0bad741765c6399a036ceb85c2ab0a176ecfb9df
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / dma / fsldma.c
1 /*
2 * Freescale MPC85xx, MPC83xx DMA Engine support
3 *
4 * Copyright (C) 2007 Freescale Semiconductor, Inc. All rights reserved.
5 *
6 * Author:
7 * Zhang Wei <wei.zhang@freescale.com>, Jul 2007
8 * Ebony Zhu <ebony.zhu@freescale.com>, May 2007
9 *
10 * Description:
11 * DMA engine driver for Freescale MPC8540 DMA controller, which is
12 * also fit for MPC8560, MPC8555, MPC8548, MPC8641, and etc.
13 * The support for MPC8349 DMA contorller is also added.
14 *
15 * This driver instructs the DMA controller to issue the PCI Read Multiple
16 * command for PCI read operations, instead of using the default PCI Read Line
17 * command. Please be aware that this setting may result in read pre-fetching
18 * on some platforms.
19 *
20 * This is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2 of the License, or
23 * (at your option) any later version.
24 *
25 */
26
27 #include <linux/init.h>
28 #include <linux/module.h>
29 #include <linux/pci.h>
30 #include <linux/interrupt.h>
31 #include <linux/dmaengine.h>
32 #include <linux/delay.h>
33 #include <linux/dma-mapping.h>
34 #include <linux/dmapool.h>
35 #include <linux/of_platform.h>
36
37 #include <asm/fsldma.h>
38 #include "fsldma.h"
39
40 static void dma_init(struct fsl_dma_chan *fsl_chan)
41 {
42 /* Reset the channel */
43 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, 0, 32);
44
45 switch (fsl_chan->feature & FSL_DMA_IP_MASK) {
46 case FSL_DMA_IP_85XX:
47 /* Set the channel to below modes:
48 * EIE - Error interrupt enable
49 * EOSIE - End of segments interrupt enable (basic mode)
50 * EOLNIE - End of links interrupt enable
51 */
52 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EIE
53 | FSL_DMA_MR_EOLNIE | FSL_DMA_MR_EOSIE, 32);
54 break;
55 case FSL_DMA_IP_83XX:
56 /* Set the channel to below modes:
57 * EOTIE - End-of-transfer interrupt enable
58 * PRC_RM - PCI read multiple
59 */
60 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, FSL_DMA_MR_EOTIE
61 | FSL_DMA_MR_PRC_RM, 32);
62 break;
63 }
64
65 }
66
67 static void set_sr(struct fsl_dma_chan *fsl_chan, u32 val)
68 {
69 DMA_OUT(fsl_chan, &fsl_chan->reg_base->sr, val, 32);
70 }
71
72 static u32 get_sr(struct fsl_dma_chan *fsl_chan)
73 {
74 return DMA_IN(fsl_chan, &fsl_chan->reg_base->sr, 32);
75 }
76
77 static void set_desc_cnt(struct fsl_dma_chan *fsl_chan,
78 struct fsl_dma_ld_hw *hw, u32 count)
79 {
80 hw->count = CPU_TO_DMA(fsl_chan, count, 32);
81 }
82
83 static void set_desc_src(struct fsl_dma_chan *fsl_chan,
84 struct fsl_dma_ld_hw *hw, dma_addr_t src)
85 {
86 u64 snoop_bits;
87
88 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
89 ? ((u64)FSL_DMA_SATR_SREADTYPE_SNOOP_READ << 32) : 0;
90 hw->src_addr = CPU_TO_DMA(fsl_chan, snoop_bits | src, 64);
91 }
92
93 static void set_desc_dest(struct fsl_dma_chan *fsl_chan,
94 struct fsl_dma_ld_hw *hw, dma_addr_t dest)
95 {
96 u64 snoop_bits;
97
98 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX)
99 ? ((u64)FSL_DMA_DATR_DWRITETYPE_SNOOP_WRITE << 32) : 0;
100 hw->dst_addr = CPU_TO_DMA(fsl_chan, snoop_bits | dest, 64);
101 }
102
103 static void set_desc_next(struct fsl_dma_chan *fsl_chan,
104 struct fsl_dma_ld_hw *hw, dma_addr_t next)
105 {
106 u64 snoop_bits;
107
108 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
109 ? FSL_DMA_SNEN : 0;
110 hw->next_ln_addr = CPU_TO_DMA(fsl_chan, snoop_bits | next, 64);
111 }
112
113 static void set_cdar(struct fsl_dma_chan *fsl_chan, dma_addr_t addr)
114 {
115 DMA_OUT(fsl_chan, &fsl_chan->reg_base->cdar, addr | FSL_DMA_SNEN, 64);
116 }
117
118 static dma_addr_t get_cdar(struct fsl_dma_chan *fsl_chan)
119 {
120 return DMA_IN(fsl_chan, &fsl_chan->reg_base->cdar, 64) & ~FSL_DMA_SNEN;
121 }
122
123 static void set_ndar(struct fsl_dma_chan *fsl_chan, dma_addr_t addr)
124 {
125 DMA_OUT(fsl_chan, &fsl_chan->reg_base->ndar, addr, 64);
126 }
127
128 static dma_addr_t get_ndar(struct fsl_dma_chan *fsl_chan)
129 {
130 return DMA_IN(fsl_chan, &fsl_chan->reg_base->ndar, 64);
131 }
132
133 static u32 get_bcr(struct fsl_dma_chan *fsl_chan)
134 {
135 return DMA_IN(fsl_chan, &fsl_chan->reg_base->bcr, 32);
136 }
137
138 static int dma_is_idle(struct fsl_dma_chan *fsl_chan)
139 {
140 u32 sr = get_sr(fsl_chan);
141 return (!(sr & FSL_DMA_SR_CB)) || (sr & FSL_DMA_SR_CH);
142 }
143
144 static void dma_start(struct fsl_dma_chan *fsl_chan)
145 {
146 u32 mode;
147
148 mode = DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32);
149
150 if ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_85XX) {
151 if (fsl_chan->feature & FSL_DMA_CHAN_PAUSE_EXT) {
152 DMA_OUT(fsl_chan, &fsl_chan->reg_base->bcr, 0, 32);
153 mode |= FSL_DMA_MR_EMP_EN;
154 } else {
155 mode &= ~FSL_DMA_MR_EMP_EN;
156 }
157 }
158
159 if (fsl_chan->feature & FSL_DMA_CHAN_START_EXT)
160 mode |= FSL_DMA_MR_EMS_EN;
161 else
162 mode |= FSL_DMA_MR_CS;
163
164 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, mode, 32);
165 }
166
167 static void dma_halt(struct fsl_dma_chan *fsl_chan)
168 {
169 u32 mode;
170 int i;
171
172 mode = DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32);
173 mode |= FSL_DMA_MR_CA;
174 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, mode, 32);
175
176 mode &= ~(FSL_DMA_MR_CS | FSL_DMA_MR_EMS_EN | FSL_DMA_MR_CA);
177 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, mode, 32);
178
179 for (i = 0; i < 100; i++) {
180 if (dma_is_idle(fsl_chan))
181 break;
182 udelay(10);
183 }
184
185 if (i >= 100 && !dma_is_idle(fsl_chan))
186 dev_err(fsl_chan->dev, "DMA halt timeout!\n");
187 }
188
189 static void set_ld_eol(struct fsl_dma_chan *fsl_chan,
190 struct fsl_desc_sw *desc)
191 {
192 u64 snoop_bits;
193
194 snoop_bits = ((fsl_chan->feature & FSL_DMA_IP_MASK) == FSL_DMA_IP_83XX)
195 ? FSL_DMA_SNEN : 0;
196
197 desc->hw.next_ln_addr = CPU_TO_DMA(fsl_chan,
198 DMA_TO_CPU(fsl_chan, desc->hw.next_ln_addr, 64) | FSL_DMA_EOL
199 | snoop_bits, 64);
200 }
201
202 static void append_ld_queue(struct fsl_dma_chan *fsl_chan,
203 struct fsl_desc_sw *new_desc)
204 {
205 struct fsl_desc_sw *queue_tail = to_fsl_desc(fsl_chan->ld_queue.prev);
206
207 if (list_empty(&fsl_chan->ld_queue))
208 return;
209
210 /* Link to the new descriptor physical address and
211 * Enable End-of-segment interrupt for
212 * the last link descriptor.
213 * (the previous node's next link descriptor)
214 *
215 * For FSL_DMA_IP_83xx, the snoop enable bit need be set.
216 */
217 queue_tail->hw.next_ln_addr = CPU_TO_DMA(fsl_chan,
218 new_desc->async_tx.phys | FSL_DMA_EOSIE |
219 (((fsl_chan->feature & FSL_DMA_IP_MASK)
220 == FSL_DMA_IP_83XX) ? FSL_DMA_SNEN : 0), 64);
221 }
222
223 /**
224 * fsl_chan_set_src_loop_size - Set source address hold transfer size
225 * @fsl_chan : Freescale DMA channel
226 * @size : Address loop size, 0 for disable loop
227 *
228 * The set source address hold transfer size. The source
229 * address hold or loop transfer size is when the DMA transfer
230 * data from source address (SA), if the loop size is 4, the DMA will
231 * read data from SA, SA + 1, SA + 2, SA + 3, then loop back to SA,
232 * SA + 1 ... and so on.
233 */
234 static void fsl_chan_set_src_loop_size(struct fsl_dma_chan *fsl_chan, int size)
235 {
236 u32 mode;
237
238 mode = DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32);
239
240 switch (size) {
241 case 0:
242 mode &= ~FSL_DMA_MR_SAHE;
243 break;
244 case 1:
245 case 2:
246 case 4:
247 case 8:
248 mode |= FSL_DMA_MR_SAHE | (__ilog2(size) << 14);
249 break;
250 }
251
252 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, mode, 32);
253 }
254
255 /**
256 * fsl_chan_set_dest_loop_size - Set destination address hold transfer size
257 * @fsl_chan : Freescale DMA channel
258 * @size : Address loop size, 0 for disable loop
259 *
260 * The set destination address hold transfer size. The destination
261 * address hold or loop transfer size is when the DMA transfer
262 * data to destination address (TA), if the loop size is 4, the DMA will
263 * write data to TA, TA + 1, TA + 2, TA + 3, then loop back to TA,
264 * TA + 1 ... and so on.
265 */
266 static void fsl_chan_set_dest_loop_size(struct fsl_dma_chan *fsl_chan, int size)
267 {
268 u32 mode;
269
270 mode = DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32);
271
272 switch (size) {
273 case 0:
274 mode &= ~FSL_DMA_MR_DAHE;
275 break;
276 case 1:
277 case 2:
278 case 4:
279 case 8:
280 mode |= FSL_DMA_MR_DAHE | (__ilog2(size) << 16);
281 break;
282 }
283
284 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, mode, 32);
285 }
286
287 /**
288 * fsl_chan_set_request_count - Set DMA Request Count for external control
289 * @fsl_chan : Freescale DMA channel
290 * @size : Number of bytes to transfer in a single request
291 *
292 * The Freescale DMA channel can be controlled by the external signal DREQ#.
293 * The DMA request count is how many bytes are allowed to transfer before
294 * pausing the channel, after which a new assertion of DREQ# resumes channel
295 * operation.
296 *
297 * A size of 0 disables external pause control. The maximum size is 1024.
298 */
299 static void fsl_chan_set_request_count(struct fsl_dma_chan *fsl_chan, int size)
300 {
301 u32 mode;
302
303 BUG_ON(size > 1024);
304
305 mode = DMA_IN(fsl_chan, &fsl_chan->reg_base->mr, 32);
306 mode |= (__ilog2(size) << 24) & 0x0f000000;
307
308 DMA_OUT(fsl_chan, &fsl_chan->reg_base->mr, mode, 32);
309 }
310
311 /**
312 * fsl_chan_toggle_ext_pause - Toggle channel external pause status
313 * @fsl_chan : Freescale DMA channel
314 * @enable : 0 is disabled, 1 is enabled.
315 *
316 * The Freescale DMA channel can be controlled by the external signal DREQ#.
317 * The DMA Request Count feature should be used in addition to this feature
318 * to set the number of bytes to transfer before pausing the channel.
319 */
320 static void fsl_chan_toggle_ext_pause(struct fsl_dma_chan *fsl_chan, int enable)
321 {
322 if (enable)
323 fsl_chan->feature |= FSL_DMA_CHAN_PAUSE_EXT;
324 else
325 fsl_chan->feature &= ~FSL_DMA_CHAN_PAUSE_EXT;
326 }
327
328 /**
329 * fsl_chan_toggle_ext_start - Toggle channel external start status
330 * @fsl_chan : Freescale DMA channel
331 * @enable : 0 is disabled, 1 is enabled.
332 *
333 * If enable the external start, the channel can be started by an
334 * external DMA start pin. So the dma_start() does not start the
335 * transfer immediately. The DMA channel will wait for the
336 * control pin asserted.
337 */
338 static void fsl_chan_toggle_ext_start(struct fsl_dma_chan *fsl_chan, int enable)
339 {
340 if (enable)
341 fsl_chan->feature |= FSL_DMA_CHAN_START_EXT;
342 else
343 fsl_chan->feature &= ~FSL_DMA_CHAN_START_EXT;
344 }
345
346 static dma_cookie_t fsl_dma_tx_submit(struct dma_async_tx_descriptor *tx)
347 {
348 struct fsl_dma_chan *fsl_chan = to_fsl_chan(tx->chan);
349 struct fsl_desc_sw *desc = tx_to_fsl_desc(tx);
350 struct fsl_desc_sw *child;
351 unsigned long flags;
352 dma_cookie_t cookie;
353
354 /* cookie increment and adding to ld_queue must be atomic */
355 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
356
357 cookie = fsl_chan->common.cookie;
358 list_for_each_entry(child, &desc->tx_list, node) {
359 cookie++;
360 if (cookie < 0)
361 cookie = 1;
362
363 desc->async_tx.cookie = cookie;
364 }
365
366 fsl_chan->common.cookie = cookie;
367 append_ld_queue(fsl_chan, desc);
368 list_splice_init(&desc->tx_list, fsl_chan->ld_queue.prev);
369
370 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
371
372 return cookie;
373 }
374
375 /**
376 * fsl_dma_alloc_descriptor - Allocate descriptor from channel's DMA pool.
377 * @fsl_chan : Freescale DMA channel
378 *
379 * Return - The descriptor allocated. NULL for failed.
380 */
381 static struct fsl_desc_sw *fsl_dma_alloc_descriptor(
382 struct fsl_dma_chan *fsl_chan)
383 {
384 dma_addr_t pdesc;
385 struct fsl_desc_sw *desc_sw;
386
387 desc_sw = dma_pool_alloc(fsl_chan->desc_pool, GFP_ATOMIC, &pdesc);
388 if (desc_sw) {
389 memset(desc_sw, 0, sizeof(struct fsl_desc_sw));
390 INIT_LIST_HEAD(&desc_sw->tx_list);
391 dma_async_tx_descriptor_init(&desc_sw->async_tx,
392 &fsl_chan->common);
393 desc_sw->async_tx.tx_submit = fsl_dma_tx_submit;
394 desc_sw->async_tx.phys = pdesc;
395 }
396
397 return desc_sw;
398 }
399
400
401 /**
402 * fsl_dma_alloc_chan_resources - Allocate resources for DMA channel.
403 * @fsl_chan : Freescale DMA channel
404 *
405 * This function will create a dma pool for descriptor allocation.
406 *
407 * Return - The number of descriptors allocated.
408 */
409 static int fsl_dma_alloc_chan_resources(struct dma_chan *chan)
410 {
411 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
412
413 /* Has this channel already been allocated? */
414 if (fsl_chan->desc_pool)
415 return 1;
416
417 /* We need the descriptor to be aligned to 32bytes
418 * for meeting FSL DMA specification requirement.
419 */
420 fsl_chan->desc_pool = dma_pool_create("fsl_dma_engine_desc_pool",
421 fsl_chan->dev, sizeof(struct fsl_desc_sw),
422 32, 0);
423 if (!fsl_chan->desc_pool) {
424 dev_err(fsl_chan->dev, "No memory for channel %d "
425 "descriptor dma pool.\n", fsl_chan->id);
426 return 0;
427 }
428
429 return 1;
430 }
431
432 /**
433 * fsl_dma_free_chan_resources - Free all resources of the channel.
434 * @fsl_chan : Freescale DMA channel
435 */
436 static void fsl_dma_free_chan_resources(struct dma_chan *chan)
437 {
438 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
439 struct fsl_desc_sw *desc, *_desc;
440 unsigned long flags;
441
442 dev_dbg(fsl_chan->dev, "Free all channel resources.\n");
443 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
444 list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) {
445 #ifdef FSL_DMA_LD_DEBUG
446 dev_dbg(fsl_chan->dev,
447 "LD %p will be released.\n", desc);
448 #endif
449 list_del(&desc->node);
450 /* free link descriptor */
451 dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
452 }
453 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
454 dma_pool_destroy(fsl_chan->desc_pool);
455
456 fsl_chan->desc_pool = NULL;
457 }
458
459 static struct dma_async_tx_descriptor *
460 fsl_dma_prep_interrupt(struct dma_chan *chan, unsigned long flags)
461 {
462 struct fsl_dma_chan *fsl_chan;
463 struct fsl_desc_sw *new;
464
465 if (!chan)
466 return NULL;
467
468 fsl_chan = to_fsl_chan(chan);
469
470 new = fsl_dma_alloc_descriptor(fsl_chan);
471 if (!new) {
472 dev_err(fsl_chan->dev, "No free memory for link descriptor\n");
473 return NULL;
474 }
475
476 new->async_tx.cookie = -EBUSY;
477 new->async_tx.flags = flags;
478
479 /* Insert the link descriptor to the LD ring */
480 list_add_tail(&new->node, &new->tx_list);
481
482 /* Set End-of-link to the last link descriptor of new list*/
483 set_ld_eol(fsl_chan, new);
484
485 return &new->async_tx;
486 }
487
488 static struct dma_async_tx_descriptor *fsl_dma_prep_memcpy(
489 struct dma_chan *chan, dma_addr_t dma_dest, dma_addr_t dma_src,
490 size_t len, unsigned long flags)
491 {
492 struct fsl_dma_chan *fsl_chan;
493 struct fsl_desc_sw *first = NULL, *prev = NULL, *new;
494 struct list_head *list;
495 size_t copy;
496
497 if (!chan)
498 return NULL;
499
500 if (!len)
501 return NULL;
502
503 fsl_chan = to_fsl_chan(chan);
504
505 do {
506
507 /* Allocate the link descriptor from DMA pool */
508 new = fsl_dma_alloc_descriptor(fsl_chan);
509 if (!new) {
510 dev_err(fsl_chan->dev,
511 "No free memory for link descriptor\n");
512 goto fail;
513 }
514 #ifdef FSL_DMA_LD_DEBUG
515 dev_dbg(fsl_chan->dev, "new link desc alloc %p\n", new);
516 #endif
517
518 copy = min(len, (size_t)FSL_DMA_BCR_MAX_CNT);
519
520 set_desc_cnt(fsl_chan, &new->hw, copy);
521 set_desc_src(fsl_chan, &new->hw, dma_src);
522 set_desc_dest(fsl_chan, &new->hw, dma_dest);
523
524 if (!first)
525 first = new;
526 else
527 set_desc_next(fsl_chan, &prev->hw, new->async_tx.phys);
528
529 new->async_tx.cookie = 0;
530 async_tx_ack(&new->async_tx);
531
532 prev = new;
533 len -= copy;
534 dma_src += copy;
535 dma_dest += copy;
536
537 /* Insert the link descriptor to the LD ring */
538 list_add_tail(&new->node, &first->tx_list);
539 } while (len);
540
541 new->async_tx.flags = flags; /* client is in control of this ack */
542 new->async_tx.cookie = -EBUSY;
543
544 /* Set End-of-link to the last link descriptor of new list*/
545 set_ld_eol(fsl_chan, new);
546
547 return &first->async_tx;
548
549 fail:
550 if (!first)
551 return NULL;
552
553 list = &first->tx_list;
554 list_for_each_entry_safe_reverse(new, prev, list, node) {
555 list_del(&new->node);
556 dma_pool_free(fsl_chan->desc_pool, new, new->async_tx.phys);
557 }
558
559 return NULL;
560 }
561
562 /**
563 * fsl_dma_prep_slave_sg - prepare descriptors for a DMA_SLAVE transaction
564 * @chan: DMA channel
565 * @sgl: scatterlist to transfer to/from
566 * @sg_len: number of entries in @scatterlist
567 * @direction: DMA direction
568 * @flags: DMAEngine flags
569 *
570 * Prepare a set of descriptors for a DMA_SLAVE transaction. Following the
571 * DMA_SLAVE API, this gets the device-specific information from the
572 * chan->private variable.
573 */
574 static struct dma_async_tx_descriptor *fsl_dma_prep_slave_sg(
575 struct dma_chan *chan, struct scatterlist *sgl, unsigned int sg_len,
576 enum dma_data_direction direction, unsigned long flags)
577 {
578 struct fsl_dma_chan *fsl_chan;
579 struct fsl_desc_sw *first = NULL, *prev = NULL, *new = NULL;
580 struct fsl_dma_slave *slave;
581 struct list_head *tx_list;
582 size_t copy;
583
584 int i;
585 struct scatterlist *sg;
586 size_t sg_used;
587 size_t hw_used;
588 struct fsl_dma_hw_addr *hw;
589 dma_addr_t dma_dst, dma_src;
590
591 if (!chan)
592 return NULL;
593
594 if (!chan->private)
595 return NULL;
596
597 fsl_chan = to_fsl_chan(chan);
598 slave = chan->private;
599
600 if (list_empty(&slave->addresses))
601 return NULL;
602
603 hw = list_first_entry(&slave->addresses, struct fsl_dma_hw_addr, entry);
604 hw_used = 0;
605
606 /*
607 * Build the hardware transaction to copy from the scatterlist to
608 * the hardware, or from the hardware to the scatterlist
609 *
610 * If you are copying from the hardware to the scatterlist and it
611 * takes two hardware entries to fill an entire page, then both
612 * hardware entries will be coalesced into the same page
613 *
614 * If you are copying from the scatterlist to the hardware and a
615 * single page can fill two hardware entries, then the data will
616 * be read out of the page into the first hardware entry, and so on
617 */
618 for_each_sg(sgl, sg, sg_len, i) {
619 sg_used = 0;
620
621 /* Loop until the entire scatterlist entry is used */
622 while (sg_used < sg_dma_len(sg)) {
623
624 /*
625 * If we've used up the current hardware address/length
626 * pair, we need to load a new one
627 *
628 * This is done in a while loop so that descriptors with
629 * length == 0 will be skipped
630 */
631 while (hw_used >= hw->length) {
632
633 /*
634 * If the current hardware entry is the last
635 * entry in the list, we're finished
636 */
637 if (list_is_last(&hw->entry, &slave->addresses))
638 goto finished;
639
640 /* Get the next hardware address/length pair */
641 hw = list_entry(hw->entry.next,
642 struct fsl_dma_hw_addr, entry);
643 hw_used = 0;
644 }
645
646 /* Allocate the link descriptor from DMA pool */
647 new = fsl_dma_alloc_descriptor(fsl_chan);
648 if (!new) {
649 dev_err(fsl_chan->dev, "No free memory for "
650 "link descriptor\n");
651 goto fail;
652 }
653 #ifdef FSL_DMA_LD_DEBUG
654 dev_dbg(fsl_chan->dev, "new link desc alloc %p\n", new);
655 #endif
656
657 /*
658 * Calculate the maximum number of bytes to transfer,
659 * making sure it is less than the DMA controller limit
660 */
661 copy = min_t(size_t, sg_dma_len(sg) - sg_used,
662 hw->length - hw_used);
663 copy = min_t(size_t, copy, FSL_DMA_BCR_MAX_CNT);
664
665 /*
666 * DMA_FROM_DEVICE
667 * from the hardware to the scatterlist
668 *
669 * DMA_TO_DEVICE
670 * from the scatterlist to the hardware
671 */
672 if (direction == DMA_FROM_DEVICE) {
673 dma_src = hw->address + hw_used;
674 dma_dst = sg_dma_address(sg) + sg_used;
675 } else {
676 dma_src = sg_dma_address(sg) + sg_used;
677 dma_dst = hw->address + hw_used;
678 }
679
680 /* Fill in the descriptor */
681 set_desc_cnt(fsl_chan, &new->hw, copy);
682 set_desc_src(fsl_chan, &new->hw, dma_src);
683 set_desc_dest(fsl_chan, &new->hw, dma_dst);
684
685 /*
686 * If this is not the first descriptor, chain the
687 * current descriptor after the previous descriptor
688 */
689 if (!first) {
690 first = new;
691 } else {
692 set_desc_next(fsl_chan, &prev->hw,
693 new->async_tx.phys);
694 }
695
696 new->async_tx.cookie = 0;
697 async_tx_ack(&new->async_tx);
698
699 prev = new;
700 sg_used += copy;
701 hw_used += copy;
702
703 /* Insert the link descriptor into the LD ring */
704 list_add_tail(&new->node, &first->tx_list);
705 }
706 }
707
708 finished:
709
710 /* All of the hardware address/length pairs had length == 0 */
711 if (!first || !new)
712 return NULL;
713
714 new->async_tx.flags = flags;
715 new->async_tx.cookie = -EBUSY;
716
717 /* Set End-of-link to the last link descriptor of new list */
718 set_ld_eol(fsl_chan, new);
719
720 /* Enable extra controller features */
721 if (fsl_chan->set_src_loop_size)
722 fsl_chan->set_src_loop_size(fsl_chan, slave->src_loop_size);
723
724 if (fsl_chan->set_dest_loop_size)
725 fsl_chan->set_dest_loop_size(fsl_chan, slave->dst_loop_size);
726
727 if (fsl_chan->toggle_ext_start)
728 fsl_chan->toggle_ext_start(fsl_chan, slave->external_start);
729
730 if (fsl_chan->toggle_ext_pause)
731 fsl_chan->toggle_ext_pause(fsl_chan, slave->external_pause);
732
733 if (fsl_chan->set_request_count)
734 fsl_chan->set_request_count(fsl_chan, slave->request_count);
735
736 return &first->async_tx;
737
738 fail:
739 /* If first was not set, then we failed to allocate the very first
740 * descriptor, and we're done */
741 if (!first)
742 return NULL;
743
744 /*
745 * First is set, so all of the descriptors we allocated have been added
746 * to first->tx_list, INCLUDING "first" itself. Therefore we
747 * must traverse the list backwards freeing each descriptor in turn
748 *
749 * We're re-using variables for the loop, oh well
750 */
751 tx_list = &first->tx_list;
752 list_for_each_entry_safe_reverse(new, prev, tx_list, node) {
753 list_del_init(&new->node);
754 dma_pool_free(fsl_chan->desc_pool, new, new->async_tx.phys);
755 }
756
757 return NULL;
758 }
759
760 static void fsl_dma_device_terminate_all(struct dma_chan *chan)
761 {
762 struct fsl_dma_chan *fsl_chan;
763 struct fsl_desc_sw *desc, *tmp;
764 unsigned long flags;
765
766 if (!chan)
767 return;
768
769 fsl_chan = to_fsl_chan(chan);
770
771 /* Halt the DMA engine */
772 dma_halt(fsl_chan);
773
774 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
775
776 /* Remove and free all of the descriptors in the LD queue */
777 list_for_each_entry_safe(desc, tmp, &fsl_chan->ld_queue, node) {
778 list_del(&desc->node);
779 dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
780 }
781
782 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
783 }
784
785 /**
786 * fsl_dma_update_completed_cookie - Update the completed cookie.
787 * @fsl_chan : Freescale DMA channel
788 */
789 static void fsl_dma_update_completed_cookie(struct fsl_dma_chan *fsl_chan)
790 {
791 struct fsl_desc_sw *cur_desc, *desc;
792 dma_addr_t ld_phy;
793
794 ld_phy = get_cdar(fsl_chan) & FSL_DMA_NLDA_MASK;
795
796 if (ld_phy) {
797 cur_desc = NULL;
798 list_for_each_entry(desc, &fsl_chan->ld_queue, node)
799 if (desc->async_tx.phys == ld_phy) {
800 cur_desc = desc;
801 break;
802 }
803
804 if (cur_desc && cur_desc->async_tx.cookie) {
805 if (dma_is_idle(fsl_chan))
806 fsl_chan->completed_cookie =
807 cur_desc->async_tx.cookie;
808 else
809 fsl_chan->completed_cookie =
810 cur_desc->async_tx.cookie - 1;
811 }
812 }
813 }
814
815 /**
816 * fsl_chan_ld_cleanup - Clean up link descriptors
817 * @fsl_chan : Freescale DMA channel
818 *
819 * This function clean up the ld_queue of DMA channel.
820 * If 'in_intr' is set, the function will move the link descriptor to
821 * the recycle list. Otherwise, free it directly.
822 */
823 static void fsl_chan_ld_cleanup(struct fsl_dma_chan *fsl_chan)
824 {
825 struct fsl_desc_sw *desc, *_desc;
826 unsigned long flags;
827
828 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
829
830 dev_dbg(fsl_chan->dev, "chan completed_cookie = %d\n",
831 fsl_chan->completed_cookie);
832 list_for_each_entry_safe(desc, _desc, &fsl_chan->ld_queue, node) {
833 dma_async_tx_callback callback;
834 void *callback_param;
835
836 if (dma_async_is_complete(desc->async_tx.cookie,
837 fsl_chan->completed_cookie, fsl_chan->common.cookie)
838 == DMA_IN_PROGRESS)
839 break;
840
841 callback = desc->async_tx.callback;
842 callback_param = desc->async_tx.callback_param;
843
844 /* Remove from ld_queue list */
845 list_del(&desc->node);
846
847 dev_dbg(fsl_chan->dev, "link descriptor %p will be recycle.\n",
848 desc);
849 dma_pool_free(fsl_chan->desc_pool, desc, desc->async_tx.phys);
850
851 /* Run the link descriptor callback function */
852 if (callback) {
853 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
854 dev_dbg(fsl_chan->dev, "link descriptor %p callback\n",
855 desc);
856 callback(callback_param);
857 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
858 }
859 }
860 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
861 }
862
863 /**
864 * fsl_chan_xfer_ld_queue - Transfer link descriptors in channel ld_queue.
865 * @fsl_chan : Freescale DMA channel
866 */
867 static void fsl_chan_xfer_ld_queue(struct fsl_dma_chan *fsl_chan)
868 {
869 struct list_head *ld_node;
870 dma_addr_t next_dest_addr;
871 unsigned long flags;
872
873 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
874
875 if (!dma_is_idle(fsl_chan))
876 goto out_unlock;
877
878 dma_halt(fsl_chan);
879
880 /* If there are some link descriptors
881 * not transfered in queue. We need to start it.
882 */
883
884 /* Find the first un-transfer desciptor */
885 for (ld_node = fsl_chan->ld_queue.next;
886 (ld_node != &fsl_chan->ld_queue)
887 && (dma_async_is_complete(
888 to_fsl_desc(ld_node)->async_tx.cookie,
889 fsl_chan->completed_cookie,
890 fsl_chan->common.cookie) == DMA_SUCCESS);
891 ld_node = ld_node->next);
892
893 if (ld_node != &fsl_chan->ld_queue) {
894 /* Get the ld start address from ld_queue */
895 next_dest_addr = to_fsl_desc(ld_node)->async_tx.phys;
896 dev_dbg(fsl_chan->dev, "xfer LDs staring from 0x%llx\n",
897 (unsigned long long)next_dest_addr);
898 set_cdar(fsl_chan, next_dest_addr);
899 dma_start(fsl_chan);
900 } else {
901 set_cdar(fsl_chan, 0);
902 set_ndar(fsl_chan, 0);
903 }
904
905 out_unlock:
906 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
907 }
908
909 /**
910 * fsl_dma_memcpy_issue_pending - Issue the DMA start command
911 * @fsl_chan : Freescale DMA channel
912 */
913 static void fsl_dma_memcpy_issue_pending(struct dma_chan *chan)
914 {
915 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
916
917 #ifdef FSL_DMA_LD_DEBUG
918 struct fsl_desc_sw *ld;
919 unsigned long flags;
920
921 spin_lock_irqsave(&fsl_chan->desc_lock, flags);
922 if (list_empty(&fsl_chan->ld_queue)) {
923 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
924 return;
925 }
926
927 dev_dbg(fsl_chan->dev, "--memcpy issue--\n");
928 list_for_each_entry(ld, &fsl_chan->ld_queue, node) {
929 int i;
930 dev_dbg(fsl_chan->dev, "Ch %d, LD %08x\n",
931 fsl_chan->id, ld->async_tx.phys);
932 for (i = 0; i < 8; i++)
933 dev_dbg(fsl_chan->dev, "LD offset %d: %08x\n",
934 i, *(((u32 *)&ld->hw) + i));
935 }
936 dev_dbg(fsl_chan->dev, "----------------\n");
937 spin_unlock_irqrestore(&fsl_chan->desc_lock, flags);
938 #endif
939
940 fsl_chan_xfer_ld_queue(fsl_chan);
941 }
942
943 /**
944 * fsl_dma_is_complete - Determine the DMA status
945 * @fsl_chan : Freescale DMA channel
946 */
947 static enum dma_status fsl_dma_is_complete(struct dma_chan *chan,
948 dma_cookie_t cookie,
949 dma_cookie_t *done,
950 dma_cookie_t *used)
951 {
952 struct fsl_dma_chan *fsl_chan = to_fsl_chan(chan);
953 dma_cookie_t last_used;
954 dma_cookie_t last_complete;
955
956 fsl_chan_ld_cleanup(fsl_chan);
957
958 last_used = chan->cookie;
959 last_complete = fsl_chan->completed_cookie;
960
961 if (done)
962 *done = last_complete;
963
964 if (used)
965 *used = last_used;
966
967 return dma_async_is_complete(cookie, last_complete, last_used);
968 }
969
970 static irqreturn_t fsl_dma_chan_do_interrupt(int irq, void *data)
971 {
972 struct fsl_dma_chan *fsl_chan = (struct fsl_dma_chan *)data;
973 u32 stat;
974 int update_cookie = 0;
975 int xfer_ld_q = 0;
976
977 stat = get_sr(fsl_chan);
978 dev_dbg(fsl_chan->dev, "event: channel %d, stat = 0x%x\n",
979 fsl_chan->id, stat);
980 set_sr(fsl_chan, stat); /* Clear the event register */
981
982 stat &= ~(FSL_DMA_SR_CB | FSL_DMA_SR_CH);
983 if (!stat)
984 return IRQ_NONE;
985
986 if (stat & FSL_DMA_SR_TE)
987 dev_err(fsl_chan->dev, "Transfer Error!\n");
988
989 /* Programming Error
990 * The DMA_INTERRUPT async_tx is a NULL transfer, which will
991 * triger a PE interrupt.
992 */
993 if (stat & FSL_DMA_SR_PE) {
994 dev_dbg(fsl_chan->dev, "event: Programming Error INT\n");
995 if (get_bcr(fsl_chan) == 0) {
996 /* BCR register is 0, this is a DMA_INTERRUPT async_tx.
997 * Now, update the completed cookie, and continue the
998 * next uncompleted transfer.
999 */
1000 update_cookie = 1;
1001 xfer_ld_q = 1;
1002 }
1003 stat &= ~FSL_DMA_SR_PE;
1004 }
1005
1006 /* If the link descriptor segment transfer finishes,
1007 * we will recycle the used descriptor.
1008 */
1009 if (stat & FSL_DMA_SR_EOSI) {
1010 dev_dbg(fsl_chan->dev, "event: End-of-segments INT\n");
1011 dev_dbg(fsl_chan->dev, "event: clndar 0x%llx, nlndar 0x%llx\n",
1012 (unsigned long long)get_cdar(fsl_chan),
1013 (unsigned long long)get_ndar(fsl_chan));
1014 stat &= ~FSL_DMA_SR_EOSI;
1015 update_cookie = 1;
1016 }
1017
1018 /* For MPC8349, EOCDI event need to update cookie
1019 * and start the next transfer if it exist.
1020 */
1021 if (stat & FSL_DMA_SR_EOCDI) {
1022 dev_dbg(fsl_chan->dev, "event: End-of-Chain link INT\n");
1023 stat &= ~FSL_DMA_SR_EOCDI;
1024 update_cookie = 1;
1025 xfer_ld_q = 1;
1026 }
1027
1028 /* If it current transfer is the end-of-transfer,
1029 * we should clear the Channel Start bit for
1030 * prepare next transfer.
1031 */
1032 if (stat & FSL_DMA_SR_EOLNI) {
1033 dev_dbg(fsl_chan->dev, "event: End-of-link INT\n");
1034 stat &= ~FSL_DMA_SR_EOLNI;
1035 xfer_ld_q = 1;
1036 }
1037
1038 if (update_cookie)
1039 fsl_dma_update_completed_cookie(fsl_chan);
1040 if (xfer_ld_q)
1041 fsl_chan_xfer_ld_queue(fsl_chan);
1042 if (stat)
1043 dev_dbg(fsl_chan->dev, "event: unhandled sr 0x%02x\n",
1044 stat);
1045
1046 dev_dbg(fsl_chan->dev, "event: Exit\n");
1047 tasklet_schedule(&fsl_chan->tasklet);
1048 return IRQ_HANDLED;
1049 }
1050
1051 static irqreturn_t fsl_dma_do_interrupt(int irq, void *data)
1052 {
1053 struct fsl_dma_device *fdev = (struct fsl_dma_device *)data;
1054 u32 gsr;
1055 int ch_nr;
1056
1057 gsr = (fdev->feature & FSL_DMA_BIG_ENDIAN) ? in_be32(fdev->reg_base)
1058 : in_le32(fdev->reg_base);
1059 ch_nr = (32 - ffs(gsr)) / 8;
1060
1061 return fdev->chan[ch_nr] ? fsl_dma_chan_do_interrupt(irq,
1062 fdev->chan[ch_nr]) : IRQ_NONE;
1063 }
1064
1065 static void dma_do_tasklet(unsigned long data)
1066 {
1067 struct fsl_dma_chan *fsl_chan = (struct fsl_dma_chan *)data;
1068 fsl_chan_ld_cleanup(fsl_chan);
1069 }
1070
1071 static int __devinit fsl_dma_chan_probe(struct fsl_dma_device *fdev,
1072 struct device_node *node, u32 feature, const char *compatible)
1073 {
1074 struct fsl_dma_chan *new_fsl_chan;
1075 int err;
1076
1077 /* alloc channel */
1078 new_fsl_chan = kzalloc(sizeof(struct fsl_dma_chan), GFP_KERNEL);
1079 if (!new_fsl_chan) {
1080 dev_err(fdev->dev, "No free memory for allocating "
1081 "dma channels!\n");
1082 return -ENOMEM;
1083 }
1084
1085 /* get dma channel register base */
1086 err = of_address_to_resource(node, 0, &new_fsl_chan->reg);
1087 if (err) {
1088 dev_err(fdev->dev, "Can't get %s property 'reg'\n",
1089 node->full_name);
1090 goto err_no_reg;
1091 }
1092
1093 new_fsl_chan->feature = feature;
1094
1095 if (!fdev->feature)
1096 fdev->feature = new_fsl_chan->feature;
1097
1098 /* If the DMA device's feature is different than its channels',
1099 * report the bug.
1100 */
1101 WARN_ON(fdev->feature != new_fsl_chan->feature);
1102
1103 new_fsl_chan->dev = fdev->dev;
1104 new_fsl_chan->reg_base = ioremap(new_fsl_chan->reg.start,
1105 new_fsl_chan->reg.end - new_fsl_chan->reg.start + 1);
1106
1107 new_fsl_chan->id = ((new_fsl_chan->reg.start - 0x100) & 0xfff) >> 7;
1108 if (new_fsl_chan->id >= FSL_DMA_MAX_CHANS_PER_DEVICE) {
1109 dev_err(fdev->dev, "There is no %d channel!\n",
1110 new_fsl_chan->id);
1111 err = -EINVAL;
1112 goto err_no_chan;
1113 }
1114 fdev->chan[new_fsl_chan->id] = new_fsl_chan;
1115 tasklet_init(&new_fsl_chan->tasklet, dma_do_tasklet,
1116 (unsigned long)new_fsl_chan);
1117
1118 /* Init the channel */
1119 dma_init(new_fsl_chan);
1120
1121 /* Clear cdar registers */
1122 set_cdar(new_fsl_chan, 0);
1123
1124 switch (new_fsl_chan->feature & FSL_DMA_IP_MASK) {
1125 case FSL_DMA_IP_85XX:
1126 new_fsl_chan->toggle_ext_pause = fsl_chan_toggle_ext_pause;
1127 case FSL_DMA_IP_83XX:
1128 new_fsl_chan->toggle_ext_start = fsl_chan_toggle_ext_start;
1129 new_fsl_chan->set_src_loop_size = fsl_chan_set_src_loop_size;
1130 new_fsl_chan->set_dest_loop_size = fsl_chan_set_dest_loop_size;
1131 new_fsl_chan->set_request_count = fsl_chan_set_request_count;
1132 }
1133
1134 spin_lock_init(&new_fsl_chan->desc_lock);
1135 INIT_LIST_HEAD(&new_fsl_chan->ld_queue);
1136
1137 new_fsl_chan->common.device = &fdev->common;
1138
1139 /* Add the channel to DMA device channel list */
1140 list_add_tail(&new_fsl_chan->common.device_node,
1141 &fdev->common.channels);
1142 fdev->common.chancnt++;
1143
1144 new_fsl_chan->irq = irq_of_parse_and_map(node, 0);
1145 if (new_fsl_chan->irq != NO_IRQ) {
1146 err = request_irq(new_fsl_chan->irq,
1147 &fsl_dma_chan_do_interrupt, IRQF_SHARED,
1148 "fsldma-channel", new_fsl_chan);
1149 if (err) {
1150 dev_err(fdev->dev, "DMA channel %s request_irq error "
1151 "with return %d\n", node->full_name, err);
1152 goto err_no_irq;
1153 }
1154 }
1155
1156 dev_info(fdev->dev, "#%d (%s), irq %d\n", new_fsl_chan->id,
1157 compatible,
1158 new_fsl_chan->irq != NO_IRQ ? new_fsl_chan->irq : fdev->irq);
1159
1160 return 0;
1161
1162 err_no_irq:
1163 list_del(&new_fsl_chan->common.device_node);
1164 err_no_chan:
1165 iounmap(new_fsl_chan->reg_base);
1166 err_no_reg:
1167 kfree(new_fsl_chan);
1168 return err;
1169 }
1170
1171 static void fsl_dma_chan_remove(struct fsl_dma_chan *fchan)
1172 {
1173 if (fchan->irq != NO_IRQ)
1174 free_irq(fchan->irq, fchan);
1175 list_del(&fchan->common.device_node);
1176 iounmap(fchan->reg_base);
1177 kfree(fchan);
1178 }
1179
1180 static int __devinit of_fsl_dma_probe(struct of_device *dev,
1181 const struct of_device_id *match)
1182 {
1183 int err;
1184 struct fsl_dma_device *fdev;
1185 struct device_node *child;
1186
1187 fdev = kzalloc(sizeof(struct fsl_dma_device), GFP_KERNEL);
1188 if (!fdev) {
1189 dev_err(&dev->dev, "No enough memory for 'priv'\n");
1190 return -ENOMEM;
1191 }
1192 fdev->dev = &dev->dev;
1193 INIT_LIST_HEAD(&fdev->common.channels);
1194
1195 /* get DMA controller register base */
1196 err = of_address_to_resource(dev->node, 0, &fdev->reg);
1197 if (err) {
1198 dev_err(&dev->dev, "Can't get %s property 'reg'\n",
1199 dev->node->full_name);
1200 goto err_no_reg;
1201 }
1202
1203 dev_info(&dev->dev, "Probe the Freescale DMA driver for %s "
1204 "controller at 0x%llx...\n",
1205 match->compatible, (unsigned long long)fdev->reg.start);
1206 fdev->reg_base = ioremap(fdev->reg.start, fdev->reg.end
1207 - fdev->reg.start + 1);
1208
1209 dma_cap_set(DMA_MEMCPY, fdev->common.cap_mask);
1210 dma_cap_set(DMA_INTERRUPT, fdev->common.cap_mask);
1211 dma_cap_set(DMA_SLAVE, fdev->common.cap_mask);
1212 fdev->common.device_alloc_chan_resources = fsl_dma_alloc_chan_resources;
1213 fdev->common.device_free_chan_resources = fsl_dma_free_chan_resources;
1214 fdev->common.device_prep_dma_interrupt = fsl_dma_prep_interrupt;
1215 fdev->common.device_prep_dma_memcpy = fsl_dma_prep_memcpy;
1216 fdev->common.device_is_tx_complete = fsl_dma_is_complete;
1217 fdev->common.device_issue_pending = fsl_dma_memcpy_issue_pending;
1218 fdev->common.device_prep_slave_sg = fsl_dma_prep_slave_sg;
1219 fdev->common.device_terminate_all = fsl_dma_device_terminate_all;
1220 fdev->common.dev = &dev->dev;
1221
1222 fdev->irq = irq_of_parse_and_map(dev->node, 0);
1223 if (fdev->irq != NO_IRQ) {
1224 err = request_irq(fdev->irq, &fsl_dma_do_interrupt, IRQF_SHARED,
1225 "fsldma-device", fdev);
1226 if (err) {
1227 dev_err(&dev->dev, "DMA device request_irq error "
1228 "with return %d\n", err);
1229 goto err;
1230 }
1231 }
1232
1233 dev_set_drvdata(&(dev->dev), fdev);
1234
1235 /* We cannot use of_platform_bus_probe() because there is no
1236 * of_platform_bus_remove. Instead, we manually instantiate every DMA
1237 * channel object.
1238 */
1239 for_each_child_of_node(dev->node, child) {
1240 if (of_device_is_compatible(child, "fsl,eloplus-dma-channel"))
1241 fsl_dma_chan_probe(fdev, child,
1242 FSL_DMA_IP_85XX | FSL_DMA_BIG_ENDIAN,
1243 "fsl,eloplus-dma-channel");
1244 if (of_device_is_compatible(child, "fsl,elo-dma-channel"))
1245 fsl_dma_chan_probe(fdev, child,
1246 FSL_DMA_IP_83XX | FSL_DMA_LITTLE_ENDIAN,
1247 "fsl,elo-dma-channel");
1248 }
1249
1250 dma_async_device_register(&fdev->common);
1251 return 0;
1252
1253 err:
1254 iounmap(fdev->reg_base);
1255 err_no_reg:
1256 kfree(fdev);
1257 return err;
1258 }
1259
1260 static int of_fsl_dma_remove(struct of_device *of_dev)
1261 {
1262 struct fsl_dma_device *fdev;
1263 unsigned int i;
1264
1265 fdev = dev_get_drvdata(&of_dev->dev);
1266
1267 dma_async_device_unregister(&fdev->common);
1268
1269 for (i = 0; i < FSL_DMA_MAX_CHANS_PER_DEVICE; i++)
1270 if (fdev->chan[i])
1271 fsl_dma_chan_remove(fdev->chan[i]);
1272
1273 if (fdev->irq != NO_IRQ)
1274 free_irq(fdev->irq, fdev);
1275
1276 iounmap(fdev->reg_base);
1277
1278 kfree(fdev);
1279 dev_set_drvdata(&of_dev->dev, NULL);
1280
1281 return 0;
1282 }
1283
1284 static struct of_device_id of_fsl_dma_ids[] = {
1285 { .compatible = "fsl,eloplus-dma", },
1286 { .compatible = "fsl,elo-dma", },
1287 {}
1288 };
1289
1290 static struct of_platform_driver of_fsl_dma_driver = {
1291 .name = "fsl-elo-dma",
1292 .match_table = of_fsl_dma_ids,
1293 .probe = of_fsl_dma_probe,
1294 .remove = of_fsl_dma_remove,
1295 };
1296
1297 static __init int of_fsl_dma_init(void)
1298 {
1299 int ret;
1300
1301 pr_info("Freescale Elo / Elo Plus DMA driver\n");
1302
1303 ret = of_register_platform_driver(&of_fsl_dma_driver);
1304 if (ret)
1305 pr_err("fsldma: failed to register platform driver\n");
1306
1307 return ret;
1308 }
1309
1310 static void __exit of_fsl_dma_exit(void)
1311 {
1312 of_unregister_platform_driver(&of_fsl_dma_driver);
1313 }
1314
1315 subsys_initcall(of_fsl_dma_init);
1316 module_exit(of_fsl_dma_exit);
1317
1318 MODULE_DESCRIPTION("Freescale Elo / Elo Plus DMA driver");
1319 MODULE_LICENSE("GPL");