ioat2: catch and recover from broken vtd configurations v6
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / dma / ioat / dma_v3.c
1 /*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2004 - 2009 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms and conditions of the GNU General Public License,
11 * version 2, as published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc.,
20 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 *
22 * The full GNU General Public License is included in this distribution in
23 * the file called "COPYING".
24 *
25 * BSD LICENSE
26 *
27 * Copyright(c) 2004-2009 Intel Corporation. All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions are met:
31 *
32 * * Redistributions of source code must retain the above copyright
33 * notice, this list of conditions and the following disclaimer.
34 * * Redistributions in binary form must reproduce the above copyright
35 * notice, this list of conditions and the following disclaimer in
36 * the documentation and/or other materials provided with the
37 * distribution.
38 * * Neither the name of Intel Corporation nor the names of its
39 * contributors may be used to endorse or promote products derived
40 * from this software without specific prior written permission.
41 *
42 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
43 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
46 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
47 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
48 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
49 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
50 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
51 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
52 * POSSIBILITY OF SUCH DAMAGE.
53 */
54
55 /*
56 * Support routines for v3+ hardware
57 */
58
59 #include <linux/pci.h>
60 #include <linux/gfp.h>
61 #include <linux/dmaengine.h>
62 #include <linux/dma-mapping.h>
63 #include "registers.h"
64 #include "hw.h"
65 #include "dma.h"
66 #include "dma_v2.h"
67
68 /* ioat hardware assumes at least two sources for raid operations */
69 #define src_cnt_to_sw(x) ((x) + 2)
70 #define src_cnt_to_hw(x) ((x) - 2)
71
72 /* provide a lookup table for setting the source address in the base or
73 * extended descriptor of an xor or pq descriptor
74 */
75 static const u8 xor_idx_to_desc __read_mostly = 0xd0;
76 static const u8 xor_idx_to_field[] __read_mostly = { 1, 4, 5, 6, 7, 0, 1, 2 };
77 static const u8 pq_idx_to_desc __read_mostly = 0xf8;
78 static const u8 pq_idx_to_field[] __read_mostly = { 1, 4, 5, 0, 1, 2, 4, 5 };
79
80 static dma_addr_t xor_get_src(struct ioat_raw_descriptor *descs[2], int idx)
81 {
82 struct ioat_raw_descriptor *raw = descs[xor_idx_to_desc >> idx & 1];
83
84 return raw->field[xor_idx_to_field[idx]];
85 }
86
87 static void xor_set_src(struct ioat_raw_descriptor *descs[2],
88 dma_addr_t addr, u32 offset, int idx)
89 {
90 struct ioat_raw_descriptor *raw = descs[xor_idx_to_desc >> idx & 1];
91
92 raw->field[xor_idx_to_field[idx]] = addr + offset;
93 }
94
95 static dma_addr_t pq_get_src(struct ioat_raw_descriptor *descs[2], int idx)
96 {
97 struct ioat_raw_descriptor *raw = descs[pq_idx_to_desc >> idx & 1];
98
99 return raw->field[pq_idx_to_field[idx]];
100 }
101
102 static void pq_set_src(struct ioat_raw_descriptor *descs[2],
103 dma_addr_t addr, u32 offset, u8 coef, int idx)
104 {
105 struct ioat_pq_descriptor *pq = (struct ioat_pq_descriptor *) descs[0];
106 struct ioat_raw_descriptor *raw = descs[pq_idx_to_desc >> idx & 1];
107
108 raw->field[pq_idx_to_field[idx]] = addr + offset;
109 pq->coef[idx] = coef;
110 }
111
112 static void ioat3_dma_unmap(struct ioat2_dma_chan *ioat,
113 struct ioat_ring_ent *desc, int idx)
114 {
115 struct ioat_chan_common *chan = &ioat->base;
116 struct pci_dev *pdev = chan->device->pdev;
117 size_t len = desc->len;
118 size_t offset = len - desc->hw->size;
119 struct dma_async_tx_descriptor *tx = &desc->txd;
120 enum dma_ctrl_flags flags = tx->flags;
121
122 switch (desc->hw->ctl_f.op) {
123 case IOAT_OP_COPY:
124 if (!desc->hw->ctl_f.null) /* skip 'interrupt' ops */
125 ioat_dma_unmap(chan, flags, len, desc->hw);
126 break;
127 case IOAT_OP_FILL: {
128 struct ioat_fill_descriptor *hw = desc->fill;
129
130 if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP))
131 ioat_unmap(pdev, hw->dst_addr - offset, len,
132 PCI_DMA_FROMDEVICE, flags, 1);
133 break;
134 }
135 case IOAT_OP_XOR_VAL:
136 case IOAT_OP_XOR: {
137 struct ioat_xor_descriptor *xor = desc->xor;
138 struct ioat_ring_ent *ext;
139 struct ioat_xor_ext_descriptor *xor_ex = NULL;
140 int src_cnt = src_cnt_to_sw(xor->ctl_f.src_cnt);
141 struct ioat_raw_descriptor *descs[2];
142 int i;
143
144 if (src_cnt > 5) {
145 ext = ioat2_get_ring_ent(ioat, idx + 1);
146 xor_ex = ext->xor_ex;
147 }
148
149 if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
150 descs[0] = (struct ioat_raw_descriptor *) xor;
151 descs[1] = (struct ioat_raw_descriptor *) xor_ex;
152 for (i = 0; i < src_cnt; i++) {
153 dma_addr_t src = xor_get_src(descs, i);
154
155 ioat_unmap(pdev, src - offset, len,
156 PCI_DMA_TODEVICE, flags, 0);
157 }
158
159 /* dest is a source in xor validate operations */
160 if (xor->ctl_f.op == IOAT_OP_XOR_VAL) {
161 ioat_unmap(pdev, xor->dst_addr - offset, len,
162 PCI_DMA_TODEVICE, flags, 1);
163 break;
164 }
165 }
166
167 if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP))
168 ioat_unmap(pdev, xor->dst_addr - offset, len,
169 PCI_DMA_FROMDEVICE, flags, 1);
170 break;
171 }
172 case IOAT_OP_PQ_VAL:
173 case IOAT_OP_PQ: {
174 struct ioat_pq_descriptor *pq = desc->pq;
175 struct ioat_ring_ent *ext;
176 struct ioat_pq_ext_descriptor *pq_ex = NULL;
177 int src_cnt = src_cnt_to_sw(pq->ctl_f.src_cnt);
178 struct ioat_raw_descriptor *descs[2];
179 int i;
180
181 if (src_cnt > 3) {
182 ext = ioat2_get_ring_ent(ioat, idx + 1);
183 pq_ex = ext->pq_ex;
184 }
185
186 /* in the 'continue' case don't unmap the dests as sources */
187 if (dmaf_p_disabled_continue(flags))
188 src_cnt--;
189 else if (dmaf_continue(flags))
190 src_cnt -= 3;
191
192 if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
193 descs[0] = (struct ioat_raw_descriptor *) pq;
194 descs[1] = (struct ioat_raw_descriptor *) pq_ex;
195 for (i = 0; i < src_cnt; i++) {
196 dma_addr_t src = pq_get_src(descs, i);
197
198 ioat_unmap(pdev, src - offset, len,
199 PCI_DMA_TODEVICE, flags, 0);
200 }
201
202 /* the dests are sources in pq validate operations */
203 if (pq->ctl_f.op == IOAT_OP_XOR_VAL) {
204 if (!(flags & DMA_PREP_PQ_DISABLE_P))
205 ioat_unmap(pdev, pq->p_addr - offset,
206 len, PCI_DMA_TODEVICE, flags, 0);
207 if (!(flags & DMA_PREP_PQ_DISABLE_Q))
208 ioat_unmap(pdev, pq->q_addr - offset,
209 len, PCI_DMA_TODEVICE, flags, 0);
210 break;
211 }
212 }
213
214 if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
215 if (!(flags & DMA_PREP_PQ_DISABLE_P))
216 ioat_unmap(pdev, pq->p_addr - offset, len,
217 PCI_DMA_BIDIRECTIONAL, flags, 1);
218 if (!(flags & DMA_PREP_PQ_DISABLE_Q))
219 ioat_unmap(pdev, pq->q_addr - offset, len,
220 PCI_DMA_BIDIRECTIONAL, flags, 1);
221 }
222 break;
223 }
224 default:
225 dev_err(&pdev->dev, "%s: unknown op type: %#x\n",
226 __func__, desc->hw->ctl_f.op);
227 }
228 }
229
230 static bool desc_has_ext(struct ioat_ring_ent *desc)
231 {
232 struct ioat_dma_descriptor *hw = desc->hw;
233
234 if (hw->ctl_f.op == IOAT_OP_XOR ||
235 hw->ctl_f.op == IOAT_OP_XOR_VAL) {
236 struct ioat_xor_descriptor *xor = desc->xor;
237
238 if (src_cnt_to_sw(xor->ctl_f.src_cnt) > 5)
239 return true;
240 } else if (hw->ctl_f.op == IOAT_OP_PQ ||
241 hw->ctl_f.op == IOAT_OP_PQ_VAL) {
242 struct ioat_pq_descriptor *pq = desc->pq;
243
244 if (src_cnt_to_sw(pq->ctl_f.src_cnt) > 3)
245 return true;
246 }
247
248 return false;
249 }
250
251 /**
252 * __cleanup - reclaim used descriptors
253 * @ioat: channel (ring) to clean
254 *
255 * The difference from the dma_v2.c __cleanup() is that this routine
256 * handles extended descriptors and dma-unmapping raid operations.
257 */
258 static void __cleanup(struct ioat2_dma_chan *ioat, unsigned long phys_complete)
259 {
260 struct ioat_chan_common *chan = &ioat->base;
261 struct ioat_ring_ent *desc;
262 bool seen_current = false;
263 int idx = ioat->tail, i;
264 u16 active;
265
266 dev_dbg(to_dev(chan), "%s: head: %#x tail: %#x issued: %#x\n",
267 __func__, ioat->head, ioat->tail, ioat->issued);
268
269 active = ioat2_ring_active(ioat);
270 for (i = 0; i < active && !seen_current; i++) {
271 struct dma_async_tx_descriptor *tx;
272
273 smp_read_barrier_depends();
274 prefetch(ioat2_get_ring_ent(ioat, idx + i + 1));
275 desc = ioat2_get_ring_ent(ioat, idx + i);
276 dump_desc_dbg(ioat, desc);
277 tx = &desc->txd;
278 if (tx->cookie) {
279 chan->completed_cookie = tx->cookie;
280 ioat3_dma_unmap(ioat, desc, idx + i);
281 tx->cookie = 0;
282 if (tx->callback) {
283 tx->callback(tx->callback_param);
284 tx->callback = NULL;
285 }
286 }
287
288 if (tx->phys == phys_complete)
289 seen_current = true;
290
291 /* skip extended descriptors */
292 if (desc_has_ext(desc)) {
293 BUG_ON(i + 1 >= active);
294 i++;
295 }
296 }
297 smp_mb(); /* finish all descriptor reads before incrementing tail */
298 ioat->tail = idx + i;
299 BUG_ON(active && !seen_current); /* no active descs have written a completion? */
300 chan->last_completion = phys_complete;
301
302 if (active - i == 0) {
303 dev_dbg(to_dev(chan), "%s: cancel completion timeout\n",
304 __func__);
305 clear_bit(IOAT_COMPLETION_PENDING, &chan->state);
306 mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
307 }
308 /* 5 microsecond delay per pending descriptor */
309 writew(min((5 * (active - i)), IOAT_INTRDELAY_MASK),
310 chan->device->reg_base + IOAT_INTRDELAY_OFFSET);
311 }
312
313 static void ioat3_cleanup(struct ioat2_dma_chan *ioat)
314 {
315 struct ioat_chan_common *chan = &ioat->base;
316 unsigned long phys_complete;
317
318 spin_lock_bh(&chan->cleanup_lock);
319 if (ioat_cleanup_preamble(chan, &phys_complete))
320 __cleanup(ioat, phys_complete);
321 spin_unlock_bh(&chan->cleanup_lock);
322 }
323
324 static void ioat3_cleanup_event(unsigned long data)
325 {
326 struct ioat2_dma_chan *ioat = to_ioat2_chan((void *) data);
327
328 ioat3_cleanup(ioat);
329 writew(IOAT_CHANCTRL_RUN, ioat->base.reg_base + IOAT_CHANCTRL_OFFSET);
330 }
331
332 static void ioat3_restart_channel(struct ioat2_dma_chan *ioat)
333 {
334 struct ioat_chan_common *chan = &ioat->base;
335 unsigned long phys_complete;
336
337 ioat2_quiesce(chan, 0);
338 if (ioat_cleanup_preamble(chan, &phys_complete))
339 __cleanup(ioat, phys_complete);
340
341 __ioat2_restart_chan(ioat);
342 }
343
344 static void ioat3_timer_event(unsigned long data)
345 {
346 struct ioat2_dma_chan *ioat = to_ioat2_chan((void *) data);
347 struct ioat_chan_common *chan = &ioat->base;
348
349 if (test_bit(IOAT_COMPLETION_PENDING, &chan->state)) {
350 unsigned long phys_complete;
351 u64 status;
352
353 status = ioat_chansts(chan);
354
355 /* when halted due to errors check for channel
356 * programming errors before advancing the completion state
357 */
358 if (is_ioat_halted(status)) {
359 u32 chanerr;
360
361 chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
362 dev_err(to_dev(chan), "%s: Channel halted (%x)\n",
363 __func__, chanerr);
364 if (test_bit(IOAT_RUN, &chan->state))
365 BUG_ON(is_ioat_bug(chanerr));
366 else /* we never got off the ground */
367 return;
368 }
369
370 /* if we haven't made progress and we have already
371 * acknowledged a pending completion once, then be more
372 * forceful with a restart
373 */
374 spin_lock_bh(&chan->cleanup_lock);
375 if (ioat_cleanup_preamble(chan, &phys_complete))
376 __cleanup(ioat, phys_complete);
377 else if (test_bit(IOAT_COMPLETION_ACK, &chan->state)) {
378 spin_lock_bh(&ioat->prep_lock);
379 ioat3_restart_channel(ioat);
380 spin_unlock_bh(&ioat->prep_lock);
381 } else {
382 set_bit(IOAT_COMPLETION_ACK, &chan->state);
383 mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
384 }
385 spin_unlock_bh(&chan->cleanup_lock);
386 } else {
387 u16 active;
388
389 /* if the ring is idle, empty, and oversized try to step
390 * down the size
391 */
392 spin_lock_bh(&chan->cleanup_lock);
393 spin_lock_bh(&ioat->prep_lock);
394 active = ioat2_ring_active(ioat);
395 if (active == 0 && ioat->alloc_order > ioat_get_alloc_order())
396 reshape_ring(ioat, ioat->alloc_order-1);
397 spin_unlock_bh(&ioat->prep_lock);
398 spin_unlock_bh(&chan->cleanup_lock);
399
400 /* keep shrinking until we get back to our minimum
401 * default size
402 */
403 if (ioat->alloc_order > ioat_get_alloc_order())
404 mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
405 }
406 }
407
408 static enum dma_status
409 ioat3_tx_status(struct dma_chan *c, dma_cookie_t cookie,
410 struct dma_tx_state *txstate)
411 {
412 struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
413
414 if (ioat_tx_status(c, cookie, txstate) == DMA_SUCCESS)
415 return DMA_SUCCESS;
416
417 ioat3_cleanup(ioat);
418
419 return ioat_tx_status(c, cookie, txstate);
420 }
421
422 static struct dma_async_tx_descriptor *
423 ioat3_prep_memset_lock(struct dma_chan *c, dma_addr_t dest, int value,
424 size_t len, unsigned long flags)
425 {
426 struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
427 struct ioat_ring_ent *desc;
428 size_t total_len = len;
429 struct ioat_fill_descriptor *fill;
430 u64 src_data = (0x0101010101010101ULL) * (value & 0xff);
431 int num_descs, idx, i;
432
433 num_descs = ioat2_xferlen_to_descs(ioat, len);
434 if (likely(num_descs) && ioat2_check_space_lock(ioat, num_descs) == 0)
435 idx = ioat->head;
436 else
437 return NULL;
438 i = 0;
439 do {
440 size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log);
441
442 desc = ioat2_get_ring_ent(ioat, idx + i);
443 fill = desc->fill;
444
445 fill->size = xfer_size;
446 fill->src_data = src_data;
447 fill->dst_addr = dest;
448 fill->ctl = 0;
449 fill->ctl_f.op = IOAT_OP_FILL;
450
451 len -= xfer_size;
452 dest += xfer_size;
453 dump_desc_dbg(ioat, desc);
454 } while (++i < num_descs);
455
456 desc->txd.flags = flags;
457 desc->len = total_len;
458 fill->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
459 fill->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
460 fill->ctl_f.compl_write = 1;
461 dump_desc_dbg(ioat, desc);
462
463 /* we leave the channel locked to ensure in order submission */
464 return &desc->txd;
465 }
466
467 static struct dma_async_tx_descriptor *
468 __ioat3_prep_xor_lock(struct dma_chan *c, enum sum_check_flags *result,
469 dma_addr_t dest, dma_addr_t *src, unsigned int src_cnt,
470 size_t len, unsigned long flags)
471 {
472 struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
473 struct ioat_ring_ent *compl_desc;
474 struct ioat_ring_ent *desc;
475 struct ioat_ring_ent *ext;
476 size_t total_len = len;
477 struct ioat_xor_descriptor *xor;
478 struct ioat_xor_ext_descriptor *xor_ex = NULL;
479 struct ioat_dma_descriptor *hw;
480 int num_descs, with_ext, idx, i;
481 u32 offset = 0;
482 u8 op = result ? IOAT_OP_XOR_VAL : IOAT_OP_XOR;
483
484 BUG_ON(src_cnt < 2);
485
486 num_descs = ioat2_xferlen_to_descs(ioat, len);
487 /* we need 2x the number of descriptors to cover greater than 5
488 * sources
489 */
490 if (src_cnt > 5) {
491 with_ext = 1;
492 num_descs *= 2;
493 } else
494 with_ext = 0;
495
496 /* completion writes from the raid engine may pass completion
497 * writes from the legacy engine, so we need one extra null
498 * (legacy) descriptor to ensure all completion writes arrive in
499 * order.
500 */
501 if (likely(num_descs) && ioat2_check_space_lock(ioat, num_descs+1) == 0)
502 idx = ioat->head;
503 else
504 return NULL;
505 i = 0;
506 do {
507 struct ioat_raw_descriptor *descs[2];
508 size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log);
509 int s;
510
511 desc = ioat2_get_ring_ent(ioat, idx + i);
512 xor = desc->xor;
513
514 /* save a branch by unconditionally retrieving the
515 * extended descriptor xor_set_src() knows to not write
516 * to it in the single descriptor case
517 */
518 ext = ioat2_get_ring_ent(ioat, idx + i + 1);
519 xor_ex = ext->xor_ex;
520
521 descs[0] = (struct ioat_raw_descriptor *) xor;
522 descs[1] = (struct ioat_raw_descriptor *) xor_ex;
523 for (s = 0; s < src_cnt; s++)
524 xor_set_src(descs, src[s], offset, s);
525 xor->size = xfer_size;
526 xor->dst_addr = dest + offset;
527 xor->ctl = 0;
528 xor->ctl_f.op = op;
529 xor->ctl_f.src_cnt = src_cnt_to_hw(src_cnt);
530
531 len -= xfer_size;
532 offset += xfer_size;
533 dump_desc_dbg(ioat, desc);
534 } while ((i += 1 + with_ext) < num_descs);
535
536 /* last xor descriptor carries the unmap parameters and fence bit */
537 desc->txd.flags = flags;
538 desc->len = total_len;
539 if (result)
540 desc->result = result;
541 xor->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
542
543 /* completion descriptor carries interrupt bit */
544 compl_desc = ioat2_get_ring_ent(ioat, idx + i);
545 compl_desc->txd.flags = flags & DMA_PREP_INTERRUPT;
546 hw = compl_desc->hw;
547 hw->ctl = 0;
548 hw->ctl_f.null = 1;
549 hw->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
550 hw->ctl_f.compl_write = 1;
551 hw->size = NULL_DESC_BUFFER_SIZE;
552 dump_desc_dbg(ioat, compl_desc);
553
554 /* we leave the channel locked to ensure in order submission */
555 return &compl_desc->txd;
556 }
557
558 static struct dma_async_tx_descriptor *
559 ioat3_prep_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
560 unsigned int src_cnt, size_t len, unsigned long flags)
561 {
562 return __ioat3_prep_xor_lock(chan, NULL, dest, src, src_cnt, len, flags);
563 }
564
565 struct dma_async_tx_descriptor *
566 ioat3_prep_xor_val(struct dma_chan *chan, dma_addr_t *src,
567 unsigned int src_cnt, size_t len,
568 enum sum_check_flags *result, unsigned long flags)
569 {
570 /* the cleanup routine only sets bits on validate failure, it
571 * does not clear bits on validate success... so clear it here
572 */
573 *result = 0;
574
575 return __ioat3_prep_xor_lock(chan, result, src[0], &src[1],
576 src_cnt - 1, len, flags);
577 }
578
579 static void
580 dump_pq_desc_dbg(struct ioat2_dma_chan *ioat, struct ioat_ring_ent *desc, struct ioat_ring_ent *ext)
581 {
582 struct device *dev = to_dev(&ioat->base);
583 struct ioat_pq_descriptor *pq = desc->pq;
584 struct ioat_pq_ext_descriptor *pq_ex = ext ? ext->pq_ex : NULL;
585 struct ioat_raw_descriptor *descs[] = { (void *) pq, (void *) pq_ex };
586 int src_cnt = src_cnt_to_sw(pq->ctl_f.src_cnt);
587 int i;
588
589 dev_dbg(dev, "desc[%d]: (%#llx->%#llx) flags: %#x"
590 " sz: %#x ctl: %#x (op: %d int: %d compl: %d pq: '%s%s' src_cnt: %d)\n",
591 desc_id(desc), (unsigned long long) desc->txd.phys,
592 (unsigned long long) (pq_ex ? pq_ex->next : pq->next),
593 desc->txd.flags, pq->size, pq->ctl, pq->ctl_f.op, pq->ctl_f.int_en,
594 pq->ctl_f.compl_write,
595 pq->ctl_f.p_disable ? "" : "p", pq->ctl_f.q_disable ? "" : "q",
596 pq->ctl_f.src_cnt);
597 for (i = 0; i < src_cnt; i++)
598 dev_dbg(dev, "\tsrc[%d]: %#llx coef: %#x\n", i,
599 (unsigned long long) pq_get_src(descs, i), pq->coef[i]);
600 dev_dbg(dev, "\tP: %#llx\n", pq->p_addr);
601 dev_dbg(dev, "\tQ: %#llx\n", pq->q_addr);
602 }
603
604 static struct dma_async_tx_descriptor *
605 __ioat3_prep_pq_lock(struct dma_chan *c, enum sum_check_flags *result,
606 const dma_addr_t *dst, const dma_addr_t *src,
607 unsigned int src_cnt, const unsigned char *scf,
608 size_t len, unsigned long flags)
609 {
610 struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
611 struct ioat_chan_common *chan = &ioat->base;
612 struct ioat_ring_ent *compl_desc;
613 struct ioat_ring_ent *desc;
614 struct ioat_ring_ent *ext;
615 size_t total_len = len;
616 struct ioat_pq_descriptor *pq;
617 struct ioat_pq_ext_descriptor *pq_ex = NULL;
618 struct ioat_dma_descriptor *hw;
619 u32 offset = 0;
620 u8 op = result ? IOAT_OP_PQ_VAL : IOAT_OP_PQ;
621 int i, s, idx, with_ext, num_descs;
622
623 dev_dbg(to_dev(chan), "%s\n", __func__);
624 /* the engine requires at least two sources (we provide
625 * at least 1 implied source in the DMA_PREP_CONTINUE case)
626 */
627 BUG_ON(src_cnt + dmaf_continue(flags) < 2);
628
629 num_descs = ioat2_xferlen_to_descs(ioat, len);
630 /* we need 2x the number of descriptors to cover greater than 3
631 * sources (we need 1 extra source in the q-only continuation
632 * case and 3 extra sources in the p+q continuation case.
633 */
634 if (src_cnt + dmaf_p_disabled_continue(flags) > 3 ||
635 (dmaf_continue(flags) && !dmaf_p_disabled_continue(flags))) {
636 with_ext = 1;
637 num_descs *= 2;
638 } else
639 with_ext = 0;
640
641 /* completion writes from the raid engine may pass completion
642 * writes from the legacy engine, so we need one extra null
643 * (legacy) descriptor to ensure all completion writes arrive in
644 * order.
645 */
646 if (likely(num_descs) &&
647 ioat2_check_space_lock(ioat, num_descs+1) == 0)
648 idx = ioat->head;
649 else
650 return NULL;
651 i = 0;
652 do {
653 struct ioat_raw_descriptor *descs[2];
654 size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log);
655
656 desc = ioat2_get_ring_ent(ioat, idx + i);
657 pq = desc->pq;
658
659 /* save a branch by unconditionally retrieving the
660 * extended descriptor pq_set_src() knows to not write
661 * to it in the single descriptor case
662 */
663 ext = ioat2_get_ring_ent(ioat, idx + i + with_ext);
664 pq_ex = ext->pq_ex;
665
666 descs[0] = (struct ioat_raw_descriptor *) pq;
667 descs[1] = (struct ioat_raw_descriptor *) pq_ex;
668
669 for (s = 0; s < src_cnt; s++)
670 pq_set_src(descs, src[s], offset, scf[s], s);
671
672 /* see the comment for dma_maxpq in include/linux/dmaengine.h */
673 if (dmaf_p_disabled_continue(flags))
674 pq_set_src(descs, dst[1], offset, 1, s++);
675 else if (dmaf_continue(flags)) {
676 pq_set_src(descs, dst[0], offset, 0, s++);
677 pq_set_src(descs, dst[1], offset, 1, s++);
678 pq_set_src(descs, dst[1], offset, 0, s++);
679 }
680 pq->size = xfer_size;
681 pq->p_addr = dst[0] + offset;
682 pq->q_addr = dst[1] + offset;
683 pq->ctl = 0;
684 pq->ctl_f.op = op;
685 pq->ctl_f.src_cnt = src_cnt_to_hw(s);
686 pq->ctl_f.p_disable = !!(flags & DMA_PREP_PQ_DISABLE_P);
687 pq->ctl_f.q_disable = !!(flags & DMA_PREP_PQ_DISABLE_Q);
688
689 len -= xfer_size;
690 offset += xfer_size;
691 } while ((i += 1 + with_ext) < num_descs);
692
693 /* last pq descriptor carries the unmap parameters and fence bit */
694 desc->txd.flags = flags;
695 desc->len = total_len;
696 if (result)
697 desc->result = result;
698 pq->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
699 dump_pq_desc_dbg(ioat, desc, ext);
700
701 /* completion descriptor carries interrupt bit */
702 compl_desc = ioat2_get_ring_ent(ioat, idx + i);
703 compl_desc->txd.flags = flags & DMA_PREP_INTERRUPT;
704 hw = compl_desc->hw;
705 hw->ctl = 0;
706 hw->ctl_f.null = 1;
707 hw->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
708 hw->ctl_f.compl_write = 1;
709 hw->size = NULL_DESC_BUFFER_SIZE;
710 dump_desc_dbg(ioat, compl_desc);
711
712 /* we leave the channel locked to ensure in order submission */
713 return &compl_desc->txd;
714 }
715
716 static struct dma_async_tx_descriptor *
717 ioat3_prep_pq(struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
718 unsigned int src_cnt, const unsigned char *scf, size_t len,
719 unsigned long flags)
720 {
721 /* specify valid address for disabled result */
722 if (flags & DMA_PREP_PQ_DISABLE_P)
723 dst[0] = dst[1];
724 if (flags & DMA_PREP_PQ_DISABLE_Q)
725 dst[1] = dst[0];
726
727 /* handle the single source multiply case from the raid6
728 * recovery path
729 */
730 if ((flags & DMA_PREP_PQ_DISABLE_P) && src_cnt == 1) {
731 dma_addr_t single_source[2];
732 unsigned char single_source_coef[2];
733
734 BUG_ON(flags & DMA_PREP_PQ_DISABLE_Q);
735 single_source[0] = src[0];
736 single_source[1] = src[0];
737 single_source_coef[0] = scf[0];
738 single_source_coef[1] = 0;
739
740 return __ioat3_prep_pq_lock(chan, NULL, dst, single_source, 2,
741 single_source_coef, len, flags);
742 } else
743 return __ioat3_prep_pq_lock(chan, NULL, dst, src, src_cnt, scf,
744 len, flags);
745 }
746
747 struct dma_async_tx_descriptor *
748 ioat3_prep_pq_val(struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
749 unsigned int src_cnt, const unsigned char *scf, size_t len,
750 enum sum_check_flags *pqres, unsigned long flags)
751 {
752 /* specify valid address for disabled result */
753 if (flags & DMA_PREP_PQ_DISABLE_P)
754 pq[0] = pq[1];
755 if (flags & DMA_PREP_PQ_DISABLE_Q)
756 pq[1] = pq[0];
757
758 /* the cleanup routine only sets bits on validate failure, it
759 * does not clear bits on validate success... so clear it here
760 */
761 *pqres = 0;
762
763 return __ioat3_prep_pq_lock(chan, pqres, pq, src, src_cnt, scf, len,
764 flags);
765 }
766
767 static struct dma_async_tx_descriptor *
768 ioat3_prep_pqxor(struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
769 unsigned int src_cnt, size_t len, unsigned long flags)
770 {
771 unsigned char scf[src_cnt];
772 dma_addr_t pq[2];
773
774 memset(scf, 0, src_cnt);
775 pq[0] = dst;
776 flags |= DMA_PREP_PQ_DISABLE_Q;
777 pq[1] = dst; /* specify valid address for disabled result */
778
779 return __ioat3_prep_pq_lock(chan, NULL, pq, src, src_cnt, scf, len,
780 flags);
781 }
782
783 struct dma_async_tx_descriptor *
784 ioat3_prep_pqxor_val(struct dma_chan *chan, dma_addr_t *src,
785 unsigned int src_cnt, size_t len,
786 enum sum_check_flags *result, unsigned long flags)
787 {
788 unsigned char scf[src_cnt];
789 dma_addr_t pq[2];
790
791 /* the cleanup routine only sets bits on validate failure, it
792 * does not clear bits on validate success... so clear it here
793 */
794 *result = 0;
795
796 memset(scf, 0, src_cnt);
797 pq[0] = src[0];
798 flags |= DMA_PREP_PQ_DISABLE_Q;
799 pq[1] = pq[0]; /* specify valid address for disabled result */
800
801 return __ioat3_prep_pq_lock(chan, result, pq, &src[1], src_cnt - 1, scf,
802 len, flags);
803 }
804
805 static struct dma_async_tx_descriptor *
806 ioat3_prep_interrupt_lock(struct dma_chan *c, unsigned long flags)
807 {
808 struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
809 struct ioat_ring_ent *desc;
810 struct ioat_dma_descriptor *hw;
811
812 if (ioat2_check_space_lock(ioat, 1) == 0)
813 desc = ioat2_get_ring_ent(ioat, ioat->head);
814 else
815 return NULL;
816
817 hw = desc->hw;
818 hw->ctl = 0;
819 hw->ctl_f.null = 1;
820 hw->ctl_f.int_en = 1;
821 hw->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
822 hw->ctl_f.compl_write = 1;
823 hw->size = NULL_DESC_BUFFER_SIZE;
824 hw->src_addr = 0;
825 hw->dst_addr = 0;
826
827 desc->txd.flags = flags;
828 desc->len = 1;
829
830 dump_desc_dbg(ioat, desc);
831
832 /* we leave the channel locked to ensure in order submission */
833 return &desc->txd;
834 }
835
836 static void __devinit ioat3_dma_test_callback(void *dma_async_param)
837 {
838 struct completion *cmp = dma_async_param;
839
840 complete(cmp);
841 }
842
843 #define IOAT_NUM_SRC_TEST 6 /* must be <= 8 */
844 static int __devinit ioat_xor_val_self_test(struct ioatdma_device *device)
845 {
846 int i, src_idx;
847 struct page *dest;
848 struct page *xor_srcs[IOAT_NUM_SRC_TEST];
849 struct page *xor_val_srcs[IOAT_NUM_SRC_TEST + 1];
850 dma_addr_t dma_srcs[IOAT_NUM_SRC_TEST + 1];
851 dma_addr_t dma_addr, dest_dma;
852 struct dma_async_tx_descriptor *tx;
853 struct dma_chan *dma_chan;
854 dma_cookie_t cookie;
855 u8 cmp_byte = 0;
856 u32 cmp_word;
857 u32 xor_val_result;
858 int err = 0;
859 struct completion cmp;
860 unsigned long tmo;
861 struct device *dev = &device->pdev->dev;
862 struct dma_device *dma = &device->common;
863
864 dev_dbg(dev, "%s\n", __func__);
865
866 if (!dma_has_cap(DMA_XOR, dma->cap_mask))
867 return 0;
868
869 for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++) {
870 xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
871 if (!xor_srcs[src_idx]) {
872 while (src_idx--)
873 __free_page(xor_srcs[src_idx]);
874 return -ENOMEM;
875 }
876 }
877
878 dest = alloc_page(GFP_KERNEL);
879 if (!dest) {
880 while (src_idx--)
881 __free_page(xor_srcs[src_idx]);
882 return -ENOMEM;
883 }
884
885 /* Fill in src buffers */
886 for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++) {
887 u8 *ptr = page_address(xor_srcs[src_idx]);
888 for (i = 0; i < PAGE_SIZE; i++)
889 ptr[i] = (1 << src_idx);
890 }
891
892 for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++)
893 cmp_byte ^= (u8) (1 << src_idx);
894
895 cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
896 (cmp_byte << 8) | cmp_byte;
897
898 memset(page_address(dest), 0, PAGE_SIZE);
899
900 dma_chan = container_of(dma->channels.next, struct dma_chan,
901 device_node);
902 if (dma->device_alloc_chan_resources(dma_chan) < 1) {
903 err = -ENODEV;
904 goto out;
905 }
906
907 /* test xor */
908 dest_dma = dma_map_page(dev, dest, 0, PAGE_SIZE, DMA_FROM_DEVICE);
909 for (i = 0; i < IOAT_NUM_SRC_TEST; i++)
910 dma_srcs[i] = dma_map_page(dev, xor_srcs[i], 0, PAGE_SIZE,
911 DMA_TO_DEVICE);
912 tx = dma->device_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
913 IOAT_NUM_SRC_TEST, PAGE_SIZE,
914 DMA_PREP_INTERRUPT);
915
916 if (!tx) {
917 dev_err(dev, "Self-test xor prep failed\n");
918 err = -ENODEV;
919 goto free_resources;
920 }
921
922 async_tx_ack(tx);
923 init_completion(&cmp);
924 tx->callback = ioat3_dma_test_callback;
925 tx->callback_param = &cmp;
926 cookie = tx->tx_submit(tx);
927 if (cookie < 0) {
928 dev_err(dev, "Self-test xor setup failed\n");
929 err = -ENODEV;
930 goto free_resources;
931 }
932 dma->device_issue_pending(dma_chan);
933
934 tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
935
936 if (dma->device_tx_status(dma_chan, cookie, NULL) != DMA_SUCCESS) {
937 dev_err(dev, "Self-test xor timed out\n");
938 err = -ENODEV;
939 goto free_resources;
940 }
941
942 dma_sync_single_for_cpu(dev, dest_dma, PAGE_SIZE, DMA_FROM_DEVICE);
943 for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
944 u32 *ptr = page_address(dest);
945 if (ptr[i] != cmp_word) {
946 dev_err(dev, "Self-test xor failed compare\n");
947 err = -ENODEV;
948 goto free_resources;
949 }
950 }
951 dma_sync_single_for_device(dev, dest_dma, PAGE_SIZE, DMA_TO_DEVICE);
952
953 /* skip validate if the capability is not present */
954 if (!dma_has_cap(DMA_XOR_VAL, dma_chan->device->cap_mask))
955 goto free_resources;
956
957 /* validate the sources with the destintation page */
958 for (i = 0; i < IOAT_NUM_SRC_TEST; i++)
959 xor_val_srcs[i] = xor_srcs[i];
960 xor_val_srcs[i] = dest;
961
962 xor_val_result = 1;
963
964 for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++)
965 dma_srcs[i] = dma_map_page(dev, xor_val_srcs[i], 0, PAGE_SIZE,
966 DMA_TO_DEVICE);
967 tx = dma->device_prep_dma_xor_val(dma_chan, dma_srcs,
968 IOAT_NUM_SRC_TEST + 1, PAGE_SIZE,
969 &xor_val_result, DMA_PREP_INTERRUPT);
970 if (!tx) {
971 dev_err(dev, "Self-test zero prep failed\n");
972 err = -ENODEV;
973 goto free_resources;
974 }
975
976 async_tx_ack(tx);
977 init_completion(&cmp);
978 tx->callback = ioat3_dma_test_callback;
979 tx->callback_param = &cmp;
980 cookie = tx->tx_submit(tx);
981 if (cookie < 0) {
982 dev_err(dev, "Self-test zero setup failed\n");
983 err = -ENODEV;
984 goto free_resources;
985 }
986 dma->device_issue_pending(dma_chan);
987
988 tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
989
990 if (dma->device_tx_status(dma_chan, cookie, NULL) != DMA_SUCCESS) {
991 dev_err(dev, "Self-test validate timed out\n");
992 err = -ENODEV;
993 goto free_resources;
994 }
995
996 if (xor_val_result != 0) {
997 dev_err(dev, "Self-test validate failed compare\n");
998 err = -ENODEV;
999 goto free_resources;
1000 }
1001
1002 /* skip memset if the capability is not present */
1003 if (!dma_has_cap(DMA_MEMSET, dma_chan->device->cap_mask))
1004 goto free_resources;
1005
1006 /* test memset */
1007 dma_addr = dma_map_page(dev, dest, 0,
1008 PAGE_SIZE, DMA_FROM_DEVICE);
1009 tx = dma->device_prep_dma_memset(dma_chan, dma_addr, 0, PAGE_SIZE,
1010 DMA_PREP_INTERRUPT);
1011 if (!tx) {
1012 dev_err(dev, "Self-test memset prep failed\n");
1013 err = -ENODEV;
1014 goto free_resources;
1015 }
1016
1017 async_tx_ack(tx);
1018 init_completion(&cmp);
1019 tx->callback = ioat3_dma_test_callback;
1020 tx->callback_param = &cmp;
1021 cookie = tx->tx_submit(tx);
1022 if (cookie < 0) {
1023 dev_err(dev, "Self-test memset setup failed\n");
1024 err = -ENODEV;
1025 goto free_resources;
1026 }
1027 dma->device_issue_pending(dma_chan);
1028
1029 tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
1030
1031 if (dma->device_tx_status(dma_chan, cookie, NULL) != DMA_SUCCESS) {
1032 dev_err(dev, "Self-test memset timed out\n");
1033 err = -ENODEV;
1034 goto free_resources;
1035 }
1036
1037 for (i = 0; i < PAGE_SIZE/sizeof(u32); i++) {
1038 u32 *ptr = page_address(dest);
1039 if (ptr[i]) {
1040 dev_err(dev, "Self-test memset failed compare\n");
1041 err = -ENODEV;
1042 goto free_resources;
1043 }
1044 }
1045
1046 /* test for non-zero parity sum */
1047 xor_val_result = 0;
1048 for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++)
1049 dma_srcs[i] = dma_map_page(dev, xor_val_srcs[i], 0, PAGE_SIZE,
1050 DMA_TO_DEVICE);
1051 tx = dma->device_prep_dma_xor_val(dma_chan, dma_srcs,
1052 IOAT_NUM_SRC_TEST + 1, PAGE_SIZE,
1053 &xor_val_result, DMA_PREP_INTERRUPT);
1054 if (!tx) {
1055 dev_err(dev, "Self-test 2nd zero prep failed\n");
1056 err = -ENODEV;
1057 goto free_resources;
1058 }
1059
1060 async_tx_ack(tx);
1061 init_completion(&cmp);
1062 tx->callback = ioat3_dma_test_callback;
1063 tx->callback_param = &cmp;
1064 cookie = tx->tx_submit(tx);
1065 if (cookie < 0) {
1066 dev_err(dev, "Self-test 2nd zero setup failed\n");
1067 err = -ENODEV;
1068 goto free_resources;
1069 }
1070 dma->device_issue_pending(dma_chan);
1071
1072 tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
1073
1074 if (dma->device_tx_status(dma_chan, cookie, NULL) != DMA_SUCCESS) {
1075 dev_err(dev, "Self-test 2nd validate timed out\n");
1076 err = -ENODEV;
1077 goto free_resources;
1078 }
1079
1080 if (xor_val_result != SUM_CHECK_P_RESULT) {
1081 dev_err(dev, "Self-test validate failed compare\n");
1082 err = -ENODEV;
1083 goto free_resources;
1084 }
1085
1086 free_resources:
1087 dma->device_free_chan_resources(dma_chan);
1088 out:
1089 src_idx = IOAT_NUM_SRC_TEST;
1090 while (src_idx--)
1091 __free_page(xor_srcs[src_idx]);
1092 __free_page(dest);
1093 return err;
1094 }
1095
1096 static int __devinit ioat3_dma_self_test(struct ioatdma_device *device)
1097 {
1098 int rc = ioat_dma_self_test(device);
1099
1100 if (rc)
1101 return rc;
1102
1103 rc = ioat_xor_val_self_test(device);
1104 if (rc)
1105 return rc;
1106
1107 return 0;
1108 }
1109
1110 static int ioat3_reset_hw(struct ioat_chan_common *chan)
1111 {
1112 /* throw away whatever the channel was doing and get it
1113 * initialized, with ioat3 specific workarounds
1114 */
1115 struct ioatdma_device *device = chan->device;
1116 struct pci_dev *pdev = device->pdev;
1117 u32 chanerr;
1118 u16 dev_id;
1119 int err;
1120
1121 ioat2_quiesce(chan, msecs_to_jiffies(100));
1122
1123 chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
1124 writel(chanerr, chan->reg_base + IOAT_CHANERR_OFFSET);
1125
1126 /* -= IOAT ver.3 workarounds =- */
1127 /* Write CHANERRMSK_INT with 3E07h to mask out the errors
1128 * that can cause stability issues for IOAT ver.3, and clear any
1129 * pending errors
1130 */
1131 pci_write_config_dword(pdev, IOAT_PCI_CHANERRMASK_INT_OFFSET, 0x3e07);
1132 err = pci_read_config_dword(pdev, IOAT_PCI_CHANERR_INT_OFFSET, &chanerr);
1133 if (err) {
1134 dev_err(&pdev->dev, "channel error register unreachable\n");
1135 return err;
1136 }
1137 pci_write_config_dword(pdev, IOAT_PCI_CHANERR_INT_OFFSET, chanerr);
1138
1139 /* Clear DMAUNCERRSTS Cfg-Reg Parity Error status bit
1140 * (workaround for spurious config parity error after restart)
1141 */
1142 pci_read_config_word(pdev, IOAT_PCI_DEVICE_ID_OFFSET, &dev_id);
1143 if (dev_id == PCI_DEVICE_ID_INTEL_IOAT_TBG0)
1144 pci_write_config_dword(pdev, IOAT_PCI_DMAUNCERRSTS_OFFSET, 0x10);
1145
1146 return ioat2_reset_sync(chan, msecs_to_jiffies(200));
1147 }
1148
1149 int __devinit ioat3_dma_probe(struct ioatdma_device *device, int dca)
1150 {
1151 struct pci_dev *pdev = device->pdev;
1152 int dca_en = system_has_dca_enabled(pdev);
1153 struct dma_device *dma;
1154 struct dma_chan *c;
1155 struct ioat_chan_common *chan;
1156 bool is_raid_device = false;
1157 int err;
1158 u32 cap;
1159
1160 device->enumerate_channels = ioat2_enumerate_channels;
1161 device->reset_hw = ioat3_reset_hw;
1162 device->self_test = ioat3_dma_self_test;
1163 dma = &device->common;
1164 dma->device_prep_dma_memcpy = ioat2_dma_prep_memcpy_lock;
1165 dma->device_issue_pending = ioat2_issue_pending;
1166 dma->device_alloc_chan_resources = ioat2_alloc_chan_resources;
1167 dma->device_free_chan_resources = ioat2_free_chan_resources;
1168
1169 dma_cap_set(DMA_INTERRUPT, dma->cap_mask);
1170 dma->device_prep_dma_interrupt = ioat3_prep_interrupt_lock;
1171
1172 cap = readl(device->reg_base + IOAT_DMA_CAP_OFFSET);
1173
1174 /* dca is incompatible with raid operations */
1175 if (dca_en && (cap & (IOAT_CAP_XOR|IOAT_CAP_PQ)))
1176 cap &= ~(IOAT_CAP_XOR|IOAT_CAP_PQ);
1177
1178 if (cap & IOAT_CAP_XOR) {
1179 is_raid_device = true;
1180 dma->max_xor = 8;
1181 dma->xor_align = 6;
1182
1183 dma_cap_set(DMA_XOR, dma->cap_mask);
1184 dma->device_prep_dma_xor = ioat3_prep_xor;
1185
1186 dma_cap_set(DMA_XOR_VAL, dma->cap_mask);
1187 dma->device_prep_dma_xor_val = ioat3_prep_xor_val;
1188 }
1189 if (cap & IOAT_CAP_PQ) {
1190 is_raid_device = true;
1191 dma_set_maxpq(dma, 8, 0);
1192 dma->pq_align = 6;
1193
1194 dma_cap_set(DMA_PQ, dma->cap_mask);
1195 dma->device_prep_dma_pq = ioat3_prep_pq;
1196
1197 dma_cap_set(DMA_PQ_VAL, dma->cap_mask);
1198 dma->device_prep_dma_pq_val = ioat3_prep_pq_val;
1199
1200 if (!(cap & IOAT_CAP_XOR)) {
1201 dma->max_xor = 8;
1202 dma->xor_align = 6;
1203
1204 dma_cap_set(DMA_XOR, dma->cap_mask);
1205 dma->device_prep_dma_xor = ioat3_prep_pqxor;
1206
1207 dma_cap_set(DMA_XOR_VAL, dma->cap_mask);
1208 dma->device_prep_dma_xor_val = ioat3_prep_pqxor_val;
1209 }
1210 }
1211 if (is_raid_device && (cap & IOAT_CAP_FILL_BLOCK)) {
1212 dma_cap_set(DMA_MEMSET, dma->cap_mask);
1213 dma->device_prep_dma_memset = ioat3_prep_memset_lock;
1214 }
1215
1216
1217 if (is_raid_device) {
1218 dma->device_tx_status = ioat3_tx_status;
1219 device->cleanup_fn = ioat3_cleanup_event;
1220 device->timer_fn = ioat3_timer_event;
1221 } else {
1222 dma->device_tx_status = ioat_dma_tx_status;
1223 device->cleanup_fn = ioat2_cleanup_event;
1224 device->timer_fn = ioat2_timer_event;
1225 }
1226
1227 #ifdef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
1228 dma_cap_clear(DMA_PQ_VAL, dma->cap_mask);
1229 dma->device_prep_dma_pq_val = NULL;
1230 #endif
1231
1232 #ifdef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
1233 dma_cap_clear(DMA_XOR_VAL, dma->cap_mask);
1234 dma->device_prep_dma_xor_val = NULL;
1235 #endif
1236
1237 err = ioat_probe(device);
1238 if (err)
1239 return err;
1240 ioat_set_tcp_copy_break(262144);
1241
1242 list_for_each_entry(c, &dma->channels, device_node) {
1243 chan = to_chan_common(c);
1244 writel(IOAT_DMA_DCA_ANY_CPU,
1245 chan->reg_base + IOAT_DCACTRL_OFFSET);
1246 }
1247
1248 err = ioat_register(device);
1249 if (err)
1250 return err;
1251
1252 ioat_kobject_add(device, &ioat2_ktype);
1253
1254 if (dca)
1255 device->dca = ioat3_dca_init(pdev, device->reg_base);
1256
1257 return 0;
1258 }