drivers: power: report battery voltage in AOSP compatible format
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / dma / pl330.c
1 /*
2 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
3 * http://www.samsung.com
4 *
5 * Copyright (C) 2010 Samsung Electronics Co. Ltd.
6 * Jaswinder Singh <jassi.brar@samsung.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/io.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/module.h>
19 #include <linux/string.h>
20 #include <linux/delay.h>
21 #include <linux/interrupt.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/dmaengine.h>
24 #include <linux/amba/bus.h>
25 #include <linux/amba/pl330.h>
26 #include <linux/scatterlist.h>
27 #include <linux/of.h>
28 #include <linux/of_dma.h>
29 #include <linux/err.h>
30
31 #include "dmaengine.h"
32 #define PL330_MAX_CHAN 8
33 #define PL330_MAX_IRQS 32
34 #define PL330_MAX_PERI 32
35
36 enum pl330_srccachectrl {
37 SCCTRL0, /* Noncacheable and nonbufferable */
38 SCCTRL1, /* Bufferable only */
39 SCCTRL2, /* Cacheable, but do not allocate */
40 SCCTRL3, /* Cacheable and bufferable, but do not allocate */
41 SINVALID1,
42 SINVALID2,
43 SCCTRL6, /* Cacheable write-through, allocate on reads only */
44 SCCTRL7, /* Cacheable write-back, allocate on reads only */
45 };
46
47 enum pl330_dstcachectrl {
48 DCCTRL0, /* Noncacheable and nonbufferable */
49 DCCTRL1, /* Bufferable only */
50 DCCTRL2, /* Cacheable, but do not allocate */
51 DCCTRL3, /* Cacheable and bufferable, but do not allocate */
52 DINVALID1, /* AWCACHE = 0x1000 */
53 DINVALID2,
54 DCCTRL6, /* Cacheable write-through, allocate on writes only */
55 DCCTRL7, /* Cacheable write-back, allocate on writes only */
56 };
57
58 enum pl330_byteswap {
59 SWAP_NO,
60 SWAP_2,
61 SWAP_4,
62 SWAP_8,
63 SWAP_16,
64 };
65
66 enum pl330_reqtype {
67 MEMTOMEM,
68 MEMTODEV,
69 DEVTOMEM,
70 DEVTODEV,
71 };
72
73 /* Register and Bit field Definitions */
74 #define DS 0x0
75 #define DS_ST_STOP 0x0
76 #define DS_ST_EXEC 0x1
77 #define DS_ST_CMISS 0x2
78 #define DS_ST_UPDTPC 0x3
79 #define DS_ST_WFE 0x4
80 #define DS_ST_ATBRR 0x5
81 #define DS_ST_QBUSY 0x6
82 #define DS_ST_WFP 0x7
83 #define DS_ST_KILL 0x8
84 #define DS_ST_CMPLT 0x9
85 #define DS_ST_FLTCMP 0xe
86 #define DS_ST_FAULT 0xf
87
88 #define DPC 0x4
89 #define INTEN 0x20
90 #define ES 0x24
91 #define INTSTATUS 0x28
92 #define INTCLR 0x2c
93 #define FSM 0x30
94 #define FSC 0x34
95 #define FTM 0x38
96
97 #define _FTC 0x40
98 #define FTC(n) (_FTC + (n)*0x4)
99
100 #define _CS 0x100
101 #define CS(n) (_CS + (n)*0x8)
102 #define CS_CNS (1 << 21)
103
104 #define _CPC 0x104
105 #define CPC(n) (_CPC + (n)*0x8)
106
107 #define _SA 0x400
108 #define SA(n) (_SA + (n)*0x20)
109
110 #define _DA 0x404
111 #define DA(n) (_DA + (n)*0x20)
112
113 #define _CC 0x408
114 #define CC(n) (_CC + (n)*0x20)
115
116 #define CC_SRCINC (1 << 0)
117 #define CC_DSTINC (1 << 14)
118 #define CC_SRCPRI (1 << 8)
119 #define CC_DSTPRI (1 << 22)
120 #define CC_SRCNS (1 << 9)
121 #define CC_DSTNS (1 << 23)
122 #define CC_SRCIA (1 << 10)
123 #define CC_DSTIA (1 << 24)
124 #define CC_SRCBRSTLEN_SHFT 4
125 #define CC_DSTBRSTLEN_SHFT 18
126 #define CC_SRCBRSTSIZE_SHFT 1
127 #define CC_DSTBRSTSIZE_SHFT 15
128 #define CC_SRCCCTRL_SHFT 11
129 #define CC_SRCCCTRL_MASK 0x7
130 #define CC_DSTCCTRL_SHFT 25
131 #define CC_DRCCCTRL_MASK 0x7
132 #define CC_SWAP_SHFT 28
133
134 #define _LC0 0x40c
135 #define LC0(n) (_LC0 + (n)*0x20)
136
137 #define _LC1 0x410
138 #define LC1(n) (_LC1 + (n)*0x20)
139
140 #define DBGSTATUS 0xd00
141 #define DBG_BUSY (1 << 0)
142
143 #define DBGCMD 0xd04
144 #define DBGINST0 0xd08
145 #define DBGINST1 0xd0c
146
147 #define CR0 0xe00
148 #define CR1 0xe04
149 #define CR2 0xe08
150 #define CR3 0xe0c
151 #define CR4 0xe10
152 #define CRD 0xe14
153
154 #define PERIPH_ID 0xfe0
155 #define PERIPH_REV_SHIFT 20
156 #define PERIPH_REV_MASK 0xf
157 #define PERIPH_REV_R0P0 0
158 #define PERIPH_REV_R1P0 1
159 #define PERIPH_REV_R1P1 2
160 #define PCELL_ID 0xff0
161
162 #define CR0_PERIPH_REQ_SET (1 << 0)
163 #define CR0_BOOT_EN_SET (1 << 1)
164 #define CR0_BOOT_MAN_NS (1 << 2)
165 #define CR0_NUM_CHANS_SHIFT 4
166 #define CR0_NUM_CHANS_MASK 0x7
167 #define CR0_NUM_PERIPH_SHIFT 12
168 #define CR0_NUM_PERIPH_MASK 0x1f
169 #define CR0_NUM_EVENTS_SHIFT 17
170 #define CR0_NUM_EVENTS_MASK 0x1f
171
172 #define CR1_ICACHE_LEN_SHIFT 0
173 #define CR1_ICACHE_LEN_MASK 0x7
174 #define CR1_NUM_ICACHELINES_SHIFT 4
175 #define CR1_NUM_ICACHELINES_MASK 0xf
176
177 #define CRD_DATA_WIDTH_SHIFT 0
178 #define CRD_DATA_WIDTH_MASK 0x7
179 #define CRD_WR_CAP_SHIFT 4
180 #define CRD_WR_CAP_MASK 0x7
181 #define CRD_WR_Q_DEP_SHIFT 8
182 #define CRD_WR_Q_DEP_MASK 0xf
183 #define CRD_RD_CAP_SHIFT 12
184 #define CRD_RD_CAP_MASK 0x7
185 #define CRD_RD_Q_DEP_SHIFT 16
186 #define CRD_RD_Q_DEP_MASK 0xf
187 #define CRD_DATA_BUFF_SHIFT 20
188 #define CRD_DATA_BUFF_MASK 0x3ff
189
190 #define PART 0x330
191 #define DESIGNER 0x41
192 #define REVISION 0x0
193 #define INTEG_CFG 0x0
194 #define PERIPH_ID_VAL ((PART << 0) | (DESIGNER << 12))
195
196 #define PCELL_ID_VAL 0xb105f00d
197
198 #define PL330_STATE_STOPPED (1 << 0)
199 #define PL330_STATE_EXECUTING (1 << 1)
200 #define PL330_STATE_WFE (1 << 2)
201 #define PL330_STATE_FAULTING (1 << 3)
202 #define PL330_STATE_COMPLETING (1 << 4)
203 #define PL330_STATE_WFP (1 << 5)
204 #define PL330_STATE_KILLING (1 << 6)
205 #define PL330_STATE_FAULT_COMPLETING (1 << 7)
206 #define PL330_STATE_CACHEMISS (1 << 8)
207 #define PL330_STATE_UPDTPC (1 << 9)
208 #define PL330_STATE_ATBARRIER (1 << 10)
209 #define PL330_STATE_QUEUEBUSY (1 << 11)
210 #define PL330_STATE_INVALID (1 << 15)
211
212 #define PL330_STABLE_STATES (PL330_STATE_STOPPED | PL330_STATE_EXECUTING \
213 | PL330_STATE_WFE | PL330_STATE_FAULTING)
214
215 #define CMD_DMAADDH 0x54
216 #define CMD_DMAEND 0x00
217 #define CMD_DMAFLUSHP 0x35
218 #define CMD_DMAGO 0xa0
219 #define CMD_DMALD 0x04
220 #define CMD_DMALDP 0x25
221 #define CMD_DMALP 0x20
222 #define CMD_DMALPEND 0x28
223 #define CMD_DMAKILL 0x01
224 #define CMD_DMAMOV 0xbc
225 #define CMD_DMANOP 0x18
226 #define CMD_DMARMB 0x12
227 #define CMD_DMASEV 0x34
228 #define CMD_DMAST 0x08
229 #define CMD_DMASTP 0x29
230 #define CMD_DMASTZ 0x0c
231 #define CMD_DMAWFE 0x36
232 #define CMD_DMAWFP 0x30
233 #define CMD_DMAWMB 0x13
234
235 #define SZ_DMAADDH 3
236 #define SZ_DMAEND 1
237 #define SZ_DMAFLUSHP 2
238 #define SZ_DMALD 1
239 #define SZ_DMALDP 2
240 #define SZ_DMALP 2
241 #define SZ_DMALPEND 2
242 #define SZ_DMAKILL 1
243 #define SZ_DMAMOV 6
244 #define SZ_DMANOP 1
245 #define SZ_DMARMB 1
246 #define SZ_DMASEV 2
247 #define SZ_DMAST 1
248 #define SZ_DMASTP 2
249 #define SZ_DMASTZ 1
250 #define SZ_DMAWFE 2
251 #define SZ_DMAWFP 2
252 #define SZ_DMAWMB 1
253 #define SZ_DMAGO 6
254
255 #define BRST_LEN(ccr) ((((ccr) >> CC_SRCBRSTLEN_SHFT) & 0xf) + 1)
256 #define BRST_SIZE(ccr) (1 << (((ccr) >> CC_SRCBRSTSIZE_SHFT) & 0x7))
257
258 #define BYTE_TO_BURST(b, ccr) ((b) / BRST_SIZE(ccr) / BRST_LEN(ccr))
259 #define BURST_TO_BYTE(c, ccr) ((c) * BRST_SIZE(ccr) * BRST_LEN(ccr))
260
261 /*
262 * With 256 bytes, we can do more than 2.5MB and 5MB xfers per req
263 * at 1byte/burst for P<->M and M<->M respectively.
264 * For typical scenario, at 1word/burst, 10MB and 20MB xfers per req
265 * should be enough for P<->M and M<->M respectively.
266 */
267 #define MCODE_BUFF_PER_REQ 256
268
269 /* If the _pl330_req is available to the client */
270 #define IS_FREE(req) (*((u8 *)((req)->mc_cpu)) == CMD_DMAEND)
271
272 /* Use this _only_ to wait on transient states */
273 #define UNTIL(t, s) while (!(_state(t) & (s))) cpu_relax();
274
275 #ifdef PL330_DEBUG_MCGEN
276 static unsigned cmd_line;
277 #define PL330_DBGCMD_DUMP(off, x...) do { \
278 printk("%x:", cmd_line); \
279 printk(x); \
280 cmd_line += off; \
281 } while (0)
282 #define PL330_DBGMC_START(addr) (cmd_line = addr)
283 #else
284 #define PL330_DBGCMD_DUMP(off, x...) do {} while (0)
285 #define PL330_DBGMC_START(addr) do {} while (0)
286 #endif
287
288 /* The number of default descriptors */
289
290 #define NR_DEFAULT_DESC 16
291
292 /* Populated by the PL330 core driver for DMA API driver's info */
293 struct pl330_config {
294 u32 periph_id;
295 u32 pcell_id;
296 #define DMAC_MODE_NS (1 << 0)
297 unsigned int mode;
298 unsigned int data_bus_width:10; /* In number of bits */
299 unsigned int data_buf_dep:10;
300 unsigned int num_chan:4;
301 unsigned int num_peri:6;
302 u32 peri_ns;
303 unsigned int num_events:6;
304 u32 irq_ns;
305 };
306
307 /* Handle to the DMAC provided to the PL330 core */
308 struct pl330_info {
309 /* Owning device */
310 struct device *dev;
311 /* Size of MicroCode buffers for each channel. */
312 unsigned mcbufsz;
313 /* ioremap'ed address of PL330 registers. */
314 void __iomem *base;
315 /* Client can freely use it. */
316 void *client_data;
317 /* PL330 core data, Client must not touch it. */
318 void *pl330_data;
319 /* Populated by the PL330 core driver during pl330_add */
320 struct pl330_config pcfg;
321 /*
322 * If the DMAC has some reset mechanism, then the
323 * client may want to provide pointer to the method.
324 */
325 void (*dmac_reset)(struct pl330_info *pi);
326 };
327
328 /**
329 * Request Configuration.
330 * The PL330 core does not modify this and uses the last
331 * working configuration if the request doesn't provide any.
332 *
333 * The Client may want to provide this info only for the
334 * first request and a request with new settings.
335 */
336 struct pl330_reqcfg {
337 /* Address Incrementing */
338 unsigned dst_inc:1;
339 unsigned src_inc:1;
340
341 /*
342 * For now, the SRC & DST protection levels
343 * and burst size/length are assumed same.
344 */
345 bool nonsecure;
346 bool privileged;
347 bool insnaccess;
348 unsigned brst_len:5;
349 unsigned brst_size:3; /* in power of 2 */
350
351 enum pl330_dstcachectrl dcctl;
352 enum pl330_srccachectrl scctl;
353 enum pl330_byteswap swap;
354 struct pl330_config *pcfg;
355 };
356
357 /*
358 * One cycle of DMAC operation.
359 * There may be more than one xfer in a request.
360 */
361 struct pl330_xfer {
362 u32 src_addr;
363 u32 dst_addr;
364 /* Size to xfer */
365 u32 bytes;
366 /*
367 * Pointer to next xfer in the list.
368 * The last xfer in the req must point to NULL.
369 */
370 struct pl330_xfer *next;
371 };
372
373 /* The xfer callbacks are made with one of these arguments. */
374 enum pl330_op_err {
375 /* The all xfers in the request were success. */
376 PL330_ERR_NONE,
377 /* If req aborted due to global error. */
378 PL330_ERR_ABORT,
379 /* If req failed due to problem with Channel. */
380 PL330_ERR_FAIL,
381 };
382
383 /* A request defining Scatter-Gather List ending with NULL xfer. */
384 struct pl330_req {
385 enum pl330_reqtype rqtype;
386 /* Index of peripheral for the xfer. */
387 unsigned peri:5;
388 /* Unique token for this xfer, set by the client. */
389 void *token;
390 /* Callback to be called after xfer. */
391 void (*xfer_cb)(void *token, enum pl330_op_err err);
392 /* If NULL, req will be done at last set parameters. */
393 struct pl330_reqcfg *cfg;
394 /* Pointer to first xfer in the request. */
395 struct pl330_xfer *x;
396 /* Hook to attach to DMAC's list of reqs with due callback */
397 struct list_head rqd;
398 };
399
400 /*
401 * To know the status of the channel and DMAC, the client
402 * provides a pointer to this structure. The PL330 core
403 * fills it with current information.
404 */
405 struct pl330_chanstatus {
406 /*
407 * If the DMAC engine halted due to some error,
408 * the client should remove-add DMAC.
409 */
410 bool dmac_halted;
411 /*
412 * If channel is halted due to some error,
413 * the client should ABORT/FLUSH and START the channel.
414 */
415 bool faulting;
416 /* Location of last load */
417 u32 src_addr;
418 /* Location of last store */
419 u32 dst_addr;
420 /*
421 * Pointer to the currently active req, NULL if channel is
422 * inactive, even though the requests may be present.
423 */
424 struct pl330_req *top_req;
425 /* Pointer to req waiting second in the queue if any. */
426 struct pl330_req *wait_req;
427 };
428
429 enum pl330_chan_op {
430 /* Start the channel */
431 PL330_OP_START,
432 /* Abort the active xfer */
433 PL330_OP_ABORT,
434 /* Stop xfer and flush queue */
435 PL330_OP_FLUSH,
436 };
437
438 struct _xfer_spec {
439 u32 ccr;
440 struct pl330_req *r;
441 struct pl330_xfer *x;
442 };
443
444 enum dmamov_dst {
445 SAR = 0,
446 CCR,
447 DAR,
448 };
449
450 enum pl330_dst {
451 SRC = 0,
452 DST,
453 };
454
455 enum pl330_cond {
456 SINGLE,
457 BURST,
458 ALWAYS,
459 };
460
461 struct _pl330_req {
462 u32 mc_bus;
463 void *mc_cpu;
464 /* Number of bytes taken to setup MC for the req */
465 u32 mc_len;
466 struct pl330_req *r;
467 };
468
469 /* ToBeDone for tasklet */
470 struct _pl330_tbd {
471 bool reset_dmac;
472 bool reset_mngr;
473 u8 reset_chan;
474 };
475
476 /* A DMAC Thread */
477 struct pl330_thread {
478 u8 id;
479 int ev;
480 /* If the channel is not yet acquired by any client */
481 bool free;
482 /* Parent DMAC */
483 struct pl330_dmac *dmac;
484 /* Only two at a time */
485 struct _pl330_req req[2];
486 /* Index of the last enqueued request */
487 unsigned lstenq;
488 /* Index of the last submitted request or -1 if the DMA is stopped */
489 int req_running;
490 };
491
492 enum pl330_dmac_state {
493 UNINIT,
494 INIT,
495 DYING,
496 };
497
498 /* A DMAC */
499 struct pl330_dmac {
500 spinlock_t lock;
501 /* Holds list of reqs with due callbacks */
502 struct list_head req_done;
503 /* Pointer to platform specific stuff */
504 struct pl330_info *pinfo;
505 /* Maximum possible events/irqs */
506 int events[32];
507 /* BUS address of MicroCode buffer */
508 u32 mcode_bus;
509 /* CPU address of MicroCode buffer */
510 void *mcode_cpu;
511 /* List of all Channel threads */
512 struct pl330_thread *channels;
513 /* Pointer to the MANAGER thread */
514 struct pl330_thread *manager;
515 /* To handle bad news in interrupt */
516 struct tasklet_struct tasks;
517 struct _pl330_tbd dmac_tbd;
518 /* State of DMAC operation */
519 enum pl330_dmac_state state;
520 };
521
522 enum desc_status {
523 /* In the DMAC pool */
524 FREE,
525 /*
526 * Allocated to some channel during prep_xxx
527 * Also may be sitting on the work_list.
528 */
529 PREP,
530 /*
531 * Sitting on the work_list and already submitted
532 * to the PL330 core. Not more than two descriptors
533 * of a channel can be BUSY at any time.
534 */
535 BUSY,
536 /*
537 * Sitting on the channel work_list but xfer done
538 * by PL330 core
539 */
540 DONE,
541 };
542
543 struct dma_pl330_chan {
544 /* Schedule desc completion */
545 struct tasklet_struct task;
546
547 /* DMA-Engine Channel */
548 struct dma_chan chan;
549
550 /* List of to be xfered descriptors */
551 struct list_head work_list;
552
553 /* Pointer to the DMAC that manages this channel,
554 * NULL if the channel is available to be acquired.
555 * As the parent, this DMAC also provides descriptors
556 * to the channel.
557 */
558 struct dma_pl330_dmac *dmac;
559
560 /* To protect channel manipulation */
561 spinlock_t lock;
562
563 /* Token of a hardware channel thread of PL330 DMAC
564 * NULL if the channel is available to be acquired.
565 */
566 void *pl330_chid;
567
568 /* For D-to-M and M-to-D channels */
569 int burst_sz; /* the peripheral fifo width */
570 int burst_len; /* the number of burst */
571 dma_addr_t fifo_addr;
572
573 /* for cyclic capability */
574 bool cyclic;
575 };
576
577 struct dma_pl330_dmac {
578 struct pl330_info pif;
579
580 /* DMA-Engine Device */
581 struct dma_device ddma;
582
583 /* Pool of descriptors available for the DMAC's channels */
584 struct list_head desc_pool;
585 /* To protect desc_pool manipulation */
586 spinlock_t pool_lock;
587
588 /* Peripheral channels connected to this DMAC */
589 struct dma_pl330_chan *peripherals; /* keep at end */
590 };
591
592 struct dma_pl330_desc {
593 /* To attach to a queue as child */
594 struct list_head node;
595
596 /* Descriptor for the DMA Engine API */
597 struct dma_async_tx_descriptor txd;
598
599 /* Xfer for PL330 core */
600 struct pl330_xfer px;
601
602 struct pl330_reqcfg rqcfg;
603 struct pl330_req req;
604
605 enum desc_status status;
606
607 /* The channel which currently holds this desc */
608 struct dma_pl330_chan *pchan;
609 };
610
611 struct dma_pl330_filter_args {
612 struct dma_pl330_dmac *pdmac;
613 unsigned int chan_id;
614 };
615
616 static inline void _callback(struct pl330_req *r, enum pl330_op_err err)
617 {
618 if (r && r->xfer_cb)
619 r->xfer_cb(r->token, err);
620 }
621
622 static inline bool _queue_empty(struct pl330_thread *thrd)
623 {
624 return (IS_FREE(&thrd->req[0]) && IS_FREE(&thrd->req[1]))
625 ? true : false;
626 }
627
628 static inline bool _queue_full(struct pl330_thread *thrd)
629 {
630 return (IS_FREE(&thrd->req[0]) || IS_FREE(&thrd->req[1]))
631 ? false : true;
632 }
633
634 static inline bool is_manager(struct pl330_thread *thrd)
635 {
636 struct pl330_dmac *pl330 = thrd->dmac;
637
638 /* MANAGER is indexed at the end */
639 if (thrd->id == pl330->pinfo->pcfg.num_chan)
640 return true;
641 else
642 return false;
643 }
644
645 /* If manager of the thread is in Non-Secure mode */
646 static inline bool _manager_ns(struct pl330_thread *thrd)
647 {
648 struct pl330_dmac *pl330 = thrd->dmac;
649
650 return (pl330->pinfo->pcfg.mode & DMAC_MODE_NS) ? true : false;
651 }
652
653 static inline u32 get_id(struct pl330_info *pi, u32 off)
654 {
655 void __iomem *regs = pi->base;
656 u32 id = 0;
657
658 id |= (readb(regs + off + 0x0) << 0);
659 id |= (readb(regs + off + 0x4) << 8);
660 id |= (readb(regs + off + 0x8) << 16);
661 id |= (readb(regs + off + 0xc) << 24);
662
663 return id;
664 }
665
666 static inline u32 get_revision(u32 periph_id)
667 {
668 return (periph_id >> PERIPH_REV_SHIFT) & PERIPH_REV_MASK;
669 }
670
671 static inline u32 _emit_ADDH(unsigned dry_run, u8 buf[],
672 enum pl330_dst da, u16 val)
673 {
674 if (dry_run)
675 return SZ_DMAADDH;
676
677 buf[0] = CMD_DMAADDH;
678 buf[0] |= (da << 1);
679 *((u16 *)&buf[1]) = val;
680
681 PL330_DBGCMD_DUMP(SZ_DMAADDH, "\tDMAADDH %s %u\n",
682 da == 1 ? "DA" : "SA", val);
683
684 return SZ_DMAADDH;
685 }
686
687 static inline u32 _emit_END(unsigned dry_run, u8 buf[])
688 {
689 if (dry_run)
690 return SZ_DMAEND;
691
692 buf[0] = CMD_DMAEND;
693
694 PL330_DBGCMD_DUMP(SZ_DMAEND, "\tDMAEND\n");
695
696 return SZ_DMAEND;
697 }
698
699 static inline u32 _emit_FLUSHP(unsigned dry_run, u8 buf[], u8 peri)
700 {
701 if (dry_run)
702 return SZ_DMAFLUSHP;
703
704 buf[0] = CMD_DMAFLUSHP;
705
706 peri &= 0x1f;
707 peri <<= 3;
708 buf[1] = peri;
709
710 PL330_DBGCMD_DUMP(SZ_DMAFLUSHP, "\tDMAFLUSHP %u\n", peri >> 3);
711
712 return SZ_DMAFLUSHP;
713 }
714
715 static inline u32 _emit_LD(unsigned dry_run, u8 buf[], enum pl330_cond cond)
716 {
717 if (dry_run)
718 return SZ_DMALD;
719
720 buf[0] = CMD_DMALD;
721
722 if (cond == SINGLE)
723 buf[0] |= (0 << 1) | (1 << 0);
724 else if (cond == BURST)
725 buf[0] |= (1 << 1) | (1 << 0);
726
727 PL330_DBGCMD_DUMP(SZ_DMALD, "\tDMALD%c\n",
728 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
729
730 return SZ_DMALD;
731 }
732
733 static inline u32 _emit_LDP(unsigned dry_run, u8 buf[],
734 enum pl330_cond cond, u8 peri)
735 {
736 if (dry_run)
737 return SZ_DMALDP;
738
739 buf[0] = CMD_DMALDP;
740
741 if (cond == BURST)
742 buf[0] |= (1 << 1);
743
744 peri &= 0x1f;
745 peri <<= 3;
746 buf[1] = peri;
747
748 PL330_DBGCMD_DUMP(SZ_DMALDP, "\tDMALDP%c %u\n",
749 cond == SINGLE ? 'S' : 'B', peri >> 3);
750
751 return SZ_DMALDP;
752 }
753
754 static inline u32 _emit_LP(unsigned dry_run, u8 buf[],
755 unsigned loop, u8 cnt)
756 {
757 if (dry_run)
758 return SZ_DMALP;
759
760 buf[0] = CMD_DMALP;
761
762 if (loop)
763 buf[0] |= (1 << 1);
764
765 cnt--; /* DMAC increments by 1 internally */
766 buf[1] = cnt;
767
768 PL330_DBGCMD_DUMP(SZ_DMALP, "\tDMALP_%c %u\n", loop ? '1' : '0', cnt);
769
770 return SZ_DMALP;
771 }
772
773 struct _arg_LPEND {
774 enum pl330_cond cond;
775 bool forever;
776 unsigned loop;
777 u8 bjump;
778 };
779
780 static inline u32 _emit_LPEND(unsigned dry_run, u8 buf[],
781 const struct _arg_LPEND *arg)
782 {
783 enum pl330_cond cond = arg->cond;
784 bool forever = arg->forever;
785 unsigned loop = arg->loop;
786 u8 bjump = arg->bjump;
787
788 if (dry_run)
789 return SZ_DMALPEND;
790
791 buf[0] = CMD_DMALPEND;
792
793 if (loop)
794 buf[0] |= (1 << 2);
795
796 if (!forever)
797 buf[0] |= (1 << 4);
798
799 if (cond == SINGLE)
800 buf[0] |= (0 << 1) | (1 << 0);
801 else if (cond == BURST)
802 buf[0] |= (1 << 1) | (1 << 0);
803
804 buf[1] = bjump;
805
806 PL330_DBGCMD_DUMP(SZ_DMALPEND, "\tDMALP%s%c_%c bjmpto_%x\n",
807 forever ? "FE" : "END",
808 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'),
809 loop ? '1' : '0',
810 bjump);
811
812 return SZ_DMALPEND;
813 }
814
815 static inline u32 _emit_KILL(unsigned dry_run, u8 buf[])
816 {
817 if (dry_run)
818 return SZ_DMAKILL;
819
820 buf[0] = CMD_DMAKILL;
821
822 return SZ_DMAKILL;
823 }
824
825 static inline u32 _emit_MOV(unsigned dry_run, u8 buf[],
826 enum dmamov_dst dst, u32 val)
827 {
828 if (dry_run)
829 return SZ_DMAMOV;
830
831 buf[0] = CMD_DMAMOV;
832 buf[1] = dst;
833 *((u32 *)&buf[2]) = val;
834
835 PL330_DBGCMD_DUMP(SZ_DMAMOV, "\tDMAMOV %s 0x%x\n",
836 dst == SAR ? "SAR" : (dst == DAR ? "DAR" : "CCR"), val);
837
838 return SZ_DMAMOV;
839 }
840
841 static inline u32 _emit_NOP(unsigned dry_run, u8 buf[])
842 {
843 if (dry_run)
844 return SZ_DMANOP;
845
846 buf[0] = CMD_DMANOP;
847
848 PL330_DBGCMD_DUMP(SZ_DMANOP, "\tDMANOP\n");
849
850 return SZ_DMANOP;
851 }
852
853 static inline u32 _emit_RMB(unsigned dry_run, u8 buf[])
854 {
855 if (dry_run)
856 return SZ_DMARMB;
857
858 buf[0] = CMD_DMARMB;
859
860 PL330_DBGCMD_DUMP(SZ_DMARMB, "\tDMARMB\n");
861
862 return SZ_DMARMB;
863 }
864
865 static inline u32 _emit_SEV(unsigned dry_run, u8 buf[], u8 ev)
866 {
867 if (dry_run)
868 return SZ_DMASEV;
869
870 buf[0] = CMD_DMASEV;
871
872 ev &= 0x1f;
873 ev <<= 3;
874 buf[1] = ev;
875
876 PL330_DBGCMD_DUMP(SZ_DMASEV, "\tDMASEV %u\n", ev >> 3);
877
878 return SZ_DMASEV;
879 }
880
881 static inline u32 _emit_ST(unsigned dry_run, u8 buf[], enum pl330_cond cond)
882 {
883 if (dry_run)
884 return SZ_DMAST;
885
886 buf[0] = CMD_DMAST;
887
888 if (cond == SINGLE)
889 buf[0] |= (0 << 1) | (1 << 0);
890 else if (cond == BURST)
891 buf[0] |= (1 << 1) | (1 << 0);
892
893 PL330_DBGCMD_DUMP(SZ_DMAST, "\tDMAST%c\n",
894 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'A'));
895
896 return SZ_DMAST;
897 }
898
899 static inline u32 _emit_STP(unsigned dry_run, u8 buf[],
900 enum pl330_cond cond, u8 peri)
901 {
902 if (dry_run)
903 return SZ_DMASTP;
904
905 buf[0] = CMD_DMASTP;
906
907 if (cond == BURST)
908 buf[0] |= (1 << 1);
909
910 peri &= 0x1f;
911 peri <<= 3;
912 buf[1] = peri;
913
914 PL330_DBGCMD_DUMP(SZ_DMASTP, "\tDMASTP%c %u\n",
915 cond == SINGLE ? 'S' : 'B', peri >> 3);
916
917 return SZ_DMASTP;
918 }
919
920 static inline u32 _emit_STZ(unsigned dry_run, u8 buf[])
921 {
922 if (dry_run)
923 return SZ_DMASTZ;
924
925 buf[0] = CMD_DMASTZ;
926
927 PL330_DBGCMD_DUMP(SZ_DMASTZ, "\tDMASTZ\n");
928
929 return SZ_DMASTZ;
930 }
931
932 static inline u32 _emit_WFE(unsigned dry_run, u8 buf[], u8 ev,
933 unsigned invalidate)
934 {
935 if (dry_run)
936 return SZ_DMAWFE;
937
938 buf[0] = CMD_DMAWFE;
939
940 ev &= 0x1f;
941 ev <<= 3;
942 buf[1] = ev;
943
944 if (invalidate)
945 buf[1] |= (1 << 1);
946
947 PL330_DBGCMD_DUMP(SZ_DMAWFE, "\tDMAWFE %u%s\n",
948 ev >> 3, invalidate ? ", I" : "");
949
950 return SZ_DMAWFE;
951 }
952
953 static inline u32 _emit_WFP(unsigned dry_run, u8 buf[],
954 enum pl330_cond cond, u8 peri)
955 {
956 if (dry_run)
957 return SZ_DMAWFP;
958
959 buf[0] = CMD_DMAWFP;
960
961 if (cond == SINGLE)
962 buf[0] |= (0 << 1) | (0 << 0);
963 else if (cond == BURST)
964 buf[0] |= (1 << 1) | (0 << 0);
965 else
966 buf[0] |= (0 << 1) | (1 << 0);
967
968 peri &= 0x1f;
969 peri <<= 3;
970 buf[1] = peri;
971
972 PL330_DBGCMD_DUMP(SZ_DMAWFP, "\tDMAWFP%c %u\n",
973 cond == SINGLE ? 'S' : (cond == BURST ? 'B' : 'P'), peri >> 3);
974
975 return SZ_DMAWFP;
976 }
977
978 static inline u32 _emit_WMB(unsigned dry_run, u8 buf[])
979 {
980 if (dry_run)
981 return SZ_DMAWMB;
982
983 buf[0] = CMD_DMAWMB;
984
985 PL330_DBGCMD_DUMP(SZ_DMAWMB, "\tDMAWMB\n");
986
987 return SZ_DMAWMB;
988 }
989
990 struct _arg_GO {
991 u8 chan;
992 u32 addr;
993 unsigned ns;
994 };
995
996 static inline u32 _emit_GO(unsigned dry_run, u8 buf[],
997 const struct _arg_GO *arg)
998 {
999 u8 chan = arg->chan;
1000 u32 addr = arg->addr;
1001 unsigned ns = arg->ns;
1002
1003 if (dry_run)
1004 return SZ_DMAGO;
1005
1006 buf[0] = CMD_DMAGO;
1007 buf[0] |= (ns << 1);
1008
1009 buf[1] = chan & 0x7;
1010
1011 *((u32 *)&buf[2]) = addr;
1012
1013 return SZ_DMAGO;
1014 }
1015
1016 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
1017
1018 /* Returns Time-Out */
1019 static bool _until_dmac_idle(struct pl330_thread *thrd)
1020 {
1021 void __iomem *regs = thrd->dmac->pinfo->base;
1022 unsigned long loops = msecs_to_loops(5);
1023
1024 do {
1025 /* Until Manager is Idle */
1026 if (!(readl(regs + DBGSTATUS) & DBG_BUSY))
1027 break;
1028
1029 cpu_relax();
1030 } while (--loops);
1031
1032 if (!loops)
1033 return true;
1034
1035 return false;
1036 }
1037
1038 static inline void _execute_DBGINSN(struct pl330_thread *thrd,
1039 u8 insn[], bool as_manager)
1040 {
1041 void __iomem *regs = thrd->dmac->pinfo->base;
1042 u32 val;
1043
1044 val = (insn[0] << 16) | (insn[1] << 24);
1045 if (!as_manager) {
1046 val |= (1 << 0);
1047 val |= (thrd->id << 8); /* Channel Number */
1048 }
1049 writel(val, regs + DBGINST0);
1050
1051 val = *((u32 *)&insn[2]);
1052 writel(val, regs + DBGINST1);
1053
1054 /* If timed out due to halted state-machine */
1055 if (_until_dmac_idle(thrd)) {
1056 dev_err(thrd->dmac->pinfo->dev, "DMAC halted!\n");
1057 return;
1058 }
1059
1060 /* Get going */
1061 writel(0, regs + DBGCMD);
1062 }
1063
1064 /*
1065 * Mark a _pl330_req as free.
1066 * We do it by writing DMAEND as the first instruction
1067 * because no valid request is going to have DMAEND as
1068 * its first instruction to execute.
1069 */
1070 static void mark_free(struct pl330_thread *thrd, int idx)
1071 {
1072 struct _pl330_req *req = &thrd->req[idx];
1073
1074 _emit_END(0, req->mc_cpu);
1075 req->mc_len = 0;
1076
1077 thrd->req_running = -1;
1078 }
1079
1080 static inline u32 _state(struct pl330_thread *thrd)
1081 {
1082 void __iomem *regs = thrd->dmac->pinfo->base;
1083 u32 val;
1084
1085 if (is_manager(thrd))
1086 val = readl(regs + DS) & 0xf;
1087 else
1088 val = readl(regs + CS(thrd->id)) & 0xf;
1089
1090 switch (val) {
1091 case DS_ST_STOP:
1092 return PL330_STATE_STOPPED;
1093 case DS_ST_EXEC:
1094 return PL330_STATE_EXECUTING;
1095 case DS_ST_CMISS:
1096 return PL330_STATE_CACHEMISS;
1097 case DS_ST_UPDTPC:
1098 return PL330_STATE_UPDTPC;
1099 case DS_ST_WFE:
1100 return PL330_STATE_WFE;
1101 case DS_ST_FAULT:
1102 return PL330_STATE_FAULTING;
1103 case DS_ST_ATBRR:
1104 if (is_manager(thrd))
1105 return PL330_STATE_INVALID;
1106 else
1107 return PL330_STATE_ATBARRIER;
1108 case DS_ST_QBUSY:
1109 if (is_manager(thrd))
1110 return PL330_STATE_INVALID;
1111 else
1112 return PL330_STATE_QUEUEBUSY;
1113 case DS_ST_WFP:
1114 if (is_manager(thrd))
1115 return PL330_STATE_INVALID;
1116 else
1117 return PL330_STATE_WFP;
1118 case DS_ST_KILL:
1119 if (is_manager(thrd))
1120 return PL330_STATE_INVALID;
1121 else
1122 return PL330_STATE_KILLING;
1123 case DS_ST_CMPLT:
1124 if (is_manager(thrd))
1125 return PL330_STATE_INVALID;
1126 else
1127 return PL330_STATE_COMPLETING;
1128 case DS_ST_FLTCMP:
1129 if (is_manager(thrd))
1130 return PL330_STATE_INVALID;
1131 else
1132 return PL330_STATE_FAULT_COMPLETING;
1133 default:
1134 return PL330_STATE_INVALID;
1135 }
1136 }
1137
1138 static void _stop(struct pl330_thread *thrd)
1139 {
1140 void __iomem *regs = thrd->dmac->pinfo->base;
1141 u8 insn[6] = {0, 0, 0, 0, 0, 0};
1142
1143 if (_state(thrd) == PL330_STATE_FAULT_COMPLETING)
1144 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1145
1146 /* Return if nothing needs to be done */
1147 if (_state(thrd) == PL330_STATE_COMPLETING
1148 || _state(thrd) == PL330_STATE_KILLING
1149 || _state(thrd) == PL330_STATE_STOPPED)
1150 return;
1151
1152 _emit_KILL(0, insn);
1153
1154 /* Stop generating interrupts for SEV */
1155 writel(readl(regs + INTEN) & ~(1 << thrd->ev), regs + INTEN);
1156
1157 _execute_DBGINSN(thrd, insn, is_manager(thrd));
1158 }
1159
1160 /* Start doing req 'idx' of thread 'thrd' */
1161 static bool _trigger(struct pl330_thread *thrd)
1162 {
1163 void __iomem *regs = thrd->dmac->pinfo->base;
1164 struct _pl330_req *req;
1165 struct pl330_req *r;
1166 struct _arg_GO go;
1167 unsigned ns;
1168 u8 insn[6] = {0, 0, 0, 0, 0, 0};
1169 int idx;
1170
1171 /* Return if already ACTIVE */
1172 if (_state(thrd) != PL330_STATE_STOPPED)
1173 return true;
1174
1175 idx = 1 - thrd->lstenq;
1176 if (!IS_FREE(&thrd->req[idx]))
1177 req = &thrd->req[idx];
1178 else {
1179 idx = thrd->lstenq;
1180 if (!IS_FREE(&thrd->req[idx]))
1181 req = &thrd->req[idx];
1182 else
1183 req = NULL;
1184 }
1185
1186 /* Return if no request */
1187 if (!req || !req->r)
1188 return true;
1189
1190 r = req->r;
1191
1192 if (r->cfg)
1193 ns = r->cfg->nonsecure ? 1 : 0;
1194 else if (readl(regs + CS(thrd->id)) & CS_CNS)
1195 ns = 1;
1196 else
1197 ns = 0;
1198
1199 /* See 'Abort Sources' point-4 at Page 2-25 */
1200 if (_manager_ns(thrd) && !ns)
1201 dev_info(thrd->dmac->pinfo->dev, "%s:%d Recipe for ABORT!\n",
1202 __func__, __LINE__);
1203
1204 go.chan = thrd->id;
1205 go.addr = req->mc_bus;
1206 go.ns = ns;
1207 _emit_GO(0, insn, &go);
1208
1209 /* Set to generate interrupts for SEV */
1210 writel(readl(regs + INTEN) | (1 << thrd->ev), regs + INTEN);
1211
1212 /* Only manager can execute GO */
1213 _execute_DBGINSN(thrd, insn, true);
1214
1215 thrd->req_running = idx;
1216
1217 return true;
1218 }
1219
1220 static bool _start(struct pl330_thread *thrd)
1221 {
1222 switch (_state(thrd)) {
1223 case PL330_STATE_FAULT_COMPLETING:
1224 UNTIL(thrd, PL330_STATE_FAULTING | PL330_STATE_KILLING);
1225
1226 if (_state(thrd) == PL330_STATE_KILLING)
1227 UNTIL(thrd, PL330_STATE_STOPPED)
1228
1229 case PL330_STATE_FAULTING:
1230 _stop(thrd);
1231
1232 case PL330_STATE_KILLING:
1233 case PL330_STATE_COMPLETING:
1234 UNTIL(thrd, PL330_STATE_STOPPED)
1235
1236 case PL330_STATE_STOPPED:
1237 return _trigger(thrd);
1238
1239 case PL330_STATE_WFP:
1240 case PL330_STATE_QUEUEBUSY:
1241 case PL330_STATE_ATBARRIER:
1242 case PL330_STATE_UPDTPC:
1243 case PL330_STATE_CACHEMISS:
1244 case PL330_STATE_EXECUTING:
1245 return true;
1246
1247 case PL330_STATE_WFE: /* For RESUME, nothing yet */
1248 default:
1249 return false;
1250 }
1251 }
1252
1253 static inline int _ldst_memtomem(unsigned dry_run, u8 buf[],
1254 const struct _xfer_spec *pxs, int cyc)
1255 {
1256 int off = 0;
1257 struct pl330_config *pcfg = pxs->r->cfg->pcfg;
1258
1259 /* check lock-up free version */
1260 if (get_revision(pcfg->periph_id) >= PERIPH_REV_R1P0) {
1261 while (cyc--) {
1262 off += _emit_LD(dry_run, &buf[off], ALWAYS);
1263 off += _emit_ST(dry_run, &buf[off], ALWAYS);
1264 }
1265 } else {
1266 while (cyc--) {
1267 off += _emit_LD(dry_run, &buf[off], ALWAYS);
1268 off += _emit_RMB(dry_run, &buf[off]);
1269 off += _emit_ST(dry_run, &buf[off], ALWAYS);
1270 off += _emit_WMB(dry_run, &buf[off]);
1271 }
1272 }
1273
1274 return off;
1275 }
1276
1277 static inline int _ldst_devtomem(unsigned dry_run, u8 buf[],
1278 const struct _xfer_spec *pxs, int cyc)
1279 {
1280 int off = 0;
1281
1282 while (cyc--) {
1283 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1284 off += _emit_LDP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1285 off += _emit_ST(dry_run, &buf[off], ALWAYS);
1286 off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri);
1287 }
1288
1289 return off;
1290 }
1291
1292 static inline int _ldst_memtodev(unsigned dry_run, u8 buf[],
1293 const struct _xfer_spec *pxs, int cyc)
1294 {
1295 int off = 0;
1296
1297 while (cyc--) {
1298 off += _emit_WFP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1299 off += _emit_LD(dry_run, &buf[off], ALWAYS);
1300 off += _emit_STP(dry_run, &buf[off], SINGLE, pxs->r->peri);
1301 off += _emit_FLUSHP(dry_run, &buf[off], pxs->r->peri);
1302 }
1303
1304 return off;
1305 }
1306
1307 static int _bursts(unsigned dry_run, u8 buf[],
1308 const struct _xfer_spec *pxs, int cyc)
1309 {
1310 int off = 0;
1311
1312 switch (pxs->r->rqtype) {
1313 case MEMTODEV:
1314 off += _ldst_memtodev(dry_run, &buf[off], pxs, cyc);
1315 break;
1316 case DEVTOMEM:
1317 off += _ldst_devtomem(dry_run, &buf[off], pxs, cyc);
1318 break;
1319 case MEMTOMEM:
1320 off += _ldst_memtomem(dry_run, &buf[off], pxs, cyc);
1321 break;
1322 default:
1323 off += 0x40000000; /* Scare off the Client */
1324 break;
1325 }
1326
1327 return off;
1328 }
1329
1330 /* Returns bytes consumed and updates bursts */
1331 static inline int _loop(unsigned dry_run, u8 buf[],
1332 unsigned long *bursts, const struct _xfer_spec *pxs)
1333 {
1334 int cyc, cycmax, szlp, szlpend, szbrst, off;
1335 unsigned lcnt0, lcnt1, ljmp0, ljmp1;
1336 struct _arg_LPEND lpend;
1337
1338 /* Max iterations possible in DMALP is 256 */
1339 if (*bursts >= 256*256) {
1340 lcnt1 = 256;
1341 lcnt0 = 256;
1342 cyc = *bursts / lcnt1 / lcnt0;
1343 } else if (*bursts > 256) {
1344 lcnt1 = 256;
1345 lcnt0 = *bursts / lcnt1;
1346 cyc = 1;
1347 } else {
1348 lcnt1 = *bursts;
1349 lcnt0 = 0;
1350 cyc = 1;
1351 }
1352
1353 szlp = _emit_LP(1, buf, 0, 0);
1354 szbrst = _bursts(1, buf, pxs, 1);
1355
1356 lpend.cond = ALWAYS;
1357 lpend.forever = false;
1358 lpend.loop = 0;
1359 lpend.bjump = 0;
1360 szlpend = _emit_LPEND(1, buf, &lpend);
1361
1362 if (lcnt0) {
1363 szlp *= 2;
1364 szlpend *= 2;
1365 }
1366
1367 /*
1368 * Max bursts that we can unroll due to limit on the
1369 * size of backward jump that can be encoded in DMALPEND
1370 * which is 8-bits and hence 255
1371 */
1372 cycmax = (255 - (szlp + szlpend)) / szbrst;
1373
1374 cyc = (cycmax < cyc) ? cycmax : cyc;
1375
1376 off = 0;
1377
1378 if (lcnt0) {
1379 off += _emit_LP(dry_run, &buf[off], 0, lcnt0);
1380 ljmp0 = off;
1381 }
1382
1383 off += _emit_LP(dry_run, &buf[off], 1, lcnt1);
1384 ljmp1 = off;
1385
1386 off += _bursts(dry_run, &buf[off], pxs, cyc);
1387
1388 lpend.cond = ALWAYS;
1389 lpend.forever = false;
1390 lpend.loop = 1;
1391 lpend.bjump = off - ljmp1;
1392 off += _emit_LPEND(dry_run, &buf[off], &lpend);
1393
1394 if (lcnt0) {
1395 lpend.cond = ALWAYS;
1396 lpend.forever = false;
1397 lpend.loop = 0;
1398 lpend.bjump = off - ljmp0;
1399 off += _emit_LPEND(dry_run, &buf[off], &lpend);
1400 }
1401
1402 *bursts = lcnt1 * cyc;
1403 if (lcnt0)
1404 *bursts *= lcnt0;
1405
1406 return off;
1407 }
1408
1409 static inline int _setup_loops(unsigned dry_run, u8 buf[],
1410 const struct _xfer_spec *pxs)
1411 {
1412 struct pl330_xfer *x = pxs->x;
1413 u32 ccr = pxs->ccr;
1414 unsigned long c, bursts = BYTE_TO_BURST(x->bytes, ccr);
1415 int off = 0;
1416
1417 while (bursts) {
1418 c = bursts;
1419 off += _loop(dry_run, &buf[off], &c, pxs);
1420 bursts -= c;
1421 }
1422
1423 return off;
1424 }
1425
1426 static inline int _setup_xfer(unsigned dry_run, u8 buf[],
1427 const struct _xfer_spec *pxs)
1428 {
1429 struct pl330_xfer *x = pxs->x;
1430 int off = 0;
1431
1432 /* DMAMOV SAR, x->src_addr */
1433 off += _emit_MOV(dry_run, &buf[off], SAR, x->src_addr);
1434 /* DMAMOV DAR, x->dst_addr */
1435 off += _emit_MOV(dry_run, &buf[off], DAR, x->dst_addr);
1436
1437 /* Setup Loop(s) */
1438 off += _setup_loops(dry_run, &buf[off], pxs);
1439
1440 return off;
1441 }
1442
1443 /*
1444 * A req is a sequence of one or more xfer units.
1445 * Returns the number of bytes taken to setup the MC for the req.
1446 */
1447 static int _setup_req(unsigned dry_run, struct pl330_thread *thrd,
1448 unsigned index, struct _xfer_spec *pxs)
1449 {
1450 struct _pl330_req *req = &thrd->req[index];
1451 struct pl330_xfer *x;
1452 u8 *buf = req->mc_cpu;
1453 int off = 0;
1454
1455 PL330_DBGMC_START(req->mc_bus);
1456
1457 /* DMAMOV CCR, ccr */
1458 off += _emit_MOV(dry_run, &buf[off], CCR, pxs->ccr);
1459
1460 x = pxs->r->x;
1461 do {
1462 /* Error if xfer length is not aligned at burst size */
1463 if (x->bytes % (BRST_SIZE(pxs->ccr) * BRST_LEN(pxs->ccr)))
1464 return -EINVAL;
1465
1466 pxs->x = x;
1467 off += _setup_xfer(dry_run, &buf[off], pxs);
1468
1469 x = x->next;
1470 } while (x);
1471
1472 /* DMASEV peripheral/event */
1473 off += _emit_SEV(dry_run, &buf[off], thrd->ev);
1474 /* DMAEND */
1475 off += _emit_END(dry_run, &buf[off]);
1476
1477 return off;
1478 }
1479
1480 static inline u32 _prepare_ccr(const struct pl330_reqcfg *rqc)
1481 {
1482 u32 ccr = 0;
1483
1484 if (rqc->src_inc)
1485 ccr |= CC_SRCINC;
1486
1487 if (rqc->dst_inc)
1488 ccr |= CC_DSTINC;
1489
1490 /* We set same protection levels for Src and DST for now */
1491 if (rqc->privileged)
1492 ccr |= CC_SRCPRI | CC_DSTPRI;
1493 if (rqc->nonsecure)
1494 ccr |= CC_SRCNS | CC_DSTNS;
1495 if (rqc->insnaccess)
1496 ccr |= CC_SRCIA | CC_DSTIA;
1497
1498 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_SRCBRSTLEN_SHFT);
1499 ccr |= (((rqc->brst_len - 1) & 0xf) << CC_DSTBRSTLEN_SHFT);
1500
1501 ccr |= (rqc->brst_size << CC_SRCBRSTSIZE_SHFT);
1502 ccr |= (rqc->brst_size << CC_DSTBRSTSIZE_SHFT);
1503
1504 ccr |= (rqc->scctl << CC_SRCCCTRL_SHFT);
1505 ccr |= (rqc->dcctl << CC_DSTCCTRL_SHFT);
1506
1507 ccr |= (rqc->swap << CC_SWAP_SHFT);
1508
1509 return ccr;
1510 }
1511
1512 static inline bool _is_valid(u32 ccr)
1513 {
1514 enum pl330_dstcachectrl dcctl;
1515 enum pl330_srccachectrl scctl;
1516
1517 dcctl = (ccr >> CC_DSTCCTRL_SHFT) & CC_DRCCCTRL_MASK;
1518 scctl = (ccr >> CC_SRCCCTRL_SHFT) & CC_SRCCCTRL_MASK;
1519
1520 if (dcctl == DINVALID1 || dcctl == DINVALID2
1521 || scctl == SINVALID1 || scctl == SINVALID2)
1522 return false;
1523 else
1524 return true;
1525 }
1526
1527 /*
1528 * Submit a list of xfers after which the client wants notification.
1529 * Client is not notified after each xfer unit, just once after all
1530 * xfer units are done or some error occurs.
1531 */
1532 static int pl330_submit_req(void *ch_id, struct pl330_req *r)
1533 {
1534 struct pl330_thread *thrd = ch_id;
1535 struct pl330_dmac *pl330;
1536 struct pl330_info *pi;
1537 struct _xfer_spec xs;
1538 unsigned long flags;
1539 void __iomem *regs;
1540 unsigned idx;
1541 u32 ccr;
1542 int ret = 0;
1543
1544 /* No Req or Unacquired Channel or DMAC */
1545 if (!r || !thrd || thrd->free)
1546 return -EINVAL;
1547
1548 pl330 = thrd->dmac;
1549 pi = pl330->pinfo;
1550 regs = pi->base;
1551
1552 if (pl330->state == DYING
1553 || pl330->dmac_tbd.reset_chan & (1 << thrd->id)) {
1554 dev_info(thrd->dmac->pinfo->dev, "%s:%d\n",
1555 __func__, __LINE__);
1556 return -EAGAIN;
1557 }
1558
1559 /* If request for non-existing peripheral */
1560 if (r->rqtype != MEMTOMEM && r->peri >= pi->pcfg.num_peri) {
1561 dev_info(thrd->dmac->pinfo->dev,
1562 "%s:%d Invalid peripheral(%u)!\n",
1563 __func__, __LINE__, r->peri);
1564 return -EINVAL;
1565 }
1566
1567 spin_lock_irqsave(&pl330->lock, flags);
1568
1569 if (_queue_full(thrd)) {
1570 ret = -EAGAIN;
1571 goto xfer_exit;
1572 }
1573
1574
1575 /* Use last settings, if not provided */
1576 if (r->cfg) {
1577 /* Prefer Secure Channel */
1578 if (!_manager_ns(thrd))
1579 r->cfg->nonsecure = 0;
1580 else
1581 r->cfg->nonsecure = 1;
1582
1583 ccr = _prepare_ccr(r->cfg);
1584 } else {
1585 ccr = readl(regs + CC(thrd->id));
1586 }
1587
1588 /* If this req doesn't have valid xfer settings */
1589 if (!_is_valid(ccr)) {
1590 ret = -EINVAL;
1591 dev_info(thrd->dmac->pinfo->dev, "%s:%d Invalid CCR(%x)!\n",
1592 __func__, __LINE__, ccr);
1593 goto xfer_exit;
1594 }
1595
1596 idx = IS_FREE(&thrd->req[0]) ? 0 : 1;
1597
1598 xs.ccr = ccr;
1599 xs.r = r;
1600
1601 /* First dry run to check if req is acceptable */
1602 ret = _setup_req(1, thrd, idx, &xs);
1603 if (ret < 0)
1604 goto xfer_exit;
1605
1606 if (ret > pi->mcbufsz / 2) {
1607 dev_info(thrd->dmac->pinfo->dev,
1608 "%s:%d Trying increasing mcbufsz\n",
1609 __func__, __LINE__);
1610 ret = -ENOMEM;
1611 goto xfer_exit;
1612 }
1613
1614 /* Hook the request */
1615 thrd->lstenq = idx;
1616 thrd->req[idx].mc_len = _setup_req(0, thrd, idx, &xs);
1617 thrd->req[idx].r = r;
1618
1619 ret = 0;
1620
1621 xfer_exit:
1622 spin_unlock_irqrestore(&pl330->lock, flags);
1623
1624 return ret;
1625 }
1626
1627 static void pl330_dotask(unsigned long data)
1628 {
1629 struct pl330_dmac *pl330 = (struct pl330_dmac *) data;
1630 struct pl330_info *pi = pl330->pinfo;
1631 unsigned long flags;
1632 int i;
1633
1634 spin_lock_irqsave(&pl330->lock, flags);
1635
1636 /* The DMAC itself gone nuts */
1637 if (pl330->dmac_tbd.reset_dmac) {
1638 pl330->state = DYING;
1639 /* Reset the manager too */
1640 pl330->dmac_tbd.reset_mngr = true;
1641 /* Clear the reset flag */
1642 pl330->dmac_tbd.reset_dmac = false;
1643 }
1644
1645 if (pl330->dmac_tbd.reset_mngr) {
1646 _stop(pl330->manager);
1647 /* Reset all channels */
1648 pl330->dmac_tbd.reset_chan = (1 << pi->pcfg.num_chan) - 1;
1649 /* Clear the reset flag */
1650 pl330->dmac_tbd.reset_mngr = false;
1651 }
1652
1653 for (i = 0; i < pi->pcfg.num_chan; i++) {
1654
1655 if (pl330->dmac_tbd.reset_chan & (1 << i)) {
1656 struct pl330_thread *thrd = &pl330->channels[i];
1657 void __iomem *regs = pi->base;
1658 enum pl330_op_err err;
1659
1660 _stop(thrd);
1661
1662 if (readl(regs + FSC) & (1 << thrd->id))
1663 err = PL330_ERR_FAIL;
1664 else
1665 err = PL330_ERR_ABORT;
1666
1667 spin_unlock_irqrestore(&pl330->lock, flags);
1668
1669 _callback(thrd->req[1 - thrd->lstenq].r, err);
1670 _callback(thrd->req[thrd->lstenq].r, err);
1671
1672 spin_lock_irqsave(&pl330->lock, flags);
1673
1674 thrd->req[0].r = NULL;
1675 thrd->req[1].r = NULL;
1676 mark_free(thrd, 0);
1677 mark_free(thrd, 1);
1678
1679 /* Clear the reset flag */
1680 pl330->dmac_tbd.reset_chan &= ~(1 << i);
1681 }
1682 }
1683
1684 spin_unlock_irqrestore(&pl330->lock, flags);
1685
1686 return;
1687 }
1688
1689 /* Returns 1 if state was updated, 0 otherwise */
1690 static int pl330_update(const struct pl330_info *pi)
1691 {
1692 struct pl330_req *rqdone, *tmp;
1693 struct pl330_dmac *pl330;
1694 unsigned long flags;
1695 void __iomem *regs;
1696 u32 val;
1697 int id, ev, ret = 0;
1698
1699 if (!pi || !pi->pl330_data)
1700 return 0;
1701
1702 regs = pi->base;
1703 pl330 = pi->pl330_data;
1704
1705 spin_lock_irqsave(&pl330->lock, flags);
1706
1707 val = readl(regs + FSM) & 0x1;
1708 if (val)
1709 pl330->dmac_tbd.reset_mngr = true;
1710 else
1711 pl330->dmac_tbd.reset_mngr = false;
1712
1713 val = readl(regs + FSC) & ((1 << pi->pcfg.num_chan) - 1);
1714 pl330->dmac_tbd.reset_chan |= val;
1715 if (val) {
1716 int i = 0;
1717 while (i < pi->pcfg.num_chan) {
1718 if (val & (1 << i)) {
1719 dev_info(pi->dev,
1720 "Reset Channel-%d\t CS-%x FTC-%x\n",
1721 i, readl(regs + CS(i)),
1722 readl(regs + FTC(i)));
1723 _stop(&pl330->channels[i]);
1724 }
1725 i++;
1726 }
1727 }
1728
1729 /* Check which event happened i.e, thread notified */
1730 val = readl(regs + ES);
1731 if (pi->pcfg.num_events < 32
1732 && val & ~((1 << pi->pcfg.num_events) - 1)) {
1733 pl330->dmac_tbd.reset_dmac = true;
1734 dev_err(pi->dev, "%s:%d Unexpected!\n", __func__, __LINE__);
1735 ret = 1;
1736 goto updt_exit;
1737 }
1738
1739 for (ev = 0; ev < pi->pcfg.num_events; ev++) {
1740 if (val & (1 << ev)) { /* Event occurred */
1741 struct pl330_thread *thrd;
1742 u32 inten = readl(regs + INTEN);
1743 int active;
1744
1745 /* Clear the event */
1746 if (inten & (1 << ev))
1747 writel(1 << ev, regs + INTCLR);
1748
1749 ret = 1;
1750
1751 id = pl330->events[ev];
1752
1753 thrd = &pl330->channels[id];
1754
1755 active = thrd->req_running;
1756 if (active == -1) /* Aborted */
1757 continue;
1758
1759 /* Detach the req */
1760 rqdone = thrd->req[active].r;
1761 thrd->req[active].r = NULL;
1762
1763 mark_free(thrd, active);
1764
1765 /* Get going again ASAP */
1766 _start(thrd);
1767
1768 /* For now, just make a list of callbacks to be done */
1769 list_add_tail(&rqdone->rqd, &pl330->req_done);
1770 }
1771 }
1772
1773 /* Now that we are in no hurry, do the callbacks */
1774 list_for_each_entry_safe(rqdone, tmp, &pl330->req_done, rqd) {
1775 list_del(&rqdone->rqd);
1776
1777 spin_unlock_irqrestore(&pl330->lock, flags);
1778 _callback(rqdone, PL330_ERR_NONE);
1779 spin_lock_irqsave(&pl330->lock, flags);
1780 }
1781
1782 updt_exit:
1783 spin_unlock_irqrestore(&pl330->lock, flags);
1784
1785 if (pl330->dmac_tbd.reset_dmac
1786 || pl330->dmac_tbd.reset_mngr
1787 || pl330->dmac_tbd.reset_chan) {
1788 ret = 1;
1789 tasklet_schedule(&pl330->tasks);
1790 }
1791
1792 return ret;
1793 }
1794
1795 static int pl330_chan_ctrl(void *ch_id, enum pl330_chan_op op)
1796 {
1797 struct pl330_thread *thrd = ch_id;
1798 struct pl330_dmac *pl330;
1799 unsigned long flags;
1800 int ret = 0, active;
1801
1802 if (!thrd || thrd->free || thrd->dmac->state == DYING)
1803 return -EINVAL;
1804
1805 pl330 = thrd->dmac;
1806 active = thrd->req_running;
1807
1808 spin_lock_irqsave(&pl330->lock, flags);
1809
1810 switch (op) {
1811 case PL330_OP_FLUSH:
1812 /* Make sure the channel is stopped */
1813 _stop(thrd);
1814
1815 thrd->req[0].r = NULL;
1816 thrd->req[1].r = NULL;
1817 mark_free(thrd, 0);
1818 mark_free(thrd, 1);
1819 break;
1820
1821 case PL330_OP_ABORT:
1822 /* Make sure the channel is stopped */
1823 _stop(thrd);
1824
1825 /* ABORT is only for the active req */
1826 if (active == -1)
1827 break;
1828
1829 thrd->req[active].r = NULL;
1830 mark_free(thrd, active);
1831
1832 /* Start the next */
1833 case PL330_OP_START:
1834 if ((active == -1) && !_start(thrd))
1835 ret = -EIO;
1836 break;
1837
1838 default:
1839 ret = -EINVAL;
1840 }
1841
1842 spin_unlock_irqrestore(&pl330->lock, flags);
1843 return ret;
1844 }
1845
1846 /* Reserve an event */
1847 static inline int _alloc_event(struct pl330_thread *thrd)
1848 {
1849 struct pl330_dmac *pl330 = thrd->dmac;
1850 struct pl330_info *pi = pl330->pinfo;
1851 int ev;
1852
1853 for (ev = 0; ev < pi->pcfg.num_events; ev++)
1854 if (pl330->events[ev] == -1) {
1855 pl330->events[ev] = thrd->id;
1856 return ev;
1857 }
1858
1859 return -1;
1860 }
1861
1862 static bool _chan_ns(const struct pl330_info *pi, int i)
1863 {
1864 return pi->pcfg.irq_ns & (1 << i);
1865 }
1866
1867 /* Upon success, returns IdentityToken for the
1868 * allocated channel, NULL otherwise.
1869 */
1870 static void *pl330_request_channel(const struct pl330_info *pi)
1871 {
1872 struct pl330_thread *thrd = NULL;
1873 struct pl330_dmac *pl330;
1874 unsigned long flags;
1875 int chans, i;
1876
1877 if (!pi || !pi->pl330_data)
1878 return NULL;
1879
1880 pl330 = pi->pl330_data;
1881
1882 if (pl330->state == DYING)
1883 return NULL;
1884
1885 chans = pi->pcfg.num_chan;
1886
1887 spin_lock_irqsave(&pl330->lock, flags);
1888
1889 for (i = 0; i < chans; i++) {
1890 thrd = &pl330->channels[i];
1891 if ((thrd->free) && (!_manager_ns(thrd) ||
1892 _chan_ns(pi, i))) {
1893 thrd->ev = _alloc_event(thrd);
1894 if (thrd->ev >= 0) {
1895 thrd->free = false;
1896 thrd->lstenq = 1;
1897 thrd->req[0].r = NULL;
1898 mark_free(thrd, 0);
1899 thrd->req[1].r = NULL;
1900 mark_free(thrd, 1);
1901 break;
1902 }
1903 }
1904 thrd = NULL;
1905 }
1906
1907 spin_unlock_irqrestore(&pl330->lock, flags);
1908
1909 return thrd;
1910 }
1911
1912 /* Release an event */
1913 static inline void _free_event(struct pl330_thread *thrd, int ev)
1914 {
1915 struct pl330_dmac *pl330 = thrd->dmac;
1916 struct pl330_info *pi = pl330->pinfo;
1917
1918 /* If the event is valid and was held by the thread */
1919 if (ev >= 0 && ev < pi->pcfg.num_events
1920 && pl330->events[ev] == thrd->id)
1921 pl330->events[ev] = -1;
1922 }
1923
1924 static void pl330_release_channel(void *ch_id)
1925 {
1926 struct pl330_thread *thrd = ch_id;
1927 struct pl330_dmac *pl330;
1928 unsigned long flags;
1929
1930 if (!thrd || thrd->free)
1931 return;
1932
1933 _stop(thrd);
1934
1935 _callback(thrd->req[1 - thrd->lstenq].r, PL330_ERR_ABORT);
1936 _callback(thrd->req[thrd->lstenq].r, PL330_ERR_ABORT);
1937
1938 pl330 = thrd->dmac;
1939
1940 spin_lock_irqsave(&pl330->lock, flags);
1941 _free_event(thrd, thrd->ev);
1942 thrd->free = true;
1943 spin_unlock_irqrestore(&pl330->lock, flags);
1944 }
1945
1946 /* Initialize the structure for PL330 configuration, that can be used
1947 * by the client driver the make best use of the DMAC
1948 */
1949 static void read_dmac_config(struct pl330_info *pi)
1950 {
1951 void __iomem *regs = pi->base;
1952 u32 val;
1953
1954 val = readl(regs + CRD) >> CRD_DATA_WIDTH_SHIFT;
1955 val &= CRD_DATA_WIDTH_MASK;
1956 pi->pcfg.data_bus_width = 8 * (1 << val);
1957
1958 val = readl(regs + CRD) >> CRD_DATA_BUFF_SHIFT;
1959 val &= CRD_DATA_BUFF_MASK;
1960 pi->pcfg.data_buf_dep = val + 1;
1961
1962 val = readl(regs + CR0) >> CR0_NUM_CHANS_SHIFT;
1963 val &= CR0_NUM_CHANS_MASK;
1964 val += 1;
1965 pi->pcfg.num_chan = val;
1966
1967 val = readl(regs + CR0);
1968 if (val & CR0_PERIPH_REQ_SET) {
1969 val = (val >> CR0_NUM_PERIPH_SHIFT) & CR0_NUM_PERIPH_MASK;
1970 val += 1;
1971 pi->pcfg.num_peri = val;
1972 pi->pcfg.peri_ns = readl(regs + CR4);
1973 } else {
1974 pi->pcfg.num_peri = 0;
1975 }
1976
1977 val = readl(regs + CR0);
1978 if (val & CR0_BOOT_MAN_NS)
1979 pi->pcfg.mode |= DMAC_MODE_NS;
1980 else
1981 pi->pcfg.mode &= ~DMAC_MODE_NS;
1982
1983 val = readl(regs + CR0) >> CR0_NUM_EVENTS_SHIFT;
1984 val &= CR0_NUM_EVENTS_MASK;
1985 val += 1;
1986 pi->pcfg.num_events = val;
1987
1988 pi->pcfg.irq_ns = readl(regs + CR3);
1989
1990 pi->pcfg.periph_id = get_id(pi, PERIPH_ID);
1991 pi->pcfg.pcell_id = get_id(pi, PCELL_ID);
1992 }
1993
1994 static inline void _reset_thread(struct pl330_thread *thrd)
1995 {
1996 struct pl330_dmac *pl330 = thrd->dmac;
1997 struct pl330_info *pi = pl330->pinfo;
1998
1999 thrd->req[0].mc_cpu = pl330->mcode_cpu
2000 + (thrd->id * pi->mcbufsz);
2001 thrd->req[0].mc_bus = pl330->mcode_bus
2002 + (thrd->id * pi->mcbufsz);
2003 thrd->req[0].r = NULL;
2004 mark_free(thrd, 0);
2005
2006 thrd->req[1].mc_cpu = thrd->req[0].mc_cpu
2007 + pi->mcbufsz / 2;
2008 thrd->req[1].mc_bus = thrd->req[0].mc_bus
2009 + pi->mcbufsz / 2;
2010 thrd->req[1].r = NULL;
2011 mark_free(thrd, 1);
2012 }
2013
2014 static int dmac_alloc_threads(struct pl330_dmac *pl330)
2015 {
2016 struct pl330_info *pi = pl330->pinfo;
2017 int chans = pi->pcfg.num_chan;
2018 struct pl330_thread *thrd;
2019 int i;
2020
2021 /* Allocate 1 Manager and 'chans' Channel threads */
2022 pl330->channels = kzalloc((1 + chans) * sizeof(*thrd),
2023 GFP_KERNEL);
2024 if (!pl330->channels)
2025 return -ENOMEM;
2026
2027 /* Init Channel threads */
2028 for (i = 0; i < chans; i++) {
2029 thrd = &pl330->channels[i];
2030 thrd->id = i;
2031 thrd->dmac = pl330;
2032 _reset_thread(thrd);
2033 thrd->free = true;
2034 }
2035
2036 /* MANAGER is indexed at the end */
2037 thrd = &pl330->channels[chans];
2038 thrd->id = chans;
2039 thrd->dmac = pl330;
2040 thrd->free = false;
2041 pl330->manager = thrd;
2042
2043 return 0;
2044 }
2045
2046 static int dmac_alloc_resources(struct pl330_dmac *pl330)
2047 {
2048 struct pl330_info *pi = pl330->pinfo;
2049 int chans = pi->pcfg.num_chan;
2050 int ret;
2051
2052 /*
2053 * Alloc MicroCode buffer for 'chans' Channel threads.
2054 * A channel's buffer offset is (Channel_Id * MCODE_BUFF_PERCHAN)
2055 */
2056 pl330->mcode_cpu = dma_alloc_coherent(pi->dev,
2057 chans * pi->mcbufsz,
2058 &pl330->mcode_bus, GFP_KERNEL);
2059 if (!pl330->mcode_cpu) {
2060 dev_err(pi->dev, "%s:%d Can't allocate memory!\n",
2061 __func__, __LINE__);
2062 return -ENOMEM;
2063 }
2064
2065 ret = dmac_alloc_threads(pl330);
2066 if (ret) {
2067 dev_err(pi->dev, "%s:%d Can't to create channels for DMAC!\n",
2068 __func__, __LINE__);
2069 dma_free_coherent(pi->dev,
2070 chans * pi->mcbufsz,
2071 pl330->mcode_cpu, pl330->mcode_bus);
2072 return ret;
2073 }
2074
2075 return 0;
2076 }
2077
2078 static int pl330_add(struct pl330_info *pi)
2079 {
2080 struct pl330_dmac *pl330;
2081 void __iomem *regs;
2082 int i, ret;
2083
2084 if (!pi || !pi->dev)
2085 return -EINVAL;
2086
2087 /* If already added */
2088 if (pi->pl330_data)
2089 return -EINVAL;
2090
2091 /*
2092 * If the SoC can perform reset on the DMAC, then do it
2093 * before reading its configuration.
2094 */
2095 if (pi->dmac_reset)
2096 pi->dmac_reset(pi);
2097
2098 regs = pi->base;
2099
2100 /* Check if we can handle this DMAC */
2101 if ((get_id(pi, PERIPH_ID) & 0xfffff) != PERIPH_ID_VAL
2102 || get_id(pi, PCELL_ID) != PCELL_ID_VAL) {
2103 dev_err(pi->dev, "PERIPH_ID 0x%x, PCELL_ID 0x%x !\n",
2104 get_id(pi, PERIPH_ID), get_id(pi, PCELL_ID));
2105 return -EINVAL;
2106 }
2107
2108 /* Read the configuration of the DMAC */
2109 read_dmac_config(pi);
2110
2111 if (pi->pcfg.num_events == 0) {
2112 dev_err(pi->dev, "%s:%d Can't work without events!\n",
2113 __func__, __LINE__);
2114 return -EINVAL;
2115 }
2116
2117 pl330 = kzalloc(sizeof(*pl330), GFP_KERNEL);
2118 if (!pl330) {
2119 dev_err(pi->dev, "%s:%d Can't allocate memory!\n",
2120 __func__, __LINE__);
2121 return -ENOMEM;
2122 }
2123
2124 /* Assign the info structure and private data */
2125 pl330->pinfo = pi;
2126 pi->pl330_data = pl330;
2127
2128 spin_lock_init(&pl330->lock);
2129
2130 INIT_LIST_HEAD(&pl330->req_done);
2131
2132 /* Use default MC buffer size if not provided */
2133 if (!pi->mcbufsz)
2134 pi->mcbufsz = MCODE_BUFF_PER_REQ * 2;
2135
2136 /* Mark all events as free */
2137 for (i = 0; i < pi->pcfg.num_events; i++)
2138 pl330->events[i] = -1;
2139
2140 /* Allocate resources needed by the DMAC */
2141 ret = dmac_alloc_resources(pl330);
2142 if (ret) {
2143 dev_err(pi->dev, "Unable to create channels for DMAC\n");
2144 kfree(pl330);
2145 return ret;
2146 }
2147
2148 tasklet_init(&pl330->tasks, pl330_dotask, (unsigned long) pl330);
2149
2150 pl330->state = INIT;
2151
2152 return 0;
2153 }
2154
2155 static int dmac_free_threads(struct pl330_dmac *pl330)
2156 {
2157 struct pl330_info *pi = pl330->pinfo;
2158 int chans = pi->pcfg.num_chan;
2159 struct pl330_thread *thrd;
2160 int i;
2161
2162 /* Release Channel threads */
2163 for (i = 0; i < chans; i++) {
2164 thrd = &pl330->channels[i];
2165 pl330_release_channel((void *)thrd);
2166 }
2167
2168 /* Free memory */
2169 kfree(pl330->channels);
2170
2171 return 0;
2172 }
2173
2174 static void dmac_free_resources(struct pl330_dmac *pl330)
2175 {
2176 struct pl330_info *pi = pl330->pinfo;
2177 int chans = pi->pcfg.num_chan;
2178
2179 dmac_free_threads(pl330);
2180
2181 dma_free_coherent(pi->dev, chans * pi->mcbufsz,
2182 pl330->mcode_cpu, pl330->mcode_bus);
2183 }
2184
2185 static void pl330_del(struct pl330_info *pi)
2186 {
2187 struct pl330_dmac *pl330;
2188
2189 if (!pi || !pi->pl330_data)
2190 return;
2191
2192 pl330 = pi->pl330_data;
2193
2194 pl330->state = UNINIT;
2195
2196 tasklet_kill(&pl330->tasks);
2197
2198 /* Free DMAC resources */
2199 dmac_free_resources(pl330);
2200
2201 kfree(pl330);
2202 pi->pl330_data = NULL;
2203 }
2204
2205 /* forward declaration */
2206 static struct amba_driver pl330_driver;
2207
2208 static inline struct dma_pl330_chan *
2209 to_pchan(struct dma_chan *ch)
2210 {
2211 if (!ch)
2212 return NULL;
2213
2214 return container_of(ch, struct dma_pl330_chan, chan);
2215 }
2216
2217 static inline struct dma_pl330_desc *
2218 to_desc(struct dma_async_tx_descriptor *tx)
2219 {
2220 return container_of(tx, struct dma_pl330_desc, txd);
2221 }
2222
2223 static inline void free_desc_list(struct list_head *list)
2224 {
2225 struct dma_pl330_dmac *pdmac;
2226 struct dma_pl330_desc *desc;
2227 struct dma_pl330_chan *pch = NULL;
2228 unsigned long flags;
2229
2230 /* Finish off the work list */
2231 list_for_each_entry(desc, list, node) {
2232 dma_async_tx_callback callback;
2233 void *param;
2234
2235 /* All desc in a list belong to same channel */
2236 pch = desc->pchan;
2237 callback = desc->txd.callback;
2238 param = desc->txd.callback_param;
2239
2240 if (callback)
2241 callback(param);
2242
2243 desc->pchan = NULL;
2244 }
2245
2246 /* pch will be unset if list was empty */
2247 if (!pch)
2248 return;
2249
2250 pdmac = pch->dmac;
2251
2252 spin_lock_irqsave(&pdmac->pool_lock, flags);
2253 list_splice_tail_init(list, &pdmac->desc_pool);
2254 spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2255 }
2256
2257 static inline void handle_cyclic_desc_list(struct list_head *list)
2258 {
2259 struct dma_pl330_desc *desc;
2260 struct dma_pl330_chan *pch = NULL;
2261 unsigned long flags;
2262
2263 list_for_each_entry(desc, list, node) {
2264 dma_async_tx_callback callback;
2265
2266 /* Change status to reload it */
2267 desc->status = PREP;
2268 pch = desc->pchan;
2269 callback = desc->txd.callback;
2270 if (callback)
2271 callback(desc->txd.callback_param);
2272 }
2273
2274 /* pch will be unset if list was empty */
2275 if (!pch)
2276 return;
2277
2278 spin_lock_irqsave(&pch->lock, flags);
2279 list_splice_tail_init(list, &pch->work_list);
2280 spin_unlock_irqrestore(&pch->lock, flags);
2281 }
2282
2283 static inline void fill_queue(struct dma_pl330_chan *pch)
2284 {
2285 struct dma_pl330_desc *desc;
2286 int ret;
2287
2288 list_for_each_entry(desc, &pch->work_list, node) {
2289
2290 /* If already submitted */
2291 if (desc->status == BUSY)
2292 continue;
2293
2294 ret = pl330_submit_req(pch->pl330_chid,
2295 &desc->req);
2296 if (!ret) {
2297 desc->status = BUSY;
2298 } else if (ret == -EAGAIN) {
2299 /* QFull or DMAC Dying */
2300 break;
2301 } else {
2302 /* Unacceptable request */
2303 desc->status = DONE;
2304 dev_err(pch->dmac->pif.dev, "%s:%d Bad Desc(%d)\n",
2305 __func__, __LINE__, desc->txd.cookie);
2306 tasklet_schedule(&pch->task);
2307 }
2308 }
2309 }
2310
2311 static void pl330_tasklet(unsigned long data)
2312 {
2313 struct dma_pl330_chan *pch = (struct dma_pl330_chan *)data;
2314 struct dma_pl330_desc *desc, *_dt;
2315 unsigned long flags;
2316 LIST_HEAD(list);
2317
2318 spin_lock_irqsave(&pch->lock, flags);
2319
2320 /* Pick up ripe tomatoes */
2321 list_for_each_entry_safe(desc, _dt, &pch->work_list, node)
2322 if (desc->status == DONE) {
2323 if (!pch->cyclic)
2324 dma_cookie_complete(&desc->txd);
2325 list_move_tail(&desc->node, &list);
2326 }
2327
2328 /* Try to submit a req imm. next to the last completed cookie */
2329 fill_queue(pch);
2330
2331 /* Make sure the PL330 Channel thread is active */
2332 pl330_chan_ctrl(pch->pl330_chid, PL330_OP_START);
2333
2334 spin_unlock_irqrestore(&pch->lock, flags);
2335
2336 if (pch->cyclic)
2337 handle_cyclic_desc_list(&list);
2338 else
2339 free_desc_list(&list);
2340 }
2341
2342 static void dma_pl330_rqcb(void *token, enum pl330_op_err err)
2343 {
2344 struct dma_pl330_desc *desc = token;
2345 struct dma_pl330_chan *pch = desc->pchan;
2346 unsigned long flags;
2347
2348 /* If desc aborted */
2349 if (!pch)
2350 return;
2351
2352 spin_lock_irqsave(&pch->lock, flags);
2353
2354 desc->status = DONE;
2355
2356 spin_unlock_irqrestore(&pch->lock, flags);
2357
2358 tasklet_schedule(&pch->task);
2359 }
2360
2361 static bool pl330_dt_filter(struct dma_chan *chan, void *param)
2362 {
2363 struct dma_pl330_filter_args *fargs = param;
2364
2365 if (chan->device != &fargs->pdmac->ddma)
2366 return false;
2367
2368 return (chan->chan_id == fargs->chan_id);
2369 }
2370
2371 bool pl330_filter(struct dma_chan *chan, void *param)
2372 {
2373 u8 *peri_id;
2374
2375 if (chan->device->dev->driver != &pl330_driver.drv)
2376 return false;
2377
2378 peri_id = chan->private;
2379 return *peri_id == (unsigned)param;
2380 }
2381 EXPORT_SYMBOL(pl330_filter);
2382
2383 static struct dma_chan *of_dma_pl330_xlate(struct of_phandle_args *dma_spec,
2384 struct of_dma *ofdma)
2385 {
2386 int count = dma_spec->args_count;
2387 struct dma_pl330_dmac *pdmac = ofdma->of_dma_data;
2388 struct dma_pl330_filter_args fargs;
2389 dma_cap_mask_t cap;
2390
2391 if (!pdmac)
2392 return NULL;
2393
2394 if (count != 1)
2395 return NULL;
2396
2397 fargs.pdmac = pdmac;
2398 fargs.chan_id = dma_spec->args[0];
2399
2400 dma_cap_zero(cap);
2401 dma_cap_set(DMA_SLAVE, cap);
2402 dma_cap_set(DMA_CYCLIC, cap);
2403
2404 return dma_request_channel(cap, pl330_dt_filter, &fargs);
2405 }
2406
2407 static int pl330_alloc_chan_resources(struct dma_chan *chan)
2408 {
2409 struct dma_pl330_chan *pch = to_pchan(chan);
2410 struct dma_pl330_dmac *pdmac = pch->dmac;
2411 unsigned long flags;
2412
2413 spin_lock_irqsave(&pch->lock, flags);
2414
2415 dma_cookie_init(chan);
2416 pch->cyclic = false;
2417
2418 pch->pl330_chid = pl330_request_channel(&pdmac->pif);
2419 if (!pch->pl330_chid) {
2420 spin_unlock_irqrestore(&pch->lock, flags);
2421 return -ENOMEM;
2422 }
2423
2424 tasklet_init(&pch->task, pl330_tasklet, (unsigned long) pch);
2425
2426 spin_unlock_irqrestore(&pch->lock, flags);
2427
2428 return 1;
2429 }
2430
2431 static int pl330_control(struct dma_chan *chan, enum dma_ctrl_cmd cmd, unsigned long arg)
2432 {
2433 struct dma_pl330_chan *pch = to_pchan(chan);
2434 struct dma_pl330_desc *desc, *_dt;
2435 unsigned long flags;
2436 struct dma_pl330_dmac *pdmac = pch->dmac;
2437 struct dma_slave_config *slave_config;
2438 LIST_HEAD(list);
2439
2440 switch (cmd) {
2441 case DMA_TERMINATE_ALL:
2442 spin_lock_irqsave(&pch->lock, flags);
2443
2444 /* FLUSH the PL330 Channel thread */
2445 pl330_chan_ctrl(pch->pl330_chid, PL330_OP_FLUSH);
2446
2447 /* Mark all desc done */
2448 list_for_each_entry_safe(desc, _dt, &pch->work_list , node) {
2449 desc->status = DONE;
2450 list_move_tail(&desc->node, &list);
2451 }
2452
2453 list_splice_tail_init(&list, &pdmac->desc_pool);
2454 spin_unlock_irqrestore(&pch->lock, flags);
2455 break;
2456 case DMA_SLAVE_CONFIG:
2457 slave_config = (struct dma_slave_config *)arg;
2458
2459 if (slave_config->direction == DMA_MEM_TO_DEV) {
2460 if (slave_config->dst_addr)
2461 pch->fifo_addr = slave_config->dst_addr;
2462 if (slave_config->dst_addr_width)
2463 pch->burst_sz = __ffs(slave_config->dst_addr_width);
2464 if (slave_config->dst_maxburst)
2465 pch->burst_len = slave_config->dst_maxburst;
2466 } else if (slave_config->direction == DMA_DEV_TO_MEM) {
2467 if (slave_config->src_addr)
2468 pch->fifo_addr = slave_config->src_addr;
2469 if (slave_config->src_addr_width)
2470 pch->burst_sz = __ffs(slave_config->src_addr_width);
2471 if (slave_config->src_maxburst)
2472 pch->burst_len = slave_config->src_maxburst;
2473 }
2474 break;
2475 default:
2476 dev_err(pch->dmac->pif.dev, "Not supported command.\n");
2477 return -ENXIO;
2478 }
2479
2480 return 0;
2481 }
2482
2483 static void pl330_free_chan_resources(struct dma_chan *chan)
2484 {
2485 struct dma_pl330_chan *pch = to_pchan(chan);
2486 unsigned long flags;
2487
2488 tasklet_kill(&pch->task);
2489
2490 spin_lock_irqsave(&pch->lock, flags);
2491
2492 pl330_release_channel(pch->pl330_chid);
2493 pch->pl330_chid = NULL;
2494
2495 if (pch->cyclic)
2496 list_splice_tail_init(&pch->work_list, &pch->dmac->desc_pool);
2497
2498 spin_unlock_irqrestore(&pch->lock, flags);
2499 }
2500
2501 static enum dma_status
2502 pl330_tx_status(struct dma_chan *chan, dma_cookie_t cookie,
2503 struct dma_tx_state *txstate)
2504 {
2505 return dma_cookie_status(chan, cookie, txstate);
2506 }
2507
2508 static void pl330_issue_pending(struct dma_chan *chan)
2509 {
2510 pl330_tasklet((unsigned long) to_pchan(chan));
2511 }
2512
2513 /*
2514 * We returned the last one of the circular list of descriptor(s)
2515 * from prep_xxx, so the argument to submit corresponds to the last
2516 * descriptor of the list.
2517 */
2518 static dma_cookie_t pl330_tx_submit(struct dma_async_tx_descriptor *tx)
2519 {
2520 struct dma_pl330_desc *desc, *last = to_desc(tx);
2521 struct dma_pl330_chan *pch = to_pchan(tx->chan);
2522 dma_cookie_t cookie;
2523 unsigned long flags;
2524
2525 spin_lock_irqsave(&pch->lock, flags);
2526
2527 /* Assign cookies to all nodes */
2528 while (!list_empty(&last->node)) {
2529 desc = list_entry(last->node.next, struct dma_pl330_desc, node);
2530 if (pch->cyclic) {
2531 desc->txd.callback = last->txd.callback;
2532 desc->txd.callback_param = last->txd.callback_param;
2533 }
2534
2535 dma_cookie_assign(&desc->txd);
2536
2537 list_move_tail(&desc->node, &pch->work_list);
2538 }
2539
2540 cookie = dma_cookie_assign(&last->txd);
2541 list_add_tail(&last->node, &pch->work_list);
2542 spin_unlock_irqrestore(&pch->lock, flags);
2543
2544 return cookie;
2545 }
2546
2547 static inline void _init_desc(struct dma_pl330_desc *desc)
2548 {
2549 desc->pchan = NULL;
2550 desc->req.x = &desc->px;
2551 desc->req.token = desc;
2552 desc->rqcfg.swap = SWAP_NO;
2553 desc->rqcfg.privileged = 0;
2554 desc->rqcfg.insnaccess = 0;
2555 desc->rqcfg.scctl = SCCTRL0;
2556 desc->rqcfg.dcctl = DCCTRL0;
2557 desc->req.cfg = &desc->rqcfg;
2558 desc->req.xfer_cb = dma_pl330_rqcb;
2559 desc->txd.tx_submit = pl330_tx_submit;
2560
2561 INIT_LIST_HEAD(&desc->node);
2562 }
2563
2564 /* Returns the number of descriptors added to the DMAC pool */
2565 static int add_desc(struct dma_pl330_dmac *pdmac, gfp_t flg, int count)
2566 {
2567 struct dma_pl330_desc *desc;
2568 unsigned long flags;
2569 int i;
2570
2571 if (!pdmac)
2572 return 0;
2573
2574 desc = kmalloc(count * sizeof(*desc), flg);
2575 if (!desc)
2576 return 0;
2577
2578 spin_lock_irqsave(&pdmac->pool_lock, flags);
2579
2580 for (i = 0; i < count; i++) {
2581 _init_desc(&desc[i]);
2582 list_add_tail(&desc[i].node, &pdmac->desc_pool);
2583 }
2584
2585 spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2586
2587 return count;
2588 }
2589
2590 static struct dma_pl330_desc *
2591 pluck_desc(struct dma_pl330_dmac *pdmac)
2592 {
2593 struct dma_pl330_desc *desc = NULL;
2594 unsigned long flags;
2595
2596 if (!pdmac)
2597 return NULL;
2598
2599 spin_lock_irqsave(&pdmac->pool_lock, flags);
2600
2601 if (!list_empty(&pdmac->desc_pool)) {
2602 desc = list_entry(pdmac->desc_pool.next,
2603 struct dma_pl330_desc, node);
2604
2605 list_del_init(&desc->node);
2606
2607 desc->status = PREP;
2608 desc->txd.callback = NULL;
2609 }
2610
2611 spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2612
2613 return desc;
2614 }
2615
2616 static struct dma_pl330_desc *pl330_get_desc(struct dma_pl330_chan *pch)
2617 {
2618 struct dma_pl330_dmac *pdmac = pch->dmac;
2619 u8 *peri_id = pch->chan.private;
2620 struct dma_pl330_desc *desc;
2621
2622 /* Pluck one desc from the pool of DMAC */
2623 desc = pluck_desc(pdmac);
2624
2625 /* If the DMAC pool is empty, alloc new */
2626 if (!desc) {
2627 if (!add_desc(pdmac, GFP_ATOMIC, 1))
2628 return NULL;
2629
2630 /* Try again */
2631 desc = pluck_desc(pdmac);
2632 if (!desc) {
2633 dev_err(pch->dmac->pif.dev,
2634 "%s:%d ALERT!\n", __func__, __LINE__);
2635 return NULL;
2636 }
2637 }
2638
2639 /* Initialize the descriptor */
2640 desc->pchan = pch;
2641 desc->txd.cookie = 0;
2642 async_tx_ack(&desc->txd);
2643
2644 desc->req.peri = peri_id ? pch->chan.chan_id : 0;
2645 desc->rqcfg.pcfg = &pch->dmac->pif.pcfg;
2646
2647 dma_async_tx_descriptor_init(&desc->txd, &pch->chan);
2648
2649 return desc;
2650 }
2651
2652 static inline void fill_px(struct pl330_xfer *px,
2653 dma_addr_t dst, dma_addr_t src, size_t len)
2654 {
2655 px->next = NULL;
2656 px->bytes = len;
2657 px->dst_addr = dst;
2658 px->src_addr = src;
2659 }
2660
2661 static struct dma_pl330_desc *
2662 __pl330_prep_dma_memcpy(struct dma_pl330_chan *pch, dma_addr_t dst,
2663 dma_addr_t src, size_t len)
2664 {
2665 struct dma_pl330_desc *desc = pl330_get_desc(pch);
2666
2667 if (!desc) {
2668 dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n",
2669 __func__, __LINE__);
2670 return NULL;
2671 }
2672
2673 /*
2674 * Ideally we should lookout for reqs bigger than
2675 * those that can be programmed with 256 bytes of
2676 * MC buffer, but considering a req size is seldom
2677 * going to be word-unaligned and more than 200MB,
2678 * we take it easy.
2679 * Also, should the limit is reached we'd rather
2680 * have the platform increase MC buffer size than
2681 * complicating this API driver.
2682 */
2683 fill_px(&desc->px, dst, src, len);
2684
2685 return desc;
2686 }
2687
2688 /* Call after fixing burst size */
2689 static inline int get_burst_len(struct dma_pl330_desc *desc, size_t len)
2690 {
2691 struct dma_pl330_chan *pch = desc->pchan;
2692 struct pl330_info *pi = &pch->dmac->pif;
2693 int burst_len;
2694
2695 burst_len = pi->pcfg.data_bus_width / 8;
2696 burst_len *= pi->pcfg.data_buf_dep;
2697 burst_len >>= desc->rqcfg.brst_size;
2698
2699 /* src/dst_burst_len can't be more than 16 */
2700 if (burst_len > 16)
2701 burst_len = 16;
2702
2703 while (burst_len > 1) {
2704 if (!(len % (burst_len << desc->rqcfg.brst_size)))
2705 break;
2706 burst_len--;
2707 }
2708
2709 return burst_len;
2710 }
2711
2712 static struct dma_async_tx_descriptor *pl330_prep_dma_cyclic(
2713 struct dma_chan *chan, dma_addr_t dma_addr, size_t len,
2714 size_t period_len, enum dma_transfer_direction direction,
2715 unsigned long flags, void *context)
2716 {
2717 struct dma_pl330_desc *desc = NULL, *first = NULL;
2718 struct dma_pl330_chan *pch = to_pchan(chan);
2719 struct dma_pl330_dmac *pdmac = pch->dmac;
2720 unsigned int i;
2721 dma_addr_t dst;
2722 dma_addr_t src;
2723
2724 if (len % period_len != 0)
2725 return NULL;
2726
2727 if (!is_slave_direction(direction)) {
2728 dev_err(pch->dmac->pif.dev, "%s:%d Invalid dma direction\n",
2729 __func__, __LINE__);
2730 return NULL;
2731 }
2732
2733 for (i = 0; i < len / period_len; i++) {
2734 desc = pl330_get_desc(pch);
2735 if (!desc) {
2736 dev_err(pch->dmac->pif.dev, "%s:%d Unable to fetch desc\n",
2737 __func__, __LINE__);
2738
2739 if (!first)
2740 return NULL;
2741
2742 spin_lock_irqsave(&pdmac->pool_lock, flags);
2743
2744 while (!list_empty(&first->node)) {
2745 desc = list_entry(first->node.next,
2746 struct dma_pl330_desc, node);
2747 list_move_tail(&desc->node, &pdmac->desc_pool);
2748 }
2749
2750 list_move_tail(&first->node, &pdmac->desc_pool);
2751
2752 spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2753
2754 return NULL;
2755 }
2756
2757 switch (direction) {
2758 case DMA_MEM_TO_DEV:
2759 desc->rqcfg.src_inc = 1;
2760 desc->rqcfg.dst_inc = 0;
2761 desc->req.rqtype = MEMTODEV;
2762 src = dma_addr;
2763 dst = pch->fifo_addr;
2764 break;
2765 case DMA_DEV_TO_MEM:
2766 desc->rqcfg.src_inc = 0;
2767 desc->rqcfg.dst_inc = 1;
2768 desc->req.rqtype = DEVTOMEM;
2769 src = pch->fifo_addr;
2770 dst = dma_addr;
2771 break;
2772 default:
2773 break;
2774 }
2775
2776 desc->rqcfg.brst_size = pch->burst_sz;
2777 desc->rqcfg.brst_len = 1;
2778 fill_px(&desc->px, dst, src, period_len);
2779
2780 if (!first)
2781 first = desc;
2782 else
2783 list_add_tail(&desc->node, &first->node);
2784
2785 dma_addr += period_len;
2786 }
2787
2788 if (!desc)
2789 return NULL;
2790
2791 pch->cyclic = true;
2792 desc->txd.flags = flags;
2793
2794 return &desc->txd;
2795 }
2796
2797 static struct dma_async_tx_descriptor *
2798 pl330_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dst,
2799 dma_addr_t src, size_t len, unsigned long flags)
2800 {
2801 struct dma_pl330_desc *desc;
2802 struct dma_pl330_chan *pch = to_pchan(chan);
2803 struct pl330_info *pi;
2804 int burst;
2805
2806 if (unlikely(!pch || !len))
2807 return NULL;
2808
2809 pi = &pch->dmac->pif;
2810
2811 desc = __pl330_prep_dma_memcpy(pch, dst, src, len);
2812 if (!desc)
2813 return NULL;
2814
2815 desc->rqcfg.src_inc = 1;
2816 desc->rqcfg.dst_inc = 1;
2817 desc->req.rqtype = MEMTOMEM;
2818
2819 /* Select max possible burst size */
2820 burst = pi->pcfg.data_bus_width / 8;
2821
2822 while (burst > 1) {
2823 if (!(len % burst))
2824 break;
2825 burst /= 2;
2826 }
2827
2828 desc->rqcfg.brst_size = 0;
2829 while (burst != (1 << desc->rqcfg.brst_size))
2830 desc->rqcfg.brst_size++;
2831
2832 desc->rqcfg.brst_len = get_burst_len(desc, len);
2833
2834 desc->txd.flags = flags;
2835
2836 return &desc->txd;
2837 }
2838
2839 static struct dma_async_tx_descriptor *
2840 pl330_prep_slave_sg(struct dma_chan *chan, struct scatterlist *sgl,
2841 unsigned int sg_len, enum dma_transfer_direction direction,
2842 unsigned long flg, void *context)
2843 {
2844 struct dma_pl330_desc *first, *desc = NULL;
2845 struct dma_pl330_chan *pch = to_pchan(chan);
2846 struct scatterlist *sg;
2847 unsigned long flags;
2848 int i;
2849 dma_addr_t addr;
2850
2851 if (unlikely(!pch || !sgl || !sg_len))
2852 return NULL;
2853
2854 addr = pch->fifo_addr;
2855
2856 first = NULL;
2857
2858 for_each_sg(sgl, sg, sg_len, i) {
2859
2860 desc = pl330_get_desc(pch);
2861 if (!desc) {
2862 struct dma_pl330_dmac *pdmac = pch->dmac;
2863
2864 dev_err(pch->dmac->pif.dev,
2865 "%s:%d Unable to fetch desc\n",
2866 __func__, __LINE__);
2867 if (!first)
2868 return NULL;
2869
2870 spin_lock_irqsave(&pdmac->pool_lock, flags);
2871
2872 while (!list_empty(&first->node)) {
2873 desc = list_entry(first->node.next,
2874 struct dma_pl330_desc, node);
2875 list_move_tail(&desc->node, &pdmac->desc_pool);
2876 }
2877
2878 list_move_tail(&first->node, &pdmac->desc_pool);
2879
2880 spin_unlock_irqrestore(&pdmac->pool_lock, flags);
2881
2882 return NULL;
2883 }
2884
2885 if (!first)
2886 first = desc;
2887 else
2888 list_add_tail(&desc->node, &first->node);
2889
2890 if (direction == DMA_MEM_TO_DEV) {
2891 desc->rqcfg.src_inc = 1;
2892 desc->rqcfg.dst_inc = 0;
2893 desc->req.rqtype = MEMTODEV;
2894 fill_px(&desc->px,
2895 addr, sg_dma_address(sg), sg_dma_len(sg));
2896 } else {
2897 desc->rqcfg.src_inc = 0;
2898 desc->rqcfg.dst_inc = 1;
2899 desc->req.rqtype = DEVTOMEM;
2900 fill_px(&desc->px,
2901 sg_dma_address(sg), addr, sg_dma_len(sg));
2902 }
2903
2904 desc->rqcfg.brst_size = pch->burst_sz;
2905 desc->rqcfg.brst_len = 1;
2906 }
2907
2908 /* Return the last desc in the chain */
2909 desc->txd.flags = flg;
2910 return &desc->txd;
2911 }
2912
2913 static irqreturn_t pl330_irq_handler(int irq, void *data)
2914 {
2915 if (pl330_update(data))
2916 return IRQ_HANDLED;
2917 else
2918 return IRQ_NONE;
2919 }
2920
2921 static int
2922 pl330_probe(struct amba_device *adev, const struct amba_id *id)
2923 {
2924 struct dma_pl330_platdata *pdat;
2925 struct dma_pl330_dmac *pdmac;
2926 struct dma_pl330_chan *pch, *_p;
2927 struct pl330_info *pi;
2928 struct dma_device *pd;
2929 struct resource *res;
2930 int i, ret, irq;
2931 int num_chan;
2932
2933 pdat = adev->dev.platform_data;
2934
2935 /* Allocate a new DMAC and its Channels */
2936 pdmac = devm_kzalloc(&adev->dev, sizeof(*pdmac), GFP_KERNEL);
2937 if (!pdmac) {
2938 dev_err(&adev->dev, "unable to allocate mem\n");
2939 return -ENOMEM;
2940 }
2941
2942 pi = &pdmac->pif;
2943 pi->dev = &adev->dev;
2944 pi->pl330_data = NULL;
2945 pi->mcbufsz = pdat ? pdat->mcbuf_sz : 0;
2946
2947 res = &adev->res;
2948 pi->base = devm_ioremap_resource(&adev->dev, res);
2949 if (IS_ERR(pi->base))
2950 return PTR_ERR(pi->base);
2951
2952 amba_set_drvdata(adev, pdmac);
2953
2954 irq = adev->irq[0];
2955 ret = request_irq(irq, pl330_irq_handler, 0,
2956 dev_name(&adev->dev), pi);
2957 if (ret)
2958 return ret;
2959
2960 ret = pl330_add(pi);
2961 if (ret)
2962 goto probe_err1;
2963
2964 INIT_LIST_HEAD(&pdmac->desc_pool);
2965 spin_lock_init(&pdmac->pool_lock);
2966
2967 /* Create a descriptor pool of default size */
2968 if (!add_desc(pdmac, GFP_KERNEL, NR_DEFAULT_DESC))
2969 dev_warn(&adev->dev, "unable to allocate desc\n");
2970
2971 pd = &pdmac->ddma;
2972 INIT_LIST_HEAD(&pd->channels);
2973
2974 /* Initialize channel parameters */
2975 if (pdat)
2976 num_chan = max_t(int, pdat->nr_valid_peri, pi->pcfg.num_chan);
2977 else
2978 num_chan = max_t(int, pi->pcfg.num_peri, pi->pcfg.num_chan);
2979
2980 pdmac->peripherals = kzalloc(num_chan * sizeof(*pch), GFP_KERNEL);
2981 if (!pdmac->peripherals) {
2982 ret = -ENOMEM;
2983 dev_err(&adev->dev, "unable to allocate pdmac->peripherals\n");
2984 goto probe_err2;
2985 }
2986
2987 for (i = 0; i < num_chan; i++) {
2988 pch = &pdmac->peripherals[i];
2989 if (!adev->dev.of_node)
2990 pch->chan.private = pdat ? &pdat->peri_id[i] : NULL;
2991 else
2992 pch->chan.private = adev->dev.of_node;
2993
2994 INIT_LIST_HEAD(&pch->work_list);
2995 spin_lock_init(&pch->lock);
2996 pch->pl330_chid = NULL;
2997 pch->chan.device = pd;
2998 pch->dmac = pdmac;
2999
3000 /* Add the channel to the DMAC list */
3001 list_add_tail(&pch->chan.device_node, &pd->channels);
3002 }
3003
3004 pd->dev = &adev->dev;
3005 if (pdat) {
3006 pd->cap_mask = pdat->cap_mask;
3007 } else {
3008 dma_cap_set(DMA_MEMCPY, pd->cap_mask);
3009 if (pi->pcfg.num_peri) {
3010 dma_cap_set(DMA_SLAVE, pd->cap_mask);
3011 dma_cap_set(DMA_CYCLIC, pd->cap_mask);
3012 dma_cap_set(DMA_PRIVATE, pd->cap_mask);
3013 }
3014 }
3015
3016 pd->device_alloc_chan_resources = pl330_alloc_chan_resources;
3017 pd->device_free_chan_resources = pl330_free_chan_resources;
3018 pd->device_prep_dma_memcpy = pl330_prep_dma_memcpy;
3019 pd->device_prep_dma_cyclic = pl330_prep_dma_cyclic;
3020 pd->device_tx_status = pl330_tx_status;
3021 pd->device_prep_slave_sg = pl330_prep_slave_sg;
3022 pd->device_control = pl330_control;
3023 pd->device_issue_pending = pl330_issue_pending;
3024
3025 ret = dma_async_device_register(pd);
3026 if (ret) {
3027 dev_err(&adev->dev, "unable to register DMAC\n");
3028 goto probe_err3;
3029 }
3030
3031 if (adev->dev.of_node) {
3032 ret = of_dma_controller_register(adev->dev.of_node,
3033 of_dma_pl330_xlate, pdmac);
3034 if (ret) {
3035 dev_err(&adev->dev,
3036 "unable to register DMA to the generic DT DMA helpers\n");
3037 }
3038 }
3039
3040 dev_info(&adev->dev,
3041 "Loaded driver for PL330 DMAC-%d\n", adev->periphid);
3042 dev_info(&adev->dev,
3043 "\tDBUFF-%ux%ubytes Num_Chans-%u Num_Peri-%u Num_Events-%u\n",
3044 pi->pcfg.data_buf_dep,
3045 pi->pcfg.data_bus_width / 8, pi->pcfg.num_chan,
3046 pi->pcfg.num_peri, pi->pcfg.num_events);
3047
3048 return 0;
3049 probe_err3:
3050 amba_set_drvdata(adev, NULL);
3051
3052 /* Idle the DMAC */
3053 list_for_each_entry_safe(pch, _p, &pdmac->ddma.channels,
3054 chan.device_node) {
3055
3056 /* Remove the channel */
3057 list_del(&pch->chan.device_node);
3058
3059 /* Flush the channel */
3060 pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0);
3061 pl330_free_chan_resources(&pch->chan);
3062 }
3063 probe_err2:
3064 pl330_del(pi);
3065 probe_err1:
3066 free_irq(irq, pi);
3067
3068 return ret;
3069 }
3070
3071 static int pl330_remove(struct amba_device *adev)
3072 {
3073 struct dma_pl330_dmac *pdmac = amba_get_drvdata(adev);
3074 struct dma_pl330_chan *pch, *_p;
3075 struct pl330_info *pi;
3076 int irq;
3077
3078 if (!pdmac)
3079 return 0;
3080
3081 if (adev->dev.of_node)
3082 of_dma_controller_free(adev->dev.of_node);
3083
3084 dma_async_device_unregister(&pdmac->ddma);
3085 amba_set_drvdata(adev, NULL);
3086
3087 /* Idle the DMAC */
3088 list_for_each_entry_safe(pch, _p, &pdmac->ddma.channels,
3089 chan.device_node) {
3090
3091 /* Remove the channel */
3092 list_del(&pch->chan.device_node);
3093
3094 /* Flush the channel */
3095 pl330_control(&pch->chan, DMA_TERMINATE_ALL, 0);
3096 pl330_free_chan_resources(&pch->chan);
3097 }
3098
3099 pi = &pdmac->pif;
3100
3101 pl330_del(pi);
3102
3103 irq = adev->irq[0];
3104 free_irq(irq, pi);
3105
3106 return 0;
3107 }
3108
3109 static struct amba_id pl330_ids[] = {
3110 {
3111 .id = 0x00041330,
3112 .mask = 0x000fffff,
3113 },
3114 { 0, 0 },
3115 };
3116
3117 MODULE_DEVICE_TABLE(amba, pl330_ids);
3118
3119 static struct amba_driver pl330_driver = {
3120 .drv = {
3121 .owner = THIS_MODULE,
3122 .name = "dma-pl330",
3123 },
3124 .id_table = pl330_ids,
3125 .probe = pl330_probe,
3126 .remove = pl330_remove,
3127 };
3128
3129 module_amba_driver(pl330_driver);
3130
3131 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
3132 MODULE_DESCRIPTION("API Driver for PL330 DMAC");
3133 MODULE_LICENSE("GPL");