ioat3: use ioat2_quiesce()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / dma / ioat / dma_v3.c
1 /*
2 * This file is provided under a dual BSD/GPLv2 license. When using or
3 * redistributing this file, you may do so under either license.
4 *
5 * GPL LICENSE SUMMARY
6 *
7 * Copyright(c) 2004 - 2009 Intel Corporation. All rights reserved.
8 *
9 * This program is free software; you can redistribute it and/or modify it
10 * under the terms and conditions of the GNU General Public License,
11 * version 2, as published by the Free Software Foundation.
12 *
13 * This program is distributed in the hope that it will be useful, but WITHOUT
14 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
16 * more details.
17 *
18 * You should have received a copy of the GNU General Public License along with
19 * this program; if not, write to the Free Software Foundation, Inc.,
20 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
21 *
22 * The full GNU General Public License is included in this distribution in
23 * the file called "COPYING".
24 *
25 * BSD LICENSE
26 *
27 * Copyright(c) 2004-2009 Intel Corporation. All rights reserved.
28 *
29 * Redistribution and use in source and binary forms, with or without
30 * modification, are permitted provided that the following conditions are met:
31 *
32 * * Redistributions of source code must retain the above copyright
33 * notice, this list of conditions and the following disclaimer.
34 * * Redistributions in binary form must reproduce the above copyright
35 * notice, this list of conditions and the following disclaimer in
36 * the documentation and/or other materials provided with the
37 * distribution.
38 * * Neither the name of Intel Corporation nor the names of its
39 * contributors may be used to endorse or promote products derived
40 * from this software without specific prior written permission.
41 *
42 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
43 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
44 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
45 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
46 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
47 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
48 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
49 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
50 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
51 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
52 * POSSIBILITY OF SUCH DAMAGE.
53 */
54
55 /*
56 * Support routines for v3+ hardware
57 */
58
59 #include <linux/pci.h>
60 #include <linux/dmaengine.h>
61 #include <linux/dma-mapping.h>
62 #include "registers.h"
63 #include "hw.h"
64 #include "dma.h"
65 #include "dma_v2.h"
66
67 /* ioat hardware assumes at least two sources for raid operations */
68 #define src_cnt_to_sw(x) ((x) + 2)
69 #define src_cnt_to_hw(x) ((x) - 2)
70
71 /* provide a lookup table for setting the source address in the base or
72 * extended descriptor of an xor or pq descriptor
73 */
74 static const u8 xor_idx_to_desc __read_mostly = 0xd0;
75 static const u8 xor_idx_to_field[] __read_mostly = { 1, 4, 5, 6, 7, 0, 1, 2 };
76 static const u8 pq_idx_to_desc __read_mostly = 0xf8;
77 static const u8 pq_idx_to_field[] __read_mostly = { 1, 4, 5, 0, 1, 2, 4, 5 };
78
79 static dma_addr_t xor_get_src(struct ioat_raw_descriptor *descs[2], int idx)
80 {
81 struct ioat_raw_descriptor *raw = descs[xor_idx_to_desc >> idx & 1];
82
83 return raw->field[xor_idx_to_field[idx]];
84 }
85
86 static void xor_set_src(struct ioat_raw_descriptor *descs[2],
87 dma_addr_t addr, u32 offset, int idx)
88 {
89 struct ioat_raw_descriptor *raw = descs[xor_idx_to_desc >> idx & 1];
90
91 raw->field[xor_idx_to_field[idx]] = addr + offset;
92 }
93
94 static dma_addr_t pq_get_src(struct ioat_raw_descriptor *descs[2], int idx)
95 {
96 struct ioat_raw_descriptor *raw = descs[pq_idx_to_desc >> idx & 1];
97
98 return raw->field[pq_idx_to_field[idx]];
99 }
100
101 static void pq_set_src(struct ioat_raw_descriptor *descs[2],
102 dma_addr_t addr, u32 offset, u8 coef, int idx)
103 {
104 struct ioat_pq_descriptor *pq = (struct ioat_pq_descriptor *) descs[0];
105 struct ioat_raw_descriptor *raw = descs[pq_idx_to_desc >> idx & 1];
106
107 raw->field[pq_idx_to_field[idx]] = addr + offset;
108 pq->coef[idx] = coef;
109 }
110
111 static void ioat3_dma_unmap(struct ioat2_dma_chan *ioat,
112 struct ioat_ring_ent *desc, int idx)
113 {
114 struct ioat_chan_common *chan = &ioat->base;
115 struct pci_dev *pdev = chan->device->pdev;
116 size_t len = desc->len;
117 size_t offset = len - desc->hw->size;
118 struct dma_async_tx_descriptor *tx = &desc->txd;
119 enum dma_ctrl_flags flags = tx->flags;
120
121 switch (desc->hw->ctl_f.op) {
122 case IOAT_OP_COPY:
123 if (!desc->hw->ctl_f.null) /* skip 'interrupt' ops */
124 ioat_dma_unmap(chan, flags, len, desc->hw);
125 break;
126 case IOAT_OP_FILL: {
127 struct ioat_fill_descriptor *hw = desc->fill;
128
129 if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP))
130 ioat_unmap(pdev, hw->dst_addr - offset, len,
131 PCI_DMA_FROMDEVICE, flags, 1);
132 break;
133 }
134 case IOAT_OP_XOR_VAL:
135 case IOAT_OP_XOR: {
136 struct ioat_xor_descriptor *xor = desc->xor;
137 struct ioat_ring_ent *ext;
138 struct ioat_xor_ext_descriptor *xor_ex = NULL;
139 int src_cnt = src_cnt_to_sw(xor->ctl_f.src_cnt);
140 struct ioat_raw_descriptor *descs[2];
141 int i;
142
143 if (src_cnt > 5) {
144 ext = ioat2_get_ring_ent(ioat, idx + 1);
145 xor_ex = ext->xor_ex;
146 }
147
148 if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
149 descs[0] = (struct ioat_raw_descriptor *) xor;
150 descs[1] = (struct ioat_raw_descriptor *) xor_ex;
151 for (i = 0; i < src_cnt; i++) {
152 dma_addr_t src = xor_get_src(descs, i);
153
154 ioat_unmap(pdev, src - offset, len,
155 PCI_DMA_TODEVICE, flags, 0);
156 }
157
158 /* dest is a source in xor validate operations */
159 if (xor->ctl_f.op == IOAT_OP_XOR_VAL) {
160 ioat_unmap(pdev, xor->dst_addr - offset, len,
161 PCI_DMA_TODEVICE, flags, 1);
162 break;
163 }
164 }
165
166 if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP))
167 ioat_unmap(pdev, xor->dst_addr - offset, len,
168 PCI_DMA_FROMDEVICE, flags, 1);
169 break;
170 }
171 case IOAT_OP_PQ_VAL:
172 case IOAT_OP_PQ: {
173 struct ioat_pq_descriptor *pq = desc->pq;
174 struct ioat_ring_ent *ext;
175 struct ioat_pq_ext_descriptor *pq_ex = NULL;
176 int src_cnt = src_cnt_to_sw(pq->ctl_f.src_cnt);
177 struct ioat_raw_descriptor *descs[2];
178 int i;
179
180 if (src_cnt > 3) {
181 ext = ioat2_get_ring_ent(ioat, idx + 1);
182 pq_ex = ext->pq_ex;
183 }
184
185 /* in the 'continue' case don't unmap the dests as sources */
186 if (dmaf_p_disabled_continue(flags))
187 src_cnt--;
188 else if (dmaf_continue(flags))
189 src_cnt -= 3;
190
191 if (!(flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
192 descs[0] = (struct ioat_raw_descriptor *) pq;
193 descs[1] = (struct ioat_raw_descriptor *) pq_ex;
194 for (i = 0; i < src_cnt; i++) {
195 dma_addr_t src = pq_get_src(descs, i);
196
197 ioat_unmap(pdev, src - offset, len,
198 PCI_DMA_TODEVICE, flags, 0);
199 }
200
201 /* the dests are sources in pq validate operations */
202 if (pq->ctl_f.op == IOAT_OP_XOR_VAL) {
203 if (!(flags & DMA_PREP_PQ_DISABLE_P))
204 ioat_unmap(pdev, pq->p_addr - offset,
205 len, PCI_DMA_TODEVICE, flags, 0);
206 if (!(flags & DMA_PREP_PQ_DISABLE_Q))
207 ioat_unmap(pdev, pq->q_addr - offset,
208 len, PCI_DMA_TODEVICE, flags, 0);
209 break;
210 }
211 }
212
213 if (!(flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
214 if (!(flags & DMA_PREP_PQ_DISABLE_P))
215 ioat_unmap(pdev, pq->p_addr - offset, len,
216 PCI_DMA_BIDIRECTIONAL, flags, 1);
217 if (!(flags & DMA_PREP_PQ_DISABLE_Q))
218 ioat_unmap(pdev, pq->q_addr - offset, len,
219 PCI_DMA_BIDIRECTIONAL, flags, 1);
220 }
221 break;
222 }
223 default:
224 dev_err(&pdev->dev, "%s: unknown op type: %#x\n",
225 __func__, desc->hw->ctl_f.op);
226 }
227 }
228
229 static bool desc_has_ext(struct ioat_ring_ent *desc)
230 {
231 struct ioat_dma_descriptor *hw = desc->hw;
232
233 if (hw->ctl_f.op == IOAT_OP_XOR ||
234 hw->ctl_f.op == IOAT_OP_XOR_VAL) {
235 struct ioat_xor_descriptor *xor = desc->xor;
236
237 if (src_cnt_to_sw(xor->ctl_f.src_cnt) > 5)
238 return true;
239 } else if (hw->ctl_f.op == IOAT_OP_PQ ||
240 hw->ctl_f.op == IOAT_OP_PQ_VAL) {
241 struct ioat_pq_descriptor *pq = desc->pq;
242
243 if (src_cnt_to_sw(pq->ctl_f.src_cnt) > 3)
244 return true;
245 }
246
247 return false;
248 }
249
250 /**
251 * __cleanup - reclaim used descriptors
252 * @ioat: channel (ring) to clean
253 *
254 * The difference from the dma_v2.c __cleanup() is that this routine
255 * handles extended descriptors and dma-unmapping raid operations.
256 */
257 static void __cleanup(struct ioat2_dma_chan *ioat, unsigned long phys_complete)
258 {
259 struct ioat_chan_common *chan = &ioat->base;
260 struct ioat_ring_ent *desc;
261 bool seen_current = false;
262 u16 active;
263 int i;
264
265 dev_dbg(to_dev(chan), "%s: head: %#x tail: %#x issued: %#x\n",
266 __func__, ioat->head, ioat->tail, ioat->issued);
267
268 active = ioat2_ring_active(ioat);
269 for (i = 0; i < active && !seen_current; i++) {
270 struct dma_async_tx_descriptor *tx;
271
272 prefetch(ioat2_get_ring_ent(ioat, ioat->tail + i + 1));
273 desc = ioat2_get_ring_ent(ioat, ioat->tail + i);
274 dump_desc_dbg(ioat, desc);
275 tx = &desc->txd;
276 if (tx->cookie) {
277 chan->completed_cookie = tx->cookie;
278 ioat3_dma_unmap(ioat, desc, ioat->tail + i);
279 tx->cookie = 0;
280 if (tx->callback) {
281 tx->callback(tx->callback_param);
282 tx->callback = NULL;
283 }
284 }
285
286 if (tx->phys == phys_complete)
287 seen_current = true;
288
289 /* skip extended descriptors */
290 if (desc_has_ext(desc)) {
291 BUG_ON(i + 1 >= active);
292 i++;
293 }
294 }
295 ioat->tail += i;
296 BUG_ON(!seen_current); /* no active descs have written a completion? */
297 chan->last_completion = phys_complete;
298 if (ioat->head == ioat->tail) {
299 dev_dbg(to_dev(chan), "%s: cancel completion timeout\n",
300 __func__);
301 clear_bit(IOAT_COMPLETION_PENDING, &chan->state);
302 mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
303 }
304 }
305
306 static void ioat3_cleanup(struct ioat2_dma_chan *ioat)
307 {
308 struct ioat_chan_common *chan = &ioat->base;
309 unsigned long phys_complete;
310
311 prefetch(chan->completion);
312
313 if (!spin_trylock_bh(&chan->cleanup_lock))
314 return;
315
316 if (!ioat_cleanup_preamble(chan, &phys_complete)) {
317 spin_unlock_bh(&chan->cleanup_lock);
318 return;
319 }
320
321 if (!spin_trylock_bh(&ioat->ring_lock)) {
322 spin_unlock_bh(&chan->cleanup_lock);
323 return;
324 }
325
326 __cleanup(ioat, phys_complete);
327
328 spin_unlock_bh(&ioat->ring_lock);
329 spin_unlock_bh(&chan->cleanup_lock);
330 }
331
332 static void ioat3_cleanup_tasklet(unsigned long data)
333 {
334 struct ioat2_dma_chan *ioat = (void *) data;
335
336 ioat3_cleanup(ioat);
337 writew(IOAT_CHANCTRL_RUN, ioat->base.reg_base + IOAT_CHANCTRL_OFFSET);
338 }
339
340 static void ioat3_restart_channel(struct ioat2_dma_chan *ioat)
341 {
342 struct ioat_chan_common *chan = &ioat->base;
343 unsigned long phys_complete;
344
345 ioat2_quiesce(chan, 0);
346 if (ioat_cleanup_preamble(chan, &phys_complete))
347 __cleanup(ioat, phys_complete);
348
349 __ioat2_restart_chan(ioat);
350 }
351
352 static void ioat3_timer_event(unsigned long data)
353 {
354 struct ioat2_dma_chan *ioat = (void *) data;
355 struct ioat_chan_common *chan = &ioat->base;
356
357 spin_lock_bh(&chan->cleanup_lock);
358 if (test_bit(IOAT_COMPLETION_PENDING, &chan->state)) {
359 unsigned long phys_complete;
360 u64 status;
361
362 spin_lock_bh(&ioat->ring_lock);
363 status = ioat_chansts(chan);
364
365 /* when halted due to errors check for channel
366 * programming errors before advancing the completion state
367 */
368 if (is_ioat_halted(status)) {
369 u32 chanerr;
370
371 chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
372 dev_err(to_dev(chan), "%s: Channel halted (%x)\n",
373 __func__, chanerr);
374 BUG_ON(is_ioat_bug(chanerr));
375 }
376
377 /* if we haven't made progress and we have already
378 * acknowledged a pending completion once, then be more
379 * forceful with a restart
380 */
381 if (ioat_cleanup_preamble(chan, &phys_complete))
382 __cleanup(ioat, phys_complete);
383 else if (test_bit(IOAT_COMPLETION_ACK, &chan->state))
384 ioat3_restart_channel(ioat);
385 else {
386 set_bit(IOAT_COMPLETION_ACK, &chan->state);
387 mod_timer(&chan->timer, jiffies + COMPLETION_TIMEOUT);
388 }
389 spin_unlock_bh(&ioat->ring_lock);
390 } else {
391 u16 active;
392
393 /* if the ring is idle, empty, and oversized try to step
394 * down the size
395 */
396 spin_lock_bh(&ioat->ring_lock);
397 active = ioat2_ring_active(ioat);
398 if (active == 0 && ioat->alloc_order > ioat_get_alloc_order())
399 reshape_ring(ioat, ioat->alloc_order-1);
400 spin_unlock_bh(&ioat->ring_lock);
401
402 /* keep shrinking until we get back to our minimum
403 * default size
404 */
405 if (ioat->alloc_order > ioat_get_alloc_order())
406 mod_timer(&chan->timer, jiffies + IDLE_TIMEOUT);
407 }
408 spin_unlock_bh(&chan->cleanup_lock);
409 }
410
411 static enum dma_status
412 ioat3_is_complete(struct dma_chan *c, dma_cookie_t cookie,
413 dma_cookie_t *done, dma_cookie_t *used)
414 {
415 struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
416
417 if (ioat_is_complete(c, cookie, done, used) == DMA_SUCCESS)
418 return DMA_SUCCESS;
419
420 ioat3_cleanup(ioat);
421
422 return ioat_is_complete(c, cookie, done, used);
423 }
424
425 static struct dma_async_tx_descriptor *
426 ioat3_prep_memset_lock(struct dma_chan *c, dma_addr_t dest, int value,
427 size_t len, unsigned long flags)
428 {
429 struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
430 struct ioat_ring_ent *desc;
431 size_t total_len = len;
432 struct ioat_fill_descriptor *fill;
433 int num_descs;
434 u64 src_data = (0x0101010101010101ULL) * (value & 0xff);
435 u16 idx;
436 int i;
437
438 num_descs = ioat2_xferlen_to_descs(ioat, len);
439 if (likely(num_descs) &&
440 ioat2_alloc_and_lock(&idx, ioat, num_descs) == 0)
441 /* pass */;
442 else
443 return NULL;
444 i = 0;
445 do {
446 size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log);
447
448 desc = ioat2_get_ring_ent(ioat, idx + i);
449 fill = desc->fill;
450
451 fill->size = xfer_size;
452 fill->src_data = src_data;
453 fill->dst_addr = dest;
454 fill->ctl = 0;
455 fill->ctl_f.op = IOAT_OP_FILL;
456
457 len -= xfer_size;
458 dest += xfer_size;
459 dump_desc_dbg(ioat, desc);
460 } while (++i < num_descs);
461
462 desc->txd.flags = flags;
463 desc->len = total_len;
464 fill->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
465 fill->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
466 fill->ctl_f.compl_write = 1;
467 dump_desc_dbg(ioat, desc);
468
469 /* we leave the channel locked to ensure in order submission */
470 return &desc->txd;
471 }
472
473 static struct dma_async_tx_descriptor *
474 __ioat3_prep_xor_lock(struct dma_chan *c, enum sum_check_flags *result,
475 dma_addr_t dest, dma_addr_t *src, unsigned int src_cnt,
476 size_t len, unsigned long flags)
477 {
478 struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
479 struct ioat_ring_ent *compl_desc;
480 struct ioat_ring_ent *desc;
481 struct ioat_ring_ent *ext;
482 size_t total_len = len;
483 struct ioat_xor_descriptor *xor;
484 struct ioat_xor_ext_descriptor *xor_ex = NULL;
485 struct ioat_dma_descriptor *hw;
486 u32 offset = 0;
487 int num_descs;
488 int with_ext;
489 int i;
490 u16 idx;
491 u8 op = result ? IOAT_OP_XOR_VAL : IOAT_OP_XOR;
492
493 BUG_ON(src_cnt < 2);
494
495 num_descs = ioat2_xferlen_to_descs(ioat, len);
496 /* we need 2x the number of descriptors to cover greater than 5
497 * sources
498 */
499 if (src_cnt > 5) {
500 with_ext = 1;
501 num_descs *= 2;
502 } else
503 with_ext = 0;
504
505 /* completion writes from the raid engine may pass completion
506 * writes from the legacy engine, so we need one extra null
507 * (legacy) descriptor to ensure all completion writes arrive in
508 * order.
509 */
510 if (likely(num_descs) &&
511 ioat2_alloc_and_lock(&idx, ioat, num_descs+1) == 0)
512 /* pass */;
513 else
514 return NULL;
515 i = 0;
516 do {
517 struct ioat_raw_descriptor *descs[2];
518 size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log);
519 int s;
520
521 desc = ioat2_get_ring_ent(ioat, idx + i);
522 xor = desc->xor;
523
524 /* save a branch by unconditionally retrieving the
525 * extended descriptor xor_set_src() knows to not write
526 * to it in the single descriptor case
527 */
528 ext = ioat2_get_ring_ent(ioat, idx + i + 1);
529 xor_ex = ext->xor_ex;
530
531 descs[0] = (struct ioat_raw_descriptor *) xor;
532 descs[1] = (struct ioat_raw_descriptor *) xor_ex;
533 for (s = 0; s < src_cnt; s++)
534 xor_set_src(descs, src[s], offset, s);
535 xor->size = xfer_size;
536 xor->dst_addr = dest + offset;
537 xor->ctl = 0;
538 xor->ctl_f.op = op;
539 xor->ctl_f.src_cnt = src_cnt_to_hw(src_cnt);
540
541 len -= xfer_size;
542 offset += xfer_size;
543 dump_desc_dbg(ioat, desc);
544 } while ((i += 1 + with_ext) < num_descs);
545
546 /* last xor descriptor carries the unmap parameters and fence bit */
547 desc->txd.flags = flags;
548 desc->len = total_len;
549 if (result)
550 desc->result = result;
551 xor->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
552
553 /* completion descriptor carries interrupt bit */
554 compl_desc = ioat2_get_ring_ent(ioat, idx + i);
555 compl_desc->txd.flags = flags & DMA_PREP_INTERRUPT;
556 hw = compl_desc->hw;
557 hw->ctl = 0;
558 hw->ctl_f.null = 1;
559 hw->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
560 hw->ctl_f.compl_write = 1;
561 hw->size = NULL_DESC_BUFFER_SIZE;
562 dump_desc_dbg(ioat, compl_desc);
563
564 /* we leave the channel locked to ensure in order submission */
565 return &compl_desc->txd;
566 }
567
568 static struct dma_async_tx_descriptor *
569 ioat3_prep_xor(struct dma_chan *chan, dma_addr_t dest, dma_addr_t *src,
570 unsigned int src_cnt, size_t len, unsigned long flags)
571 {
572 return __ioat3_prep_xor_lock(chan, NULL, dest, src, src_cnt, len, flags);
573 }
574
575 struct dma_async_tx_descriptor *
576 ioat3_prep_xor_val(struct dma_chan *chan, dma_addr_t *src,
577 unsigned int src_cnt, size_t len,
578 enum sum_check_flags *result, unsigned long flags)
579 {
580 /* the cleanup routine only sets bits on validate failure, it
581 * does not clear bits on validate success... so clear it here
582 */
583 *result = 0;
584
585 return __ioat3_prep_xor_lock(chan, result, src[0], &src[1],
586 src_cnt - 1, len, flags);
587 }
588
589 static void
590 dump_pq_desc_dbg(struct ioat2_dma_chan *ioat, struct ioat_ring_ent *desc, struct ioat_ring_ent *ext)
591 {
592 struct device *dev = to_dev(&ioat->base);
593 struct ioat_pq_descriptor *pq = desc->pq;
594 struct ioat_pq_ext_descriptor *pq_ex = ext ? ext->pq_ex : NULL;
595 struct ioat_raw_descriptor *descs[] = { (void *) pq, (void *) pq_ex };
596 int src_cnt = src_cnt_to_sw(pq->ctl_f.src_cnt);
597 int i;
598
599 dev_dbg(dev, "desc[%d]: (%#llx->%#llx) flags: %#x"
600 " sz: %#x ctl: %#x (op: %d int: %d compl: %d pq: '%s%s' src_cnt: %d)\n",
601 desc_id(desc), (unsigned long long) desc->txd.phys,
602 (unsigned long long) (pq_ex ? pq_ex->next : pq->next),
603 desc->txd.flags, pq->size, pq->ctl, pq->ctl_f.op, pq->ctl_f.int_en,
604 pq->ctl_f.compl_write,
605 pq->ctl_f.p_disable ? "" : "p", pq->ctl_f.q_disable ? "" : "q",
606 pq->ctl_f.src_cnt);
607 for (i = 0; i < src_cnt; i++)
608 dev_dbg(dev, "\tsrc[%d]: %#llx coef: %#x\n", i,
609 (unsigned long long) pq_get_src(descs, i), pq->coef[i]);
610 dev_dbg(dev, "\tP: %#llx\n", pq->p_addr);
611 dev_dbg(dev, "\tQ: %#llx\n", pq->q_addr);
612 }
613
614 static struct dma_async_tx_descriptor *
615 __ioat3_prep_pq_lock(struct dma_chan *c, enum sum_check_flags *result,
616 const dma_addr_t *dst, const dma_addr_t *src,
617 unsigned int src_cnt, const unsigned char *scf,
618 size_t len, unsigned long flags)
619 {
620 struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
621 struct ioat_chan_common *chan = &ioat->base;
622 struct ioat_ring_ent *compl_desc;
623 struct ioat_ring_ent *desc;
624 struct ioat_ring_ent *ext;
625 size_t total_len = len;
626 struct ioat_pq_descriptor *pq;
627 struct ioat_pq_ext_descriptor *pq_ex = NULL;
628 struct ioat_dma_descriptor *hw;
629 u32 offset = 0;
630 int num_descs;
631 int with_ext;
632 int i, s;
633 u16 idx;
634 u8 op = result ? IOAT_OP_PQ_VAL : IOAT_OP_PQ;
635
636 dev_dbg(to_dev(chan), "%s\n", __func__);
637 /* the engine requires at least two sources (we provide
638 * at least 1 implied source in the DMA_PREP_CONTINUE case)
639 */
640 BUG_ON(src_cnt + dmaf_continue(flags) < 2);
641
642 num_descs = ioat2_xferlen_to_descs(ioat, len);
643 /* we need 2x the number of descriptors to cover greater than 3
644 * sources (we need 1 extra source in the q-only continuation
645 * case and 3 extra sources in the p+q continuation case.
646 */
647 if (src_cnt + dmaf_p_disabled_continue(flags) > 3 ||
648 (dmaf_continue(flags) && !dmaf_p_disabled_continue(flags))) {
649 with_ext = 1;
650 num_descs *= 2;
651 } else
652 with_ext = 0;
653
654 /* completion writes from the raid engine may pass completion
655 * writes from the legacy engine, so we need one extra null
656 * (legacy) descriptor to ensure all completion writes arrive in
657 * order.
658 */
659 if (likely(num_descs) &&
660 ioat2_alloc_and_lock(&idx, ioat, num_descs+1) == 0)
661 /* pass */;
662 else
663 return NULL;
664 i = 0;
665 do {
666 struct ioat_raw_descriptor *descs[2];
667 size_t xfer_size = min_t(size_t, len, 1 << ioat->xfercap_log);
668
669 desc = ioat2_get_ring_ent(ioat, idx + i);
670 pq = desc->pq;
671
672 /* save a branch by unconditionally retrieving the
673 * extended descriptor pq_set_src() knows to not write
674 * to it in the single descriptor case
675 */
676 ext = ioat2_get_ring_ent(ioat, idx + i + with_ext);
677 pq_ex = ext->pq_ex;
678
679 descs[0] = (struct ioat_raw_descriptor *) pq;
680 descs[1] = (struct ioat_raw_descriptor *) pq_ex;
681
682 for (s = 0; s < src_cnt; s++)
683 pq_set_src(descs, src[s], offset, scf[s], s);
684
685 /* see the comment for dma_maxpq in include/linux/dmaengine.h */
686 if (dmaf_p_disabled_continue(flags))
687 pq_set_src(descs, dst[1], offset, 1, s++);
688 else if (dmaf_continue(flags)) {
689 pq_set_src(descs, dst[0], offset, 0, s++);
690 pq_set_src(descs, dst[1], offset, 1, s++);
691 pq_set_src(descs, dst[1], offset, 0, s++);
692 }
693 pq->size = xfer_size;
694 pq->p_addr = dst[0] + offset;
695 pq->q_addr = dst[1] + offset;
696 pq->ctl = 0;
697 pq->ctl_f.op = op;
698 pq->ctl_f.src_cnt = src_cnt_to_hw(s);
699 pq->ctl_f.p_disable = !!(flags & DMA_PREP_PQ_DISABLE_P);
700 pq->ctl_f.q_disable = !!(flags & DMA_PREP_PQ_DISABLE_Q);
701
702 len -= xfer_size;
703 offset += xfer_size;
704 } while ((i += 1 + with_ext) < num_descs);
705
706 /* last pq descriptor carries the unmap parameters and fence bit */
707 desc->txd.flags = flags;
708 desc->len = total_len;
709 if (result)
710 desc->result = result;
711 pq->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
712 dump_pq_desc_dbg(ioat, desc, ext);
713
714 /* completion descriptor carries interrupt bit */
715 compl_desc = ioat2_get_ring_ent(ioat, idx + i);
716 compl_desc->txd.flags = flags & DMA_PREP_INTERRUPT;
717 hw = compl_desc->hw;
718 hw->ctl = 0;
719 hw->ctl_f.null = 1;
720 hw->ctl_f.int_en = !!(flags & DMA_PREP_INTERRUPT);
721 hw->ctl_f.compl_write = 1;
722 hw->size = NULL_DESC_BUFFER_SIZE;
723 dump_desc_dbg(ioat, compl_desc);
724
725 /* we leave the channel locked to ensure in order submission */
726 return &compl_desc->txd;
727 }
728
729 static struct dma_async_tx_descriptor *
730 ioat3_prep_pq(struct dma_chan *chan, dma_addr_t *dst, dma_addr_t *src,
731 unsigned int src_cnt, const unsigned char *scf, size_t len,
732 unsigned long flags)
733 {
734 /* specify valid address for disabled result */
735 if (flags & DMA_PREP_PQ_DISABLE_P)
736 dst[0] = dst[1];
737 if (flags & DMA_PREP_PQ_DISABLE_Q)
738 dst[1] = dst[0];
739
740 /* handle the single source multiply case from the raid6
741 * recovery path
742 */
743 if ((flags & DMA_PREP_PQ_DISABLE_P) && src_cnt == 1) {
744 dma_addr_t single_source[2];
745 unsigned char single_source_coef[2];
746
747 BUG_ON(flags & DMA_PREP_PQ_DISABLE_Q);
748 single_source[0] = src[0];
749 single_source[1] = src[0];
750 single_source_coef[0] = scf[0];
751 single_source_coef[1] = 0;
752
753 return __ioat3_prep_pq_lock(chan, NULL, dst, single_source, 2,
754 single_source_coef, len, flags);
755 } else
756 return __ioat3_prep_pq_lock(chan, NULL, dst, src, src_cnt, scf,
757 len, flags);
758 }
759
760 struct dma_async_tx_descriptor *
761 ioat3_prep_pq_val(struct dma_chan *chan, dma_addr_t *pq, dma_addr_t *src,
762 unsigned int src_cnt, const unsigned char *scf, size_t len,
763 enum sum_check_flags *pqres, unsigned long flags)
764 {
765 /* specify valid address for disabled result */
766 if (flags & DMA_PREP_PQ_DISABLE_P)
767 pq[0] = pq[1];
768 if (flags & DMA_PREP_PQ_DISABLE_Q)
769 pq[1] = pq[0];
770
771 /* the cleanup routine only sets bits on validate failure, it
772 * does not clear bits on validate success... so clear it here
773 */
774 *pqres = 0;
775
776 return __ioat3_prep_pq_lock(chan, pqres, pq, src, src_cnt, scf, len,
777 flags);
778 }
779
780 static struct dma_async_tx_descriptor *
781 ioat3_prep_pqxor(struct dma_chan *chan, dma_addr_t dst, dma_addr_t *src,
782 unsigned int src_cnt, size_t len, unsigned long flags)
783 {
784 unsigned char scf[src_cnt];
785 dma_addr_t pq[2];
786
787 memset(scf, 0, src_cnt);
788 pq[0] = dst;
789 flags |= DMA_PREP_PQ_DISABLE_Q;
790 pq[1] = dst; /* specify valid address for disabled result */
791
792 return __ioat3_prep_pq_lock(chan, NULL, pq, src, src_cnt, scf, len,
793 flags);
794 }
795
796 struct dma_async_tx_descriptor *
797 ioat3_prep_pqxor_val(struct dma_chan *chan, dma_addr_t *src,
798 unsigned int src_cnt, size_t len,
799 enum sum_check_flags *result, unsigned long flags)
800 {
801 unsigned char scf[src_cnt];
802 dma_addr_t pq[2];
803
804 /* the cleanup routine only sets bits on validate failure, it
805 * does not clear bits on validate success... so clear it here
806 */
807 *result = 0;
808
809 memset(scf, 0, src_cnt);
810 pq[0] = src[0];
811 flags |= DMA_PREP_PQ_DISABLE_Q;
812 pq[1] = pq[0]; /* specify valid address for disabled result */
813
814 return __ioat3_prep_pq_lock(chan, result, pq, &src[1], src_cnt - 1, scf,
815 len, flags);
816 }
817
818 static struct dma_async_tx_descriptor *
819 ioat3_prep_interrupt_lock(struct dma_chan *c, unsigned long flags)
820 {
821 struct ioat2_dma_chan *ioat = to_ioat2_chan(c);
822 struct ioat_ring_ent *desc;
823 struct ioat_dma_descriptor *hw;
824 u16 idx;
825
826 if (ioat2_alloc_and_lock(&idx, ioat, 1) == 0)
827 desc = ioat2_get_ring_ent(ioat, idx);
828 else
829 return NULL;
830
831 hw = desc->hw;
832 hw->ctl = 0;
833 hw->ctl_f.null = 1;
834 hw->ctl_f.int_en = 1;
835 hw->ctl_f.fence = !!(flags & DMA_PREP_FENCE);
836 hw->ctl_f.compl_write = 1;
837 hw->size = NULL_DESC_BUFFER_SIZE;
838 hw->src_addr = 0;
839 hw->dst_addr = 0;
840
841 desc->txd.flags = flags;
842 desc->len = 1;
843
844 dump_desc_dbg(ioat, desc);
845
846 /* we leave the channel locked to ensure in order submission */
847 return &desc->txd;
848 }
849
850 static void __devinit ioat3_dma_test_callback(void *dma_async_param)
851 {
852 struct completion *cmp = dma_async_param;
853
854 complete(cmp);
855 }
856
857 #define IOAT_NUM_SRC_TEST 6 /* must be <= 8 */
858 static int __devinit ioat_xor_val_self_test(struct ioatdma_device *device)
859 {
860 int i, src_idx;
861 struct page *dest;
862 struct page *xor_srcs[IOAT_NUM_SRC_TEST];
863 struct page *xor_val_srcs[IOAT_NUM_SRC_TEST + 1];
864 dma_addr_t dma_srcs[IOAT_NUM_SRC_TEST + 1];
865 dma_addr_t dma_addr, dest_dma;
866 struct dma_async_tx_descriptor *tx;
867 struct dma_chan *dma_chan;
868 dma_cookie_t cookie;
869 u8 cmp_byte = 0;
870 u32 cmp_word;
871 u32 xor_val_result;
872 int err = 0;
873 struct completion cmp;
874 unsigned long tmo;
875 struct device *dev = &device->pdev->dev;
876 struct dma_device *dma = &device->common;
877
878 dev_dbg(dev, "%s\n", __func__);
879
880 if (!dma_has_cap(DMA_XOR, dma->cap_mask))
881 return 0;
882
883 for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++) {
884 xor_srcs[src_idx] = alloc_page(GFP_KERNEL);
885 if (!xor_srcs[src_idx]) {
886 while (src_idx--)
887 __free_page(xor_srcs[src_idx]);
888 return -ENOMEM;
889 }
890 }
891
892 dest = alloc_page(GFP_KERNEL);
893 if (!dest) {
894 while (src_idx--)
895 __free_page(xor_srcs[src_idx]);
896 return -ENOMEM;
897 }
898
899 /* Fill in src buffers */
900 for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++) {
901 u8 *ptr = page_address(xor_srcs[src_idx]);
902 for (i = 0; i < PAGE_SIZE; i++)
903 ptr[i] = (1 << src_idx);
904 }
905
906 for (src_idx = 0; src_idx < IOAT_NUM_SRC_TEST; src_idx++)
907 cmp_byte ^= (u8) (1 << src_idx);
908
909 cmp_word = (cmp_byte << 24) | (cmp_byte << 16) |
910 (cmp_byte << 8) | cmp_byte;
911
912 memset(page_address(dest), 0, PAGE_SIZE);
913
914 dma_chan = container_of(dma->channels.next, struct dma_chan,
915 device_node);
916 if (dma->device_alloc_chan_resources(dma_chan) < 1) {
917 err = -ENODEV;
918 goto out;
919 }
920
921 /* test xor */
922 dest_dma = dma_map_page(dev, dest, 0, PAGE_SIZE, DMA_FROM_DEVICE);
923 for (i = 0; i < IOAT_NUM_SRC_TEST; i++)
924 dma_srcs[i] = dma_map_page(dev, xor_srcs[i], 0, PAGE_SIZE,
925 DMA_TO_DEVICE);
926 tx = dma->device_prep_dma_xor(dma_chan, dest_dma, dma_srcs,
927 IOAT_NUM_SRC_TEST, PAGE_SIZE,
928 DMA_PREP_INTERRUPT);
929
930 if (!tx) {
931 dev_err(dev, "Self-test xor prep failed\n");
932 err = -ENODEV;
933 goto free_resources;
934 }
935
936 async_tx_ack(tx);
937 init_completion(&cmp);
938 tx->callback = ioat3_dma_test_callback;
939 tx->callback_param = &cmp;
940 cookie = tx->tx_submit(tx);
941 if (cookie < 0) {
942 dev_err(dev, "Self-test xor setup failed\n");
943 err = -ENODEV;
944 goto free_resources;
945 }
946 dma->device_issue_pending(dma_chan);
947
948 tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
949
950 if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
951 dev_err(dev, "Self-test xor timed out\n");
952 err = -ENODEV;
953 goto free_resources;
954 }
955
956 dma_sync_single_for_cpu(dev, dest_dma, PAGE_SIZE, DMA_FROM_DEVICE);
957 for (i = 0; i < (PAGE_SIZE / sizeof(u32)); i++) {
958 u32 *ptr = page_address(dest);
959 if (ptr[i] != cmp_word) {
960 dev_err(dev, "Self-test xor failed compare\n");
961 err = -ENODEV;
962 goto free_resources;
963 }
964 }
965 dma_sync_single_for_device(dev, dest_dma, PAGE_SIZE, DMA_TO_DEVICE);
966
967 /* skip validate if the capability is not present */
968 if (!dma_has_cap(DMA_XOR_VAL, dma_chan->device->cap_mask))
969 goto free_resources;
970
971 /* validate the sources with the destintation page */
972 for (i = 0; i < IOAT_NUM_SRC_TEST; i++)
973 xor_val_srcs[i] = xor_srcs[i];
974 xor_val_srcs[i] = dest;
975
976 xor_val_result = 1;
977
978 for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++)
979 dma_srcs[i] = dma_map_page(dev, xor_val_srcs[i], 0, PAGE_SIZE,
980 DMA_TO_DEVICE);
981 tx = dma->device_prep_dma_xor_val(dma_chan, dma_srcs,
982 IOAT_NUM_SRC_TEST + 1, PAGE_SIZE,
983 &xor_val_result, DMA_PREP_INTERRUPT);
984 if (!tx) {
985 dev_err(dev, "Self-test zero prep failed\n");
986 err = -ENODEV;
987 goto free_resources;
988 }
989
990 async_tx_ack(tx);
991 init_completion(&cmp);
992 tx->callback = ioat3_dma_test_callback;
993 tx->callback_param = &cmp;
994 cookie = tx->tx_submit(tx);
995 if (cookie < 0) {
996 dev_err(dev, "Self-test zero setup failed\n");
997 err = -ENODEV;
998 goto free_resources;
999 }
1000 dma->device_issue_pending(dma_chan);
1001
1002 tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
1003
1004 if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
1005 dev_err(dev, "Self-test validate timed out\n");
1006 err = -ENODEV;
1007 goto free_resources;
1008 }
1009
1010 if (xor_val_result != 0) {
1011 dev_err(dev, "Self-test validate failed compare\n");
1012 err = -ENODEV;
1013 goto free_resources;
1014 }
1015
1016 /* skip memset if the capability is not present */
1017 if (!dma_has_cap(DMA_MEMSET, dma_chan->device->cap_mask))
1018 goto free_resources;
1019
1020 /* test memset */
1021 dma_addr = dma_map_page(dev, dest, 0,
1022 PAGE_SIZE, DMA_FROM_DEVICE);
1023 tx = dma->device_prep_dma_memset(dma_chan, dma_addr, 0, PAGE_SIZE,
1024 DMA_PREP_INTERRUPT);
1025 if (!tx) {
1026 dev_err(dev, "Self-test memset prep failed\n");
1027 err = -ENODEV;
1028 goto free_resources;
1029 }
1030
1031 async_tx_ack(tx);
1032 init_completion(&cmp);
1033 tx->callback = ioat3_dma_test_callback;
1034 tx->callback_param = &cmp;
1035 cookie = tx->tx_submit(tx);
1036 if (cookie < 0) {
1037 dev_err(dev, "Self-test memset setup failed\n");
1038 err = -ENODEV;
1039 goto free_resources;
1040 }
1041 dma->device_issue_pending(dma_chan);
1042
1043 tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
1044
1045 if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
1046 dev_err(dev, "Self-test memset timed out\n");
1047 err = -ENODEV;
1048 goto free_resources;
1049 }
1050
1051 for (i = 0; i < PAGE_SIZE/sizeof(u32); i++) {
1052 u32 *ptr = page_address(dest);
1053 if (ptr[i]) {
1054 dev_err(dev, "Self-test memset failed compare\n");
1055 err = -ENODEV;
1056 goto free_resources;
1057 }
1058 }
1059
1060 /* test for non-zero parity sum */
1061 xor_val_result = 0;
1062 for (i = 0; i < IOAT_NUM_SRC_TEST + 1; i++)
1063 dma_srcs[i] = dma_map_page(dev, xor_val_srcs[i], 0, PAGE_SIZE,
1064 DMA_TO_DEVICE);
1065 tx = dma->device_prep_dma_xor_val(dma_chan, dma_srcs,
1066 IOAT_NUM_SRC_TEST + 1, PAGE_SIZE,
1067 &xor_val_result, DMA_PREP_INTERRUPT);
1068 if (!tx) {
1069 dev_err(dev, "Self-test 2nd zero prep failed\n");
1070 err = -ENODEV;
1071 goto free_resources;
1072 }
1073
1074 async_tx_ack(tx);
1075 init_completion(&cmp);
1076 tx->callback = ioat3_dma_test_callback;
1077 tx->callback_param = &cmp;
1078 cookie = tx->tx_submit(tx);
1079 if (cookie < 0) {
1080 dev_err(dev, "Self-test 2nd zero setup failed\n");
1081 err = -ENODEV;
1082 goto free_resources;
1083 }
1084 dma->device_issue_pending(dma_chan);
1085
1086 tmo = wait_for_completion_timeout(&cmp, msecs_to_jiffies(3000));
1087
1088 if (dma->device_is_tx_complete(dma_chan, cookie, NULL, NULL) != DMA_SUCCESS) {
1089 dev_err(dev, "Self-test 2nd validate timed out\n");
1090 err = -ENODEV;
1091 goto free_resources;
1092 }
1093
1094 if (xor_val_result != SUM_CHECK_P_RESULT) {
1095 dev_err(dev, "Self-test validate failed compare\n");
1096 err = -ENODEV;
1097 goto free_resources;
1098 }
1099
1100 free_resources:
1101 dma->device_free_chan_resources(dma_chan);
1102 out:
1103 src_idx = IOAT_NUM_SRC_TEST;
1104 while (src_idx--)
1105 __free_page(xor_srcs[src_idx]);
1106 __free_page(dest);
1107 return err;
1108 }
1109
1110 static int __devinit ioat3_dma_self_test(struct ioatdma_device *device)
1111 {
1112 int rc = ioat_dma_self_test(device);
1113
1114 if (rc)
1115 return rc;
1116
1117 rc = ioat_xor_val_self_test(device);
1118 if (rc)
1119 return rc;
1120
1121 return 0;
1122 }
1123
1124 static int ioat3_reset_hw(struct ioat_chan_common *chan)
1125 {
1126 /* throw away whatever the channel was doing and get it
1127 * initialized, with ioat3 specific workarounds
1128 */
1129 struct ioatdma_device *device = chan->device;
1130 struct pci_dev *pdev = device->pdev;
1131 u32 chanerr;
1132 u16 dev_id;
1133 int err;
1134
1135 ioat2_quiesce(chan, msecs_to_jiffies(100));
1136
1137 chanerr = readl(chan->reg_base + IOAT_CHANERR_OFFSET);
1138 writel(chanerr, chan->reg_base + IOAT_CHANERR_OFFSET);
1139
1140 /* -= IOAT ver.3 workarounds =- */
1141 /* Write CHANERRMSK_INT with 3E07h to mask out the errors
1142 * that can cause stability issues for IOAT ver.3, and clear any
1143 * pending errors
1144 */
1145 pci_write_config_dword(pdev, IOAT_PCI_CHANERRMASK_INT_OFFSET, 0x3e07);
1146 err = pci_read_config_dword(pdev, IOAT_PCI_CHANERR_INT_OFFSET, &chanerr);
1147 if (err) {
1148 dev_err(&pdev->dev, "channel error register unreachable\n");
1149 return err;
1150 }
1151 pci_write_config_dword(pdev, IOAT_PCI_CHANERR_INT_OFFSET, chanerr);
1152
1153 /* Clear DMAUNCERRSTS Cfg-Reg Parity Error status bit
1154 * (workaround for spurious config parity error after restart)
1155 */
1156 pci_read_config_word(pdev, IOAT_PCI_DEVICE_ID_OFFSET, &dev_id);
1157 if (dev_id == PCI_DEVICE_ID_INTEL_IOAT_TBG0)
1158 pci_write_config_dword(pdev, IOAT_PCI_DMAUNCERRSTS_OFFSET, 0x10);
1159
1160 return ioat2_reset_sync(chan, msecs_to_jiffies(200));
1161 }
1162
1163 int __devinit ioat3_dma_probe(struct ioatdma_device *device, int dca)
1164 {
1165 struct pci_dev *pdev = device->pdev;
1166 int dca_en = system_has_dca_enabled(pdev);
1167 struct dma_device *dma;
1168 struct dma_chan *c;
1169 struct ioat_chan_common *chan;
1170 bool is_raid_device = false;
1171 int err;
1172 u32 cap;
1173
1174 device->enumerate_channels = ioat2_enumerate_channels;
1175 device->reset_hw = ioat3_reset_hw;
1176 device->self_test = ioat3_dma_self_test;
1177 dma = &device->common;
1178 dma->device_prep_dma_memcpy = ioat2_dma_prep_memcpy_lock;
1179 dma->device_issue_pending = ioat2_issue_pending;
1180 dma->device_alloc_chan_resources = ioat2_alloc_chan_resources;
1181 dma->device_free_chan_resources = ioat2_free_chan_resources;
1182
1183 dma_cap_set(DMA_INTERRUPT, dma->cap_mask);
1184 dma->device_prep_dma_interrupt = ioat3_prep_interrupt_lock;
1185
1186 cap = readl(device->reg_base + IOAT_DMA_CAP_OFFSET);
1187
1188 /* dca is incompatible with raid operations */
1189 if (dca_en && (cap & (IOAT_CAP_XOR|IOAT_CAP_PQ)))
1190 cap &= ~(IOAT_CAP_XOR|IOAT_CAP_PQ);
1191
1192 if (cap & IOAT_CAP_XOR) {
1193 is_raid_device = true;
1194 dma->max_xor = 8;
1195 dma->xor_align = 2;
1196
1197 dma_cap_set(DMA_XOR, dma->cap_mask);
1198 dma->device_prep_dma_xor = ioat3_prep_xor;
1199
1200 dma_cap_set(DMA_XOR_VAL, dma->cap_mask);
1201 dma->device_prep_dma_xor_val = ioat3_prep_xor_val;
1202 }
1203 if (cap & IOAT_CAP_PQ) {
1204 is_raid_device = true;
1205 dma_set_maxpq(dma, 8, 0);
1206 dma->pq_align = 2;
1207
1208 dma_cap_set(DMA_PQ, dma->cap_mask);
1209 dma->device_prep_dma_pq = ioat3_prep_pq;
1210
1211 dma_cap_set(DMA_PQ_VAL, dma->cap_mask);
1212 dma->device_prep_dma_pq_val = ioat3_prep_pq_val;
1213
1214 if (!(cap & IOAT_CAP_XOR)) {
1215 dma->max_xor = 8;
1216 dma->xor_align = 2;
1217
1218 dma_cap_set(DMA_XOR, dma->cap_mask);
1219 dma->device_prep_dma_xor = ioat3_prep_pqxor;
1220
1221 dma_cap_set(DMA_XOR_VAL, dma->cap_mask);
1222 dma->device_prep_dma_xor_val = ioat3_prep_pqxor_val;
1223 }
1224 }
1225 if (is_raid_device && (cap & IOAT_CAP_FILL_BLOCK)) {
1226 dma_cap_set(DMA_MEMSET, dma->cap_mask);
1227 dma->device_prep_dma_memset = ioat3_prep_memset_lock;
1228 }
1229
1230
1231 if (is_raid_device) {
1232 dma->device_is_tx_complete = ioat3_is_complete;
1233 device->cleanup_tasklet = ioat3_cleanup_tasklet;
1234 device->timer_fn = ioat3_timer_event;
1235 } else {
1236 dma->device_is_tx_complete = ioat2_is_complete;
1237 device->cleanup_tasklet = ioat2_cleanup_tasklet;
1238 device->timer_fn = ioat2_timer_event;
1239 }
1240
1241 #ifdef CONFIG_ASYNC_TX_DISABLE_PQ_VAL_DMA
1242 dma_cap_clear(DMA_PQ_VAL, dma->cap_mask);
1243 dma->device_prep_dma_pq_val = NULL;
1244 #endif
1245
1246 #ifdef CONFIG_ASYNC_TX_DISABLE_XOR_VAL_DMA
1247 dma_cap_clear(DMA_XOR_VAL, dma->cap_mask);
1248 dma->device_prep_dma_xor_val = NULL;
1249 #endif
1250
1251 err = ioat_probe(device);
1252 if (err)
1253 return err;
1254 ioat_set_tcp_copy_break(262144);
1255
1256 list_for_each_entry(c, &dma->channels, device_node) {
1257 chan = to_chan_common(c);
1258 writel(IOAT_DMA_DCA_ANY_CPU,
1259 chan->reg_base + IOAT_DCACTRL_OFFSET);
1260 }
1261
1262 err = ioat_register(device);
1263 if (err)
1264 return err;
1265
1266 ioat_kobject_add(device, &ioat2_ktype);
1267
1268 if (dca)
1269 device->dca = ioat3_dca_init(pdev, device->reg_base);
1270
1271 return 0;
1272 }