Merge branch 'for-jens' of git://git.drbd.org/linux-drbd into for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / dma / fsldma.c
1 /*
2 * Freescale MPC85xx, MPC83xx DMA Engine support
3 *
4 * Copyright (C) 2007-2010 Freescale Semiconductor, Inc. All rights reserved.
5 *
6 * Author:
7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
9 *
10 * Description:
11 * DMA engine driver for Freescale MPC8540 DMA controller, which is
12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13 * The support for MPC8349 DMA controller is also added.
14 *
15 * This driver instructs the DMA controller to issue the PCI Read Multiple
16 * command for PCI read operations, instead of using the default PCI Read Line
17 * command. Please be aware that this setting may result in read pre-fetching
18 * on some platforms.
19 *
20 * This is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2 of the License, or
23 * (at your option) any later version.
24 *
25 */
26
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/dmaengine.h>
33 #include <linux/delay.h>
34 #include <linux/dma-mapping.h>
35 #include <linux/dmapool.h>
36 #include <linux/of_platform.h>
37
38 #include "dmaengine.h"
39 #include "fsldma.h"
40
41 #define chan_dbg(chan, fmt, arg...) \
42 dev_dbg(chan->dev, "%s: " fmt, chan->name, ##arg)
43 #define chan_err(chan, fmt, arg...) \
44 dev_err(chan->dev, "%s: " fmt, chan->name, ##arg)
45
46 static const char msg_ld_oom[] = "No free memory for link descriptor";
47
48 /*
49 * Register Helpers
50 */
51
52 static void set_sr(struct fsldma_chan *chan, u32 val)
53 {
54 DMA_OUT(chan, &chan->regs->sr, val, 32);
55 }
56
57 static u32 get_sr(struct fsldma_chan *chan)
58 {
59 return DMA_IN(chan, &chan->regs->sr, 32);
60 }
61
62 static void set_cdar(struct fsldma_chan *chan, dma_addr_t addr)
63 {
64 DMA_OUT(chan, &chan->regs->cdar, addr | FSL_DMA_SNEN, 64);
65 }
66
67 static dma_addr_t get_cdar(struct fsldma_chan *chan)
68 {
69 return DMA_IN(chan, &chan->regs->cdar, 64) & ~FSL_DMA_SNEN;
70 }
71
72 static u32 get_bcr(struct fsldma_chan *chan)
73 {
74 return DMA_IN(chan, &chan->regs->bcr, 32);
75 }
76
77 /*
78 * Descriptor Helpers
79 */
80
81 static void set_desc_cnt(struct fsldma_chan *chan,
82 struct fsl_dma_ld_hw *hw, u32 count)
83 {
84 hw->count = CPU_TO_DMA(chan, count, 32);
85 }
86
87 static u32 get_desc_cnt(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
88 {
89 return DMA_TO_CPU(chan, desc->hw.count, 32);
90 }
91
92 static void set_desc_src(struct fsldma_chan *chan,
93 struct fsl_dma_ld_hw *hw, dma_addr_t src)
94 {
95 u64 snoop_bits;
96
97 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
98 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
99 hw->src_addr = CPU_TO_DMA(chan, snoop_bits | src, 64);
100 }
101
102 static dma_addr_t get_desc_src(struct fsldma_chan *chan,
103 struct fsl_desc_sw *desc)
104 {
105 u64 snoop_bits;
106
107 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
108 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
109 return DMA_TO_CPU(chan, desc->hw.src_addr, 64) & ~snoop_bits;
110 }
111
112 static void set_desc_dst(struct fsldma_chan *chan,
113 struct fsl_dma_ld_hw *hw, dma_addr_t dst)
114 {
115 u64 snoop_bits;
116
117 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
118 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
119 hw->dst_addr = CPU_TO_DMA(chan, snoop_bits | dst, 64);
120 }
121
122 static dma_addr_t get_desc_dst(struct fsldma_chan *chan,
123 struct fsl_desc_sw *desc)
124 {
125 u64 snoop_bits;
126
127 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
128 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
129 return DMA_TO_CPU(chan, desc->hw.dst_addr, 64) & ~snoop_bits;
130 }
131
132 static void set_desc_next(struct fsldma_chan *chan,
133 struct fsl_dma_ld_hw *hw, dma_addr_t next)
134 {
135 u64 snoop_bits;
136
137 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
138 ? FSL_DMA_SNEN : 0;
139 hw->next_ln_addr = CPU_TO_DMA(chan, snoop_bits | next, 64);
140 }
141
142 static void set_ld_eol(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
143 {
144 u64 snoop_bits;
145
146 snoop_bits = ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
147 ? FSL_DMA_SNEN : 0;
148
149 desc->hw.next_ln_addr = CPU_TO_DMA(chan,
150 DMA_TO_CPU(chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
151 | snoop_bits, 64);
152 }
153
154 /*
155 * DMA Engine Hardware Control Helpers
156 */
157
158 static void dma_init(struct fsldma_chan *chan)
159 {
160 /* Reset the channel */
161 DMA_OUT(chan, &chan->regs->mr, 0, 32);
162
163 switch (chan->feature & FSL_DMA_IP_MASK) {
164 case FSL_DMA_IP_85XX:
165 /* Set the channel to below modes:
166 * EIE - Error interrupt enable
167 * EOLNIE - End of links interrupt enable
168 * BWC - Bandwidth sharing among channels
169 */
170 DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_BWC
171 | FSL_DMA_MR_EIE | FSL_DMA_MR_EOLNIE, 32);
172 break;
173 case FSL_DMA_IP_83XX:
174 /* Set the channel to below modes:
175 * EOTIE - End-of-transfer interrupt enable
176 * PRC_RM - PCI read multiple
177 */
178 DMA_OUT(chan, &chan->regs->mr, FSL_DMA_MR_EOTIE
179 | FSL_DMA_MR_PRC_RM, 32);
180 break;
181 }
182 }
183
184 static int dma_is_idle(struct fsldma_chan *chan)
185 {
186 u32 sr = get_sr(chan);
187 return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
188 }
189
190 /*
191 * Start the DMA controller
192 *
193 * Preconditions:
194 * - the CDAR register must point to the start descriptor
195 * - the MRn[CS] bit must be cleared
196 */
197 static void dma_start(struct fsldma_chan *chan)
198 {
199 u32 mode;
200
201 mode = DMA_IN(chan, &chan->regs->mr, 32);
202
203 if (chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
204 DMA_OUT(chan, &chan->regs->bcr, 0, 32);
205 mode |= FSL_DMA_MR_EMP_EN;
206 } else {
207 mode &= ~FSL_DMA_MR_EMP_EN;
208 }
209
210 if (chan->feature & FSL_DMA_CHAN_START_EXT) {
211 mode |= FSL_DMA_MR_EMS_EN;
212 } else {
213 mode &= ~FSL_DMA_MR_EMS_EN;
214 mode |= FSL_DMA_MR_CS;
215 }
216
217 DMA_OUT(chan, &chan->regs->mr, mode, 32);
218 }
219
220 static void dma_halt(struct fsldma_chan *chan)
221 {
222 u32 mode;
223 int i;
224
225 /* read the mode register */
226 mode = DMA_IN(chan, &chan->regs->mr, 32);
227
228 /*
229 * The 85xx controller supports channel abort, which will stop
230 * the current transfer. On 83xx, this bit is the transfer error
231 * mask bit, which should not be changed.
232 */
233 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
234 mode |= FSL_DMA_MR_CA;
235 DMA_OUT(chan, &chan->regs->mr, mode, 32);
236
237 mode &= ~FSL_DMA_MR_CA;
238 }
239
240 /* stop the DMA controller */
241 mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN);
242 DMA_OUT(chan, &chan->regs->mr, mode, 32);
243
244 /* wait for the DMA controller to become idle */
245 for (i = 0; i < 100; i++) {
246 if (dma_is_idle(chan))
247 return;
248
249 udelay(10);
250 }
251
252 if (!dma_is_idle(chan))
253 chan_err(chan, "DMA halt timeout!\n");
254 }
255
256 /**
257 * fsl_chan_set_src_loop_size - Set source address hold transfer size
258 * @chan : Freescale DMA channel
259 * @size : Address loop size, 0 for disable loop
260 *
261 * The set source address hold transfer size. The source
262 * address hold or loop transfer size is when the DMA transfer
263 * data from source address (SA), if the loop size is 4, the DMA will
264 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
265 * SA + 1 ... and so on.
266 */
267 static void fsl_chan_set_src_loop_size(struct fsldma_chan *chan, int size)
268 {
269 u32 mode;
270
271 mode = DMA_IN(chan, &chan->regs->mr, 32);
272
273 switch (size) {
274 case 0:
275 mode &= ~FSL_DMA_MR_SAHE;
276 break;
277 case 1:
278 case 2:
279 case 4:
280 case 8:
281 mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
282 break;
283 }
284
285 DMA_OUT(chan, &chan->regs->mr, mode, 32);
286 }
287
288 /**
289 * fsl_chan_set_dst_loop_size - Set destination address hold transfer size
290 * @chan : Freescale DMA channel
291 * @size : Address loop size, 0 for disable loop
292 *
293 * The set destination address hold transfer size. The destination
294 * address hold or loop transfer size is when the DMA transfer
295 * data to destination address (TA), if the loop size is 4, the DMA will
296 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
297 * TA + 1 ... and so on.
298 */
299 static void fsl_chan_set_dst_loop_size(struct fsldma_chan *chan, int size)
300 {
301 u32 mode;
302
303 mode = DMA_IN(chan, &chan->regs->mr, 32);
304
305 switch (size) {
306 case 0:
307 mode &= ~FSL_DMA_MR_DAHE;
308 break;
309 case 1:
310 case 2:
311 case 4:
312 case 8:
313 mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
314 break;
315 }
316
317 DMA_OUT(chan, &chan->regs->mr, mode, 32);
318 }
319
320 /**
321 * fsl_chan_set_request_count - Set DMA Request Count for external control
322 * @chan : Freescale DMA channel
323 * @size : Number of bytes to transfer in a single request
324 *
325 * The Freescale DMA channel can be controlled by the external signal DREQ#.
326 * The DMA request count is how many bytes are allowed to transfer before
327 * pausing the channel, after which a new assertion of DREQ# resumes channel
328 * operation.
329 *
330 * A size of 0 disables external pause control. The maximum size is 1024.
331 */
332 static void fsl_chan_set_request_count(struct fsldma_chan *chan, int size)
333 {
334 u32 mode;
335
336 BUG_ON(size > 1024);
337
338 mode = DMA_IN(chan, &chan->regs->mr, 32);
339 mode |= (__ilog2(size) << 24) & 0x0f000000;
340
341 DMA_OUT(chan, &chan->regs->mr, mode, 32);
342 }
343
344 /**
345 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
346 * @chan : Freescale DMA channel
347 * @enable : 0 is disabled, 1 is enabled.
348 *
349 * The Freescale DMA channel can be controlled by the external signal DREQ#.
350 * The DMA Request Count feature should be used in addition to this feature
351 * to set the number of bytes to transfer before pausing the channel.
352 */
353 static void fsl_chan_toggle_ext_pause(struct fsldma_chan *chan, int enable)
354 {
355 if (enable)
356 chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
357 else
358 chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
359 }
360
361 /**
362 * fsl_chan_toggle_ext_start - Toggle channel external start status
363 * @chan : Freescale DMA channel
364 * @enable : 0 is disabled, 1 is enabled.
365 *
366 * If enable the external start, the channel can be started by an
367 * external DMA start pin. So the dma_start() does not start the
368 * transfer immediately. The DMA channel will wait for the
369 * control pin asserted.
370 */
371 static void fsl_chan_toggle_ext_start(struct fsldma_chan *chan, int enable)
372 {
373 if (enable)
374 chan->feature |= FSL_DMA_CHAN_START_EXT;
375 else
376 chan->feature &= ~FSL_DMA_CHAN_START_EXT;
377 }
378
379 static void append_ld_queue(struct fsldma_chan *chan, struct fsl_desc_sw *desc)
380 {
381 struct fsl_desc_sw *tail = to_fsl_desc(chan->ld_pending.prev);
382
383 if (list_empty(&chan->ld_pending))
384 goto out_splice;
385
386 /*
387 * Add the hardware descriptor to the chain of hardware descriptors
388 * that already exists in memory.
389 *
390 * This will un-set the EOL bit of the existing transaction, and the
391 * last link in this transaction will become the EOL descriptor.
392 */
393 set_desc_next(chan, &tail->hw, desc->async_tx.phys);
394
395 /*
396 * Add the software descriptor and all children to the list
397 * of pending transactions
398 */
399 out_splice:
400 list_splice_tail_init(&desc->tx_list, &chan->ld_pending);
401 }
402
403 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
404 {
405 struct fsldma_chan *chan = to_fsl_chan(tx->chan);
406 struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
407 struct fsl_desc_sw *child;
408 unsigned long flags;
409 dma_cookie_t cookie;
410
411 spin_lock_irqsave(&chan->desc_lock, flags);
412
413 /*
414 * assign cookies to all of the software descriptors
415 * that make up this transaction
416 */
417 list_for_each_entry(child, &desc->tx_list, node) {
418 cookie = dma_cookie_assign(&child->async_tx);
419 }
420
421 /* put this transaction onto the tail of the pending queue */
422 append_ld_queue(chan, desc);
423
424 spin_unlock_irqrestore(&chan->desc_lock, flags);
425
426 return cookie;
427 }
428
429 /**
430 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
431 * @chan : Freescale DMA channel
432 *
433 * Return - The descriptor allocated. NULL for failed.
434 */
435 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(struct fsldma_chan *chan)
436 {
437 struct fsl_desc_sw *desc;
438 dma_addr_t pdesc;
439
440 desc = dma_pool_alloc(chan->desc_pool, GFP_ATOMIC, &pdesc);
441 if (!desc) {
442 chan_dbg(chan, "out of memory for link descriptor\n");
443 return NULL;
444 }
445
446 memset(desc, 0, sizeof(*desc));
447 INIT_LIST_HEAD(&desc->tx_list);
448 dma_async_tx_descriptor_init(&desc->async_tx, &chan->common);
449 desc->async_tx.tx_submit = fsl_dma_tx_submit;
450 desc->async_tx.phys = pdesc;
451
452 #ifdef FSL_DMA_LD_DEBUG
453 chan_dbg(chan, "LD %p allocated\n", desc);
454 #endif
455
456 return desc;
457 }
458
459 /**
460 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
461 * @chan : Freescale DMA channel
462 *
463 * This function will create a dma pool for descriptor allocation.
464 *
465 * Return - The number of descriptors allocated.
466 */
467 static int fsl_dma_alloc_chan_resources(struct dma_chan *dchan)
468 {
469 struct fsldma_chan *chan = to_fsl_chan(dchan);
470
471 /* Has this channel already been allocated? */
472 if (chan->desc_pool)
473 return 1;
474
475 /*
476 * We need the descriptor to be aligned to 32bytes
477 * for meeting FSL DMA specification requirement.
478 */
479 chan->desc_pool = dma_pool_create(chan->name, chan->dev,
480 sizeof(struct fsl_desc_sw),
481 __alignof__(struct fsl_desc_sw), 0);
482 if (!chan->desc_pool) {
483 chan_err(chan, "unable to allocate descriptor pool\n");
484 return -ENOMEM;
485 }
486
487 /* there is at least one descriptor free to be allocated */
488 return 1;
489 }
490
491 /**
492 * fsldma_free_desc_list - Free all descriptors in a queue
493 * @chan: Freescae DMA channel
494 * @list: the list to free
495 *
496 * LOCKING: must hold chan->desc_lock
497 */
498 static void fsldma_free_desc_list(struct fsldma_chan *chan,
499 struct list_head *list)
500 {
501 struct fsl_desc_sw *desc, *_desc;
502
503 list_for_each_entry_safe(desc, _desc, list, node) {
504 list_del(&desc->node);
505 #ifdef FSL_DMA_LD_DEBUG
506 chan_dbg(chan, "LD %p free\n", desc);
507 #endif
508 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
509 }
510 }
511
512 static void fsldma_free_desc_list_reverse(struct fsldma_chan *chan,
513 struct list_head *list)
514 {
515 struct fsl_desc_sw *desc, *_desc;
516
517 list_for_each_entry_safe_reverse(desc, _desc, list, node) {
518 list_del(&desc->node);
519 #ifdef FSL_DMA_LD_DEBUG
520 chan_dbg(chan, "LD %p free\n", desc);
521 #endif
522 dma_pool_free(chan->desc_pool, desc, desc->async_tx.phys);
523 }
524 }
525
526 /**
527 * fsl_dma_free_chan_resources - Free all resources of the channel.
528 * @chan : Freescale DMA channel
529 */
530 static void fsl_dma_free_chan_resources(struct dma_chan *dchan)
531 {
532 struct fsldma_chan *chan = to_fsl_chan(dchan);
533 unsigned long flags;
534
535 chan_dbg(chan, "free all channel resources\n");
536 spin_lock_irqsave(&chan->desc_lock, flags);
537 fsldma_free_desc_list(chan, &chan->ld_pending);
538 fsldma_free_desc_list(chan, &chan->ld_running);
539 spin_unlock_irqrestore(&chan->desc_lock, flags);
540
541 dma_pool_destroy(chan->desc_pool);
542 chan->desc_pool = NULL;
543 }
544
545 static struct dma_async_tx_descriptor *
546 fsl_dma_prep_interrupt(struct dma_chan *dchan, unsigned long flags)
547 {
548 struct fsldma_chan *chan;
549 struct fsl_desc_sw *new;
550
551 if (!dchan)
552 return NULL;
553
554 chan = to_fsl_chan(dchan);
555
556 new = fsl_dma_alloc_descriptor(chan);
557 if (!new) {
558 chan_err(chan, "%s\n", msg_ld_oom);
559 return NULL;
560 }
561
562 new->async_tx.cookie = -EBUSY;
563 new->async_tx.flags = flags;
564
565 /* Insert the link descriptor to the LD ring */
566 list_add_tail(&new->node, &new->tx_list);
567
568 /* Set End-of-link to the last link descriptor of new list */
569 set_ld_eol(chan, new);
570
571 return &new->async_tx;
572 }
573
574 static struct dma_async_tx_descriptor *
575 fsl_dma_prep_memcpy(struct dma_chan *dchan,
576 dma_addr_t dma_dst, dma_addr_t dma_src,
577 size_t len, unsigned long flags)
578 {
579 struct fsldma_chan *chan;
580 struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
581 size_t copy;
582
583 if (!dchan)
584 return NULL;
585
586 if (!len)
587 return NULL;
588
589 chan = to_fsl_chan(dchan);
590
591 do {
592
593 /* Allocate the link descriptor from DMA pool */
594 new = fsl_dma_alloc_descriptor(chan);
595 if (!new) {
596 chan_err(chan, "%s\n", msg_ld_oom);
597 goto fail;
598 }
599
600 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
601
602 set_desc_cnt(chan, &new->hw, copy);
603 set_desc_src(chan, &new->hw, dma_src);
604 set_desc_dst(chan, &new->hw, dma_dst);
605
606 if (!first)
607 first = new;
608 else
609 set_desc_next(chan, &prev->hw, new->async_tx.phys);
610
611 new->async_tx.cookie = 0;
612 async_tx_ack(&new->async_tx);
613
614 prev = new;
615 len -= copy;
616 dma_src += copy;
617 dma_dst += copy;
618
619 /* Insert the link descriptor to the LD ring */
620 list_add_tail(&new->node, &first->tx_list);
621 } while (len);
622
623 new->async_tx.flags = flags; /* client is in control of this ack */
624 new->async_tx.cookie = -EBUSY;
625
626 /* Set End-of-link to the last link descriptor of new list */
627 set_ld_eol(chan, new);
628
629 return &first->async_tx;
630
631 fail:
632 if (!first)
633 return NULL;
634
635 fsldma_free_desc_list_reverse(chan, &first->tx_list);
636 return NULL;
637 }
638
639 static struct dma_async_tx_descriptor *fsl_dma_prep_sg(struct dma_chan *dchan,
640 struct scatterlist *dst_sg, unsigned int dst_nents,
641 struct scatterlist *src_sg, unsigned int src_nents,
642 unsigned long flags)
643 {
644 struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
645 struct fsldma_chan *chan = to_fsl_chan(dchan);
646 size_t dst_avail, src_avail;
647 dma_addr_t dst, src;
648 size_t len;
649
650 /* basic sanity checks */
651 if (dst_nents == 0 || src_nents == 0)
652 return NULL;
653
654 if (dst_sg == NULL || src_sg == NULL)
655 return NULL;
656
657 /*
658 * TODO: should we check that both scatterlists have the same
659 * TODO: number of bytes in total? Is that really an error?
660 */
661
662 /* get prepared for the loop */
663 dst_avail = sg_dma_len(dst_sg);
664 src_avail = sg_dma_len(src_sg);
665
666 /* run until we are out of scatterlist entries */
667 while (true) {
668
669 /* create the largest transaction possible */
670 len = min_t(size_t, src_avail, dst_avail);
671 len = min_t(size_t, len, FSL_DMA_BCR_MAX_CNT);
672 if (len == 0)
673 goto fetch;
674
675 dst = sg_dma_address(dst_sg) + sg_dma_len(dst_sg) - dst_avail;
676 src = sg_dma_address(src_sg) + sg_dma_len(src_sg) - src_avail;
677
678 /* allocate and populate the descriptor */
679 new = fsl_dma_alloc_descriptor(chan);
680 if (!new) {
681 chan_err(chan, "%s\n", msg_ld_oom);
682 goto fail;
683 }
684
685 set_desc_cnt(chan, &new->hw, len);
686 set_desc_src(chan, &new->hw, src);
687 set_desc_dst(chan, &new->hw, dst);
688
689 if (!first)
690 first = new;
691 else
692 set_desc_next(chan, &prev->hw, new->async_tx.phys);
693
694 new->async_tx.cookie = 0;
695 async_tx_ack(&new->async_tx);
696 prev = new;
697
698 /* Insert the link descriptor to the LD ring */
699 list_add_tail(&new->node, &first->tx_list);
700
701 /* update metadata */
702 dst_avail -= len;
703 src_avail -= len;
704
705 fetch:
706 /* fetch the next dst scatterlist entry */
707 if (dst_avail == 0) {
708
709 /* no more entries: we're done */
710 if (dst_nents == 0)
711 break;
712
713 /* fetch the next entry: if there are no more: done */
714 dst_sg = sg_next(dst_sg);
715 if (dst_sg == NULL)
716 break;
717
718 dst_nents--;
719 dst_avail = sg_dma_len(dst_sg);
720 }
721
722 /* fetch the next src scatterlist entry */
723 if (src_avail == 0) {
724
725 /* no more entries: we're done */
726 if (src_nents == 0)
727 break;
728
729 /* fetch the next entry: if there are no more: done */
730 src_sg = sg_next(src_sg);
731 if (src_sg == NULL)
732 break;
733
734 src_nents--;
735 src_avail = sg_dma_len(src_sg);
736 }
737 }
738
739 new->async_tx.flags = flags; /* client is in control of this ack */
740 new->async_tx.cookie = -EBUSY;
741
742 /* Set End-of-link to the last link descriptor of new list */
743 set_ld_eol(chan, new);
744
745 return &first->async_tx;
746
747 fail:
748 if (!first)
749 return NULL;
750
751 fsldma_free_desc_list_reverse(chan, &first->tx_list);
752 return NULL;
753 }
754
755 /**
756 * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
757 * @chan: DMA channel
758 * @sgl: scatterlist to transfer to/from
759 * @sg_len: number of entries in @scatterlist
760 * @direction: DMA direction
761 * @flags: DMAEngine flags
762 * @context: transaction context (ignored)
763 *
764 * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
765 * DMA_SLAVE API, this gets the device-specific information from the
766 * chan->private variable.
767 */
768 static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
769 struct dma_chan *dchan, struct scatterlist *sgl, unsigned int sg_len,
770 enum dma_transfer_direction direction, unsigned long flags,
771 void *context)
772 {
773 /*
774 * This operation is not supported on the Freescale DMA controller
775 *
776 * However, we need to provide the function pointer to allow the
777 * device_control() method to work.
778 */
779 return NULL;
780 }
781
782 static int fsl_dma_device_control(struct dma_chan *dchan,
783 enum dma_ctrl_cmd cmd, unsigned long arg)
784 {
785 struct dma_slave_config *config;
786 struct fsldma_chan *chan;
787 unsigned long flags;
788 int size;
789
790 if (!dchan)
791 return -EINVAL;
792
793 chan = to_fsl_chan(dchan);
794
795 switch (cmd) {
796 case DMA_TERMINATE_ALL:
797 spin_lock_irqsave(&chan->desc_lock, flags);
798
799 /* Halt the DMA engine */
800 dma_halt(chan);
801
802 /* Remove and free all of the descriptors in the LD queue */
803 fsldma_free_desc_list(chan, &chan->ld_pending);
804 fsldma_free_desc_list(chan, &chan->ld_running);
805 chan->idle = true;
806
807 spin_unlock_irqrestore(&chan->desc_lock, flags);
808 return 0;
809
810 case DMA_SLAVE_CONFIG:
811 config = (struct dma_slave_config *)arg;
812
813 /* make sure the channel supports setting burst size */
814 if (!chan->set_request_count)
815 return -ENXIO;
816
817 /* we set the controller burst size depending on direction */
818 if (config->direction == DMA_MEM_TO_DEV)
819 size = config->dst_addr_width * config->dst_maxburst;
820 else
821 size = config->src_addr_width * config->src_maxburst;
822
823 chan->set_request_count(chan, size);
824 return 0;
825
826 case FSLDMA_EXTERNAL_START:
827
828 /* make sure the channel supports external start */
829 if (!chan->toggle_ext_start)
830 return -ENXIO;
831
832 chan->toggle_ext_start(chan, arg);
833 return 0;
834
835 default:
836 return -ENXIO;
837 }
838
839 return 0;
840 }
841
842 /**
843 * fsldma_cleanup_descriptor - cleanup and free a single link descriptor
844 * @chan: Freescale DMA channel
845 * @desc: descriptor to cleanup and free
846 *
847 * This function is used on a descriptor which has been executed by the DMA
848 * controller. It will run any callbacks, submit any dependencies, and then
849 * free the descriptor.
850 */
851 static void fsldma_cleanup_descriptor(struct fsldma_chan *chan,
852 struct fsl_desc_sw *desc)
853 {
854 struct dma_async_tx_descriptor *txd = &desc->async_tx;
855 struct device *dev = chan->common.device->dev;
856 dma_addr_t src = get_desc_src(chan, desc);
857 dma_addr_t dst = get_desc_dst(chan, desc);
858 u32 len = get_desc_cnt(chan, desc);
859
860 /* Run the link descriptor callback function */
861 if (txd->callback) {
862 #ifdef FSL_DMA_LD_DEBUG
863 chan_dbg(chan, "LD %p callback\n", desc);
864 #endif
865 txd->callback(txd->callback_param);
866 }
867
868 /* Run any dependencies */
869 dma_run_dependencies(txd);
870
871 /* Unmap the dst buffer, if requested */
872 if (!(txd->flags & DMA_COMPL_SKIP_DEST_UNMAP)) {
873 if (txd->flags & DMA_COMPL_DEST_UNMAP_SINGLE)
874 dma_unmap_single(dev, dst, len, DMA_FROM_DEVICE);
875 else
876 dma_unmap_page(dev, dst, len, DMA_FROM_DEVICE);
877 }
878
879 /* Unmap the src buffer, if requested */
880 if (!(txd->flags & DMA_COMPL_SKIP_SRC_UNMAP)) {
881 if (txd->flags & DMA_COMPL_SRC_UNMAP_SINGLE)
882 dma_unmap_single(dev, src, len, DMA_TO_DEVICE);
883 else
884 dma_unmap_page(dev, src, len, DMA_TO_DEVICE);
885 }
886
887 #ifdef FSL_DMA_LD_DEBUG
888 chan_dbg(chan, "LD %p free\n", desc);
889 #endif
890 dma_pool_free(chan->desc_pool, desc, txd->phys);
891 }
892
893 /**
894 * fsl_chan_xfer_ld_queue - transfer any pending transactions
895 * @chan : Freescale DMA channel
896 *
897 * HARDWARE STATE: idle
898 * LOCKING: must hold chan->desc_lock
899 */
900 static void fsl_chan_xfer_ld_queue(struct fsldma_chan *chan)
901 {
902 struct fsl_desc_sw *desc;
903
904 /*
905 * If the list of pending descriptors is empty, then we
906 * don't need to do any work at all
907 */
908 if (list_empty(&chan->ld_pending)) {
909 chan_dbg(chan, "no pending LDs\n");
910 return;
911 }
912
913 /*
914 * The DMA controller is not idle, which means that the interrupt
915 * handler will start any queued transactions when it runs after
916 * this transaction finishes
917 */
918 if (!chan->idle) {
919 chan_dbg(chan, "DMA controller still busy\n");
920 return;
921 }
922
923 /*
924 * If there are some link descriptors which have not been
925 * transferred, we need to start the controller
926 */
927
928 /*
929 * Move all elements from the queue of pending transactions
930 * onto the list of running transactions
931 */
932 chan_dbg(chan, "idle, starting controller\n");
933 desc = list_first_entry(&chan->ld_pending, struct fsl_desc_sw, node);
934 list_splice_tail_init(&chan->ld_pending, &chan->ld_running);
935
936 /*
937 * The 85xx DMA controller doesn't clear the channel start bit
938 * automatically at the end of a transfer. Therefore we must clear
939 * it in software before starting the transfer.
940 */
941 if ((chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
942 u32 mode;
943
944 mode = DMA_IN(chan, &chan->regs->mr, 32);
945 mode &= ~FSL_DMA_MR_CS;
946 DMA_OUT(chan, &chan->regs->mr, mode, 32);
947 }
948
949 /*
950 * Program the descriptor's address into the DMA controller,
951 * then start the DMA transaction
952 */
953 set_cdar(chan, desc->async_tx.phys);
954 get_cdar(chan);
955
956 dma_start(chan);
957 chan->idle = false;
958 }
959
960 /**
961 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
962 * @chan : Freescale DMA channel
963 */
964 static void fsl_dma_memcpy_issue_pending(struct dma_chan *dchan)
965 {
966 struct fsldma_chan *chan = to_fsl_chan(dchan);
967 unsigned long flags;
968
969 spin_lock_irqsave(&chan->desc_lock, flags);
970 fsl_chan_xfer_ld_queue(chan);
971 spin_unlock_irqrestore(&chan->desc_lock, flags);
972 }
973
974 /**
975 * fsl_tx_status - Determine the DMA status
976 * @chan : Freescale DMA channel
977 */
978 static enum dma_status fsl_tx_status(struct dma_chan *dchan,
979 dma_cookie_t cookie,
980 struct dma_tx_state *txstate)
981 {
982 struct fsldma_chan *chan = to_fsl_chan(dchan);
983 enum dma_status ret;
984 unsigned long flags;
985
986 spin_lock_irqsave(&chan->desc_lock, flags);
987 ret = dma_cookie_status(dchan, cookie, txstate);
988 spin_unlock_irqrestore(&chan->desc_lock, flags);
989
990 return ret;
991 }
992
993 /*----------------------------------------------------------------------------*/
994 /* Interrupt Handling */
995 /*----------------------------------------------------------------------------*/
996
997 static irqreturn_t fsldma_chan_irq(int irq, void *data)
998 {
999 struct fsldma_chan *chan = data;
1000 u32 stat;
1001
1002 /* save and clear the status register */
1003 stat = get_sr(chan);
1004 set_sr(chan, stat);
1005 chan_dbg(chan, "irq: stat = 0x%x\n", stat);
1006
1007 /* check that this was really our device */
1008 stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
1009 if (!stat)
1010 return IRQ_NONE;
1011
1012 if (stat & FSL_DMA_SR_TE)
1013 chan_err(chan, "Transfer Error!\n");
1014
1015 /*
1016 * Programming Error
1017 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
1018 * trigger a PE interrupt.
1019 */
1020 if (stat & FSL_DMA_SR_PE) {
1021 chan_dbg(chan, "irq: Programming Error INT\n");
1022 stat &= ~FSL_DMA_SR_PE;
1023 if (get_bcr(chan) != 0)
1024 chan_err(chan, "Programming Error!\n");
1025 }
1026
1027 /*
1028 * For MPC8349, EOCDI event need to update cookie
1029 * and start the next transfer if it exist.
1030 */
1031 if (stat & FSL_DMA_SR_EOCDI) {
1032 chan_dbg(chan, "irq: End-of-Chain link INT\n");
1033 stat &= ~FSL_DMA_SR_EOCDI;
1034 }
1035
1036 /*
1037 * If it current transfer is the end-of-transfer,
1038 * we should clear the Channel Start bit for
1039 * prepare next transfer.
1040 */
1041 if (stat & FSL_DMA_SR_EOLNI) {
1042 chan_dbg(chan, "irq: End-of-link INT\n");
1043 stat &= ~FSL_DMA_SR_EOLNI;
1044 }
1045
1046 /* check that the DMA controller is really idle */
1047 if (!dma_is_idle(chan))
1048 chan_err(chan, "irq: controller not idle!\n");
1049
1050 /* check that we handled all of the bits */
1051 if (stat)
1052 chan_err(chan, "irq: unhandled sr 0x%08x\n", stat);
1053
1054 /*
1055 * Schedule the tasklet to handle all cleanup of the current
1056 * transaction. It will start a new transaction if there is
1057 * one pending.
1058 */
1059 tasklet_schedule(&chan->tasklet);
1060 chan_dbg(chan, "irq: Exit\n");
1061 return IRQ_HANDLED;
1062 }
1063
1064 static void dma_do_tasklet(unsigned long data)
1065 {
1066 struct fsldma_chan *chan = (struct fsldma_chan *)data;
1067 struct fsl_desc_sw *desc, *_desc;
1068 LIST_HEAD(ld_cleanup);
1069 unsigned long flags;
1070
1071 chan_dbg(chan, "tasklet entry\n");
1072
1073 spin_lock_irqsave(&chan->desc_lock, flags);
1074
1075 /* update the cookie if we have some descriptors to cleanup */
1076 if (!list_empty(&chan->ld_running)) {
1077 dma_cookie_t cookie;
1078
1079 desc = to_fsl_desc(chan->ld_running.prev);
1080 cookie = desc->async_tx.cookie;
1081 dma_cookie_complete(&desc->async_tx);
1082
1083 chan_dbg(chan, "completed_cookie=%d\n", cookie);
1084 }
1085
1086 /*
1087 * move the descriptors to a temporary list so we can drop the lock
1088 * during the entire cleanup operation
1089 */
1090 list_splice_tail_init(&chan->ld_running, &ld_cleanup);
1091
1092 /* the hardware is now idle and ready for more */
1093 chan->idle = true;
1094
1095 /*
1096 * Start any pending transactions automatically
1097 *
1098 * In the ideal case, we keep the DMA controller busy while we go
1099 * ahead and free the descriptors below.
1100 */
1101 fsl_chan_xfer_ld_queue(chan);
1102 spin_unlock_irqrestore(&chan->desc_lock, flags);
1103
1104 /* Run the callback for each descriptor, in order */
1105 list_for_each_entry_safe(desc, _desc, &ld_cleanup, node) {
1106
1107 /* Remove from the list of transactions */
1108 list_del(&desc->node);
1109
1110 /* Run all cleanup for this descriptor */
1111 fsldma_cleanup_descriptor(chan, desc);
1112 }
1113
1114 chan_dbg(chan, "tasklet exit\n");
1115 }
1116
1117 static irqreturn_t fsldma_ctrl_irq(int irq, void *data)
1118 {
1119 struct fsldma_device *fdev = data;
1120 struct fsldma_chan *chan;
1121 unsigned int handled = 0;
1122 u32 gsr, mask;
1123 int i;
1124
1125 gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->regs)
1126 : in_le32(fdev->regs);
1127 mask = 0xff000000;
1128 dev_dbg(fdev->dev, "IRQ: gsr 0x%.8x\n", gsr);
1129
1130 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1131 chan = fdev->chan[i];
1132 if (!chan)
1133 continue;
1134
1135 if (gsr & mask) {
1136 dev_dbg(fdev->dev, "IRQ: chan %d\n", chan->id);
1137 fsldma_chan_irq(irq, chan);
1138 handled++;
1139 }
1140
1141 gsr &= ~mask;
1142 mask >>= 8;
1143 }
1144
1145 return IRQ_RETVAL(handled);
1146 }
1147
1148 static void fsldma_free_irqs(struct fsldma_device *fdev)
1149 {
1150 struct fsldma_chan *chan;
1151 int i;
1152
1153 if (fdev->irq != NO_IRQ) {
1154 dev_dbg(fdev->dev, "free per-controller IRQ\n");
1155 free_irq(fdev->irq, fdev);
1156 return;
1157 }
1158
1159 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1160 chan = fdev->chan[i];
1161 if (chan && chan->irq != NO_IRQ) {
1162 chan_dbg(chan, "free per-channel IRQ\n");
1163 free_irq(chan->irq, chan);
1164 }
1165 }
1166 }
1167
1168 static int fsldma_request_irqs(struct fsldma_device *fdev)
1169 {
1170 struct fsldma_chan *chan;
1171 int ret;
1172 int i;
1173
1174 /* if we have a per-controller IRQ, use that */
1175 if (fdev->irq != NO_IRQ) {
1176 dev_dbg(fdev->dev, "request per-controller IRQ\n");
1177 ret = request_irq(fdev->irq, fsldma_ctrl_irq, IRQF_SHARED,
1178 "fsldma-controller", fdev);
1179 return ret;
1180 }
1181
1182 /* no per-controller IRQ, use the per-channel IRQs */
1183 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1184 chan = fdev->chan[i];
1185 if (!chan)
1186 continue;
1187
1188 if (chan->irq == NO_IRQ) {
1189 chan_err(chan, "interrupts property missing in device tree\n");
1190 ret = -ENODEV;
1191 goto out_unwind;
1192 }
1193
1194 chan_dbg(chan, "request per-channel IRQ\n");
1195 ret = request_irq(chan->irq, fsldma_chan_irq, IRQF_SHARED,
1196 "fsldma-chan", chan);
1197 if (ret) {
1198 chan_err(chan, "unable to request per-channel IRQ\n");
1199 goto out_unwind;
1200 }
1201 }
1202
1203 return 0;
1204
1205 out_unwind:
1206 for (/* none */; i >= 0; i--) {
1207 chan = fdev->chan[i];
1208 if (!chan)
1209 continue;
1210
1211 if (chan->irq == NO_IRQ)
1212 continue;
1213
1214 free_irq(chan->irq, chan);
1215 }
1216
1217 return ret;
1218 }
1219
1220 /*----------------------------------------------------------------------------*/
1221 /* OpenFirmware Subsystem */
1222 /*----------------------------------------------------------------------------*/
1223
1224 static int fsl_dma_chan_probe(struct fsldma_device *fdev,
1225 struct device_node *node, u32 feature, const char *compatible)
1226 {
1227 struct fsldma_chan *chan;
1228 struct resource res;
1229 int err;
1230
1231 /* alloc channel */
1232 chan = kzalloc(sizeof(*chan), GFP_KERNEL);
1233 if (!chan) {
1234 dev_err(fdev->dev, "no free memory for DMA channels!\n");
1235 err = -ENOMEM;
1236 goto out_return;
1237 }
1238
1239 /* ioremap registers for use */
1240 chan->regs = of_iomap(node, 0);
1241 if (!chan->regs) {
1242 dev_err(fdev->dev, "unable to ioremap registers\n");
1243 err = -ENOMEM;
1244 goto out_free_chan;
1245 }
1246
1247 err = of_address_to_resource(node, 0, &res);
1248 if (err) {
1249 dev_err(fdev->dev, "unable to find 'reg' property\n");
1250 goto out_iounmap_regs;
1251 }
1252
1253 chan->feature = feature;
1254 if (!fdev->feature)
1255 fdev->feature = chan->feature;
1256
1257 /*
1258 * If the DMA device's feature is different than the feature
1259 * of its channels, report the bug
1260 */
1261 WARN_ON(fdev->feature != chan->feature);
1262
1263 chan->dev = fdev->dev;
1264 chan->id = ((res.start - 0x100) & 0xfff) >> 7;
1265 if (chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1266 dev_err(fdev->dev, "too many channels for device\n");
1267 err = -EINVAL;
1268 goto out_iounmap_regs;
1269 }
1270
1271 fdev->chan[chan->id] = chan;
1272 tasklet_init(&chan->tasklet, dma_do_tasklet, (unsigned long)chan);
1273 snprintf(chan->name, sizeof(chan->name), "chan%d", chan->id);
1274
1275 /* Initialize the channel */
1276 dma_init(chan);
1277
1278 /* Clear cdar registers */
1279 set_cdar(chan, 0);
1280
1281 switch (chan->feature & FSL_DMA_IP_MASK) {
1282 case FSL_DMA_IP_85XX:
1283 chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1284 case FSL_DMA_IP_83XX:
1285 chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1286 chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1287 chan->set_dst_loop_size = fsl_chan_set_dst_loop_size;
1288 chan->set_request_count = fsl_chan_set_request_count;
1289 }
1290
1291 spin_lock_init(&chan->desc_lock);
1292 INIT_LIST_HEAD(&chan->ld_pending);
1293 INIT_LIST_HEAD(&chan->ld_running);
1294 chan->idle = true;
1295
1296 chan->common.device = &fdev->common;
1297 dma_cookie_init(&chan->common);
1298
1299 /* find the IRQ line, if it exists in the device tree */
1300 chan->irq = irq_of_parse_and_map(node, 0);
1301
1302 /* Add the channel to DMA device channel list */
1303 list_add_tail(&chan->common.device_node, &fdev->common.channels);
1304 fdev->common.chancnt++;
1305
1306 dev_info(fdev->dev, "#%d (%s), irq %d\n", chan->id, compatible,
1307 chan->irq != NO_IRQ ? chan->irq : fdev->irq);
1308
1309 return 0;
1310
1311 out_iounmap_regs:
1312 iounmap(chan->regs);
1313 out_free_chan:
1314 kfree(chan);
1315 out_return:
1316 return err;
1317 }
1318
1319 static void fsl_dma_chan_remove(struct fsldma_chan *chan)
1320 {
1321 irq_dispose_mapping(chan->irq);
1322 list_del(&chan->common.device_node);
1323 iounmap(chan->regs);
1324 kfree(chan);
1325 }
1326
1327 static int fsldma_of_probe(struct platform_device *op)
1328 {
1329 struct fsldma_device *fdev;
1330 struct device_node *child;
1331 int err;
1332
1333 fdev = kzalloc(sizeof(*fdev), GFP_KERNEL);
1334 if (!fdev) {
1335 dev_err(&op->dev, "No enough memory for 'priv'\n");
1336 err = -ENOMEM;
1337 goto out_return;
1338 }
1339
1340 fdev->dev = &op->dev;
1341 INIT_LIST_HEAD(&fdev->common.channels);
1342
1343 /* ioremap the registers for use */
1344 fdev->regs = of_iomap(op->dev.of_node, 0);
1345 if (!fdev->regs) {
1346 dev_err(&op->dev, "unable to ioremap registers\n");
1347 err = -ENOMEM;
1348 goto out_free_fdev;
1349 }
1350
1351 /* map the channel IRQ if it exists, but don't hookup the handler yet */
1352 fdev->irq = irq_of_parse_and_map(op->dev.of_node, 0);
1353
1354 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1355 dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
1356 dma_cap_set(DMA_SG, fdev->common.cap_mask);
1357 dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1358 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1359 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1360 fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
1361 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1362 fdev->common.device_prep_dma_sg = fsl_dma_prep_sg;
1363 fdev->common.device_tx_status = fsl_tx_status;
1364 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1365 fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1366 fdev->common.device_control = fsl_dma_device_control;
1367 fdev->common.dev = &op->dev;
1368
1369 dma_set_mask(&(op->dev), DMA_BIT_MASK(36));
1370
1371 dev_set_drvdata(&op->dev, fdev);
1372
1373 /*
1374 * We cannot use of_platform_bus_probe() because there is no
1375 * of_platform_bus_remove(). Instead, we manually instantiate every DMA
1376 * channel object.
1377 */
1378 for_each_child_of_node(op->dev.of_node, child) {
1379 if (of_device_is_compatible(child, "fsl,eloplus-dma-channel")) {
1380 fsl_dma_chan_probe(fdev, child,
1381 FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1382 "fsl,eloplus-dma-channel");
1383 }
1384
1385 if (of_device_is_compatible(child, "fsl,elo-dma-channel")) {
1386 fsl_dma_chan_probe(fdev, child,
1387 FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1388 "fsl,elo-dma-channel");
1389 }
1390 }
1391
1392 /*
1393 * Hookup the IRQ handler(s)
1394 *
1395 * If we have a per-controller interrupt, we prefer that to the
1396 * per-channel interrupts to reduce the number of shared interrupt
1397 * handlers on the same IRQ line
1398 */
1399 err = fsldma_request_irqs(fdev);
1400 if (err) {
1401 dev_err(fdev->dev, "unable to request IRQs\n");
1402 goto out_free_fdev;
1403 }
1404
1405 dma_async_device_register(&fdev->common);
1406 return 0;
1407
1408 out_free_fdev:
1409 irq_dispose_mapping(fdev->irq);
1410 kfree(fdev);
1411 out_return:
1412 return err;
1413 }
1414
1415 static int fsldma_of_remove(struct platform_device *op)
1416 {
1417 struct fsldma_device *fdev;
1418 unsigned int i;
1419
1420 fdev = dev_get_drvdata(&op->dev);
1421 dma_async_device_unregister(&fdev->common);
1422
1423 fsldma_free_irqs(fdev);
1424
1425 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++) {
1426 if (fdev->chan[i])
1427 fsl_dma_chan_remove(fdev->chan[i]);
1428 }
1429
1430 iounmap(fdev->regs);
1431 dev_set_drvdata(&op->dev, NULL);
1432 kfree(fdev);
1433
1434 return 0;
1435 }
1436
1437 static const struct of_device_id fsldma_of_ids[] = {
1438 { .compatible = "fsl,eloplus-dma", },
1439 { .compatible = "fsl,elo-dma", },
1440 {}
1441 };
1442
1443 static struct platform_driver fsldma_of_driver = {
1444 .driver = {
1445 .name = "fsl-elo-dma",
1446 .owner = THIS_MODULE,
1447 .of_match_table = fsldma_of_ids,
1448 },
1449 .probe = fsldma_of_probe,
1450 .remove = fsldma_of_remove,
1451 };
1452
1453 /*----------------------------------------------------------------------------*/
1454 /* Module Init / Exit */
1455 /*----------------------------------------------------------------------------*/
1456
1457 static __init int fsldma_init(void)
1458 {
1459 pr_info("Freescale Elo / Elo Plus DMA driver\n");
1460 return platform_driver_register(&fsldma_of_driver);
1461 }
1462
1463 static void __exit fsldma_exit(void)
1464 {
1465 platform_driver_unregister(&fsldma_of_driver);
1466 }
1467
1468 subsys_initcall(fsldma_init);
1469 module_exit(fsldma_exit);
1470
1471 MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
1472 MODULE_LICENSE("GPL");