mm: mm_event: add compaction stat
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / dma-buf / dma-fence.c
1 /*
2 * Fence mechanism for dma-buf and to allow for asynchronous dma access
3 *
4 * Copyright (C) 2012 Canonical Ltd
5 * Copyright (C) 2012 Texas Instruments
6 *
7 * Authors:
8 * Rob Clark <robdclark@gmail.com>
9 * Maarten Lankhorst <maarten.lankhorst@canonical.com>
10 *
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License version 2 as published by
13 * the Free Software Foundation.
14 *
15 * This program is distributed in the hope that it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
18 * more details.
19 */
20
21 #include <linux/slab.h>
22 #include <linux/export.h>
23 #include <linux/atomic.h>
24 #include <linux/dma-fence.h>
25 #include <linux/sched/signal.h>
26
27 #define CREATE_TRACE_POINTS
28 #include <trace/events/dma_fence.h>
29
30 EXPORT_TRACEPOINT_SYMBOL(dma_fence_annotate_wait_on);
31 EXPORT_TRACEPOINT_SYMBOL(dma_fence_emit);
32 EXPORT_TRACEPOINT_SYMBOL(dma_fence_enable_signal);
33
34 /*
35 * fence context counter: each execution context should have its own
36 * fence context, this allows checking if fences belong to the same
37 * context or not. One device can have multiple separate contexts,
38 * and they're used if some engine can run independently of another.
39 */
40 static atomic64_t dma_fence_context_counter = ATOMIC64_INIT(0);
41
42 /**
43 * dma_fence_context_alloc - allocate an array of fence contexts
44 * @num: [in] amount of contexts to allocate
45 *
46 * This function will return the first index of the number of fences allocated.
47 * The fence context is used for setting fence->context to a unique number.
48 */
49 u64 dma_fence_context_alloc(unsigned num)
50 {
51 WARN_ON(!num);
52 return atomic64_add_return(num, &dma_fence_context_counter) - num;
53 }
54 EXPORT_SYMBOL(dma_fence_context_alloc);
55
56 /**
57 * dma_fence_signal_locked - signal completion of a fence
58 * @fence: the fence to signal
59 *
60 * Signal completion for software callbacks on a fence, this will unblock
61 * dma_fence_wait() calls and run all the callbacks added with
62 * dma_fence_add_callback(). Can be called multiple times, but since a fence
63 * can only go from unsignaled to signaled state, it will only be effective
64 * the first time.
65 *
66 * Unlike dma_fence_signal, this function must be called with fence->lock held.
67 */
68 int dma_fence_signal_locked(struct dma_fence *fence)
69 {
70 struct dma_fence_cb *cur, *tmp;
71 int ret = 0;
72
73 lockdep_assert_held(fence->lock);
74
75 if (WARN_ON(!fence))
76 return -EINVAL;
77
78 if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
79 ret = -EINVAL;
80
81 /*
82 * we might have raced with the unlocked dma_fence_signal,
83 * still run through all callbacks
84 */
85 } else {
86 fence->timestamp = ktime_get();
87 set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
88 trace_dma_fence_signaled(fence);
89 }
90
91 list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
92 list_del_init(&cur->node);
93 cur->func(fence, cur);
94 }
95 return ret;
96 }
97 EXPORT_SYMBOL(dma_fence_signal_locked);
98
99 /**
100 * dma_fence_signal - signal completion of a fence
101 * @fence: the fence to signal
102 *
103 * Signal completion for software callbacks on a fence, this will unblock
104 * dma_fence_wait() calls and run all the callbacks added with
105 * dma_fence_add_callback(). Can be called multiple times, but since a fence
106 * can only go from unsignaled to signaled state, it will only be effective
107 * the first time.
108 */
109 int dma_fence_signal(struct dma_fence *fence)
110 {
111 unsigned long flags;
112
113 if (!fence)
114 return -EINVAL;
115
116 if (test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
117 return -EINVAL;
118
119 fence->timestamp = ktime_get();
120 set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
121 trace_dma_fence_signaled(fence);
122
123 if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &fence->flags)) {
124 struct dma_fence_cb *cur, *tmp;
125
126 spin_lock_irqsave(fence->lock, flags);
127 list_for_each_entry_safe(cur, tmp, &fence->cb_list, node) {
128 list_del_init(&cur->node);
129 cur->func(fence, cur);
130 }
131 spin_unlock_irqrestore(fence->lock, flags);
132 }
133 return 0;
134 }
135 EXPORT_SYMBOL(dma_fence_signal);
136
137 /**
138 * dma_fence_wait_timeout - sleep until the fence gets signaled
139 * or until timeout elapses
140 * @fence: [in] the fence to wait on
141 * @intr: [in] if true, do an interruptible wait
142 * @timeout: [in] timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
143 *
144 * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
145 * remaining timeout in jiffies on success. Other error values may be
146 * returned on custom implementations.
147 *
148 * Performs a synchronous wait on this fence. It is assumed the caller
149 * directly or indirectly (buf-mgr between reservation and committing)
150 * holds a reference to the fence, otherwise the fence might be
151 * freed before return, resulting in undefined behavior.
152 */
153 signed long
154 dma_fence_wait_timeout(struct dma_fence *fence, bool intr, signed long timeout)
155 {
156 signed long ret;
157
158 if (WARN_ON(timeout < 0))
159 return -EINVAL;
160
161 trace_dma_fence_wait_start(fence);
162 ret = fence->ops->wait(fence, intr, timeout);
163 trace_dma_fence_wait_end(fence);
164 return ret;
165 }
166 EXPORT_SYMBOL(dma_fence_wait_timeout);
167
168 void dma_fence_release(struct kref *kref)
169 {
170 struct dma_fence *fence =
171 container_of(kref, struct dma_fence, refcount);
172
173 trace_dma_fence_destroy(fence);
174
175 WARN_ON(!list_empty(&fence->cb_list));
176
177 if (fence->ops->release)
178 fence->ops->release(fence);
179 else
180 dma_fence_free(fence);
181 }
182 EXPORT_SYMBOL(dma_fence_release);
183
184 void dma_fence_free(struct dma_fence *fence)
185 {
186 kfree_rcu(fence, rcu);
187 }
188 EXPORT_SYMBOL(dma_fence_free);
189
190 /**
191 * dma_fence_enable_sw_signaling - enable signaling on fence
192 * @fence: [in] the fence to enable
193 *
194 * this will request for sw signaling to be enabled, to make the fence
195 * complete as soon as possible
196 */
197 void dma_fence_enable_sw_signaling(struct dma_fence *fence)
198 {
199 unsigned long flags;
200
201 if (!test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
202 &fence->flags) &&
203 !test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
204 trace_dma_fence_enable_signal(fence);
205
206 spin_lock_irqsave(fence->lock, flags);
207
208 if (!fence->ops->enable_signaling(fence))
209 dma_fence_signal_locked(fence);
210
211 spin_unlock_irqrestore(fence->lock, flags);
212 }
213 }
214 EXPORT_SYMBOL(dma_fence_enable_sw_signaling);
215
216 /**
217 * dma_fence_add_callback - add a callback to be called when the fence
218 * is signaled
219 * @fence: [in] the fence to wait on
220 * @cb: [in] the callback to register
221 * @func: [in] the function to call
222 *
223 * cb will be initialized by dma_fence_add_callback, no initialization
224 * by the caller is required. Any number of callbacks can be registered
225 * to a fence, but a callback can only be registered to one fence at a time.
226 *
227 * Note that the callback can be called from an atomic context. If
228 * fence is already signaled, this function will return -ENOENT (and
229 * *not* call the callback)
230 *
231 * Add a software callback to the fence. Same restrictions apply to
232 * refcount as it does to dma_fence_wait, however the caller doesn't need to
233 * keep a refcount to fence afterwards: when software access is enabled,
234 * the creator of the fence is required to keep the fence alive until
235 * after it signals with dma_fence_signal. The callback itself can be called
236 * from irq context.
237 *
238 * Returns 0 in case of success, -ENOENT if the fence is already signaled
239 * and -EINVAL in case of error.
240 */
241 int dma_fence_add_callback(struct dma_fence *fence, struct dma_fence_cb *cb,
242 dma_fence_func_t func)
243 {
244 unsigned long flags;
245 int ret = 0;
246 bool was_set;
247
248 if (WARN_ON(!fence || !func))
249 return -EINVAL;
250
251 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
252 INIT_LIST_HEAD(&cb->node);
253 return -ENOENT;
254 }
255
256 spin_lock_irqsave(fence->lock, flags);
257
258 was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
259 &fence->flags);
260
261 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
262 ret = -ENOENT;
263 else if (!was_set) {
264 trace_dma_fence_enable_signal(fence);
265
266 if (!fence->ops->enable_signaling(fence)) {
267 dma_fence_signal_locked(fence);
268 ret = -ENOENT;
269 }
270 }
271
272 if (!ret) {
273 cb->func = func;
274 list_add_tail(&cb->node, &fence->cb_list);
275 } else
276 INIT_LIST_HEAD(&cb->node);
277 spin_unlock_irqrestore(fence->lock, flags);
278
279 return ret;
280 }
281 EXPORT_SYMBOL(dma_fence_add_callback);
282
283 /**
284 * dma_fence_get_status - returns the status upon completion
285 * @fence: [in] the dma_fence to query
286 *
287 * This wraps dma_fence_get_status_locked() to return the error status
288 * condition on a signaled fence. See dma_fence_get_status_locked() for more
289 * details.
290 *
291 * Returns 0 if the fence has not yet been signaled, 1 if the fence has
292 * been signaled without an error condition, or a negative error code
293 * if the fence has been completed in err.
294 */
295 int dma_fence_get_status(struct dma_fence *fence)
296 {
297 unsigned long flags;
298 int status;
299
300 spin_lock_irqsave(fence->lock, flags);
301 status = dma_fence_get_status_locked(fence);
302 spin_unlock_irqrestore(fence->lock, flags);
303
304 return status;
305 }
306 EXPORT_SYMBOL(dma_fence_get_status);
307
308 /**
309 * dma_fence_remove_callback - remove a callback from the signaling list
310 * @fence: [in] the fence to wait on
311 * @cb: [in] the callback to remove
312 *
313 * Remove a previously queued callback from the fence. This function returns
314 * true if the callback is successfully removed, or false if the fence has
315 * already been signaled.
316 *
317 * *WARNING*:
318 * Cancelling a callback should only be done if you really know what you're
319 * doing, since deadlocks and race conditions could occur all too easily. For
320 * this reason, it should only ever be done on hardware lockup recovery,
321 * with a reference held to the fence.
322 */
323 bool
324 dma_fence_remove_callback(struct dma_fence *fence, struct dma_fence_cb *cb)
325 {
326 unsigned long flags;
327 bool ret;
328
329 spin_lock_irqsave(fence->lock, flags);
330
331 ret = !list_empty(&cb->node);
332 if (ret) {
333 list_del_init(&cb->node);
334 if (list_empty(&fence->cb_list))
335 if (fence->ops->disable_signaling)
336 fence->ops->disable_signaling(fence);
337 }
338
339 spin_unlock_irqrestore(fence->lock, flags);
340
341 return ret;
342 }
343 EXPORT_SYMBOL(dma_fence_remove_callback);
344
345 struct default_wait_cb {
346 struct dma_fence_cb base;
347 struct task_struct *task;
348 };
349
350 static void
351 dma_fence_default_wait_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
352 {
353 struct default_wait_cb *wait =
354 container_of(cb, struct default_wait_cb, base);
355
356 wake_up_state(wait->task, TASK_NORMAL);
357 }
358
359 /**
360 * dma_fence_default_wait - default sleep until the fence gets signaled
361 * or until timeout elapses
362 * @fence: [in] the fence to wait on
363 * @intr: [in] if true, do an interruptible wait
364 * @timeout: [in] timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
365 *
366 * Returns -ERESTARTSYS if interrupted, 0 if the wait timed out, or the
367 * remaining timeout in jiffies on success. If timeout is zero the value one is
368 * returned if the fence is already signaled for consistency with other
369 * functions taking a jiffies timeout.
370 */
371 signed long
372 dma_fence_default_wait(struct dma_fence *fence, bool intr, signed long timeout)
373 {
374 struct default_wait_cb cb;
375 unsigned long flags;
376 signed long ret = timeout ? timeout : 1;
377 bool was_set;
378
379 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
380 return ret;
381
382 spin_lock_irqsave(fence->lock, flags);
383
384 if (intr && signal_pending(current)) {
385 ret = -ERESTARTSYS;
386 goto out;
387 }
388
389 was_set = test_and_set_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
390 &fence->flags);
391
392 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
393 goto out;
394
395 if (!was_set) {
396 trace_dma_fence_enable_signal(fence);
397
398 if (!fence->ops->enable_signaling(fence)) {
399 dma_fence_signal_locked(fence);
400 goto out;
401 }
402 }
403
404 if (!timeout) {
405 ret = 0;
406 goto out;
407 }
408
409 cb.base.func = dma_fence_default_wait_cb;
410 cb.task = current;
411 list_add(&cb.base.node, &fence->cb_list);
412
413 while (!test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags) && ret > 0) {
414 if (intr)
415 __set_current_state(TASK_INTERRUPTIBLE);
416 else
417 __set_current_state(TASK_UNINTERRUPTIBLE);
418 spin_unlock_irqrestore(fence->lock, flags);
419
420 ret = schedule_timeout(ret);
421
422 spin_lock_irqsave(fence->lock, flags);
423 if (ret > 0 && intr && signal_pending(current))
424 ret = -ERESTARTSYS;
425 }
426
427 if (!list_empty(&cb.base.node))
428 list_del(&cb.base.node);
429 __set_current_state(TASK_RUNNING);
430
431 out:
432 spin_unlock_irqrestore(fence->lock, flags);
433 return ret;
434 }
435 EXPORT_SYMBOL(dma_fence_default_wait);
436
437 static bool
438 dma_fence_test_signaled_any(struct dma_fence **fences, uint32_t count,
439 uint32_t *idx)
440 {
441 int i;
442
443 for (i = 0; i < count; ++i) {
444 struct dma_fence *fence = fences[i];
445 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags)) {
446 if (idx)
447 *idx = i;
448 return true;
449 }
450 }
451 return false;
452 }
453
454 /**
455 * dma_fence_wait_any_timeout - sleep until any fence gets signaled
456 * or until timeout elapses
457 * @fences: [in] array of fences to wait on
458 * @count: [in] number of fences to wait on
459 * @intr: [in] if true, do an interruptible wait
460 * @timeout: [in] timeout value in jiffies, or MAX_SCHEDULE_TIMEOUT
461 * @idx: [out] the first signaled fence index, meaningful only on
462 * positive return
463 *
464 * Returns -EINVAL on custom fence wait implementation, -ERESTARTSYS if
465 * interrupted, 0 if the wait timed out, or the remaining timeout in jiffies
466 * on success.
467 *
468 * Synchronous waits for the first fence in the array to be signaled. The
469 * caller needs to hold a reference to all fences in the array, otherwise a
470 * fence might be freed before return, resulting in undefined behavior.
471 */
472 signed long
473 dma_fence_wait_any_timeout(struct dma_fence **fences, uint32_t count,
474 bool intr, signed long timeout, uint32_t *idx)
475 {
476 struct default_wait_cb *cb;
477 signed long ret = timeout;
478 unsigned i;
479
480 if (WARN_ON(!fences || !count || timeout < 0))
481 return -EINVAL;
482
483 if (timeout == 0) {
484 for (i = 0; i < count; ++i)
485 if (dma_fence_is_signaled(fences[i])) {
486 if (idx)
487 *idx = i;
488 return 1;
489 }
490
491 return 0;
492 }
493
494 cb = kcalloc(count, sizeof(struct default_wait_cb), GFP_KERNEL);
495 if (cb == NULL) {
496 ret = -ENOMEM;
497 goto err_free_cb;
498 }
499
500 for (i = 0; i < count; ++i) {
501 struct dma_fence *fence = fences[i];
502
503 if (fence->ops->wait != dma_fence_default_wait) {
504 ret = -EINVAL;
505 goto fence_rm_cb;
506 }
507
508 cb[i].task = current;
509 if (dma_fence_add_callback(fence, &cb[i].base,
510 dma_fence_default_wait_cb)) {
511 /* This fence is already signaled */
512 if (idx)
513 *idx = i;
514 goto fence_rm_cb;
515 }
516 }
517
518 while (ret > 0) {
519 if (intr)
520 set_current_state(TASK_INTERRUPTIBLE);
521 else
522 set_current_state(TASK_UNINTERRUPTIBLE);
523
524 if (dma_fence_test_signaled_any(fences, count, idx))
525 break;
526
527 ret = schedule_timeout(ret);
528
529 if (ret > 0 && intr && signal_pending(current))
530 ret = -ERESTARTSYS;
531 }
532
533 __set_current_state(TASK_RUNNING);
534
535 fence_rm_cb:
536 while (i-- > 0)
537 dma_fence_remove_callback(fences[i], &cb[i].base);
538
539 err_free_cb:
540 kfree(cb);
541
542 return ret;
543 }
544 EXPORT_SYMBOL(dma_fence_wait_any_timeout);
545
546 /**
547 * dma_fence_init - Initialize a custom fence.
548 * @fence: [in] the fence to initialize
549 * @ops: [in] the dma_fence_ops for operations on this fence
550 * @lock: [in] the irqsafe spinlock to use for locking this fence
551 * @context: [in] the execution context this fence is run on
552 * @seqno: [in] a linear increasing sequence number for this context
553 *
554 * Initializes an allocated fence, the caller doesn't have to keep its
555 * refcount after committing with this fence, but it will need to hold a
556 * refcount again if dma_fence_ops.enable_signaling gets called. This can
557 * be used for other implementing other types of fence.
558 *
559 * context and seqno are used for easy comparison between fences, allowing
560 * to check which fence is later by simply using dma_fence_later.
561 */
562 void
563 dma_fence_init(struct dma_fence *fence, const struct dma_fence_ops *ops,
564 spinlock_t *lock, u64 context, unsigned seqno)
565 {
566 BUG_ON(!lock);
567 BUG_ON(!ops || !ops->wait || !ops->enable_signaling ||
568 !ops->get_driver_name || !ops->get_timeline_name);
569
570 kref_init(&fence->refcount);
571 fence->ops = ops;
572 INIT_LIST_HEAD(&fence->cb_list);
573 fence->lock = lock;
574 fence->context = context;
575 fence->seqno = seqno;
576 fence->flags = 0UL;
577 fence->error = 0;
578
579 trace_dma_fence_init(fence);
580 }
581 EXPORT_SYMBOL(dma_fence_init);