dmaengine: shdma: extend .device_terminate_all() to record partial transfer
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / dma / shdma.c
1 /*
2 * Renesas SuperH DMA Engine support
3 *
4 * base is drivers/dma/flsdma.c
5 *
6 * Copyright (C) 2009 Nobuhiro Iwamatsu <iwamatsu.nobuhiro@renesas.com>
7 * Copyright (C) 2009 Renesas Solutions, Inc. All rights reserved.
8 * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
9 *
10 * This is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * - DMA of SuperH does not have Hardware DMA chain mode.
16 * - MAX DMA size is 16MB.
17 *
18 */
19
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/interrupt.h>
23 #include <linux/dmaengine.h>
24 #include <linux/delay.h>
25 #include <linux/dma-mapping.h>
26 #include <linux/platform_device.h>
27 #include <linux/pm_runtime.h>
28
29 #include <asm/dmaengine.h>
30
31 #include "shdma.h"
32
33 /* DMA descriptor control */
34 enum sh_dmae_desc_status {
35 DESC_IDLE,
36 DESC_PREPARED,
37 DESC_SUBMITTED,
38 DESC_COMPLETED, /* completed, have to call callback */
39 DESC_WAITING, /* callback called, waiting for ack / re-submit */
40 };
41
42 #define NR_DESCS_PER_CHANNEL 32
43 /* Default MEMCPY transfer size = 2^2 = 4 bytes */
44 #define LOG2_DEFAULT_XFER_SIZE 2
45
46 /* A bitmask with bits enough for enum sh_dmae_slave_chan_id */
47 static unsigned long sh_dmae_slave_used[BITS_TO_LONGS(SHDMA_SLAVE_NUMBER)];
48
49 static void sh_dmae_chan_ld_cleanup(struct sh_dmae_chan *sh_chan, bool all);
50
51 static void sh_dmae_writel(struct sh_dmae_chan *sh_dc, u32 data, u32 reg)
52 {
53 __raw_writel(data, sh_dc->base + reg / sizeof(u32));
54 }
55
56 static u32 sh_dmae_readl(struct sh_dmae_chan *sh_dc, u32 reg)
57 {
58 return __raw_readl(sh_dc->base + reg / sizeof(u32));
59 }
60
61 static u16 dmaor_read(struct sh_dmae_device *shdev)
62 {
63 return __raw_readw(shdev->chan_reg + DMAOR / sizeof(u32));
64 }
65
66 static void dmaor_write(struct sh_dmae_device *shdev, u16 data)
67 {
68 __raw_writew(data, shdev->chan_reg + DMAOR / sizeof(u32));
69 }
70
71 /*
72 * Reset DMA controller
73 *
74 * SH7780 has two DMAOR register
75 */
76 static void sh_dmae_ctl_stop(struct sh_dmae_device *shdev)
77 {
78 unsigned short dmaor = dmaor_read(shdev);
79
80 dmaor_write(shdev, dmaor & ~(DMAOR_NMIF | DMAOR_AE | DMAOR_DME));
81 }
82
83 static int sh_dmae_rst(struct sh_dmae_device *shdev)
84 {
85 unsigned short dmaor;
86
87 sh_dmae_ctl_stop(shdev);
88 dmaor = dmaor_read(shdev) | shdev->pdata->dmaor_init;
89
90 dmaor_write(shdev, dmaor);
91 if (dmaor_read(shdev) & (DMAOR_AE | DMAOR_NMIF)) {
92 pr_warning("dma-sh: Can't initialize DMAOR.\n");
93 return -EINVAL;
94 }
95 return 0;
96 }
97
98 static bool dmae_is_busy(struct sh_dmae_chan *sh_chan)
99 {
100 u32 chcr = sh_dmae_readl(sh_chan, CHCR);
101
102 if ((chcr & (CHCR_DE | CHCR_TE)) == CHCR_DE)
103 return true; /* working */
104
105 return false; /* waiting */
106 }
107
108 static unsigned int calc_xmit_shift(struct sh_dmae_chan *sh_chan, u32 chcr)
109 {
110 struct sh_dmae_device *shdev = container_of(sh_chan->common.device,
111 struct sh_dmae_device, common);
112 struct sh_dmae_pdata *pdata = shdev->pdata;
113 int cnt = ((chcr & pdata->ts_low_mask) >> pdata->ts_low_shift) |
114 ((chcr & pdata->ts_high_mask) >> pdata->ts_high_shift);
115
116 if (cnt >= pdata->ts_shift_num)
117 cnt = 0;
118
119 return pdata->ts_shift[cnt];
120 }
121
122 static u32 log2size_to_chcr(struct sh_dmae_chan *sh_chan, int l2size)
123 {
124 struct sh_dmae_device *shdev = container_of(sh_chan->common.device,
125 struct sh_dmae_device, common);
126 struct sh_dmae_pdata *pdata = shdev->pdata;
127 int i;
128
129 for (i = 0; i < pdata->ts_shift_num; i++)
130 if (pdata->ts_shift[i] == l2size)
131 break;
132
133 if (i == pdata->ts_shift_num)
134 i = 0;
135
136 return ((i << pdata->ts_low_shift) & pdata->ts_low_mask) |
137 ((i << pdata->ts_high_shift) & pdata->ts_high_mask);
138 }
139
140 static void dmae_set_reg(struct sh_dmae_chan *sh_chan, struct sh_dmae_regs *hw)
141 {
142 sh_dmae_writel(sh_chan, hw->sar, SAR);
143 sh_dmae_writel(sh_chan, hw->dar, DAR);
144 sh_dmae_writel(sh_chan, hw->tcr >> sh_chan->xmit_shift, TCR);
145 }
146
147 static void dmae_start(struct sh_dmae_chan *sh_chan)
148 {
149 u32 chcr = sh_dmae_readl(sh_chan, CHCR);
150
151 chcr |= CHCR_DE | CHCR_IE;
152 sh_dmae_writel(sh_chan, chcr & ~CHCR_TE, CHCR);
153 }
154
155 static void dmae_halt(struct sh_dmae_chan *sh_chan)
156 {
157 u32 chcr = sh_dmae_readl(sh_chan, CHCR);
158
159 chcr &= ~(CHCR_DE | CHCR_TE | CHCR_IE);
160 sh_dmae_writel(sh_chan, chcr, CHCR);
161 }
162
163 static void dmae_init(struct sh_dmae_chan *sh_chan)
164 {
165 /*
166 * Default configuration for dual address memory-memory transfer.
167 * 0x400 represents auto-request.
168 */
169 u32 chcr = DM_INC | SM_INC | 0x400 | log2size_to_chcr(sh_chan,
170 LOG2_DEFAULT_XFER_SIZE);
171 sh_chan->xmit_shift = calc_xmit_shift(sh_chan, chcr);
172 sh_dmae_writel(sh_chan, chcr, CHCR);
173 }
174
175 static int dmae_set_chcr(struct sh_dmae_chan *sh_chan, u32 val)
176 {
177 /* When DMA was working, can not set data to CHCR */
178 if (dmae_is_busy(sh_chan))
179 return -EBUSY;
180
181 sh_chan->xmit_shift = calc_xmit_shift(sh_chan, val);
182 sh_dmae_writel(sh_chan, val, CHCR);
183
184 return 0;
185 }
186
187 static int dmae_set_dmars(struct sh_dmae_chan *sh_chan, u16 val)
188 {
189 struct sh_dmae_device *shdev = container_of(sh_chan->common.device,
190 struct sh_dmae_device, common);
191 struct sh_dmae_pdata *pdata = shdev->pdata;
192 struct sh_dmae_channel *chan_pdata = &pdata->channel[sh_chan->id];
193 u16 __iomem *addr = shdev->dmars + chan_pdata->dmars / sizeof(u16);
194 int shift = chan_pdata->dmars_bit;
195
196 if (dmae_is_busy(sh_chan))
197 return -EBUSY;
198
199 __raw_writew((__raw_readw(addr) & (0xff00 >> shift)) | (val << shift),
200 addr);
201
202 return 0;
203 }
204
205 static dma_cookie_t sh_dmae_tx_submit(struct dma_async_tx_descriptor *tx)
206 {
207 struct sh_desc *desc = tx_to_sh_desc(tx), *chunk, *last = desc, *c;
208 struct sh_dmae_chan *sh_chan = to_sh_chan(tx->chan);
209 dma_async_tx_callback callback = tx->callback;
210 dma_cookie_t cookie;
211
212 spin_lock_bh(&sh_chan->desc_lock);
213
214 cookie = sh_chan->common.cookie;
215 cookie++;
216 if (cookie < 0)
217 cookie = 1;
218
219 sh_chan->common.cookie = cookie;
220 tx->cookie = cookie;
221
222 /* Mark all chunks of this descriptor as submitted, move to the queue */
223 list_for_each_entry_safe(chunk, c, desc->node.prev, node) {
224 /*
225 * All chunks are on the global ld_free, so, we have to find
226 * the end of the chain ourselves
227 */
228 if (chunk != desc && (chunk->mark == DESC_IDLE ||
229 chunk->async_tx.cookie > 0 ||
230 chunk->async_tx.cookie == -EBUSY ||
231 &chunk->node == &sh_chan->ld_free))
232 break;
233 chunk->mark = DESC_SUBMITTED;
234 /* Callback goes to the last chunk */
235 chunk->async_tx.callback = NULL;
236 chunk->cookie = cookie;
237 list_move_tail(&chunk->node, &sh_chan->ld_queue);
238 last = chunk;
239 }
240
241 last->async_tx.callback = callback;
242 last->async_tx.callback_param = tx->callback_param;
243
244 dev_dbg(sh_chan->dev, "submit #%d@%p on %d: %x[%d] -> %x\n",
245 tx->cookie, &last->async_tx, sh_chan->id,
246 desc->hw.sar, desc->hw.tcr, desc->hw.dar);
247
248 spin_unlock_bh(&sh_chan->desc_lock);
249
250 return cookie;
251 }
252
253 /* Called with desc_lock held */
254 static struct sh_desc *sh_dmae_get_desc(struct sh_dmae_chan *sh_chan)
255 {
256 struct sh_desc *desc;
257
258 list_for_each_entry(desc, &sh_chan->ld_free, node)
259 if (desc->mark != DESC_PREPARED) {
260 BUG_ON(desc->mark != DESC_IDLE);
261 list_del(&desc->node);
262 return desc;
263 }
264
265 return NULL;
266 }
267
268 static struct sh_dmae_slave_config *sh_dmae_find_slave(
269 struct sh_dmae_chan *sh_chan, enum sh_dmae_slave_chan_id slave_id)
270 {
271 struct dma_device *dma_dev = sh_chan->common.device;
272 struct sh_dmae_device *shdev = container_of(dma_dev,
273 struct sh_dmae_device, common);
274 struct sh_dmae_pdata *pdata = shdev->pdata;
275 int i;
276
277 if ((unsigned)slave_id >= SHDMA_SLAVE_NUMBER)
278 return NULL;
279
280 for (i = 0; i < pdata->slave_num; i++)
281 if (pdata->slave[i].slave_id == slave_id)
282 return pdata->slave + i;
283
284 return NULL;
285 }
286
287 static int sh_dmae_alloc_chan_resources(struct dma_chan *chan)
288 {
289 struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
290 struct sh_desc *desc;
291 struct sh_dmae_slave *param = chan->private;
292
293 pm_runtime_get_sync(sh_chan->dev);
294
295 /*
296 * This relies on the guarantee from dmaengine that alloc_chan_resources
297 * never runs concurrently with itself or free_chan_resources.
298 */
299 if (param) {
300 struct sh_dmae_slave_config *cfg;
301
302 cfg = sh_dmae_find_slave(sh_chan, param->slave_id);
303 if (!cfg)
304 return -EINVAL;
305
306 if (test_and_set_bit(param->slave_id, sh_dmae_slave_used))
307 return -EBUSY;
308
309 param->config = cfg;
310
311 dmae_set_dmars(sh_chan, cfg->mid_rid);
312 dmae_set_chcr(sh_chan, cfg->chcr);
313 } else if ((sh_dmae_readl(sh_chan, CHCR) & 0xf00) != 0x400) {
314 dmae_init(sh_chan);
315 }
316
317 spin_lock_bh(&sh_chan->desc_lock);
318 while (sh_chan->descs_allocated < NR_DESCS_PER_CHANNEL) {
319 spin_unlock_bh(&sh_chan->desc_lock);
320 desc = kzalloc(sizeof(struct sh_desc), GFP_KERNEL);
321 if (!desc) {
322 spin_lock_bh(&sh_chan->desc_lock);
323 break;
324 }
325 dma_async_tx_descriptor_init(&desc->async_tx,
326 &sh_chan->common);
327 desc->async_tx.tx_submit = sh_dmae_tx_submit;
328 desc->mark = DESC_IDLE;
329
330 spin_lock_bh(&sh_chan->desc_lock);
331 list_add(&desc->node, &sh_chan->ld_free);
332 sh_chan->descs_allocated++;
333 }
334 spin_unlock_bh(&sh_chan->desc_lock);
335
336 if (!sh_chan->descs_allocated)
337 pm_runtime_put(sh_chan->dev);
338
339 return sh_chan->descs_allocated;
340 }
341
342 /*
343 * sh_dma_free_chan_resources - Free all resources of the channel.
344 */
345 static void sh_dmae_free_chan_resources(struct dma_chan *chan)
346 {
347 struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
348 struct sh_desc *desc, *_desc;
349 LIST_HEAD(list);
350 int descs = sh_chan->descs_allocated;
351
352 dmae_halt(sh_chan);
353
354 /* Prepared and not submitted descriptors can still be on the queue */
355 if (!list_empty(&sh_chan->ld_queue))
356 sh_dmae_chan_ld_cleanup(sh_chan, true);
357
358 if (chan->private) {
359 /* The caller is holding dma_list_mutex */
360 struct sh_dmae_slave *param = chan->private;
361 clear_bit(param->slave_id, sh_dmae_slave_used);
362 }
363
364 spin_lock_bh(&sh_chan->desc_lock);
365
366 list_splice_init(&sh_chan->ld_free, &list);
367 sh_chan->descs_allocated = 0;
368
369 spin_unlock_bh(&sh_chan->desc_lock);
370
371 if (descs > 0)
372 pm_runtime_put(sh_chan->dev);
373
374 list_for_each_entry_safe(desc, _desc, &list, node)
375 kfree(desc);
376 }
377
378 /**
379 * sh_dmae_add_desc - get, set up and return one transfer descriptor
380 * @sh_chan: DMA channel
381 * @flags: DMA transfer flags
382 * @dest: destination DMA address, incremented when direction equals
383 * DMA_FROM_DEVICE or DMA_BIDIRECTIONAL
384 * @src: source DMA address, incremented when direction equals
385 * DMA_TO_DEVICE or DMA_BIDIRECTIONAL
386 * @len: DMA transfer length
387 * @first: if NULL, set to the current descriptor and cookie set to -EBUSY
388 * @direction: needed for slave DMA to decide which address to keep constant,
389 * equals DMA_BIDIRECTIONAL for MEMCPY
390 * Returns 0 or an error
391 * Locks: called with desc_lock held
392 */
393 static struct sh_desc *sh_dmae_add_desc(struct sh_dmae_chan *sh_chan,
394 unsigned long flags, dma_addr_t *dest, dma_addr_t *src, size_t *len,
395 struct sh_desc **first, enum dma_data_direction direction)
396 {
397 struct sh_desc *new;
398 size_t copy_size;
399
400 if (!*len)
401 return NULL;
402
403 /* Allocate the link descriptor from the free list */
404 new = sh_dmae_get_desc(sh_chan);
405 if (!new) {
406 dev_err(sh_chan->dev, "No free link descriptor available\n");
407 return NULL;
408 }
409
410 copy_size = min(*len, (size_t)SH_DMA_TCR_MAX + 1);
411
412 new->hw.sar = *src;
413 new->hw.dar = *dest;
414 new->hw.tcr = copy_size;
415
416 if (!*first) {
417 /* First desc */
418 new->async_tx.cookie = -EBUSY;
419 *first = new;
420 } else {
421 /* Other desc - invisible to the user */
422 new->async_tx.cookie = -EINVAL;
423 }
424
425 dev_dbg(sh_chan->dev,
426 "chaining (%u/%u)@%x -> %x with %p, cookie %d, shift %d\n",
427 copy_size, *len, *src, *dest, &new->async_tx,
428 new->async_tx.cookie, sh_chan->xmit_shift);
429
430 new->mark = DESC_PREPARED;
431 new->async_tx.flags = flags;
432 new->direction = direction;
433
434 *len -= copy_size;
435 if (direction == DMA_BIDIRECTIONAL || direction == DMA_TO_DEVICE)
436 *src += copy_size;
437 if (direction == DMA_BIDIRECTIONAL || direction == DMA_FROM_DEVICE)
438 *dest += copy_size;
439
440 return new;
441 }
442
443 /*
444 * sh_dmae_prep_sg - prepare transfer descriptors from an SG list
445 *
446 * Common routine for public (MEMCPY) and slave DMA. The MEMCPY case is also
447 * converted to scatter-gather to guarantee consistent locking and a correct
448 * list manipulation. For slave DMA direction carries the usual meaning, and,
449 * logically, the SG list is RAM and the addr variable contains slave address,
450 * e.g., the FIFO I/O register. For MEMCPY direction equals DMA_BIDIRECTIONAL
451 * and the SG list contains only one element and points at the source buffer.
452 */
453 static struct dma_async_tx_descriptor *sh_dmae_prep_sg(struct sh_dmae_chan *sh_chan,
454 struct scatterlist *sgl, unsigned int sg_len, dma_addr_t *addr,
455 enum dma_data_direction direction, unsigned long flags)
456 {
457 struct scatterlist *sg;
458 struct sh_desc *first = NULL, *new = NULL /* compiler... */;
459 LIST_HEAD(tx_list);
460 int chunks = 0;
461 int i;
462
463 if (!sg_len)
464 return NULL;
465
466 for_each_sg(sgl, sg, sg_len, i)
467 chunks += (sg_dma_len(sg) + SH_DMA_TCR_MAX) /
468 (SH_DMA_TCR_MAX + 1);
469
470 /* Have to lock the whole loop to protect against concurrent release */
471 spin_lock_bh(&sh_chan->desc_lock);
472
473 /*
474 * Chaining:
475 * first descriptor is what user is dealing with in all API calls, its
476 * cookie is at first set to -EBUSY, at tx-submit to a positive
477 * number
478 * if more than one chunk is needed further chunks have cookie = -EINVAL
479 * the last chunk, if not equal to the first, has cookie = -ENOSPC
480 * all chunks are linked onto the tx_list head with their .node heads
481 * only during this function, then they are immediately spliced
482 * back onto the free list in form of a chain
483 */
484 for_each_sg(sgl, sg, sg_len, i) {
485 dma_addr_t sg_addr = sg_dma_address(sg);
486 size_t len = sg_dma_len(sg);
487
488 if (!len)
489 goto err_get_desc;
490
491 do {
492 dev_dbg(sh_chan->dev, "Add SG #%d@%p[%d], dma %llx\n",
493 i, sg, len, (unsigned long long)sg_addr);
494
495 if (direction == DMA_FROM_DEVICE)
496 new = sh_dmae_add_desc(sh_chan, flags,
497 &sg_addr, addr, &len, &first,
498 direction);
499 else
500 new = sh_dmae_add_desc(sh_chan, flags,
501 addr, &sg_addr, &len, &first,
502 direction);
503 if (!new)
504 goto err_get_desc;
505
506 new->chunks = chunks--;
507 list_add_tail(&new->node, &tx_list);
508 } while (len);
509 }
510
511 if (new != first)
512 new->async_tx.cookie = -ENOSPC;
513
514 /* Put them back on the free list, so, they don't get lost */
515 list_splice_tail(&tx_list, &sh_chan->ld_free);
516
517 spin_unlock_bh(&sh_chan->desc_lock);
518
519 return &first->async_tx;
520
521 err_get_desc:
522 list_for_each_entry(new, &tx_list, node)
523 new->mark = DESC_IDLE;
524 list_splice(&tx_list, &sh_chan->ld_free);
525
526 spin_unlock_bh(&sh_chan->desc_lock);
527
528 return NULL;
529 }
530
531 static struct dma_async_tx_descriptor *sh_dmae_prep_memcpy(
532 struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t dma_src,
533 size_t len, unsigned long flags)
534 {
535 struct sh_dmae_chan *sh_chan;
536 struct scatterlist sg;
537
538 if (!chan || !len)
539 return NULL;
540
541 chan->private = NULL;
542
543 sh_chan = to_sh_chan(chan);
544
545 sg_init_table(&sg, 1);
546 sg_set_page(&sg, pfn_to_page(PFN_DOWN(dma_src)), len,
547 offset_in_page(dma_src));
548 sg_dma_address(&sg) = dma_src;
549 sg_dma_len(&sg) = len;
550
551 return sh_dmae_prep_sg(sh_chan, &sg, 1, &dma_dest, DMA_BIDIRECTIONAL,
552 flags);
553 }
554
555 static struct dma_async_tx_descriptor *sh_dmae_prep_slave_sg(
556 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
557 enum dma_data_direction direction, unsigned long flags)
558 {
559 struct sh_dmae_slave *param;
560 struct sh_dmae_chan *sh_chan;
561
562 if (!chan)
563 return NULL;
564
565 sh_chan = to_sh_chan(chan);
566 param = chan->private;
567
568 /* Someone calling slave DMA on a public channel? */
569 if (!param || !sg_len) {
570 dev_warn(sh_chan->dev, "%s: bad parameter: %p, %d, %d\n",
571 __func__, param, sg_len, param ? param->slave_id : -1);
572 return NULL;
573 }
574
575 /*
576 * if (param != NULL), this is a successfully requested slave channel,
577 * therefore param->config != NULL too.
578 */
579 return sh_dmae_prep_sg(sh_chan, sgl, sg_len, &param->config->addr,
580 direction, flags);
581 }
582
583 static void sh_dmae_terminate_all(struct dma_chan *chan)
584 {
585 struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
586
587 if (!chan)
588 return;
589
590 dmae_halt(sh_chan);
591
592 spin_lock_bh(&sh_chan->desc_lock);
593 if (!list_empty(&sh_chan->ld_queue)) {
594 /* Record partial transfer */
595 struct sh_desc *desc = list_entry(sh_chan->ld_queue.next,
596 struct sh_desc, node);
597 desc->partial = (desc->hw.tcr - sh_dmae_readl(sh_chan, TCR)) <<
598 sh_chan->xmit_shift;
599
600 }
601 spin_unlock_bh(&sh_chan->desc_lock);
602
603 sh_dmae_chan_ld_cleanup(sh_chan, true);
604 }
605
606 static dma_async_tx_callback __ld_cleanup(struct sh_dmae_chan *sh_chan, bool all)
607 {
608 struct sh_desc *desc, *_desc;
609 /* Is the "exposed" head of a chain acked? */
610 bool head_acked = false;
611 dma_cookie_t cookie = 0;
612 dma_async_tx_callback callback = NULL;
613 void *param = NULL;
614
615 spin_lock_bh(&sh_chan->desc_lock);
616 list_for_each_entry_safe(desc, _desc, &sh_chan->ld_queue, node) {
617 struct dma_async_tx_descriptor *tx = &desc->async_tx;
618
619 BUG_ON(tx->cookie > 0 && tx->cookie != desc->cookie);
620 BUG_ON(desc->mark != DESC_SUBMITTED &&
621 desc->mark != DESC_COMPLETED &&
622 desc->mark != DESC_WAITING);
623
624 /*
625 * queue is ordered, and we use this loop to (1) clean up all
626 * completed descriptors, and to (2) update descriptor flags of
627 * any chunks in a (partially) completed chain
628 */
629 if (!all && desc->mark == DESC_SUBMITTED &&
630 desc->cookie != cookie)
631 break;
632
633 if (tx->cookie > 0)
634 cookie = tx->cookie;
635
636 if (desc->mark == DESC_COMPLETED && desc->chunks == 1) {
637 if (sh_chan->completed_cookie != desc->cookie - 1)
638 dev_dbg(sh_chan->dev,
639 "Completing cookie %d, expected %d\n",
640 desc->cookie,
641 sh_chan->completed_cookie + 1);
642 sh_chan->completed_cookie = desc->cookie;
643 }
644
645 /* Call callback on the last chunk */
646 if (desc->mark == DESC_COMPLETED && tx->callback) {
647 desc->mark = DESC_WAITING;
648 callback = tx->callback;
649 param = tx->callback_param;
650 dev_dbg(sh_chan->dev, "descriptor #%d@%p on %d callback\n",
651 tx->cookie, tx, sh_chan->id);
652 BUG_ON(desc->chunks != 1);
653 break;
654 }
655
656 if (tx->cookie > 0 || tx->cookie == -EBUSY) {
657 if (desc->mark == DESC_COMPLETED) {
658 BUG_ON(tx->cookie < 0);
659 desc->mark = DESC_WAITING;
660 }
661 head_acked = async_tx_test_ack(tx);
662 } else {
663 switch (desc->mark) {
664 case DESC_COMPLETED:
665 desc->mark = DESC_WAITING;
666 /* Fall through */
667 case DESC_WAITING:
668 if (head_acked)
669 async_tx_ack(&desc->async_tx);
670 }
671 }
672
673 dev_dbg(sh_chan->dev, "descriptor %p #%d completed.\n",
674 tx, tx->cookie);
675
676 if (((desc->mark == DESC_COMPLETED ||
677 desc->mark == DESC_WAITING) &&
678 async_tx_test_ack(&desc->async_tx)) || all) {
679 /* Remove from ld_queue list */
680 desc->mark = DESC_IDLE;
681 list_move(&desc->node, &sh_chan->ld_free);
682 }
683 }
684 spin_unlock_bh(&sh_chan->desc_lock);
685
686 if (callback)
687 callback(param);
688
689 return callback;
690 }
691
692 /*
693 * sh_chan_ld_cleanup - Clean up link descriptors
694 *
695 * This function cleans up the ld_queue of DMA channel.
696 */
697 static void sh_dmae_chan_ld_cleanup(struct sh_dmae_chan *sh_chan, bool all)
698 {
699 while (__ld_cleanup(sh_chan, all))
700 ;
701 }
702
703 static void sh_chan_xfer_ld_queue(struct sh_dmae_chan *sh_chan)
704 {
705 struct sh_desc *desc;
706
707 spin_lock_bh(&sh_chan->desc_lock);
708 /* DMA work check */
709 if (dmae_is_busy(sh_chan)) {
710 spin_unlock_bh(&sh_chan->desc_lock);
711 return;
712 }
713
714 /* Find the first not transferred desciptor */
715 list_for_each_entry(desc, &sh_chan->ld_queue, node)
716 if (desc->mark == DESC_SUBMITTED) {
717 dev_dbg(sh_chan->dev, "Queue #%d to %d: %u@%x -> %x\n",
718 desc->async_tx.cookie, sh_chan->id,
719 desc->hw.tcr, desc->hw.sar, desc->hw.dar);
720 /* Get the ld start address from ld_queue */
721 dmae_set_reg(sh_chan, &desc->hw);
722 dmae_start(sh_chan);
723 break;
724 }
725
726 spin_unlock_bh(&sh_chan->desc_lock);
727 }
728
729 static void sh_dmae_memcpy_issue_pending(struct dma_chan *chan)
730 {
731 struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
732 sh_chan_xfer_ld_queue(sh_chan);
733 }
734
735 static enum dma_status sh_dmae_is_complete(struct dma_chan *chan,
736 dma_cookie_t cookie,
737 dma_cookie_t *done,
738 dma_cookie_t *used)
739 {
740 struct sh_dmae_chan *sh_chan = to_sh_chan(chan);
741 dma_cookie_t last_used;
742 dma_cookie_t last_complete;
743 enum dma_status status;
744
745 sh_dmae_chan_ld_cleanup(sh_chan, false);
746
747 last_used = chan->cookie;
748 last_complete = sh_chan->completed_cookie;
749 BUG_ON(last_complete < 0);
750
751 if (done)
752 *done = last_complete;
753
754 if (used)
755 *used = last_used;
756
757 spin_lock_bh(&sh_chan->desc_lock);
758
759 status = dma_async_is_complete(cookie, last_complete, last_used);
760
761 /*
762 * If we don't find cookie on the queue, it has been aborted and we have
763 * to report error
764 */
765 if (status != DMA_SUCCESS) {
766 struct sh_desc *desc;
767 status = DMA_ERROR;
768 list_for_each_entry(desc, &sh_chan->ld_queue, node)
769 if (desc->cookie == cookie) {
770 status = DMA_IN_PROGRESS;
771 break;
772 }
773 }
774
775 spin_unlock_bh(&sh_chan->desc_lock);
776
777 return status;
778 }
779
780 static irqreturn_t sh_dmae_interrupt(int irq, void *data)
781 {
782 irqreturn_t ret = IRQ_NONE;
783 struct sh_dmae_chan *sh_chan = (struct sh_dmae_chan *)data;
784 u32 chcr = sh_dmae_readl(sh_chan, CHCR);
785
786 if (chcr & CHCR_TE) {
787 /* DMA stop */
788 dmae_halt(sh_chan);
789
790 ret = IRQ_HANDLED;
791 tasklet_schedule(&sh_chan->tasklet);
792 }
793
794 return ret;
795 }
796
797 #if defined(CONFIG_CPU_SH4)
798 static irqreturn_t sh_dmae_err(int irq, void *data)
799 {
800 struct sh_dmae_device *shdev = (struct sh_dmae_device *)data;
801 int i;
802
803 /* halt the dma controller */
804 sh_dmae_ctl_stop(shdev);
805
806 /* We cannot detect, which channel caused the error, have to reset all */
807 for (i = 0; i < SH_DMAC_MAX_CHANNELS; i++) {
808 struct sh_dmae_chan *sh_chan = shdev->chan[i];
809 if (sh_chan) {
810 struct sh_desc *desc;
811 /* Stop the channel */
812 dmae_halt(sh_chan);
813 /* Complete all */
814 list_for_each_entry(desc, &sh_chan->ld_queue, node) {
815 struct dma_async_tx_descriptor *tx = &desc->async_tx;
816 desc->mark = DESC_IDLE;
817 if (tx->callback)
818 tx->callback(tx->callback_param);
819 }
820 list_splice_init(&sh_chan->ld_queue, &sh_chan->ld_free);
821 }
822 }
823 sh_dmae_rst(shdev);
824
825 return IRQ_HANDLED;
826 }
827 #endif
828
829 static void dmae_do_tasklet(unsigned long data)
830 {
831 struct sh_dmae_chan *sh_chan = (struct sh_dmae_chan *)data;
832 struct sh_desc *desc;
833 u32 sar_buf = sh_dmae_readl(sh_chan, SAR);
834 u32 dar_buf = sh_dmae_readl(sh_chan, DAR);
835
836 spin_lock(&sh_chan->desc_lock);
837 list_for_each_entry(desc, &sh_chan->ld_queue, node) {
838 if (desc->mark == DESC_SUBMITTED &&
839 ((desc->direction == DMA_FROM_DEVICE &&
840 (desc->hw.dar + desc->hw.tcr) == dar_buf) ||
841 (desc->hw.sar + desc->hw.tcr) == sar_buf)) {
842 dev_dbg(sh_chan->dev, "done #%d@%p dst %u\n",
843 desc->async_tx.cookie, &desc->async_tx,
844 desc->hw.dar);
845 desc->mark = DESC_COMPLETED;
846 break;
847 }
848 }
849 spin_unlock(&sh_chan->desc_lock);
850
851 /* Next desc */
852 sh_chan_xfer_ld_queue(sh_chan);
853 sh_dmae_chan_ld_cleanup(sh_chan, false);
854 }
855
856 static int __devinit sh_dmae_chan_probe(struct sh_dmae_device *shdev, int id,
857 int irq, unsigned long flags)
858 {
859 int err;
860 struct sh_dmae_channel *chan_pdata = &shdev->pdata->channel[id];
861 struct platform_device *pdev = to_platform_device(shdev->common.dev);
862 struct sh_dmae_chan *new_sh_chan;
863
864 /* alloc channel */
865 new_sh_chan = kzalloc(sizeof(struct sh_dmae_chan), GFP_KERNEL);
866 if (!new_sh_chan) {
867 dev_err(shdev->common.dev,
868 "No free memory for allocating dma channels!\n");
869 return -ENOMEM;
870 }
871
872 /* copy struct dma_device */
873 new_sh_chan->common.device = &shdev->common;
874
875 new_sh_chan->dev = shdev->common.dev;
876 new_sh_chan->id = id;
877 new_sh_chan->irq = irq;
878 new_sh_chan->base = shdev->chan_reg + chan_pdata->offset / sizeof(u32);
879
880 /* Init DMA tasklet */
881 tasklet_init(&new_sh_chan->tasklet, dmae_do_tasklet,
882 (unsigned long)new_sh_chan);
883
884 /* Init the channel */
885 dmae_init(new_sh_chan);
886
887 spin_lock_init(&new_sh_chan->desc_lock);
888
889 /* Init descripter manage list */
890 INIT_LIST_HEAD(&new_sh_chan->ld_queue);
891 INIT_LIST_HEAD(&new_sh_chan->ld_free);
892
893 /* Add the channel to DMA device channel list */
894 list_add_tail(&new_sh_chan->common.device_node,
895 &shdev->common.channels);
896 shdev->common.chancnt++;
897
898 if (pdev->id >= 0)
899 snprintf(new_sh_chan->dev_id, sizeof(new_sh_chan->dev_id),
900 "sh-dmae%d.%d", pdev->id, new_sh_chan->id);
901 else
902 snprintf(new_sh_chan->dev_id, sizeof(new_sh_chan->dev_id),
903 "sh-dma%d", new_sh_chan->id);
904
905 /* set up channel irq */
906 err = request_irq(irq, &sh_dmae_interrupt, flags,
907 new_sh_chan->dev_id, new_sh_chan);
908 if (err) {
909 dev_err(shdev->common.dev, "DMA channel %d request_irq error "
910 "with return %d\n", id, err);
911 goto err_no_irq;
912 }
913
914 shdev->chan[id] = new_sh_chan;
915 return 0;
916
917 err_no_irq:
918 /* remove from dmaengine device node */
919 list_del(&new_sh_chan->common.device_node);
920 kfree(new_sh_chan);
921 return err;
922 }
923
924 static void sh_dmae_chan_remove(struct sh_dmae_device *shdev)
925 {
926 int i;
927
928 for (i = shdev->common.chancnt - 1 ; i >= 0 ; i--) {
929 if (shdev->chan[i]) {
930 struct sh_dmae_chan *sh_chan = shdev->chan[i];
931
932 free_irq(sh_chan->irq, sh_chan);
933
934 list_del(&sh_chan->common.device_node);
935 kfree(sh_chan);
936 shdev->chan[i] = NULL;
937 }
938 }
939 shdev->common.chancnt = 0;
940 }
941
942 static int __init sh_dmae_probe(struct platform_device *pdev)
943 {
944 struct sh_dmae_pdata *pdata = pdev->dev.platform_data;
945 unsigned long irqflags = IRQF_DISABLED,
946 chan_flag[SH_DMAC_MAX_CHANNELS] = {};
947 int errirq, chan_irq[SH_DMAC_MAX_CHANNELS];
948 int err, i, irq_cnt = 0, irqres = 0;
949 struct sh_dmae_device *shdev;
950 struct resource *chan, *dmars, *errirq_res, *chanirq_res;
951
952 /* get platform data */
953 if (!pdata || !pdata->channel_num)
954 return -ENODEV;
955
956 chan = platform_get_resource(pdev, IORESOURCE_MEM, 0);
957 /* DMARS area is optional, if absent, this controller cannot do slave DMA */
958 dmars = platform_get_resource(pdev, IORESOURCE_MEM, 1);
959 /*
960 * IRQ resources:
961 * 1. there always must be at least one IRQ IO-resource. On SH4 it is
962 * the error IRQ, in which case it is the only IRQ in this resource:
963 * start == end. If it is the only IRQ resource, all channels also
964 * use the same IRQ.
965 * 2. DMA channel IRQ resources can be specified one per resource or in
966 * ranges (start != end)
967 * 3. iff all events (channels and, optionally, error) on this
968 * controller use the same IRQ, only one IRQ resource can be
969 * specified, otherwise there must be one IRQ per channel, even if
970 * some of them are equal
971 * 4. if all IRQs on this controller are equal or if some specific IRQs
972 * specify IORESOURCE_IRQ_SHAREABLE in their resources, they will be
973 * requested with the IRQF_SHARED flag
974 */
975 errirq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0);
976 if (!chan || !errirq_res)
977 return -ENODEV;
978
979 if (!request_mem_region(chan->start, resource_size(chan), pdev->name)) {
980 dev_err(&pdev->dev, "DMAC register region already claimed\n");
981 return -EBUSY;
982 }
983
984 if (dmars && !request_mem_region(dmars->start, resource_size(dmars), pdev->name)) {
985 dev_err(&pdev->dev, "DMAC DMARS region already claimed\n");
986 err = -EBUSY;
987 goto ermrdmars;
988 }
989
990 err = -ENOMEM;
991 shdev = kzalloc(sizeof(struct sh_dmae_device), GFP_KERNEL);
992 if (!shdev) {
993 dev_err(&pdev->dev, "Not enough memory\n");
994 goto ealloc;
995 }
996
997 shdev->chan_reg = ioremap(chan->start, resource_size(chan));
998 if (!shdev->chan_reg)
999 goto emapchan;
1000 if (dmars) {
1001 shdev->dmars = ioremap(dmars->start, resource_size(dmars));
1002 if (!shdev->dmars)
1003 goto emapdmars;
1004 }
1005
1006 /* platform data */
1007 shdev->pdata = pdata;
1008
1009 pm_runtime_enable(&pdev->dev);
1010 pm_runtime_get_sync(&pdev->dev);
1011
1012 /* reset dma controller */
1013 err = sh_dmae_rst(shdev);
1014 if (err)
1015 goto rst_err;
1016
1017 INIT_LIST_HEAD(&shdev->common.channels);
1018
1019 dma_cap_set(DMA_MEMCPY, shdev->common.cap_mask);
1020 if (dmars)
1021 dma_cap_set(DMA_SLAVE, shdev->common.cap_mask);
1022
1023 shdev->common.device_alloc_chan_resources
1024 = sh_dmae_alloc_chan_resources;
1025 shdev->common.device_free_chan_resources = sh_dmae_free_chan_resources;
1026 shdev->common.device_prep_dma_memcpy = sh_dmae_prep_memcpy;
1027 shdev->common.device_is_tx_complete = sh_dmae_is_complete;
1028 shdev->common.device_issue_pending = sh_dmae_memcpy_issue_pending;
1029
1030 /* Compulsory for DMA_SLAVE fields */
1031 shdev->common.device_prep_slave_sg = sh_dmae_prep_slave_sg;
1032 shdev->common.device_terminate_all = sh_dmae_terminate_all;
1033
1034 shdev->common.dev = &pdev->dev;
1035 /* Default transfer size of 32 bytes requires 32-byte alignment */
1036 shdev->common.copy_align = LOG2_DEFAULT_XFER_SIZE;
1037
1038 #if defined(CONFIG_CPU_SH4)
1039 chanirq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 1);
1040
1041 if (!chanirq_res)
1042 chanirq_res = errirq_res;
1043 else
1044 irqres++;
1045
1046 if (chanirq_res == errirq_res ||
1047 (errirq_res->flags & IORESOURCE_BITS) == IORESOURCE_IRQ_SHAREABLE)
1048 irqflags = IRQF_SHARED;
1049
1050 errirq = errirq_res->start;
1051
1052 err = request_irq(errirq, sh_dmae_err, irqflags,
1053 "DMAC Address Error", shdev);
1054 if (err) {
1055 dev_err(&pdev->dev,
1056 "DMA failed requesting irq #%d, error %d\n",
1057 errirq, err);
1058 goto eirq_err;
1059 }
1060
1061 #else
1062 chanirq_res = errirq_res;
1063 #endif /* CONFIG_CPU_SH4 */
1064
1065 if (chanirq_res->start == chanirq_res->end &&
1066 !platform_get_resource(pdev, IORESOURCE_IRQ, 1)) {
1067 /* Special case - all multiplexed */
1068 for (; irq_cnt < pdata->channel_num; irq_cnt++) {
1069 chan_irq[irq_cnt] = chanirq_res->start;
1070 chan_flag[irq_cnt] = IRQF_SHARED;
1071 }
1072 } else {
1073 do {
1074 for (i = chanirq_res->start; i <= chanirq_res->end; i++) {
1075 if ((errirq_res->flags & IORESOURCE_BITS) ==
1076 IORESOURCE_IRQ_SHAREABLE)
1077 chan_flag[irq_cnt] = IRQF_SHARED;
1078 else
1079 chan_flag[irq_cnt] = IRQF_DISABLED;
1080 dev_dbg(&pdev->dev,
1081 "Found IRQ %d for channel %d\n",
1082 i, irq_cnt);
1083 chan_irq[irq_cnt++] = i;
1084 }
1085 chanirq_res = platform_get_resource(pdev,
1086 IORESOURCE_IRQ, ++irqres);
1087 } while (irq_cnt < pdata->channel_num && chanirq_res);
1088 }
1089
1090 if (irq_cnt < pdata->channel_num)
1091 goto eirqres;
1092
1093 /* Create DMA Channel */
1094 for (i = 0; i < pdata->channel_num; i++) {
1095 err = sh_dmae_chan_probe(shdev, i, chan_irq[i], chan_flag[i]);
1096 if (err)
1097 goto chan_probe_err;
1098 }
1099
1100 pm_runtime_put(&pdev->dev);
1101
1102 platform_set_drvdata(pdev, shdev);
1103 dma_async_device_register(&shdev->common);
1104
1105 return err;
1106
1107 chan_probe_err:
1108 sh_dmae_chan_remove(shdev);
1109 eirqres:
1110 #if defined(CONFIG_CPU_SH4)
1111 free_irq(errirq, shdev);
1112 eirq_err:
1113 #endif
1114 rst_err:
1115 pm_runtime_put(&pdev->dev);
1116 if (dmars)
1117 iounmap(shdev->dmars);
1118 emapdmars:
1119 iounmap(shdev->chan_reg);
1120 emapchan:
1121 kfree(shdev);
1122 ealloc:
1123 if (dmars)
1124 release_mem_region(dmars->start, resource_size(dmars));
1125 ermrdmars:
1126 release_mem_region(chan->start, resource_size(chan));
1127
1128 return err;
1129 }
1130
1131 static int __exit sh_dmae_remove(struct platform_device *pdev)
1132 {
1133 struct sh_dmae_device *shdev = platform_get_drvdata(pdev);
1134 struct resource *res;
1135 int errirq = platform_get_irq(pdev, 0);
1136
1137 dma_async_device_unregister(&shdev->common);
1138
1139 if (errirq > 0)
1140 free_irq(errirq, shdev);
1141
1142 /* channel data remove */
1143 sh_dmae_chan_remove(shdev);
1144
1145 pm_runtime_disable(&pdev->dev);
1146
1147 if (shdev->dmars)
1148 iounmap(shdev->dmars);
1149 iounmap(shdev->chan_reg);
1150
1151 kfree(shdev);
1152
1153 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1154 if (res)
1155 release_mem_region(res->start, resource_size(res));
1156 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1157 if (res)
1158 release_mem_region(res->start, resource_size(res));
1159
1160 return 0;
1161 }
1162
1163 static void sh_dmae_shutdown(struct platform_device *pdev)
1164 {
1165 struct sh_dmae_device *shdev = platform_get_drvdata(pdev);
1166 sh_dmae_ctl_stop(shdev);
1167 }
1168
1169 static struct platform_driver sh_dmae_driver = {
1170 .remove = __exit_p(sh_dmae_remove),
1171 .shutdown = sh_dmae_shutdown,
1172 .driver = {
1173 .name = "sh-dma-engine",
1174 },
1175 };
1176
1177 static int __init sh_dmae_init(void)
1178 {
1179 return platform_driver_probe(&sh_dmae_driver, sh_dmae_probe);
1180 }
1181 module_init(sh_dmae_init);
1182
1183 static void __exit sh_dmae_exit(void)
1184 {
1185 platform_driver_unregister(&sh_dmae_driver);
1186 }
1187 module_exit(sh_dmae_exit);
1188
1189 MODULE_AUTHOR("Nobuhiro Iwamatsu <iwamatsu.nobuhiro@renesas.com>");
1190 MODULE_DESCRIPTION("Renesas SH DMA Engine driver");
1191 MODULE_LICENSE("GPL");