error_reporting().
2425 */
2426 static const char *ecc_msg =
2427 "ECC disabled in the BIOS or no ECC capability, module will not load.\n"
2428 " Either enable ECC checking or force module loading by setting "
2429 "'ecc_enable_override'.\n"
2430 " (Note that use of the override may cause unknown side effects.)\n";
2431
2432 static bool ecc_enabled(struct pci_dev *F3, u8 nid)
2433 {
2434 u32 value;
2435 u8 ecc_en = 0;
2436 bool nb_mce_en = false;
2437
2438 amd64_read_pci_cfg(F3, K8_NBCFG, &value);
2439
2440 ecc_en = !!(value & K8_NBCFG_ECC_ENABLE);
2441 amd64_info("DRAM ECC %s.\n", (ecc_en ? "enabled" : "disabled"));
2442
2443 nb_mce_en = amd64_nb_mce_bank_enabled_on_node(nid);
2444 if (!nb_mce_en)
2445 amd64_notice("NB MCE bank disabled, set MSR "
2446 "0x%08x[4] on node %d to enable.\n",
2447 MSR_IA32_MCG_CTL, nid);
2448
2449 if (!ecc_en || !nb_mce_en) {
2450 amd64_notice("%s", ecc_msg);
2451 return false;
2452 }
2453 return true;
2454 }
2455
2456 struct mcidev_sysfs_attribute sysfs_attrs[ARRAY_SIZE(amd64_dbg_attrs) +
2457 ARRAY_SIZE(amd64_inj_attrs) +
2458 1];
2459
2460 struct mcidev_sysfs_attribute terminator = { .attr = { .name = NULL } };
2461
2462 static void set_mc_sysfs_attrs(struct mem_ctl_info *mci)
2463 {
2464 unsigned int i = 0, j = 0;
2465
2466 for (; i < ARRAY_SIZE(amd64_dbg_attrs); i++)
2467 sysfs_attrs[i] = amd64_dbg_attrs[i];
2468
2469 if (boot_cpu_data.x86 >= 0x10)
2470 for (j = 0; j < ARRAY_SIZE(amd64_inj_attrs); j++, i++)
2471 sysfs_attrs[i] = amd64_inj_attrs[j];
2472
2473 sysfs_attrs[i] = terminator;
2474
2475 mci->mc_driver_sysfs_attributes = sysfs_attrs;
2476 }
2477
2478 static void setup_mci_misc_attrs(struct mem_ctl_info *mci)
2479 {
2480 struct amd64_pvt *pvt = mci->pvt_info;
2481
2482 mci->mtype_cap = MEM_FLAG_DDR2 | MEM_FLAG_RDDR2;
2483 mci->edac_ctl_cap = EDAC_FLAG_NONE;
2484
2485 if (pvt->nbcap & K8_NBCAP_SECDED)
2486 mci->edac_ctl_cap |= EDAC_FLAG_SECDED;
2487
2488 if (pvt->nbcap & K8_NBCAP_CHIPKILL)
2489 mci->edac_ctl_cap |= EDAC_FLAG_S4ECD4ED;
2490
2491 mci->edac_cap = amd64_determine_edac_cap(pvt);
2492 mci->mod_name = EDAC_MOD_STR;
2493 mci->mod_ver = EDAC_AMD64_VERSION;
2494 mci->ctl_name = pvt->ctl_name;
2495 mci->dev_name = pci_name(pvt->F2);
2496 mci->ctl_page_to_phys = NULL;
2497
2498 /* memory scrubber interface */
2499 mci->set_sdram_scrub_rate = amd64_set_scrub_rate;
2500 mci->get_sdram_scrub_rate = amd64_get_scrub_rate;
2501 }
2502
2503 /*
2504 * returns a pointer to the family descriptor on success, NULL otherwise.
2505 */
2506 static struct amd64_family_type *amd64_per_family_init(struct amd64_pvt *pvt)
2507 {
2508 u8 fam = boot_cpu_data.x86;
2509 struct amd64_family_type *fam_type = NULL;
2510
2511 switch (fam) {
2512 case 0xf:
2513 fam_type = &amd64_family_types[K8_CPUS];
2514 pvt->ops = &amd64_family_types[K8_CPUS].ops;
2515 pvt->ctl_name = fam_type->ctl_name;
2516 pvt->min_scrubrate = K8_MIN_SCRUB_RATE_BITS;
2517 break;
2518 case 0x10:
2519 fam_type = &amd64_family_types[F10_CPUS];
2520 pvt->ops = &amd64_family_types[F10_CPUS].ops;
2521 pvt->ctl_name = fam_type->ctl_name;
2522 pvt->min_scrubrate = F10_MIN_SCRUB_RATE_BITS;
2523 break;
2524
2525 default:
2526 amd64_err("Unsupported family!\n");
2527 return NULL;
2528 }
2529
2530 pvt->ext_model = boot_cpu_data.x86_model >> 4;
2531
2532 amd64_info("%s %sdetected (node %d).\n", pvt->ctl_name,
2533 (fam == 0xf ?
2534 (pvt->ext_model >= K8_REV_F ? "revF or later "
2535 : "revE or earlier ")
2536 : ""), pvt->mc_node_id);
2537 return fam_type;
2538 }
2539
2540 static int amd64_init_one_instance(struct pci_dev *F2)
2541 {
2542 struct amd64_pvt *pvt = NULL;
2543 struct amd64_family_type *fam_type = NULL;
2544 struct mem_ctl_info *mci = NULL;
2545 int err = 0, ret;
2546 u8 nid = get_node_id(F2);
2547
2548 ret = -ENOMEM;
2549 pvt = kzalloc(sizeof(struct amd64_pvt), GFP_KERNEL);
2550 if (!pvt)
2551 goto err_ret;
2552
2553 pvt->mc_node_id = nid;
2554 pvt->F2 = F2;
2555
2556 ret = -EINVAL;
2557 fam_type = amd64_per_family_init(pvt);
2558 if (!fam_type)
2559 goto err_free;
2560
2561 ret = -ENODEV;
2562 err = reserve_mc_sibling_devs(pvt, fam_type->f1_id, fam_type->f3_id);
2563 if (err)
2564 goto err_free;
2565
2566 read_mc_regs(pvt);
2567
2568 /*
2569 * We need to determine how many memory channels there are. Then use
2570 * that information for calculating the size of the dynamic instance
2571 * tables in the 'mci' structure.
2572 */
2573 ret = -EINVAL;
2574 pvt->channel_count = pvt->ops->early_channel_count(pvt);
2575 if (pvt->channel_count < 0)
2576 goto err_siblings;
2577
2578 ret = -ENOMEM;
2579 mci = edac_mc_alloc(0, pvt->cs_count, pvt->channel_count, nid);
2580 if (!mci)
2581 goto err_siblings;
2582
2583 mci->pvt_info = pvt;
2584 mci->dev = &pvt->F2->dev;
2585
2586 setup_mci_misc_attrs(mci);
2587
2588 if (init_csrows(mci))
2589 mci->edac_cap = EDAC_FLAG_NONE;
2590
2591 set_mc_sysfs_attrs(mci);
2592
2593 ret = -ENODEV;
2594 if (edac_mc_add_mc(mci)) {
2595 debugf1("failed edac_mc_add_mc()\n");
2596 goto err_add_mc;
2597 }
2598
2599 /* register stuff with EDAC MCE */
2600 if (report_gart_errors)
2601 amd_report_gart_errors(true);
2602
2603 amd_register_ecc_decoder(amd64_decode_bus_error);
2604
2605 mcis[nid] = mci;
2606
2607 atomic_inc(&drv_instances);
2608
2609 return 0;
2610
2611 err_add_mc:
2612 edac_mc_free(mci);
2613
2614 err_siblings:
2615 free_mc_sibling_devs(pvt);
2616
2617 err_free:
2618 kfree(pvt);
2619
2620 err_ret:
2621 return ret;
2622 }
2623
2624 static int __devinit amd64_probe_one_instance(struct pci_dev *pdev,
2625 const struct pci_device_id *mc_type)
2626 {
2627 u8 nid = get_node_id(pdev);
2628 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2629 struct ecc_settings *s;
2630 int ret = 0;
2631
2632 ret = pci_enable_device(pdev);
2633 if (ret < 0) {
2634 debugf0("ret=%d\n", ret);
2635 return -EIO;
2636 }
2637
2638 ret = -ENOMEM;
2639 s = kzalloc(sizeof(struct ecc_settings), GFP_KERNEL);
2640 if (!s)
2641 goto err_out;
2642
2643 ecc_stngs[nid] = s;
2644
2645 if (!ecc_enabled(F3, nid)) {
2646 ret = -ENODEV;
2647
2648 if (!ecc_enable_override)
2649 goto err_enable;
2650
2651 amd64_warn("Forcing ECC on!\n");
2652
2653 if (!enable_ecc_error_reporting(s, nid, F3))
2654 goto err_enable;
2655 }
2656
2657 ret = amd64_init_one_instance(pdev);
2658 if (ret < 0) {
2659 amd64_err("Error probing instance: %d\n", nid);
2660 restore_ecc_error_reporting(s, nid, F3);
2661 }
2662
2663 return ret;
2664
2665 err_enable:
2666 kfree(s);
2667 ecc_stngs[nid] = NULL;
2668
2669 err_out:
2670 return ret;
2671 }
2672
2673 static void __devexit amd64_remove_one_instance(struct pci_dev *pdev)
2674 {
2675 struct mem_ctl_info *mci;
2676 struct amd64_pvt *pvt;
2677 u8 nid = get_node_id(pdev);
2678 struct pci_dev *F3 = node_to_amd_nb(nid)->misc;
2679 struct ecc_settings *s = ecc_stngs[nid];
2680
2681 /* Remove from EDAC CORE tracking list */
2682 mci = edac_mc_del_mc(&pdev->dev);
2683 if (!mci)
2684 return;
2685
2686 pvt = mci->pvt_info;
2687
2688 restore_ecc_error_reporting(s, nid, F3);
2689
2690 free_mc_sibling_devs(pvt);
2691
2692 /* unregister from EDAC MCE */
2693 amd_report_gart_errors(false);
2694 amd_unregister_ecc_decoder(amd64_decode_bus_error);
2695
2696 kfree(ecc_stngs[nid]);
2697 ecc_stngs[nid] = NULL;
2698
2699 /* Free the EDAC CORE resources */
2700 mci->pvt_info = NULL;
2701 mcis[nid] = NULL;
2702
2703 kfree(pvt);
2704 edac_mc_free(mci);
2705 }
2706
2707 /*
2708 * This table is part of the interface for loading drivers for PCI devices. The
2709 * PCI core identifies what devices are on a system during boot, and then
2710 * inquiry this table to see if this driver is for a given device found.
2711 */
2712 static const struct pci_device_id amd64_pci_table[] __devinitdata = {
2713 {
2714 .vendor = PCI_VENDOR_ID_AMD,
2715 .device = PCI_DEVICE_ID_AMD_K8_NB_MEMCTL,
2716 .subvendor = PCI_ANY_ID,
2717 .subdevice = PCI_ANY_ID,
2718 .class = 0,
2719 .class_mask = 0,
2720 },
2721 {
2722 .vendor = PCI_VENDOR_ID_AMD,
2723 .device = PCI_DEVICE_ID_AMD_10H_NB_DRAM,
2724 .subvendor = PCI_ANY_ID,
2725 .subdevice = PCI_ANY_ID,
2726 .class = 0,
2727 .class_mask = 0,
2728 },
2729 {0, }
2730 };
2731 MODULE_DEVICE_TABLE(pci, amd64_pci_table);
2732
2733 static struct pci_driver amd64_pci_driver = {
2734 .name = EDAC_MOD_STR,
2735 .probe = amd64_probe_one_instance,
2736 .remove = __devexit_p(amd64_remove_one_instance),
2737 .id_table = amd64_pci_table,
2738 };
2739
2740 static void setup_pci_device(void)
2741 {
2742 struct mem_ctl_info *mci;
2743 struct amd64_pvt *pvt;
2744
2745 if (amd64_ctl_pci)
2746 return;
2747
2748 mci = mcis[0];
2749 if (mci) {
2750
2751 pvt = mci->pvt_info;
2752 amd64_ctl_pci =
2753 edac_pci_create_generic_ctl(&pvt->F2->dev, EDAC_MOD_STR);
2754
2755 if (!amd64_ctl_pci) {
2756 pr_warning("%s(): Unable to create PCI control\n",
2757 __func__);
2758
2759 pr_warning("%s(): PCI error report via EDAC not set\n",
2760 __func__);
2761 }
2762 }
2763 }
2764
2765 static int __init amd64_edac_init(void)
2766 {
2767 int err = -ENODEV;
2768
2769 edac_printk(KERN_INFO, EDAC_MOD_STR, EDAC_AMD64_VERSION "\n");
2770
2771 opstate_init();
2772
2773 if (amd_cache_northbridges() < 0)
2774 goto err_ret;
2775
2776 err = -ENOMEM;
2777 mcis = kzalloc(amd_nb_num() * sizeof(mcis[0]), GFP_KERNEL);
2778 ecc_stngs = kzalloc(amd_nb_num() * sizeof(ecc_stngs[0]), GFP_KERNEL);
2779 if (!(mcis && ecc_stngs))
2780 goto err_ret;
2781
2782 msrs = msrs_alloc();
2783 if (!msrs)
2784 goto err_free;
2785
2786 err = pci_register_driver(&amd64_pci_driver);
2787 if (err)
2788 goto err_pci;
2789
2790 err = -ENODEV;
2791 if (!atomic_read(&drv_instances))
2792 goto err_no_instances;
2793
2794 setup_pci_device();
2795 return 0;
2796
2797 err_no_instances:
2798 pci_unregister_driver(&amd64_pci_driver);
2799
2800 err_pci:
2801 msrs_free(msrs);
2802 msrs = NULL;
2803
2804 err_free:
2805 kfree(mcis);
2806 mcis = NULL;
2807
2808 kfree(ecc_stngs);
2809 ecc_stngs = NULL;
2810
2811 err_ret:
2812 return err;
2813 }
2814
2815 static void __exit amd64_edac_exit(void)
2816 {
2817 if (amd64_ctl_pci)
2818 edac_pci_release_generic_ctl(amd64_ctl_pci);
2819
2820 pci_unregister_driver(&amd64_pci_driver);
2821
2822 kfree(ecc_stngs);
2823 ecc_stngs = NULL;
2824
2825 kfree(mcis);
2826 mcis = NULL;
2827
2828 msrs_free(msrs);
2829 msrs = NULL;
2830 }
2831
2832 module_init(amd64_edac_init);
2833 module_exit(amd64_edac_exit);
2834
2835 MODULE_LICENSE("GPL");
2836 MODULE_AUTHOR("SoftwareBitMaker: Doug Thompson, "
2837 "Dave Peterson, Thayne Harbaugh");
2838 MODULE_DESCRIPTION("MC support for AMD64 memory controllers - "
2839 EDAC_AMD64_VERSION);
2840
2841 module_param(edac_op_state, int, 0444);
2842 MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");