Merge branch 'reiserfs/kill-bkl' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / dma / mv_xor.c
1 /*
2 * offload engine driver for the Marvell XOR engine
3 * Copyright (C) 2007, 2008, Marvell International Ltd.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/delay.h>
22 #include <linux/dma-mapping.h>
23 #include <linux/spinlock.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/memory.h>
27 #include <plat/mv_xor.h>
28 #include "mv_xor.h"
29
30 static void mv_xor_issue_pending(struct dma_chan *chan);
31
32 #define to_mv_xor_chan(chan) \
33 container_of(chan, struct mv_xor_chan, common)
34
35 #define to_mv_xor_device(dev) \
36 container_of(dev, struct mv_xor_device, common)
37
38 #define to_mv_xor_slot(tx) \
39 container_of(tx, struct mv_xor_desc_slot, async_tx)
40
41 static void mv_desc_init(struct mv_xor_desc_slot *desc, unsigned long flags)
42 {
43 struct mv_xor_desc *hw_desc = desc->hw_desc;
44
45 hw_desc->status = (1 << 31);
46 hw_desc->phy_next_desc = 0;
47 hw_desc->desc_command = (1 << 31);
48 }
49
50 static u32 mv_desc_get_dest_addr(struct mv_xor_desc_slot *desc)
51 {
52 struct mv_xor_desc *hw_desc = desc->hw_desc;
53 return hw_desc->phy_dest_addr;
54 }
55
56 static u32 mv_desc_get_src_addr(struct mv_xor_desc_slot *desc,
57 int src_idx)
58 {
59 struct mv_xor_desc *hw_desc = desc->hw_desc;
60 return hw_desc->phy_src_addr[src_idx];
61 }
62
63
64 static void mv_desc_set_byte_count(struct mv_xor_desc_slot *desc,
65 u32 byte_count)
66 {
67 struct mv_xor_desc *hw_desc = desc->hw_desc;
68 hw_desc->byte_count = byte_count;
69 }
70
71 static void mv_desc_set_next_desc(struct mv_xor_desc_slot *desc,
72 u32 next_desc_addr)
73 {
74 struct mv_xor_desc *hw_desc = desc->hw_desc;
75 BUG_ON(hw_desc->phy_next_desc);
76 hw_desc->phy_next_desc = next_desc_addr;
77 }
78
79 static void mv_desc_clear_next_desc(struct mv_xor_desc_slot *desc)
80 {
81 struct mv_xor_desc *hw_desc = desc->hw_desc;
82 hw_desc->phy_next_desc = 0;
83 }
84
85 static void mv_desc_set_block_fill_val(struct mv_xor_desc_slot *desc, u32 val)
86 {
87 desc->value = val;
88 }
89
90 static void mv_desc_set_dest_addr(struct mv_xor_desc_slot *desc,
91 dma_addr_t addr)
92 {
93 struct mv_xor_desc *hw_desc = desc->hw_desc;
94 hw_desc->phy_dest_addr = addr;
95 }
96
97 static int mv_chan_memset_slot_count(size_t len)
98 {
99 return 1;
100 }
101
102 #define mv_chan_memcpy_slot_count(c) mv_chan_memset_slot_count(c)
103
104 static void mv_desc_set_src_addr(struct mv_xor_desc_slot *desc,
105 int index, dma_addr_t addr)
106 {
107 struct mv_xor_desc *hw_desc = desc->hw_desc;
108 hw_desc->phy_src_addr[index] = addr;
109 if (desc->type == DMA_XOR)
110 hw_desc->desc_command |= (1 << index);
111 }
112
113 static u32 mv_chan_get_current_desc(struct mv_xor_chan *chan)
114 {
115 return __raw_readl(XOR_CURR_DESC(chan));
116 }
117
118 static void mv_chan_set_next_descriptor(struct mv_xor_chan *chan,
119 u32 next_desc_addr)
120 {
121 __raw_writel(next_desc_addr, XOR_NEXT_DESC(chan));
122 }
123
124 static void mv_chan_set_dest_pointer(struct mv_xor_chan *chan, u32 desc_addr)
125 {
126 __raw_writel(desc_addr, XOR_DEST_POINTER(chan));
127 }
128
129 static void mv_chan_set_block_size(struct mv_xor_chan *chan, u32 block_size)
130 {
131 __raw_writel(block_size, XOR_BLOCK_SIZE(chan));
132 }
133
134 static void mv_chan_set_value(struct mv_xor_chan *chan, u32 value)
135 {
136 __raw_writel(value, XOR_INIT_VALUE_LOW(chan));
137 __raw_writel(value, XOR_INIT_VALUE_HIGH(chan));
138 }
139
140 static void mv_chan_unmask_interrupts(struct mv_xor_chan *chan)
141 {
142 u32 val = __raw_readl(XOR_INTR_MASK(chan));
143 val |= XOR_INTR_MASK_VALUE << (chan->idx * 16);
144 __raw_writel(val, XOR_INTR_MASK(chan));
145 }
146
147 static u32 mv_chan_get_intr_cause(struct mv_xor_chan *chan)
148 {
149 u32 intr_cause = __raw_readl(XOR_INTR_CAUSE(chan));
150 intr_cause = (intr_cause >> (chan->idx * 16)) & 0xFFFF;
151 return intr_cause;
152 }
153
154 static int mv_is_err_intr(u32 intr_cause)
155 {
156 if (intr_cause & ((1<<4)|(1<<5)|(1<<6)|(1<<7)|(1<<8)|(1<<9)))
157 return 1;
158
159 return 0;
160 }
161
162 static void mv_xor_device_clear_eoc_cause(struct mv_xor_chan *chan)
163 {
164 u32 val = (1 << (1 + (chan->idx * 16)));
165 dev_dbg(chan->device->common.dev, "%s, val 0x%08x\n", __func__, val);
166 __raw_writel(val, XOR_INTR_CAUSE(chan));
167 }
168
169 static void mv_xor_device_clear_err_status(struct mv_xor_chan *chan)
170 {
171 u32 val = 0xFFFF0000 >> (chan->idx * 16);
172 __raw_writel(val, XOR_INTR_CAUSE(chan));
173 }
174
175 static int mv_can_chain(struct mv_xor_desc_slot *desc)
176 {
177 struct mv_xor_desc_slot *chain_old_tail = list_entry(
178 desc->chain_node.prev, struct mv_xor_desc_slot, chain_node);
179
180 if (chain_old_tail->type != desc->type)
181 return 0;
182 if (desc->type == DMA_MEMSET)
183 return 0;
184
185 return 1;
186 }
187
188 static void mv_set_mode(struct mv_xor_chan *chan,
189 enum dma_transaction_type type)
190 {
191 u32 op_mode;
192 u32 config = __raw_readl(XOR_CONFIG(chan));
193
194 switch (type) {
195 case DMA_XOR:
196 op_mode = XOR_OPERATION_MODE_XOR;
197 break;
198 case DMA_MEMCPY:
199 op_mode = XOR_OPERATION_MODE_MEMCPY;
200 break;
201 case DMA_MEMSET:
202 op_mode = XOR_OPERATION_MODE_MEMSET;
203 break;
204 default:
205 dev_printk(KERN_ERR, chan->device->common.dev,
206 "error: unsupported operation %d.\n",
207 type);
208 BUG();
209 return;
210 }
211
212 config &= ~0x7;
213 config |= op_mode;
214 __raw_writel(config, XOR_CONFIG(chan));
215 chan->current_type = type;
216 }
217
218 static void mv_chan_activate(struct mv_xor_chan *chan)
219 {
220 u32 activation;
221
222 dev_dbg(chan->device->common.dev, " activate chan.\n");
223 activation = __raw_readl(XOR_ACTIVATION(chan));
224 activation |= 0x1;
225 __raw_writel(activation, XOR_ACTIVATION(chan));
226 }
227
228 static char mv_chan_is_busy(struct mv_xor_chan *chan)
229 {
230 u32 state = __raw_readl(XOR_ACTIVATION(chan));
231
232 state = (state >> 4) & 0x3;
233
234 return (state == 1) ? 1 : 0;
235 }
236
237 static int mv_chan_xor_slot_count(size_t len, int src_cnt)
238 {
239 return 1;
240 }
241
242 /**
243 * mv_xor_free_slots - flags descriptor slots for reuse
244 * @slot: Slot to free
245 * Caller must hold &mv_chan->lock while calling this function
246 */
247 static void mv_xor_free_slots(struct mv_xor_chan *mv_chan,
248 struct mv_xor_desc_slot *slot)
249 {
250 dev_dbg(mv_chan->device->common.dev, "%s %d slot %p\n",
251 __func__, __LINE__, slot);
252
253 slot->slots_per_op = 0;
254
255 }
256
257 /*
258 * mv_xor_start_new_chain - program the engine to operate on new chain headed by
259 * sw_desc
260 * Caller must hold &mv_chan->lock while calling this function
261 */
262 static void mv_xor_start_new_chain(struct mv_xor_chan *mv_chan,
263 struct mv_xor_desc_slot *sw_desc)
264 {
265 dev_dbg(mv_chan->device->common.dev, "%s %d: sw_desc %p\n",
266 __func__, __LINE__, sw_desc);
267 if (sw_desc->type != mv_chan->current_type)
268 mv_set_mode(mv_chan, sw_desc->type);
269
270 if (sw_desc->type == DMA_MEMSET) {
271 /* for memset requests we need to program the engine, no
272 * descriptors used.
273 */
274 struct mv_xor_desc *hw_desc = sw_desc->hw_desc;
275 mv_chan_set_dest_pointer(mv_chan, hw_desc->phy_dest_addr);
276 mv_chan_set_block_size(mv_chan, sw_desc->unmap_len);
277 mv_chan_set_value(mv_chan, sw_desc->value);
278 } else {
279 /* set the hardware chain */
280 mv_chan_set_next_descriptor(mv_chan, sw_desc->async_tx.phys);
281 }
282 mv_chan->pending += sw_desc->slot_cnt;
283 mv_xor_issue_pending(&mv_chan->common);
284 }
285
286 static dma_cookie_t
287 mv_xor_run_tx_complete_actions(struct mv_xor_desc_slot *desc,
288 struct mv_xor_chan *mv_chan, dma_cookie_t cookie)
289 {
290 BUG_ON(desc->async_tx.cookie < 0);
291
292 if (desc->async_tx.cookie > 0) {
293 cookie = desc->async_tx.cookie;
294
295 /* call the callback (must not sleep or submit new
296 * operations to this channel)
297 */
298 if (desc->async_tx.callback)
299 desc->async_tx.callback(
300 desc->async_tx.callback_param);
301
302 /* unmap dma addresses
303 * (unmap_single vs unmap_page?)
304 */
305 if (desc->group_head && desc->unmap_len) {
306 struct mv_xor_desc_slot *unmap = desc->group_head;
307 struct device *dev =
308 &mv_chan->device->pdev->dev;
309 u32 len = unmap->unmap_len;
310 enum dma_ctrl_flags flags = desc->async_tx.flags;
311 u32 src_cnt;
312 dma_addr_t addr;
313 dma_addr_t dest;
314
315 src_cnt = unmap->unmap_src_cnt;
316 dest = mv_desc_get_dest_addr(unmap);
317 if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
318 enum dma_data_direction dir;
319
320 if (src_cnt > 1) /* is xor ? */
321 dir = DMA_BIDIRECTIONAL;
322 else
323 dir = DMA_FROM_DEVICE;
324 dma_unmap_page(dev, dest, len, dir);
325 }
326
327 if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
328 while (src_cnt--) {
329 addr = mv_desc_get_src_addr(unmap,
330 src_cnt);
331 if (addr == dest)
332 continue;
333 dma_unmap_page(dev, addr, len,
334 DMA_TO_DEVICE);
335 }
336 }
337 desc->group_head = NULL;
338 }
339 }
340
341 /* run dependent operations */
342 dma_run_dependencies(&desc->async_tx);
343
344 return cookie;
345 }
346
347 static int
348 mv_xor_clean_completed_slots(struct mv_xor_chan *mv_chan)
349 {
350 struct mv_xor_desc_slot *iter, *_iter;
351
352 dev_dbg(mv_chan->device->common.dev, "%s %d\n", __func__, __LINE__);
353 list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
354 completed_node) {
355
356 if (async_tx_test_ack(&iter->async_tx)) {
357 list_del(&iter->completed_node);
358 mv_xor_free_slots(mv_chan, iter);
359 }
360 }
361 return 0;
362 }
363
364 static int
365 mv_xor_clean_slot(struct mv_xor_desc_slot *desc,
366 struct mv_xor_chan *mv_chan)
367 {
368 dev_dbg(mv_chan->device->common.dev, "%s %d: desc %p flags %d\n",
369 __func__, __LINE__, desc, desc->async_tx.flags);
370 list_del(&desc->chain_node);
371 /* the client is allowed to attach dependent operations
372 * until 'ack' is set
373 */
374 if (!async_tx_test_ack(&desc->async_tx)) {
375 /* move this slot to the completed_slots */
376 list_add_tail(&desc->completed_node, &mv_chan->completed_slots);
377 return 0;
378 }
379
380 mv_xor_free_slots(mv_chan, desc);
381 return 0;
382 }
383
384 static void __mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
385 {
386 struct mv_xor_desc_slot *iter, *_iter;
387 dma_cookie_t cookie = 0;
388 int busy = mv_chan_is_busy(mv_chan);
389 u32 current_desc = mv_chan_get_current_desc(mv_chan);
390 int seen_current = 0;
391
392 dev_dbg(mv_chan->device->common.dev, "%s %d\n", __func__, __LINE__);
393 dev_dbg(mv_chan->device->common.dev, "current_desc %x\n", current_desc);
394 mv_xor_clean_completed_slots(mv_chan);
395
396 /* free completed slots from the chain starting with
397 * the oldest descriptor
398 */
399
400 list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
401 chain_node) {
402 prefetch(_iter);
403 prefetch(&_iter->async_tx);
404
405 /* do not advance past the current descriptor loaded into the
406 * hardware channel, subsequent descriptors are either in
407 * process or have not been submitted
408 */
409 if (seen_current)
410 break;
411
412 /* stop the search if we reach the current descriptor and the
413 * channel is busy
414 */
415 if (iter->async_tx.phys == current_desc) {
416 seen_current = 1;
417 if (busy)
418 break;
419 }
420
421 cookie = mv_xor_run_tx_complete_actions(iter, mv_chan, cookie);
422
423 if (mv_xor_clean_slot(iter, mv_chan))
424 break;
425 }
426
427 if ((busy == 0) && !list_empty(&mv_chan->chain)) {
428 struct mv_xor_desc_slot *chain_head;
429 chain_head = list_entry(mv_chan->chain.next,
430 struct mv_xor_desc_slot,
431 chain_node);
432
433 mv_xor_start_new_chain(mv_chan, chain_head);
434 }
435
436 if (cookie > 0)
437 mv_chan->completed_cookie = cookie;
438 }
439
440 static void
441 mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
442 {
443 spin_lock_bh(&mv_chan->lock);
444 __mv_xor_slot_cleanup(mv_chan);
445 spin_unlock_bh(&mv_chan->lock);
446 }
447
448 static void mv_xor_tasklet(unsigned long data)
449 {
450 struct mv_xor_chan *chan = (struct mv_xor_chan *) data;
451 __mv_xor_slot_cleanup(chan);
452 }
453
454 static struct mv_xor_desc_slot *
455 mv_xor_alloc_slots(struct mv_xor_chan *mv_chan, int num_slots,
456 int slots_per_op)
457 {
458 struct mv_xor_desc_slot *iter, *_iter, *alloc_start = NULL;
459 LIST_HEAD(chain);
460 int slots_found, retry = 0;
461
462 /* start search from the last allocated descrtiptor
463 * if a contiguous allocation can not be found start searching
464 * from the beginning of the list
465 */
466 retry:
467 slots_found = 0;
468 if (retry == 0)
469 iter = mv_chan->last_used;
470 else
471 iter = list_entry(&mv_chan->all_slots,
472 struct mv_xor_desc_slot,
473 slot_node);
474
475 list_for_each_entry_safe_continue(
476 iter, _iter, &mv_chan->all_slots, slot_node) {
477 prefetch(_iter);
478 prefetch(&_iter->async_tx);
479 if (iter->slots_per_op) {
480 /* give up after finding the first busy slot
481 * on the second pass through the list
482 */
483 if (retry)
484 break;
485
486 slots_found = 0;
487 continue;
488 }
489
490 /* start the allocation if the slot is correctly aligned */
491 if (!slots_found++)
492 alloc_start = iter;
493
494 if (slots_found == num_slots) {
495 struct mv_xor_desc_slot *alloc_tail = NULL;
496 struct mv_xor_desc_slot *last_used = NULL;
497 iter = alloc_start;
498 while (num_slots) {
499 int i;
500
501 /* pre-ack all but the last descriptor */
502 async_tx_ack(&iter->async_tx);
503
504 list_add_tail(&iter->chain_node, &chain);
505 alloc_tail = iter;
506 iter->async_tx.cookie = 0;
507 iter->slot_cnt = num_slots;
508 iter->xor_check_result = NULL;
509 for (i = 0; i < slots_per_op; i++) {
510 iter->slots_per_op = slots_per_op - i;
511 last_used = iter;
512 iter = list_entry(iter->slot_node.next,
513 struct mv_xor_desc_slot,
514 slot_node);
515 }
516 num_slots -= slots_per_op;
517 }
518 alloc_tail->group_head = alloc_start;
519 alloc_tail->async_tx.cookie = -EBUSY;
520 list_splice(&chain, &alloc_tail->tx_list);
521 mv_chan->last_used = last_used;
522 mv_desc_clear_next_desc(alloc_start);
523 mv_desc_clear_next_desc(alloc_tail);
524 return alloc_tail;
525 }
526 }
527 if (!retry++)
528 goto retry;
529
530 /* try to free some slots if the allocation fails */
531 tasklet_schedule(&mv_chan->irq_tasklet);
532
533 return NULL;
534 }
535
536 static dma_cookie_t
537 mv_desc_assign_cookie(struct mv_xor_chan *mv_chan,
538 struct mv_xor_desc_slot *desc)
539 {
540 dma_cookie_t cookie = mv_chan->common.cookie;
541
542 if (++cookie < 0)
543 cookie = 1;
544 mv_chan->common.cookie = desc->async_tx.cookie = cookie;
545 return cookie;
546 }
547
548 /************************ DMA engine API functions ****************************/
549 static dma_cookie_t
550 mv_xor_tx_submit(struct dma_async_tx_descriptor *tx)
551 {
552 struct mv_xor_desc_slot *sw_desc = to_mv_xor_slot(tx);
553 struct mv_xor_chan *mv_chan = to_mv_xor_chan(tx->chan);
554 struct mv_xor_desc_slot *grp_start, *old_chain_tail;
555 dma_cookie_t cookie;
556 int new_hw_chain = 1;
557
558 dev_dbg(mv_chan->device->common.dev,
559 "%s sw_desc %p: async_tx %p\n",
560 __func__, sw_desc, &sw_desc->async_tx);
561
562 grp_start = sw_desc->group_head;
563
564 spin_lock_bh(&mv_chan->lock);
565 cookie = mv_desc_assign_cookie(mv_chan, sw_desc);
566
567 if (list_empty(&mv_chan->chain))
568 list_splice_init(&sw_desc->tx_list, &mv_chan->chain);
569 else {
570 new_hw_chain = 0;
571
572 old_chain_tail = list_entry(mv_chan->chain.prev,
573 struct mv_xor_desc_slot,
574 chain_node);
575 list_splice_init(&grp_start->tx_list,
576 &old_chain_tail->chain_node);
577
578 if (!mv_can_chain(grp_start))
579 goto submit_done;
580
581 dev_dbg(mv_chan->device->common.dev, "Append to last desc %x\n",
582 old_chain_tail->async_tx.phys);
583
584 /* fix up the hardware chain */
585 mv_desc_set_next_desc(old_chain_tail, grp_start->async_tx.phys);
586
587 /* if the channel is not busy */
588 if (!mv_chan_is_busy(mv_chan)) {
589 u32 current_desc = mv_chan_get_current_desc(mv_chan);
590 /*
591 * and the curren desc is the end of the chain before
592 * the append, then we need to start the channel
593 */
594 if (current_desc == old_chain_tail->async_tx.phys)
595 new_hw_chain = 1;
596 }
597 }
598
599 if (new_hw_chain)
600 mv_xor_start_new_chain(mv_chan, grp_start);
601
602 submit_done:
603 spin_unlock_bh(&mv_chan->lock);
604
605 return cookie;
606 }
607
608 /* returns the number of allocated descriptors */
609 static int mv_xor_alloc_chan_resources(struct dma_chan *chan)
610 {
611 char *hw_desc;
612 int idx;
613 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
614 struct mv_xor_desc_slot *slot = NULL;
615 struct mv_xor_platform_data *plat_data =
616 mv_chan->device->pdev->dev.platform_data;
617 int num_descs_in_pool = plat_data->pool_size/MV_XOR_SLOT_SIZE;
618
619 /* Allocate descriptor slots */
620 idx = mv_chan->slots_allocated;
621 while (idx < num_descs_in_pool) {
622 slot = kzalloc(sizeof(*slot), GFP_KERNEL);
623 if (!slot) {
624 printk(KERN_INFO "MV XOR Channel only initialized"
625 " %d descriptor slots", idx);
626 break;
627 }
628 hw_desc = (char *) mv_chan->device->dma_desc_pool_virt;
629 slot->hw_desc = (void *) &hw_desc[idx * MV_XOR_SLOT_SIZE];
630
631 dma_async_tx_descriptor_init(&slot->async_tx, chan);
632 slot->async_tx.tx_submit = mv_xor_tx_submit;
633 INIT_LIST_HEAD(&slot->chain_node);
634 INIT_LIST_HEAD(&slot->slot_node);
635 INIT_LIST_HEAD(&slot->tx_list);
636 hw_desc = (char *) mv_chan->device->dma_desc_pool;
637 slot->async_tx.phys =
638 (dma_addr_t) &hw_desc[idx * MV_XOR_SLOT_SIZE];
639 slot->idx = idx++;
640
641 spin_lock_bh(&mv_chan->lock);
642 mv_chan->slots_allocated = idx;
643 list_add_tail(&slot->slot_node, &mv_chan->all_slots);
644 spin_unlock_bh(&mv_chan->lock);
645 }
646
647 if (mv_chan->slots_allocated && !mv_chan->last_used)
648 mv_chan->last_used = list_entry(mv_chan->all_slots.next,
649 struct mv_xor_desc_slot,
650 slot_node);
651
652 dev_dbg(mv_chan->device->common.dev,
653 "allocated %d descriptor slots last_used: %p\n",
654 mv_chan->slots_allocated, mv_chan->last_used);
655
656 return mv_chan->slots_allocated ? : -ENOMEM;
657 }
658
659 static struct dma_async_tx_descriptor *
660 mv_xor_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
661 size_t len, unsigned long flags)
662 {
663 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
664 struct mv_xor_desc_slot *sw_desc, *grp_start;
665 int slot_cnt;
666
667 dev_dbg(mv_chan->device->common.dev,
668 "%s dest: %x src %x len: %u flags: %ld\n",
669 __func__, dest, src, len, flags);
670 if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
671 return NULL;
672
673 BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT));
674
675 spin_lock_bh(&mv_chan->lock);
676 slot_cnt = mv_chan_memcpy_slot_count(len);
677 sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
678 if (sw_desc) {
679 sw_desc->type = DMA_MEMCPY;
680 sw_desc->async_tx.flags = flags;
681 grp_start = sw_desc->group_head;
682 mv_desc_init(grp_start, flags);
683 mv_desc_set_byte_count(grp_start, len);
684 mv_desc_set_dest_addr(sw_desc->group_head, dest);
685 mv_desc_set_src_addr(grp_start, 0, src);
686 sw_desc->unmap_src_cnt = 1;
687 sw_desc->unmap_len = len;
688 }
689 spin_unlock_bh(&mv_chan->lock);
690
691 dev_dbg(mv_chan->device->common.dev,
692 "%s sw_desc %p async_tx %p\n",
693 __func__, sw_desc, sw_desc ? &sw_desc->async_tx : 0);
694
695 return sw_desc ? &sw_desc->async_tx : NULL;
696 }
697
698 static struct dma_async_tx_descriptor *
699 mv_xor_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
700 size_t len, unsigned long flags)
701 {
702 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
703 struct mv_xor_desc_slot *sw_desc, *grp_start;
704 int slot_cnt;
705
706 dev_dbg(mv_chan->device->common.dev,
707 "%s dest: %x len: %u flags: %ld\n",
708 __func__, dest, len, flags);
709 if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
710 return NULL;
711
712 BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT));
713
714 spin_lock_bh(&mv_chan->lock);
715 slot_cnt = mv_chan_memset_slot_count(len);
716 sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
717 if (sw_desc) {
718 sw_desc->type = DMA_MEMSET;
719 sw_desc->async_tx.flags = flags;
720 grp_start = sw_desc->group_head;
721 mv_desc_init(grp_start, flags);
722 mv_desc_set_byte_count(grp_start, len);
723 mv_desc_set_dest_addr(sw_desc->group_head, dest);
724 mv_desc_set_block_fill_val(grp_start, value);
725 sw_desc->unmap_src_cnt = 1;
726 sw_desc->unmap_len = len;
727 }
728 spin_unlock_bh(&mv_chan->lock);
729 dev_dbg(mv_chan->device->common.dev,
730 "%s sw_desc %p async_tx %p \n",
731 __func__, sw_desc, &sw_desc->async_tx);
732 return sw_desc ? &sw_desc->async_tx : NULL;
733 }
734
735 static struct dma_async_tx_descriptor *
736 mv_xor_prep_dma_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
737 unsigned int src_cnt, size_t len, unsigned long flags)
738 {
739 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
740 struct mv_xor_desc_slot *sw_desc, *grp_start;
741 int slot_cnt;
742
743 if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
744 return NULL;
745
746 BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT));
747
748 dev_dbg(mv_chan->device->common.dev,
749 "%s src_cnt: %d len: dest %x %u flags: %ld\n",
750 __func__, src_cnt, len, dest, flags);
751
752 spin_lock_bh(&mv_chan->lock);
753 slot_cnt = mv_chan_xor_slot_count(len, src_cnt);
754 sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
755 if (sw_desc) {
756 sw_desc->type = DMA_XOR;
757 sw_desc->async_tx.flags = flags;
758 grp_start = sw_desc->group_head;
759 mv_desc_init(grp_start, flags);
760 /* the byte count field is the same as in memcpy desc*/
761 mv_desc_set_byte_count(grp_start, len);
762 mv_desc_set_dest_addr(sw_desc->group_head, dest);
763 sw_desc->unmap_src_cnt = src_cnt;
764 sw_desc->unmap_len = len;
765 while (src_cnt--)
766 mv_desc_set_src_addr(grp_start, src_cnt, src[src_cnt]);
767 }
768 spin_unlock_bh(&mv_chan->lock);
769 dev_dbg(mv_chan->device->common.dev,
770 "%s sw_desc %p async_tx %p \n",
771 __func__, sw_desc, &sw_desc->async_tx);
772 return sw_desc ? &sw_desc->async_tx : NULL;
773 }
774
775 static void mv_xor_free_chan_resources(struct dma_chan *chan)
776 {
777 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
778 struct mv_xor_desc_slot *iter, *_iter;
779 int in_use_descs = 0;
780
781 mv_xor_slot_cleanup(mv_chan);
782
783 spin_lock_bh(&mv_chan->lock);
784 list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
785 chain_node) {
786 in_use_descs++;
787 list_del(&iter->chain_node);
788 }
789 list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
790 completed_node) {
791 in_use_descs++;
792 list_del(&iter->completed_node);
793 }
794 list_for_each_entry_safe_reverse(
795 iter, _iter, &mv_chan->all_slots, slot_node) {
796 list_del(&iter->slot_node);
797 kfree(iter);
798 mv_chan->slots_allocated--;
799 }
800 mv_chan->last_used = NULL;
801
802 dev_dbg(mv_chan->device->common.dev, "%s slots_allocated %d\n",
803 __func__, mv_chan->slots_allocated);
804 spin_unlock_bh(&mv_chan->lock);
805
806 if (in_use_descs)
807 dev_err(mv_chan->device->common.dev,
808 "freeing %d in use descriptors!\n", in_use_descs);
809 }
810
811 /**
812 * mv_xor_is_complete - poll the status of an XOR transaction
813 * @chan: XOR channel handle
814 * @cookie: XOR transaction identifier
815 */
816 static enum dma_status mv_xor_is_complete(struct dma_chan *chan,
817 dma_cookie_t cookie,
818 dma_cookie_t *done,
819 dma_cookie_t *used)
820 {
821 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
822 dma_cookie_t last_used;
823 dma_cookie_t last_complete;
824 enum dma_status ret;
825
826 last_used = chan->cookie;
827 last_complete = mv_chan->completed_cookie;
828 mv_chan->is_complete_cookie = cookie;
829 if (done)
830 *done = last_complete;
831 if (used)
832 *used = last_used;
833
834 ret = dma_async_is_complete(cookie, last_complete, last_used);
835 if (ret == DMA_SUCCESS) {
836 mv_xor_clean_completed_slots(mv_chan);
837 return ret;
838 }
839 mv_xor_slot_cleanup(mv_chan);
840
841 last_used = chan->cookie;
842 last_complete = mv_chan->completed_cookie;
843
844 if (done)
845 *done = last_complete;
846 if (used)
847 *used = last_used;
848
849 return dma_async_is_complete(cookie, last_complete, last_used);
850 }
851
852 static void mv_dump_xor_regs(struct mv_xor_chan *chan)
853 {
854 u32 val;
855
856 val = __raw_readl(XOR_CONFIG(chan));
857 dev_printk(KERN_ERR, chan->device->common.dev,
858 "config 0x%08x.\n", val);
859
860 val = __raw_readl(XOR_ACTIVATION(chan));
861 dev_printk(KERN_ERR, chan->device->common.dev,
862 "activation 0x%08x.\n", val);
863
864 val = __raw_readl(XOR_INTR_CAUSE(chan));
865 dev_printk(KERN_ERR, chan->device->common.dev,
866 "intr cause 0x%08x.\n", val);
867
868 val = __raw_readl(XOR_INTR_MASK(chan));
869 dev_printk(KERN_ERR, chan->device->common.dev,
870 "intr mask 0x%08x.\n", val);
871
872 val = __raw_readl(XOR_ERROR_CAUSE(chan));
873 dev_printk(KERN_ERR, chan->device->common.dev,
874 "error cause 0x%08x.\n", val);
875
876 val = __raw_readl(XOR_ERROR_ADDR(chan));
877 dev_printk(KERN_ERR, chan->device->common.dev,
878 "error addr 0x%08x.\n", val);
879 }
880
881 static void mv_xor_err_interrupt_handler(struct mv_xor_chan *chan,
882 u32 intr_cause)
883 {
884 if (intr_cause & (1 << 4)) {
885 dev_dbg(chan->device->common.dev,
886 "ignore this error\n");
887 return;
888 }
889
890 dev_printk(KERN_ERR, chan->device->common.dev,
891 "error on chan %d. intr cause 0x%08x.\n",
892 chan->idx, intr_cause);
893
894 mv_dump_xor_regs(chan);
895 BUG();
896 }
897
898 static irqreturn_t mv_xor_interrupt_handler(int irq, void *data)
899 {
900 struct mv_xor_chan *chan = data;
901 u32 intr_cause = mv_chan_get_intr_cause(chan);
902
903 dev_dbg(chan->device->common.dev, "intr cause %x\n", intr_cause);
904
905 if (mv_is_err_intr(intr_cause))
906 mv_xor_err_interrupt_handler(chan, intr_cause);
907
908 tasklet_schedule(&chan->irq_tasklet);
909
910 mv_xor_device_clear_eoc_cause(chan);
911
912 return IRQ_HANDLED;
913 }
914
915 static void mv_xor_issue_pending(struct dma_chan *chan)
916 {
917 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
918
919 if (mv_chan->pending >= MV_XOR_THRESHOLD) {
920 mv_chan->pending = 0;
921 mv_chan_activate(mv_chan);
922 }
923 }
924
925 /*
926 * Perform a transaction to verify the HW works.
927 */
928 #define MV_XOR_TEST_SIZE 2000
929
930 static int __devinit mv_xor_memcpy_self_test(struct mv_xor_device *device)
931 {
932 int i;
933 void *src, *dest;
934 dma_addr_t src_dma, dest_dma;
935 struct dma_chan *dma_chan;
936 dma_cookie_t cookie;
937 struct dma_async_tx_descriptor *tx;
938 int err = 0;
939 struct mv_xor_chan *mv_chan;
940
941 src = kmalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
942 if (!src)
943 return -ENOMEM;
944
945 dest = kzalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
946 if (!dest) {
947 kfree(src);
948 return -ENOMEM;
949 }
950
951 /* Fill in src buffer */
952 for (i = 0; i < MV_XOR_TEST_SIZE; i++)
953 ((u8 *) src)[i] = (u8)i;
954
955 /* Start copy, using first DMA channel */
956 dma_chan = container_of(device->common.channels.next,
957 struct dma_chan,
958 device_node);
959 if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
960 err = -ENODEV;
961 goto out;
962 }
963
964 dest_dma = dma_map_single(dma_chan->device->dev, dest,
965 MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);
966
967 src_dma = dma_map_single(dma_chan->device->dev, src,
968 MV_XOR_TEST_SIZE, DMA_TO_DEVICE);
969
970 tx = mv_xor_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
971 MV_XOR_TEST_SIZE, 0);
972 cookie = mv_xor_tx_submit(tx);
973 mv_xor_issue_pending(dma_chan);
974 async_tx_ack(tx);
975 msleep(1);
976
977 if (mv_xor_is_complete(dma_chan, cookie, NULL, NULL) !=
978 DMA_SUCCESS) {
979 dev_printk(KERN_ERR, dma_chan->device->dev,
980 "Self-test copy timed out, disabling\n");
981 err = -ENODEV;
982 goto free_resources;
983 }
984
985 mv_chan = to_mv_xor_chan(dma_chan);
986 dma_sync_single_for_cpu(&mv_chan->device->pdev->dev, dest_dma,
987 MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);
988 if (memcmp(src, dest, MV_XOR_TEST_SIZE)) {
989 dev_printk(KERN_ERR, dma_chan->device->dev,
990 "Self-test copy failed compare, disabling\n");
991 err = -ENODEV;
992 goto free_resources;
993 }
994
995 free_resources:
996 mv_xor_free_chan_resources(dma_chan);
997 out:
998 kfree(src);
999 kfree(dest);
1000 return err;
1001 }
1002
1003 #define MV_XOR_NUM_SRC_TEST 4 /* must be <= 15 */
1004 static int __devinit
1005 mv_xor_xor_self_test(struct mv_xor_device *device)
1006 {
1007 int i, src_idx;
1008 struct page *dest;
1009 struct page *xor_srcs[MV_XOR_NUM_SRC_TEST];
1010 dma_addr_t dma_srcs[MV_XOR_NUM_SRC_TEST];
1011 dma_addr_t dest_dma;
1012 struct dma_async_tx_descriptor *tx;
1013 struct dma_chan *dma_chan;
1014 dma_cookie_t cookie;
1015 u8 cmp_byte = 0;
1016 u32 cmp_word;
1017 int err = 0;
1018 struct mv_xor_chan *mv_chan;
1019
1020 for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
1021 xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
1022 if (!xor_srcs[src_idx]) {
1023 while (src_idx--)
1024 __free_page(xor_srcs[src_idx]);
1025 return -ENOMEM;
1026 }
1027 }
1028
1029 dest = alloc_page(GFP_KERNEL);
1030 if (!dest) {
1031 while (src_idx--)
1032 __free_page(xor_srcs[src_idx]);
1033 return -ENOMEM;
1034 }
1035
1036 /* Fill in src buffers */
1037 for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
1038 u8 *ptr = page_address(xor_srcs[src_idx]);
1039 for (i = 0; i < PAGE_SIZE; i++)
1040 ptr[i] = (1 << src_idx);
1041 }
1042
1043 for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++)
1044 cmp_byte ^= (u8) (1 << src_idx);
1045
1046 cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
1047 (cmp_byte << 8) | cmp_byte;
1048
1049 memset(page_address(dest), 0, PAGE_SIZE);
1050
1051 dma_chan = container_of(device->common.channels.next,
1052 struct dma_chan,
1053 device_node);
1054 if (mv_xor_alloc_chan_resources(dma_chan) < 1) {
1055 err = -ENODEV;
1056 goto out;
1057 }
1058
1059 /* test xor */
1060 dest_dma = dma_map_page(dma_chan->device->dev, dest, 0, PAGE_SIZE,
1061 DMA_FROM_DEVICE);
1062
1063 for (i = 0; i < MV_XOR_NUM_SRC_TEST; i++)
1064 dma_srcs[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
1065 0, PAGE_SIZE, DMA_TO_DEVICE);
1066
1067 tx = mv_xor_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
1068 MV_XOR_NUM_SRC_TEST, PAGE_SIZE, 0);
1069
1070 cookie = mv_xor_tx_submit(tx);
1071 mv_xor_issue_pending(dma_chan);
1072 async_tx_ack(tx);
1073 msleep(8);
1074
1075 if (mv_xor_is_complete(dma_chan, cookie, NULL, NULL) !=
1076 DMA_SUCCESS) {
1077 dev_printk(KERN_ERR, dma_chan->device->dev,
1078 "Self-test xor timed out, disabling\n");
1079 err = -ENODEV;
1080 goto free_resources;
1081 }
1082
1083 mv_chan = to_mv_xor_chan(dma_chan);
1084 dma_sync_single_for_cpu(&mv_chan->device->pdev->dev, dest_dma,
1085 PAGE_SIZE, DMA_FROM_DEVICE);
1086 for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
1087 u32 *ptr = page_address(dest);
1088 if (ptr[i] != cmp_word) {
1089 dev_printk(KERN_ERR, dma_chan->device->dev,
1090 "Self-test xor failed compare, disabling."
1091 " index %d, data %x, expected %x\n", i,
1092 ptr[i], cmp_word);
1093 err = -ENODEV;
1094 goto free_resources;
1095 }
1096 }
1097
1098 free_resources:
1099 mv_xor_free_chan_resources(dma_chan);
1100 out:
1101 src_idx = MV_XOR_NUM_SRC_TEST;
1102 while (src_idx--)
1103 __free_page(xor_srcs[src_idx]);
1104 __free_page(dest);
1105 return err;
1106 }
1107
1108 static int __devexit mv_xor_remove(struct platform_device *dev)
1109 {
1110 struct mv_xor_device *device = platform_get_drvdata(dev);
1111 struct dma_chan *chan, *_chan;
1112 struct mv_xor_chan *mv_chan;
1113 struct mv_xor_platform_data *plat_data = dev->dev.platform_data;
1114
1115 dma_async_device_unregister(&device->common);
1116
1117 dma_free_coherent(&dev->dev, plat_data->pool_size,
1118 device->dma_desc_pool_virt, device->dma_desc_pool);
1119
1120 list_for_each_entry_safe(chan, _chan, &device->common.channels,
1121 device_node) {
1122 mv_chan = to_mv_xor_chan(chan);
1123 list_del(&chan->device_node);
1124 }
1125
1126 return 0;
1127 }
1128
1129 static int __devinit mv_xor_probe(struct platform_device *pdev)
1130 {
1131 int ret = 0;
1132 int irq;
1133 struct mv_xor_device *adev;
1134 struct mv_xor_chan *mv_chan;
1135 struct dma_device *dma_dev;
1136 struct mv_xor_platform_data *plat_data = pdev->dev.platform_data;
1137
1138
1139 adev = devm_kzalloc(&pdev->dev, sizeof(*adev), GFP_KERNEL);
1140 if (!adev)
1141 return -ENOMEM;
1142
1143 dma_dev = &adev->common;
1144
1145 /* allocate coherent memory for hardware descriptors
1146 * note: writecombine gives slightly better performance, but
1147 * requires that we explicitly flush the writes
1148 */
1149 adev->dma_desc_pool_virt = dma_alloc_writecombine(&pdev->dev,
1150 plat_data->pool_size,
1151 &adev->dma_desc_pool,
1152 GFP_KERNEL);
1153 if (!adev->dma_desc_pool_virt)
1154 return -ENOMEM;
1155
1156 adev->id = plat_data->hw_id;
1157
1158 /* discover transaction capabilites from the platform data */
1159 dma_dev->cap_mask = plat_data->cap_mask;
1160 adev->pdev = pdev;
1161 platform_set_drvdata(pdev, adev);
1162
1163 adev->shared = platform_get_drvdata(plat_data->shared);
1164
1165 INIT_LIST_HEAD(&dma_dev->channels);
1166
1167 /* set base routines */
1168 dma_dev->device_alloc_chan_resources = mv_xor_alloc_chan_resources;
1169 dma_dev->device_free_chan_resources = mv_xor_free_chan_resources;
1170 dma_dev->device_is_tx_complete = mv_xor_is_complete;
1171 dma_dev->device_issue_pending = mv_xor_issue_pending;
1172 dma_dev->dev = &pdev->dev;
1173
1174 /* set prep routines based on capability */
1175 if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
1176 dma_dev->device_prep_dma_memcpy = mv_xor_prep_dma_memcpy;
1177 if (dma_has_cap(DMA_MEMSET, dma_dev->cap_mask))
1178 dma_dev->device_prep_dma_memset = mv_xor_prep_dma_memset;
1179 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1180 dma_dev->max_xor = 8;
1181 dma_dev->device_prep_dma_xor = mv_xor_prep_dma_xor;
1182 }
1183
1184 mv_chan = devm_kzalloc(&pdev->dev, sizeof(*mv_chan), GFP_KERNEL);
1185 if (!mv_chan) {
1186 ret = -ENOMEM;
1187 goto err_free_dma;
1188 }
1189 mv_chan->device = adev;
1190 mv_chan->idx = plat_data->hw_id;
1191 mv_chan->mmr_base = adev->shared->xor_base;
1192
1193 if (!mv_chan->mmr_base) {
1194 ret = -ENOMEM;
1195 goto err_free_dma;
1196 }
1197 tasklet_init(&mv_chan->irq_tasklet, mv_xor_tasklet, (unsigned long)
1198 mv_chan);
1199
1200 /* clear errors before enabling interrupts */
1201 mv_xor_device_clear_err_status(mv_chan);
1202
1203 irq = platform_get_irq(pdev, 0);
1204 if (irq < 0) {
1205 ret = irq;
1206 goto err_free_dma;
1207 }
1208 ret = devm_request_irq(&pdev->dev, irq,
1209 mv_xor_interrupt_handler,
1210 0, dev_name(&pdev->dev), mv_chan);
1211 if (ret)
1212 goto err_free_dma;
1213
1214 mv_chan_unmask_interrupts(mv_chan);
1215
1216 mv_set_mode(mv_chan, DMA_MEMCPY);
1217
1218 spin_lock_init(&mv_chan->lock);
1219 INIT_LIST_HEAD(&mv_chan->chain);
1220 INIT_LIST_HEAD(&mv_chan->completed_slots);
1221 INIT_LIST_HEAD(&mv_chan->all_slots);
1222 mv_chan->common.device = dma_dev;
1223
1224 list_add_tail(&mv_chan->common.device_node, &dma_dev->channels);
1225
1226 if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
1227 ret = mv_xor_memcpy_self_test(adev);
1228 dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
1229 if (ret)
1230 goto err_free_dma;
1231 }
1232
1233 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1234 ret = mv_xor_xor_self_test(adev);
1235 dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
1236 if (ret)
1237 goto err_free_dma;
1238 }
1239
1240 dev_printk(KERN_INFO, &pdev->dev, "Marvell XOR: "
1241 "( %s%s%s%s)\n",
1242 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
1243 dma_has_cap(DMA_MEMSET, dma_dev->cap_mask) ? "fill " : "",
1244 dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
1245 dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
1246
1247 dma_async_device_register(dma_dev);
1248 goto out;
1249
1250 err_free_dma:
1251 dma_free_coherent(&adev->pdev->dev, plat_data->pool_size,
1252 adev->dma_desc_pool_virt, adev->dma_desc_pool);
1253 out:
1254 return ret;
1255 }
1256
1257 static void
1258 mv_xor_conf_mbus_windows(struct mv_xor_shared_private *msp,
1259 struct mbus_dram_target_info *dram)
1260 {
1261 void __iomem *base = msp->xor_base;
1262 u32 win_enable = 0;
1263 int i;
1264
1265 for (i = 0; i < 8; i++) {
1266 writel(0, base + WINDOW_BASE(i));
1267 writel(0, base + WINDOW_SIZE(i));
1268 if (i < 4)
1269 writel(0, base + WINDOW_REMAP_HIGH(i));
1270 }
1271
1272 for (i = 0; i < dram->num_cs; i++) {
1273 struct mbus_dram_window *cs = dram->cs + i;
1274
1275 writel((cs->base & 0xffff0000) |
1276 (cs->mbus_attr << 8) |
1277 dram->mbus_dram_target_id, base + WINDOW_BASE(i));
1278 writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i));
1279
1280 win_enable |= (1 << i);
1281 win_enable |= 3 << (16 + (2 * i));
1282 }
1283
1284 writel(win_enable, base + WINDOW_BAR_ENABLE(0));
1285 writel(win_enable, base + WINDOW_BAR_ENABLE(1));
1286 }
1287
1288 static struct platform_driver mv_xor_driver = {
1289 .probe = mv_xor_probe,
1290 .remove = __devexit_p(mv_xor_remove),
1291 .driver = {
1292 .owner = THIS_MODULE,
1293 .name = MV_XOR_NAME,
1294 },
1295 };
1296
1297 static int mv_xor_shared_probe(struct platform_device *pdev)
1298 {
1299 struct mv_xor_platform_shared_data *msd = pdev->dev.platform_data;
1300 struct mv_xor_shared_private *msp;
1301 struct resource *res;
1302
1303 dev_printk(KERN_NOTICE, &pdev->dev, "Marvell shared XOR driver\n");
1304
1305 msp = devm_kzalloc(&pdev->dev, sizeof(*msp), GFP_KERNEL);
1306 if (!msp)
1307 return -ENOMEM;
1308
1309 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1310 if (!res)
1311 return -ENODEV;
1312
1313 msp->xor_base = devm_ioremap(&pdev->dev, res->start,
1314 res->end - res->start + 1);
1315 if (!msp->xor_base)
1316 return -EBUSY;
1317
1318 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1319 if (!res)
1320 return -ENODEV;
1321
1322 msp->xor_high_base = devm_ioremap(&pdev->dev, res->start,
1323 res->end - res->start + 1);
1324 if (!msp->xor_high_base)
1325 return -EBUSY;
1326
1327 platform_set_drvdata(pdev, msp);
1328
1329 /*
1330 * (Re-)program MBUS remapping windows if we are asked to.
1331 */
1332 if (msd != NULL && msd->dram != NULL)
1333 mv_xor_conf_mbus_windows(msp, msd->dram);
1334
1335 return 0;
1336 }
1337
1338 static int mv_xor_shared_remove(struct platform_device *pdev)
1339 {
1340 return 0;
1341 }
1342
1343 static struct platform_driver mv_xor_shared_driver = {
1344 .probe = mv_xor_shared_probe,
1345 .remove = mv_xor_shared_remove,
1346 .driver = {
1347 .owner = THIS_MODULE,
1348 .name = MV_XOR_SHARED_NAME,
1349 },
1350 };
1351
1352
1353 static int __init mv_xor_init(void)
1354 {
1355 int rc;
1356
1357 rc = platform_driver_register(&mv_xor_shared_driver);
1358 if (!rc) {
1359 rc = platform_driver_register(&mv_xor_driver);
1360 if (rc)
1361 platform_driver_unregister(&mv_xor_shared_driver);
1362 }
1363 return rc;
1364 }
1365 module_init(mv_xor_init);
1366
1367 /* it's currently unsafe to unload this module */
1368 #if 0
1369 static void __exit mv_xor_exit(void)
1370 {
1371 platform_driver_unregister(&mv_xor_driver);
1372 platform_driver_unregister(&mv_xor_shared_driver);
1373 return;
1374 }
1375
1376 module_exit(mv_xor_exit);
1377 #endif
1378
1379 MODULE_AUTHOR("Saeed Bishara <saeed@marvell.com>");
1380 MODULE_DESCRIPTION("DMA engine driver for Marvell's XOR engine");
1381 MODULE_LICENSE("GPL");