dmaengine: Add dma_client parameter to device_alloc_chan_resources
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / dma / mv_xor.c
1 /*
2 * offload engine driver for the Marvell XOR engine
3 * Copyright (C) 2007, 2008, Marvell International Ltd.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/async_tx.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/spinlock.h>
25 #include <linux/interrupt.h>
26 #include <linux/platform_device.h>
27 #include <linux/memory.h>
28 #include <asm/plat-orion/mv_xor.h>
29 #include "mv_xor.h"
30
31 static void mv_xor_issue_pending(struct dma_chan *chan);
32
33 #define to_mv_xor_chan(chan) \
34 container_of(chan, struct mv_xor_chan, common)
35
36 #define to_mv_xor_device(dev) \
37 container_of(dev, struct mv_xor_device, common)
38
39 #define to_mv_xor_slot(tx) \
40 container_of(tx, struct mv_xor_desc_slot, async_tx)
41
42 static void mv_desc_init(struct mv_xor_desc_slot *desc, unsigned long flags)
43 {
44 struct mv_xor_desc *hw_desc = desc->hw_desc;
45
46 hw_desc->status = (1 << 31);
47 hw_desc->phy_next_desc = 0;
48 hw_desc->desc_command = (1 << 31);
49 }
50
51 static u32 mv_desc_get_dest_addr(struct mv_xor_desc_slot *desc)
52 {
53 struct mv_xor_desc *hw_desc = desc->hw_desc;
54 return hw_desc->phy_dest_addr;
55 }
56
57 static u32 mv_desc_get_src_addr(struct mv_xor_desc_slot *desc,
58 int src_idx)
59 {
60 struct mv_xor_desc *hw_desc = desc->hw_desc;
61 return hw_desc->phy_src_addr[src_idx];
62 }
63
64
65 static void mv_desc_set_byte_count(struct mv_xor_desc_slot *desc,
66 u32 byte_count)
67 {
68 struct mv_xor_desc *hw_desc = desc->hw_desc;
69 hw_desc->byte_count = byte_count;
70 }
71
72 static void mv_desc_set_next_desc(struct mv_xor_desc_slot *desc,
73 u32 next_desc_addr)
74 {
75 struct mv_xor_desc *hw_desc = desc->hw_desc;
76 BUG_ON(hw_desc->phy_next_desc);
77 hw_desc->phy_next_desc = next_desc_addr;
78 }
79
80 static void mv_desc_clear_next_desc(struct mv_xor_desc_slot *desc)
81 {
82 struct mv_xor_desc *hw_desc = desc->hw_desc;
83 hw_desc->phy_next_desc = 0;
84 }
85
86 static void mv_desc_set_block_fill_val(struct mv_xor_desc_slot *desc, u32 val)
87 {
88 desc->value = val;
89 }
90
91 static void mv_desc_set_dest_addr(struct mv_xor_desc_slot *desc,
92 dma_addr_t addr)
93 {
94 struct mv_xor_desc *hw_desc = desc->hw_desc;
95 hw_desc->phy_dest_addr = addr;
96 }
97
98 static int mv_chan_memset_slot_count(size_t len)
99 {
100 return 1;
101 }
102
103 #define mv_chan_memcpy_slot_count(c) mv_chan_memset_slot_count(c)
104
105 static void mv_desc_set_src_addr(struct mv_xor_desc_slot *desc,
106 int index, dma_addr_t addr)
107 {
108 struct mv_xor_desc *hw_desc = desc->hw_desc;
109 hw_desc->phy_src_addr[index] = addr;
110 if (desc->type == DMA_XOR)
111 hw_desc->desc_command |= (1 << index);
112 }
113
114 static u32 mv_chan_get_current_desc(struct mv_xor_chan *chan)
115 {
116 return __raw_readl(XOR_CURR_DESC(chan));
117 }
118
119 static void mv_chan_set_next_descriptor(struct mv_xor_chan *chan,
120 u32 next_desc_addr)
121 {
122 __raw_writel(next_desc_addr, XOR_NEXT_DESC(chan));
123 }
124
125 static void mv_chan_set_dest_pointer(struct mv_xor_chan *chan, u32 desc_addr)
126 {
127 __raw_writel(desc_addr, XOR_DEST_POINTER(chan));
128 }
129
130 static void mv_chan_set_block_size(struct mv_xor_chan *chan, u32 block_size)
131 {
132 __raw_writel(block_size, XOR_BLOCK_SIZE(chan));
133 }
134
135 static void mv_chan_set_value(struct mv_xor_chan *chan, u32 value)
136 {
137 __raw_writel(value, XOR_INIT_VALUE_LOW(chan));
138 __raw_writel(value, XOR_INIT_VALUE_HIGH(chan));
139 }
140
141 static void mv_chan_unmask_interrupts(struct mv_xor_chan *chan)
142 {
143 u32 val = __raw_readl(XOR_INTR_MASK(chan));
144 val |= XOR_INTR_MASK_VALUE << (chan->idx * 16);
145 __raw_writel(val, XOR_INTR_MASK(chan));
146 }
147
148 static u32 mv_chan_get_intr_cause(struct mv_xor_chan *chan)
149 {
150 u32 intr_cause = __raw_readl(XOR_INTR_CAUSE(chan));
151 intr_cause = (intr_cause >> (chan->idx * 16)) & 0xFFFF;
152 return intr_cause;
153 }
154
155 static int mv_is_err_intr(u32 intr_cause)
156 {
157 if (intr_cause & ((1<<4)|(1<<5)|(1<<6)|(1<<7)|(1<<8)|(1<<9)))
158 return 1;
159
160 return 0;
161 }
162
163 static void mv_xor_device_clear_eoc_cause(struct mv_xor_chan *chan)
164 {
165 u32 val = (1 << (1 + (chan->idx * 16)));
166 dev_dbg(chan->device->common.dev, "%s, val 0x%08x\n", __func__, val);
167 __raw_writel(val, XOR_INTR_CAUSE(chan));
168 }
169
170 static void mv_xor_device_clear_err_status(struct mv_xor_chan *chan)
171 {
172 u32 val = 0xFFFF0000 >> (chan->idx * 16);
173 __raw_writel(val, XOR_INTR_CAUSE(chan));
174 }
175
176 static int mv_can_chain(struct mv_xor_desc_slot *desc)
177 {
178 struct mv_xor_desc_slot *chain_old_tail = list_entry(
179 desc->chain_node.prev, struct mv_xor_desc_slot, chain_node);
180
181 if (chain_old_tail->type != desc->type)
182 return 0;
183 if (desc->type == DMA_MEMSET)
184 return 0;
185
186 return 1;
187 }
188
189 static void mv_set_mode(struct mv_xor_chan *chan,
190 enum dma_transaction_type type)
191 {
192 u32 op_mode;
193 u32 config = __raw_readl(XOR_CONFIG(chan));
194
195 switch (type) {
196 case DMA_XOR:
197 op_mode = XOR_OPERATION_MODE_XOR;
198 break;
199 case DMA_MEMCPY:
200 op_mode = XOR_OPERATION_MODE_MEMCPY;
201 break;
202 case DMA_MEMSET:
203 op_mode = XOR_OPERATION_MODE_MEMSET;
204 break;
205 default:
206 dev_printk(KERN_ERR, chan->device->common.dev,
207 "error: unsupported operation %d.\n",
208 type);
209 BUG();
210 return;
211 }
212
213 config &= ~0x7;
214 config |= op_mode;
215 __raw_writel(config, XOR_CONFIG(chan));
216 chan->current_type = type;
217 }
218
219 static void mv_chan_activate(struct mv_xor_chan *chan)
220 {
221 u32 activation;
222
223 dev_dbg(chan->device->common.dev, " activate chan.\n");
224 activation = __raw_readl(XOR_ACTIVATION(chan));
225 activation |= 0x1;
226 __raw_writel(activation, XOR_ACTIVATION(chan));
227 }
228
229 static char mv_chan_is_busy(struct mv_xor_chan *chan)
230 {
231 u32 state = __raw_readl(XOR_ACTIVATION(chan));
232
233 state = (state >> 4) & 0x3;
234
235 return (state == 1) ? 1 : 0;
236 }
237
238 static int mv_chan_xor_slot_count(size_t len, int src_cnt)
239 {
240 return 1;
241 }
242
243 /**
244 * mv_xor_free_slots - flags descriptor slots for reuse
245 * @slot: Slot to free
246 * Caller must hold &mv_chan->lock while calling this function
247 */
248 static void mv_xor_free_slots(struct mv_xor_chan *mv_chan,
249 struct mv_xor_desc_slot *slot)
250 {
251 dev_dbg(mv_chan->device->common.dev, "%s %d slot %p\n",
252 __func__, __LINE__, slot);
253
254 slot->slots_per_op = 0;
255
256 }
257
258 /*
259 * mv_xor_start_new_chain - program the engine to operate on new chain headed by
260 * sw_desc
261 * Caller must hold &mv_chan->lock while calling this function
262 */
263 static void mv_xor_start_new_chain(struct mv_xor_chan *mv_chan,
264 struct mv_xor_desc_slot *sw_desc)
265 {
266 dev_dbg(mv_chan->device->common.dev, "%s %d: sw_desc %p\n",
267 __func__, __LINE__, sw_desc);
268 if (sw_desc->type != mv_chan->current_type)
269 mv_set_mode(mv_chan, sw_desc->type);
270
271 if (sw_desc->type == DMA_MEMSET) {
272 /* for memset requests we need to program the engine, no
273 * descriptors used.
274 */
275 struct mv_xor_desc *hw_desc = sw_desc->hw_desc;
276 mv_chan_set_dest_pointer(mv_chan, hw_desc->phy_dest_addr);
277 mv_chan_set_block_size(mv_chan, sw_desc->unmap_len);
278 mv_chan_set_value(mv_chan, sw_desc->value);
279 } else {
280 /* set the hardware chain */
281 mv_chan_set_next_descriptor(mv_chan, sw_desc->async_tx.phys);
282 }
283 mv_chan->pending += sw_desc->slot_cnt;
284 mv_xor_issue_pending(&mv_chan->common);
285 }
286
287 static dma_cookie_t
288 mv_xor_run_tx_complete_actions(struct mv_xor_desc_slot *desc,
289 struct mv_xor_chan *mv_chan, dma_cookie_t cookie)
290 {
291 BUG_ON(desc->async_tx.cookie < 0);
292
293 if (desc->async_tx.cookie > 0) {
294 cookie = desc->async_tx.cookie;
295
296 /* call the callback (must not sleep or submit new
297 * operations to this channel)
298 */
299 if (desc->async_tx.callback)
300 desc->async_tx.callback(
301 desc->async_tx.callback_param);
302
303 /* unmap dma addresses
304 * (unmap_single vs unmap_page?)
305 */
306 if (desc->group_head && desc->unmap_len) {
307 struct mv_xor_desc_slot *unmap = desc->group_head;
308 struct device *dev =
309 &mv_chan->device->pdev->dev;
310 u32 len = unmap->unmap_len;
311 u32 src_cnt = unmap->unmap_src_cnt;
312 dma_addr_t addr = mv_desc_get_dest_addr(unmap);
313
314 dma_unmap_page(dev, addr, len, DMA_FROM_DEVICE);
315 while (src_cnt--) {
316 addr = mv_desc_get_src_addr(unmap, src_cnt);
317 dma_unmap_page(dev, addr, len, DMA_TO_DEVICE);
318 }
319 desc->group_head = NULL;
320 }
321 }
322
323 /* run dependent operations */
324 async_tx_run_dependencies(&desc->async_tx);
325
326 return cookie;
327 }
328
329 static int
330 mv_xor_clean_completed_slots(struct mv_xor_chan *mv_chan)
331 {
332 struct mv_xor_desc_slot *iter, *_iter;
333
334 dev_dbg(mv_chan->device->common.dev, "%s %d\n", __func__, __LINE__);
335 list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
336 completed_node) {
337
338 if (async_tx_test_ack(&iter->async_tx)) {
339 list_del(&iter->completed_node);
340 mv_xor_free_slots(mv_chan, iter);
341 }
342 }
343 return 0;
344 }
345
346 static int
347 mv_xor_clean_slot(struct mv_xor_desc_slot *desc,
348 struct mv_xor_chan *mv_chan)
349 {
350 dev_dbg(mv_chan->device->common.dev, "%s %d: desc %p flags %d\n",
351 __func__, __LINE__, desc, desc->async_tx.flags);
352 list_del(&desc->chain_node);
353 /* the client is allowed to attach dependent operations
354 * until 'ack' is set
355 */
356 if (!async_tx_test_ack(&desc->async_tx)) {
357 /* move this slot to the completed_slots */
358 list_add_tail(&desc->completed_node, &mv_chan->completed_slots);
359 return 0;
360 }
361
362 mv_xor_free_slots(mv_chan, desc);
363 return 0;
364 }
365
366 static void __mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
367 {
368 struct mv_xor_desc_slot *iter, *_iter;
369 dma_cookie_t cookie = 0;
370 int busy = mv_chan_is_busy(mv_chan);
371 u32 current_desc = mv_chan_get_current_desc(mv_chan);
372 int seen_current = 0;
373
374 dev_dbg(mv_chan->device->common.dev, "%s %d\n", __func__, __LINE__);
375 dev_dbg(mv_chan->device->common.dev, "current_desc %x\n", current_desc);
376 mv_xor_clean_completed_slots(mv_chan);
377
378 /* free completed slots from the chain starting with
379 * the oldest descriptor
380 */
381
382 list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
383 chain_node) {
384 prefetch(_iter);
385 prefetch(&_iter->async_tx);
386
387 /* do not advance past the current descriptor loaded into the
388 * hardware channel, subsequent descriptors are either in
389 * process or have not been submitted
390 */
391 if (seen_current)
392 break;
393
394 /* stop the search if we reach the current descriptor and the
395 * channel is busy
396 */
397 if (iter->async_tx.phys == current_desc) {
398 seen_current = 1;
399 if (busy)
400 break;
401 }
402
403 cookie = mv_xor_run_tx_complete_actions(iter, mv_chan, cookie);
404
405 if (mv_xor_clean_slot(iter, mv_chan))
406 break;
407 }
408
409 if ((busy == 0) && !list_empty(&mv_chan->chain)) {
410 struct mv_xor_desc_slot *chain_head;
411 chain_head = list_entry(mv_chan->chain.next,
412 struct mv_xor_desc_slot,
413 chain_node);
414
415 mv_xor_start_new_chain(mv_chan, chain_head);
416 }
417
418 if (cookie > 0)
419 mv_chan->completed_cookie = cookie;
420 }
421
422 static void
423 mv_xor_slot_cleanup(struct mv_xor_chan *mv_chan)
424 {
425 spin_lock_bh(&mv_chan->lock);
426 __mv_xor_slot_cleanup(mv_chan);
427 spin_unlock_bh(&mv_chan->lock);
428 }
429
430 static void mv_xor_tasklet(unsigned long data)
431 {
432 struct mv_xor_chan *chan = (struct mv_xor_chan *) data;
433 __mv_xor_slot_cleanup(chan);
434 }
435
436 static struct mv_xor_desc_slot *
437 mv_xor_alloc_slots(struct mv_xor_chan *mv_chan, int num_slots,
438 int slots_per_op)
439 {
440 struct mv_xor_desc_slot *iter, *_iter, *alloc_start = NULL;
441 LIST_HEAD(chain);
442 int slots_found, retry = 0;
443
444 /* start search from the last allocated descrtiptor
445 * if a contiguous allocation can not be found start searching
446 * from the beginning of the list
447 */
448 retry:
449 slots_found = 0;
450 if (retry == 0)
451 iter = mv_chan->last_used;
452 else
453 iter = list_entry(&mv_chan->all_slots,
454 struct mv_xor_desc_slot,
455 slot_node);
456
457 list_for_each_entry_safe_continue(
458 iter, _iter, &mv_chan->all_slots, slot_node) {
459 prefetch(_iter);
460 prefetch(&_iter->async_tx);
461 if (iter->slots_per_op) {
462 /* give up after finding the first busy slot
463 * on the second pass through the list
464 */
465 if (retry)
466 break;
467
468 slots_found = 0;
469 continue;
470 }
471
472 /* start the allocation if the slot is correctly aligned */
473 if (!slots_found++)
474 alloc_start = iter;
475
476 if (slots_found == num_slots) {
477 struct mv_xor_desc_slot *alloc_tail = NULL;
478 struct mv_xor_desc_slot *last_used = NULL;
479 iter = alloc_start;
480 while (num_slots) {
481 int i;
482
483 /* pre-ack all but the last descriptor */
484 async_tx_ack(&iter->async_tx);
485
486 list_add_tail(&iter->chain_node, &chain);
487 alloc_tail = iter;
488 iter->async_tx.cookie = 0;
489 iter->slot_cnt = num_slots;
490 iter->xor_check_result = NULL;
491 for (i = 0; i < slots_per_op; i++) {
492 iter->slots_per_op = slots_per_op - i;
493 last_used = iter;
494 iter = list_entry(iter->slot_node.next,
495 struct mv_xor_desc_slot,
496 slot_node);
497 }
498 num_slots -= slots_per_op;
499 }
500 alloc_tail->group_head = alloc_start;
501 alloc_tail->async_tx.cookie = -EBUSY;
502 list_splice(&chain, &alloc_tail->async_tx.tx_list);
503 mv_chan->last_used = last_used;
504 mv_desc_clear_next_desc(alloc_start);
505 mv_desc_clear_next_desc(alloc_tail);
506 return alloc_tail;
507 }
508 }
509 if (!retry++)
510 goto retry;
511
512 /* try to free some slots if the allocation fails */
513 tasklet_schedule(&mv_chan->irq_tasklet);
514
515 return NULL;
516 }
517
518 static dma_cookie_t
519 mv_desc_assign_cookie(struct mv_xor_chan *mv_chan,
520 struct mv_xor_desc_slot *desc)
521 {
522 dma_cookie_t cookie = mv_chan->common.cookie;
523
524 if (++cookie < 0)
525 cookie = 1;
526 mv_chan->common.cookie = desc->async_tx.cookie = cookie;
527 return cookie;
528 }
529
530 /************************ DMA engine API functions ****************************/
531 static dma_cookie_t
532 mv_xor_tx_submit(struct dma_async_tx_descriptor *tx)
533 {
534 struct mv_xor_desc_slot *sw_desc = to_mv_xor_slot(tx);
535 struct mv_xor_chan *mv_chan = to_mv_xor_chan(tx->chan);
536 struct mv_xor_desc_slot *grp_start, *old_chain_tail;
537 dma_cookie_t cookie;
538 int new_hw_chain = 1;
539
540 dev_dbg(mv_chan->device->common.dev,
541 "%s sw_desc %p: async_tx %p\n",
542 __func__, sw_desc, &sw_desc->async_tx);
543
544 grp_start = sw_desc->group_head;
545
546 spin_lock_bh(&mv_chan->lock);
547 cookie = mv_desc_assign_cookie(mv_chan, sw_desc);
548
549 if (list_empty(&mv_chan->chain))
550 list_splice_init(&sw_desc->async_tx.tx_list, &mv_chan->chain);
551 else {
552 new_hw_chain = 0;
553
554 old_chain_tail = list_entry(mv_chan->chain.prev,
555 struct mv_xor_desc_slot,
556 chain_node);
557 list_splice_init(&grp_start->async_tx.tx_list,
558 &old_chain_tail->chain_node);
559
560 if (!mv_can_chain(grp_start))
561 goto submit_done;
562
563 dev_dbg(mv_chan->device->common.dev, "Append to last desc %x\n",
564 old_chain_tail->async_tx.phys);
565
566 /* fix up the hardware chain */
567 mv_desc_set_next_desc(old_chain_tail, grp_start->async_tx.phys);
568
569 /* if the channel is not busy */
570 if (!mv_chan_is_busy(mv_chan)) {
571 u32 current_desc = mv_chan_get_current_desc(mv_chan);
572 /*
573 * and the curren desc is the end of the chain before
574 * the append, then we need to start the channel
575 */
576 if (current_desc == old_chain_tail->async_tx.phys)
577 new_hw_chain = 1;
578 }
579 }
580
581 if (new_hw_chain)
582 mv_xor_start_new_chain(mv_chan, grp_start);
583
584 submit_done:
585 spin_unlock_bh(&mv_chan->lock);
586
587 return cookie;
588 }
589
590 /* returns the number of allocated descriptors */
591 static int mv_xor_alloc_chan_resources(struct dma_chan *chan,
592 struct dma_client *client)
593 {
594 char *hw_desc;
595 int idx;
596 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
597 struct mv_xor_desc_slot *slot = NULL;
598 struct mv_xor_platform_data *plat_data =
599 mv_chan->device->pdev->dev.platform_data;
600 int num_descs_in_pool = plat_data->pool_size/MV_XOR_SLOT_SIZE;
601
602 /* Allocate descriptor slots */
603 idx = mv_chan->slots_allocated;
604 while (idx < num_descs_in_pool) {
605 slot = kzalloc(sizeof(*slot), GFP_KERNEL);
606 if (!slot) {
607 printk(KERN_INFO "MV XOR Channel only initialized"
608 " %d descriptor slots", idx);
609 break;
610 }
611 hw_desc = (char *) mv_chan->device->dma_desc_pool_virt;
612 slot->hw_desc = (void *) &hw_desc[idx * MV_XOR_SLOT_SIZE];
613
614 dma_async_tx_descriptor_init(&slot->async_tx, chan);
615 slot->async_tx.tx_submit = mv_xor_tx_submit;
616 INIT_LIST_HEAD(&slot->chain_node);
617 INIT_LIST_HEAD(&slot->slot_node);
618 INIT_LIST_HEAD(&slot->async_tx.tx_list);
619 hw_desc = (char *) mv_chan->device->dma_desc_pool;
620 slot->async_tx.phys =
621 (dma_addr_t) &hw_desc[idx * MV_XOR_SLOT_SIZE];
622 slot->idx = idx++;
623
624 spin_lock_bh(&mv_chan->lock);
625 mv_chan->slots_allocated = idx;
626 list_add_tail(&slot->slot_node, &mv_chan->all_slots);
627 spin_unlock_bh(&mv_chan->lock);
628 }
629
630 if (mv_chan->slots_allocated && !mv_chan->last_used)
631 mv_chan->last_used = list_entry(mv_chan->all_slots.next,
632 struct mv_xor_desc_slot,
633 slot_node);
634
635 dev_dbg(mv_chan->device->common.dev,
636 "allocated %d descriptor slots last_used: %p\n",
637 mv_chan->slots_allocated, mv_chan->last_used);
638
639 return mv_chan->slots_allocated ? : -ENOMEM;
640 }
641
642 static struct dma_async_tx_descriptor *
643 mv_xor_prep_dma_memcpy(struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
644 size_t len, unsigned long flags)
645 {
646 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
647 struct mv_xor_desc_slot *sw_desc, *grp_start;
648 int slot_cnt;
649
650 dev_dbg(mv_chan->device->common.dev,
651 "%s dest: %x src %x len: %u flags: %ld\n",
652 __func__, dest, src, len, flags);
653 if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
654 return NULL;
655
656 BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT));
657
658 spin_lock_bh(&mv_chan->lock);
659 slot_cnt = mv_chan_memcpy_slot_count(len);
660 sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
661 if (sw_desc) {
662 sw_desc->type = DMA_MEMCPY;
663 sw_desc->async_tx.flags = flags;
664 grp_start = sw_desc->group_head;
665 mv_desc_init(grp_start, flags);
666 mv_desc_set_byte_count(grp_start, len);
667 mv_desc_set_dest_addr(sw_desc->group_head, dest);
668 mv_desc_set_src_addr(grp_start, 0, src);
669 sw_desc->unmap_src_cnt = 1;
670 sw_desc->unmap_len = len;
671 }
672 spin_unlock_bh(&mv_chan->lock);
673
674 dev_dbg(mv_chan->device->common.dev,
675 "%s sw_desc %p async_tx %p\n",
676 __func__, sw_desc, sw_desc ? &sw_desc->async_tx : 0);
677
678 return sw_desc ? &sw_desc->async_tx : NULL;
679 }
680
681 static struct dma_async_tx_descriptor *
682 mv_xor_prep_dma_memset(struct dma_chan *chan, dma_addr_t dest, int value,
683 size_t len, unsigned long flags)
684 {
685 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
686 struct mv_xor_desc_slot *sw_desc, *grp_start;
687 int slot_cnt;
688
689 dev_dbg(mv_chan->device->common.dev,
690 "%s dest: %x len: %u flags: %ld\n",
691 __func__, dest, len, flags);
692 if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
693 return NULL;
694
695 BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT));
696
697 spin_lock_bh(&mv_chan->lock);
698 slot_cnt = mv_chan_memset_slot_count(len);
699 sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
700 if (sw_desc) {
701 sw_desc->type = DMA_MEMSET;
702 sw_desc->async_tx.flags = flags;
703 grp_start = sw_desc->group_head;
704 mv_desc_init(grp_start, flags);
705 mv_desc_set_byte_count(grp_start, len);
706 mv_desc_set_dest_addr(sw_desc->group_head, dest);
707 mv_desc_set_block_fill_val(grp_start, value);
708 sw_desc->unmap_src_cnt = 1;
709 sw_desc->unmap_len = len;
710 }
711 spin_unlock_bh(&mv_chan->lock);
712 dev_dbg(mv_chan->device->common.dev,
713 "%s sw_desc %p async_tx %p \n",
714 __func__, sw_desc, &sw_desc->async_tx);
715 return sw_desc ? &sw_desc->async_tx : NULL;
716 }
717
718 static struct dma_async_tx_descriptor *
719 mv_xor_prep_dma_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
720 unsigned int src_cnt, size_t len, unsigned long flags)
721 {
722 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
723 struct mv_xor_desc_slot *sw_desc, *grp_start;
724 int slot_cnt;
725
726 if (unlikely(len < MV_XOR_MIN_BYTE_COUNT))
727 return NULL;
728
729 BUG_ON(unlikely(len > MV_XOR_MAX_BYTE_COUNT));
730
731 dev_dbg(mv_chan->device->common.dev,
732 "%s src_cnt: %d len: dest %x %u flags: %ld\n",
733 __func__, src_cnt, len, dest, flags);
734
735 spin_lock_bh(&mv_chan->lock);
736 slot_cnt = mv_chan_xor_slot_count(len, src_cnt);
737 sw_desc = mv_xor_alloc_slots(mv_chan, slot_cnt, 1);
738 if (sw_desc) {
739 sw_desc->type = DMA_XOR;
740 sw_desc->async_tx.flags = flags;
741 grp_start = sw_desc->group_head;
742 mv_desc_init(grp_start, flags);
743 /* the byte count field is the same as in memcpy desc*/
744 mv_desc_set_byte_count(grp_start, len);
745 mv_desc_set_dest_addr(sw_desc->group_head, dest);
746 sw_desc->unmap_src_cnt = src_cnt;
747 sw_desc->unmap_len = len;
748 while (src_cnt--)
749 mv_desc_set_src_addr(grp_start, src_cnt, src[src_cnt]);
750 }
751 spin_unlock_bh(&mv_chan->lock);
752 dev_dbg(mv_chan->device->common.dev,
753 "%s sw_desc %p async_tx %p \n",
754 __func__, sw_desc, &sw_desc->async_tx);
755 return sw_desc ? &sw_desc->async_tx : NULL;
756 }
757
758 static void mv_xor_free_chan_resources(struct dma_chan *chan)
759 {
760 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
761 struct mv_xor_desc_slot *iter, *_iter;
762 int in_use_descs = 0;
763
764 mv_xor_slot_cleanup(mv_chan);
765
766 spin_lock_bh(&mv_chan->lock);
767 list_for_each_entry_safe(iter, _iter, &mv_chan->chain,
768 chain_node) {
769 in_use_descs++;
770 list_del(&iter->chain_node);
771 }
772 list_for_each_entry_safe(iter, _iter, &mv_chan->completed_slots,
773 completed_node) {
774 in_use_descs++;
775 list_del(&iter->completed_node);
776 }
777 list_for_each_entry_safe_reverse(
778 iter, _iter, &mv_chan->all_slots, slot_node) {
779 list_del(&iter->slot_node);
780 kfree(iter);
781 mv_chan->slots_allocated--;
782 }
783 mv_chan->last_used = NULL;
784
785 dev_dbg(mv_chan->device->common.dev, "%s slots_allocated %d\n",
786 __func__, mv_chan->slots_allocated);
787 spin_unlock_bh(&mv_chan->lock);
788
789 if (in_use_descs)
790 dev_err(mv_chan->device->common.dev,
791 "freeing %d in use descriptors!\n", in_use_descs);
792 }
793
794 /**
795 * mv_xor_is_complete - poll the status of an XOR transaction
796 * @chan: XOR channel handle
797 * @cookie: XOR transaction identifier
798 */
799 static enum dma_status mv_xor_is_complete(struct dma_chan *chan,
800 dma_cookie_t cookie,
801 dma_cookie_t *done,
802 dma_cookie_t *used)
803 {
804 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
805 dma_cookie_t last_used;
806 dma_cookie_t last_complete;
807 enum dma_status ret;
808
809 last_used = chan->cookie;
810 last_complete = mv_chan->completed_cookie;
811 mv_chan->is_complete_cookie = cookie;
812 if (done)
813 *done = last_complete;
814 if (used)
815 *used = last_used;
816
817 ret = dma_async_is_complete(cookie, last_complete, last_used);
818 if (ret == DMA_SUCCESS) {
819 mv_xor_clean_completed_slots(mv_chan);
820 return ret;
821 }
822 mv_xor_slot_cleanup(mv_chan);
823
824 last_used = chan->cookie;
825 last_complete = mv_chan->completed_cookie;
826
827 if (done)
828 *done = last_complete;
829 if (used)
830 *used = last_used;
831
832 return dma_async_is_complete(cookie, last_complete, last_used);
833 }
834
835 static void mv_dump_xor_regs(struct mv_xor_chan *chan)
836 {
837 u32 val;
838
839 val = __raw_readl(XOR_CONFIG(chan));
840 dev_printk(KERN_ERR, chan->device->common.dev,
841 "config 0x%08x.\n", val);
842
843 val = __raw_readl(XOR_ACTIVATION(chan));
844 dev_printk(KERN_ERR, chan->device->common.dev,
845 "activation 0x%08x.\n", val);
846
847 val = __raw_readl(XOR_INTR_CAUSE(chan));
848 dev_printk(KERN_ERR, chan->device->common.dev,
849 "intr cause 0x%08x.\n", val);
850
851 val = __raw_readl(XOR_INTR_MASK(chan));
852 dev_printk(KERN_ERR, chan->device->common.dev,
853 "intr mask 0x%08x.\n", val);
854
855 val = __raw_readl(XOR_ERROR_CAUSE(chan));
856 dev_printk(KERN_ERR, chan->device->common.dev,
857 "error cause 0x%08x.\n", val);
858
859 val = __raw_readl(XOR_ERROR_ADDR(chan));
860 dev_printk(KERN_ERR, chan->device->common.dev,
861 "error addr 0x%08x.\n", val);
862 }
863
864 static void mv_xor_err_interrupt_handler(struct mv_xor_chan *chan,
865 u32 intr_cause)
866 {
867 if (intr_cause & (1 << 4)) {
868 dev_dbg(chan->device->common.dev,
869 "ignore this error\n");
870 return;
871 }
872
873 dev_printk(KERN_ERR, chan->device->common.dev,
874 "error on chan %d. intr cause 0x%08x.\n",
875 chan->idx, intr_cause);
876
877 mv_dump_xor_regs(chan);
878 BUG();
879 }
880
881 static irqreturn_t mv_xor_interrupt_handler(int irq, void *data)
882 {
883 struct mv_xor_chan *chan = data;
884 u32 intr_cause = mv_chan_get_intr_cause(chan);
885
886 dev_dbg(chan->device->common.dev, "intr cause %x\n", intr_cause);
887
888 if (mv_is_err_intr(intr_cause))
889 mv_xor_err_interrupt_handler(chan, intr_cause);
890
891 tasklet_schedule(&chan->irq_tasklet);
892
893 mv_xor_device_clear_eoc_cause(chan);
894
895 return IRQ_HANDLED;
896 }
897
898 static void mv_xor_issue_pending(struct dma_chan *chan)
899 {
900 struct mv_xor_chan *mv_chan = to_mv_xor_chan(chan);
901
902 if (mv_chan->pending >= MV_XOR_THRESHOLD) {
903 mv_chan->pending = 0;
904 mv_chan_activate(mv_chan);
905 }
906 }
907
908 /*
909 * Perform a transaction to verify the HW works.
910 */
911 #define MV_XOR_TEST_SIZE 2000
912
913 static int __devinit mv_xor_memcpy_self_test(struct mv_xor_device *device)
914 {
915 int i;
916 void *src, *dest;
917 dma_addr_t src_dma, dest_dma;
918 struct dma_chan *dma_chan;
919 dma_cookie_t cookie;
920 struct dma_async_tx_descriptor *tx;
921 int err = 0;
922 struct mv_xor_chan *mv_chan;
923
924 src = kmalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
925 if (!src)
926 return -ENOMEM;
927
928 dest = kzalloc(sizeof(u8) * MV_XOR_TEST_SIZE, GFP_KERNEL);
929 if (!dest) {
930 kfree(src);
931 return -ENOMEM;
932 }
933
934 /* Fill in src buffer */
935 for (i = 0; i < MV_XOR_TEST_SIZE; i++)
936 ((u8 *) src)[i] = (u8)i;
937
938 /* Start copy, using first DMA channel */
939 dma_chan = container_of(device->common.channels.next,
940 struct dma_chan,
941 device_node);
942 if (mv_xor_alloc_chan_resources(dma_chan, NULL) < 1) {
943 err = -ENODEV;
944 goto out;
945 }
946
947 dest_dma = dma_map_single(dma_chan->device->dev, dest,
948 MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);
949
950 src_dma = dma_map_single(dma_chan->device->dev, src,
951 MV_XOR_TEST_SIZE, DMA_TO_DEVICE);
952
953 tx = mv_xor_prep_dma_memcpy(dma_chan, dest_dma, src_dma,
954 MV_XOR_TEST_SIZE, 0);
955 cookie = mv_xor_tx_submit(tx);
956 mv_xor_issue_pending(dma_chan);
957 async_tx_ack(tx);
958 msleep(1);
959
960 if (mv_xor_is_complete(dma_chan, cookie, NULL, NULL) !=
961 DMA_SUCCESS) {
962 dev_printk(KERN_ERR, dma_chan->device->dev,
963 "Self-test copy timed out, disabling\n");
964 err = -ENODEV;
965 goto free_resources;
966 }
967
968 mv_chan = to_mv_xor_chan(dma_chan);
969 dma_sync_single_for_cpu(&mv_chan->device->pdev->dev, dest_dma,
970 MV_XOR_TEST_SIZE, DMA_FROM_DEVICE);
971 if (memcmp(src, dest, MV_XOR_TEST_SIZE)) {
972 dev_printk(KERN_ERR, dma_chan->device->dev,
973 "Self-test copy failed compare, disabling\n");
974 err = -ENODEV;
975 goto free_resources;
976 }
977
978 free_resources:
979 mv_xor_free_chan_resources(dma_chan);
980 out:
981 kfree(src);
982 kfree(dest);
983 return err;
984 }
985
986 #define MV_XOR_NUM_SRC_TEST 4 /* must be <= 15 */
987 static int __devinit
988 mv_xor_xor_self_test(struct mv_xor_device *device)
989 {
990 int i, src_idx;
991 struct page *dest;
992 struct page *xor_srcs[MV_XOR_NUM_SRC_TEST];
993 dma_addr_t dma_srcs[MV_XOR_NUM_SRC_TEST];
994 dma_addr_t dest_dma;
995 struct dma_async_tx_descriptor *tx;
996 struct dma_chan *dma_chan;
997 dma_cookie_t cookie;
998 u8 cmp_byte = 0;
999 u32 cmp_word;
1000 int err = 0;
1001 struct mv_xor_chan *mv_chan;
1002
1003 for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
1004 xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
1005 if (!xor_srcs[src_idx])
1006 while (src_idx--) {
1007 __free_page(xor_srcs[src_idx]);
1008 return -ENOMEM;
1009 }
1010 }
1011
1012 dest = alloc_page(GFP_KERNEL);
1013 if (!dest)
1014 while (src_idx--) {
1015 __free_page(xor_srcs[src_idx]);
1016 return -ENOMEM;
1017 }
1018
1019 /* Fill in src buffers */
1020 for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++) {
1021 u8 *ptr = page_address(xor_srcs[src_idx]);
1022 for (i = 0; i < PAGE_SIZE; i++)
1023 ptr[i] = (1 << src_idx);
1024 }
1025
1026 for (src_idx = 0; src_idx < MV_XOR_NUM_SRC_TEST; src_idx++)
1027 cmp_byte ^= (u8) (1 << src_idx);
1028
1029 cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
1030 (cmp_byte << 8) | cmp_byte;
1031
1032 memset(page_address(dest), 0, PAGE_SIZE);
1033
1034 dma_chan = container_of(device->common.channels.next,
1035 struct dma_chan,
1036 device_node);
1037 if (mv_xor_alloc_chan_resources(dma_chan, NULL) < 1) {
1038 err = -ENODEV;
1039 goto out;
1040 }
1041
1042 /* test xor */
1043 dest_dma = dma_map_page(dma_chan->device->dev, dest, 0, PAGE_SIZE,
1044 DMA_FROM_DEVICE);
1045
1046 for (i = 0; i < MV_XOR_NUM_SRC_TEST; i++)
1047 dma_srcs[i] = dma_map_page(dma_chan->device->dev, xor_srcs[i],
1048 0, PAGE_SIZE, DMA_TO_DEVICE);
1049
1050 tx = mv_xor_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
1051 MV_XOR_NUM_SRC_TEST, PAGE_SIZE, 0);
1052
1053 cookie = mv_xor_tx_submit(tx);
1054 mv_xor_issue_pending(dma_chan);
1055 async_tx_ack(tx);
1056 msleep(8);
1057
1058 if (mv_xor_is_complete(dma_chan, cookie, NULL, NULL) !=
1059 DMA_SUCCESS) {
1060 dev_printk(KERN_ERR, dma_chan->device->dev,
1061 "Self-test xor timed out, disabling\n");
1062 err = -ENODEV;
1063 goto free_resources;
1064 }
1065
1066 mv_chan = to_mv_xor_chan(dma_chan);
1067 dma_sync_single_for_cpu(&mv_chan->device->pdev->dev, dest_dma,
1068 PAGE_SIZE, DMA_FROM_DEVICE);
1069 for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
1070 u32 *ptr = page_address(dest);
1071 if (ptr[i] != cmp_word) {
1072 dev_printk(KERN_ERR, dma_chan->device->dev,
1073 "Self-test xor failed compare, disabling."
1074 " index %d, data %x, expected %x\n", i,
1075 ptr[i], cmp_word);
1076 err = -ENODEV;
1077 goto free_resources;
1078 }
1079 }
1080
1081 free_resources:
1082 mv_xor_free_chan_resources(dma_chan);
1083 out:
1084 src_idx = MV_XOR_NUM_SRC_TEST;
1085 while (src_idx--)
1086 __free_page(xor_srcs[src_idx]);
1087 __free_page(dest);
1088 return err;
1089 }
1090
1091 static int __devexit mv_xor_remove(struct platform_device *dev)
1092 {
1093 struct mv_xor_device *device = platform_get_drvdata(dev);
1094 struct dma_chan *chan, *_chan;
1095 struct mv_xor_chan *mv_chan;
1096 struct mv_xor_platform_data *plat_data = dev->dev.platform_data;
1097
1098 dma_async_device_unregister(&device->common);
1099
1100 dma_free_coherent(&dev->dev, plat_data->pool_size,
1101 device->dma_desc_pool_virt, device->dma_desc_pool);
1102
1103 list_for_each_entry_safe(chan, _chan, &device->common.channels,
1104 device_node) {
1105 mv_chan = to_mv_xor_chan(chan);
1106 list_del(&chan->device_node);
1107 }
1108
1109 return 0;
1110 }
1111
1112 static int __devinit mv_xor_probe(struct platform_device *pdev)
1113 {
1114 int ret = 0;
1115 int irq;
1116 struct mv_xor_device *adev;
1117 struct mv_xor_chan *mv_chan;
1118 struct dma_device *dma_dev;
1119 struct mv_xor_platform_data *plat_data = pdev->dev.platform_data;
1120
1121
1122 adev = devm_kzalloc(&pdev->dev, sizeof(*adev), GFP_KERNEL);
1123 if (!adev)
1124 return -ENOMEM;
1125
1126 dma_dev = &adev->common;
1127
1128 /* allocate coherent memory for hardware descriptors
1129 * note: writecombine gives slightly better performance, but
1130 * requires that we explicitly flush the writes
1131 */
1132 adev->dma_desc_pool_virt = dma_alloc_writecombine(&pdev->dev,
1133 plat_data->pool_size,
1134 &adev->dma_desc_pool,
1135 GFP_KERNEL);
1136 if (!adev->dma_desc_pool_virt)
1137 return -ENOMEM;
1138
1139 adev->id = plat_data->hw_id;
1140
1141 /* discover transaction capabilites from the platform data */
1142 dma_dev->cap_mask = plat_data->cap_mask;
1143 adev->pdev = pdev;
1144 platform_set_drvdata(pdev, adev);
1145
1146 adev->shared = platform_get_drvdata(plat_data->shared);
1147
1148 INIT_LIST_HEAD(&dma_dev->channels);
1149
1150 /* set base routines */
1151 dma_dev->device_alloc_chan_resources = mv_xor_alloc_chan_resources;
1152 dma_dev->device_free_chan_resources = mv_xor_free_chan_resources;
1153 dma_dev->device_is_tx_complete = mv_xor_is_complete;
1154 dma_dev->device_issue_pending = mv_xor_issue_pending;
1155 dma_dev->dev = &pdev->dev;
1156
1157 /* set prep routines based on capability */
1158 if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask))
1159 dma_dev->device_prep_dma_memcpy = mv_xor_prep_dma_memcpy;
1160 if (dma_has_cap(DMA_MEMSET, dma_dev->cap_mask))
1161 dma_dev->device_prep_dma_memset = mv_xor_prep_dma_memset;
1162 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1163 dma_dev->max_xor = 8; ;
1164 dma_dev->device_prep_dma_xor = mv_xor_prep_dma_xor;
1165 }
1166
1167 mv_chan = devm_kzalloc(&pdev->dev, sizeof(*mv_chan), GFP_KERNEL);
1168 if (!mv_chan) {
1169 ret = -ENOMEM;
1170 goto err_free_dma;
1171 }
1172 mv_chan->device = adev;
1173 mv_chan->idx = plat_data->hw_id;
1174 mv_chan->mmr_base = adev->shared->xor_base;
1175
1176 if (!mv_chan->mmr_base) {
1177 ret = -ENOMEM;
1178 goto err_free_dma;
1179 }
1180 tasklet_init(&mv_chan->irq_tasklet, mv_xor_tasklet, (unsigned long)
1181 mv_chan);
1182
1183 /* clear errors before enabling interrupts */
1184 mv_xor_device_clear_err_status(mv_chan);
1185
1186 irq = platform_get_irq(pdev, 0);
1187 if (irq < 0) {
1188 ret = irq;
1189 goto err_free_dma;
1190 }
1191 ret = devm_request_irq(&pdev->dev, irq,
1192 mv_xor_interrupt_handler,
1193 0, dev_name(&pdev->dev), mv_chan);
1194 if (ret)
1195 goto err_free_dma;
1196
1197 mv_chan_unmask_interrupts(mv_chan);
1198
1199 mv_set_mode(mv_chan, DMA_MEMCPY);
1200
1201 spin_lock_init(&mv_chan->lock);
1202 INIT_LIST_HEAD(&mv_chan->chain);
1203 INIT_LIST_HEAD(&mv_chan->completed_slots);
1204 INIT_LIST_HEAD(&mv_chan->all_slots);
1205 INIT_RCU_HEAD(&mv_chan->common.rcu);
1206 mv_chan->common.device = dma_dev;
1207
1208 list_add_tail(&mv_chan->common.device_node, &dma_dev->channels);
1209
1210 if (dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask)) {
1211 ret = mv_xor_memcpy_self_test(adev);
1212 dev_dbg(&pdev->dev, "memcpy self test returned %d\n", ret);
1213 if (ret)
1214 goto err_free_dma;
1215 }
1216
1217 if (dma_has_cap(DMA_XOR, dma_dev->cap_mask)) {
1218 ret = mv_xor_xor_self_test(adev);
1219 dev_dbg(&pdev->dev, "xor self test returned %d\n", ret);
1220 if (ret)
1221 goto err_free_dma;
1222 }
1223
1224 dev_printk(KERN_INFO, &pdev->dev, "Marvell XOR: "
1225 "( %s%s%s%s)\n",
1226 dma_has_cap(DMA_XOR, dma_dev->cap_mask) ? "xor " : "",
1227 dma_has_cap(DMA_MEMSET, dma_dev->cap_mask) ? "fill " : "",
1228 dma_has_cap(DMA_MEMCPY, dma_dev->cap_mask) ? "cpy " : "",
1229 dma_has_cap(DMA_INTERRUPT, dma_dev->cap_mask) ? "intr " : "");
1230
1231 dma_async_device_register(dma_dev);
1232 goto out;
1233
1234 err_free_dma:
1235 dma_free_coherent(&adev->pdev->dev, plat_data->pool_size,
1236 adev->dma_desc_pool_virt, adev->dma_desc_pool);
1237 out:
1238 return ret;
1239 }
1240
1241 static void
1242 mv_xor_conf_mbus_windows(struct mv_xor_shared_private *msp,
1243 struct mbus_dram_target_info *dram)
1244 {
1245 void __iomem *base = msp->xor_base;
1246 u32 win_enable = 0;
1247 int i;
1248
1249 for (i = 0; i < 8; i++) {
1250 writel(0, base + WINDOW_BASE(i));
1251 writel(0, base + WINDOW_SIZE(i));
1252 if (i < 4)
1253 writel(0, base + WINDOW_REMAP_HIGH(i));
1254 }
1255
1256 for (i = 0; i < dram->num_cs; i++) {
1257 struct mbus_dram_window *cs = dram->cs + i;
1258
1259 writel((cs->base & 0xffff0000) |
1260 (cs->mbus_attr << 8) |
1261 dram->mbus_dram_target_id, base + WINDOW_BASE(i));
1262 writel((cs->size - 1) & 0xffff0000, base + WINDOW_SIZE(i));
1263
1264 win_enable |= (1 << i);
1265 win_enable |= 3 << (16 + (2 * i));
1266 }
1267
1268 writel(win_enable, base + WINDOW_BAR_ENABLE(0));
1269 writel(win_enable, base + WINDOW_BAR_ENABLE(1));
1270 }
1271
1272 static struct platform_driver mv_xor_driver = {
1273 .probe = mv_xor_probe,
1274 .remove = mv_xor_remove,
1275 .driver = {
1276 .owner = THIS_MODULE,
1277 .name = MV_XOR_NAME,
1278 },
1279 };
1280
1281 static int mv_xor_shared_probe(struct platform_device *pdev)
1282 {
1283 struct mv_xor_platform_shared_data *msd = pdev->dev.platform_data;
1284 struct mv_xor_shared_private *msp;
1285 struct resource *res;
1286
1287 dev_printk(KERN_NOTICE, &pdev->dev, "Marvell shared XOR driver\n");
1288
1289 msp = devm_kzalloc(&pdev->dev, sizeof(*msp), GFP_KERNEL);
1290 if (!msp)
1291 return -ENOMEM;
1292
1293 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1294 if (!res)
1295 return -ENODEV;
1296
1297 msp->xor_base = devm_ioremap(&pdev->dev, res->start,
1298 res->end - res->start + 1);
1299 if (!msp->xor_base)
1300 return -EBUSY;
1301
1302 res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1303 if (!res)
1304 return -ENODEV;
1305
1306 msp->xor_high_base = devm_ioremap(&pdev->dev, res->start,
1307 res->end - res->start + 1);
1308 if (!msp->xor_high_base)
1309 return -EBUSY;
1310
1311 platform_set_drvdata(pdev, msp);
1312
1313 /*
1314 * (Re-)program MBUS remapping windows if we are asked to.
1315 */
1316 if (msd != NULL && msd->dram != NULL)
1317 mv_xor_conf_mbus_windows(msp, msd->dram);
1318
1319 return 0;
1320 }
1321
1322 static int mv_xor_shared_remove(struct platform_device *pdev)
1323 {
1324 return 0;
1325 }
1326
1327 static struct platform_driver mv_xor_shared_driver = {
1328 .probe = mv_xor_shared_probe,
1329 .remove = mv_xor_shared_remove,
1330 .driver = {
1331 .owner = THIS_MODULE,
1332 .name = MV_XOR_SHARED_NAME,
1333 },
1334 };
1335
1336
1337 static int __init mv_xor_init(void)
1338 {
1339 int rc;
1340
1341 rc = platform_driver_register(&mv_xor_shared_driver);
1342 if (!rc) {
1343 rc = platform_driver_register(&mv_xor_driver);
1344 if (rc)
1345 platform_driver_unregister(&mv_xor_shared_driver);
1346 }
1347 return rc;
1348 }
1349 module_init(mv_xor_init);
1350
1351 /* it's currently unsafe to unload this module */
1352 #if 0
1353 static void __exit mv_xor_exit(void)
1354 {
1355 platform_driver_unregister(&mv_xor_driver);
1356 platform_driver_unregister(&mv_xor_shared_driver);
1357 return;
1358 }
1359
1360 module_exit(mv_xor_exit);
1361 #endif
1362
1363 MODULE_AUTHOR("Saeed Bishara <saeed@marvell.com>");
1364 MODULE_DESCRIPTION("DMA engine driver for Marvell's XOR engine");
1365 MODULE_LICENSE("GPL");