dmaengine: Add dma_client parameter to device_alloc_chan_resources
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / dma / dmaengine.c
1 /*
2 * Copyright(c) 2004 - 2006 Intel Corporation. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or modify it
5 * under the terms of the GNU General Public License as published by the Free
6 * Software Foundation; either version 2 of the License, or (at your option)
7 * any later version.
8 *
9 * This program is distributed in the hope that it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc., 59
16 * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * The full GNU General Public License is included in this distribution in the
19 * file called COPYING.
20 */
21
22 /*
23 * This code implements the DMA subsystem. It provides a HW-neutral interface
24 * for other kernel code to use asynchronous memory copy capabilities,
25 * if present, and allows different HW DMA drivers to register as providing
26 * this capability.
27 *
28 * Due to the fact we are accelerating what is already a relatively fast
29 * operation, the code goes to great lengths to avoid additional overhead,
30 * such as locking.
31 *
32 * LOCKING:
33 *
34 * The subsystem keeps two global lists, dma_device_list and dma_client_list.
35 * Both of these are protected by a mutex, dma_list_mutex.
36 *
37 * Each device has a channels list, which runs unlocked but is never modified
38 * once the device is registered, it's just setup by the driver.
39 *
40 * Each client is responsible for keeping track of the channels it uses. See
41 * the definition of dma_event_callback in dmaengine.h.
42 *
43 * Each device has a kref, which is initialized to 1 when the device is
44 * registered. A kref_get is done for each device registered. When the
45 * device is released, the corresponding kref_put is done in the release
46 * method. Every time one of the device's channels is allocated to a client,
47 * a kref_get occurs. When the channel is freed, the corresponding kref_put
48 * happens. The device's release function does a completion, so
49 * unregister_device does a remove event, device_unregister, a kref_put
50 * for the first reference, then waits on the completion for all other
51 * references to finish.
52 *
53 * Each channel has an open-coded implementation of Rusty Russell's "bigref,"
54 * with a kref and a per_cpu local_t. A dma_chan_get is called when a client
55 * signals that it wants to use a channel, and dma_chan_put is called when
56 * a channel is removed or a client using it is unregistered. A client can
57 * take extra references per outstanding transaction, as is the case with
58 * the NET DMA client. The release function does a kref_put on the device.
59 * -ChrisL, DanW
60 */
61
62 #include <linux/init.h>
63 #include <linux/module.h>
64 #include <linux/mm.h>
65 #include <linux/device.h>
66 #include <linux/dmaengine.h>
67 #include <linux/hardirq.h>
68 #include <linux/spinlock.h>
69 #include <linux/percpu.h>
70 #include <linux/rcupdate.h>
71 #include <linux/mutex.h>
72 #include <linux/jiffies.h>
73
74 static DEFINE_MUTEX(dma_list_mutex);
75 static LIST_HEAD(dma_device_list);
76 static LIST_HEAD(dma_client_list);
77
78 /* --- sysfs implementation --- */
79
80 static ssize_t show_memcpy_count(struct device *dev, struct device_attribute *attr, char *buf)
81 {
82 struct dma_chan *chan = to_dma_chan(dev);
83 unsigned long count = 0;
84 int i;
85
86 for_each_possible_cpu(i)
87 count += per_cpu_ptr(chan->local, i)->memcpy_count;
88
89 return sprintf(buf, "%lu\n", count);
90 }
91
92 static ssize_t show_bytes_transferred(struct device *dev, struct device_attribute *attr,
93 char *buf)
94 {
95 struct dma_chan *chan = to_dma_chan(dev);
96 unsigned long count = 0;
97 int i;
98
99 for_each_possible_cpu(i)
100 count += per_cpu_ptr(chan->local, i)->bytes_transferred;
101
102 return sprintf(buf, "%lu\n", count);
103 }
104
105 static ssize_t show_in_use(struct device *dev, struct device_attribute *attr, char *buf)
106 {
107 struct dma_chan *chan = to_dma_chan(dev);
108 int in_use = 0;
109
110 if (unlikely(chan->slow_ref) &&
111 atomic_read(&chan->refcount.refcount) > 1)
112 in_use = 1;
113 else {
114 if (local_read(&(per_cpu_ptr(chan->local,
115 get_cpu())->refcount)) > 0)
116 in_use = 1;
117 put_cpu();
118 }
119
120 return sprintf(buf, "%d\n", in_use);
121 }
122
123 static struct device_attribute dma_attrs[] = {
124 __ATTR(memcpy_count, S_IRUGO, show_memcpy_count, NULL),
125 __ATTR(bytes_transferred, S_IRUGO, show_bytes_transferred, NULL),
126 __ATTR(in_use, S_IRUGO, show_in_use, NULL),
127 __ATTR_NULL
128 };
129
130 static void dma_async_device_cleanup(struct kref *kref);
131
132 static void dma_dev_release(struct device *dev)
133 {
134 struct dma_chan *chan = to_dma_chan(dev);
135 kref_put(&chan->device->refcount, dma_async_device_cleanup);
136 }
137
138 static struct class dma_devclass = {
139 .name = "dma",
140 .dev_attrs = dma_attrs,
141 .dev_release = dma_dev_release,
142 };
143
144 /* --- client and device registration --- */
145
146 #define dma_chan_satisfies_mask(chan, mask) \
147 __dma_chan_satisfies_mask((chan), &(mask))
148 static int
149 __dma_chan_satisfies_mask(struct dma_chan *chan, dma_cap_mask_t *want)
150 {
151 dma_cap_mask_t has;
152
153 bitmap_and(has.bits, want->bits, chan->device->cap_mask.bits,
154 DMA_TX_TYPE_END);
155 return bitmap_equal(want->bits, has.bits, DMA_TX_TYPE_END);
156 }
157
158 /**
159 * dma_client_chan_alloc - try to allocate channels to a client
160 * @client: &dma_client
161 *
162 * Called with dma_list_mutex held.
163 */
164 static void dma_client_chan_alloc(struct dma_client *client)
165 {
166 struct dma_device *device;
167 struct dma_chan *chan;
168 int desc; /* allocated descriptor count */
169 enum dma_state_client ack;
170
171 /* Find a channel */
172 list_for_each_entry(device, &dma_device_list, global_node)
173 list_for_each_entry(chan, &device->channels, device_node) {
174 if (!dma_chan_satisfies_mask(chan, client->cap_mask))
175 continue;
176
177 desc = chan->device->device_alloc_chan_resources(
178 chan, client);
179 if (desc >= 0) {
180 ack = client->event_callback(client,
181 chan,
182 DMA_RESOURCE_AVAILABLE);
183
184 /* we are done once this client rejects
185 * an available resource
186 */
187 if (ack == DMA_ACK) {
188 dma_chan_get(chan);
189 chan->client_count++;
190 } else if (ack == DMA_NAK)
191 return;
192 }
193 }
194 }
195
196 enum dma_status dma_sync_wait(struct dma_chan *chan, dma_cookie_t cookie)
197 {
198 enum dma_status status;
199 unsigned long dma_sync_wait_timeout = jiffies + msecs_to_jiffies(5000);
200
201 dma_async_issue_pending(chan);
202 do {
203 status = dma_async_is_tx_complete(chan, cookie, NULL, NULL);
204 if (time_after_eq(jiffies, dma_sync_wait_timeout)) {
205 printk(KERN_ERR "dma_sync_wait_timeout!\n");
206 return DMA_ERROR;
207 }
208 } while (status == DMA_IN_PROGRESS);
209
210 return status;
211 }
212 EXPORT_SYMBOL(dma_sync_wait);
213
214 /**
215 * dma_chan_cleanup - release a DMA channel's resources
216 * @kref: kernel reference structure that contains the DMA channel device
217 */
218 void dma_chan_cleanup(struct kref *kref)
219 {
220 struct dma_chan *chan = container_of(kref, struct dma_chan, refcount);
221 chan->device->device_free_chan_resources(chan);
222 kref_put(&chan->device->refcount, dma_async_device_cleanup);
223 }
224 EXPORT_SYMBOL(dma_chan_cleanup);
225
226 static void dma_chan_free_rcu(struct rcu_head *rcu)
227 {
228 struct dma_chan *chan = container_of(rcu, struct dma_chan, rcu);
229 int bias = 0x7FFFFFFF;
230 int i;
231 for_each_possible_cpu(i)
232 bias -= local_read(&per_cpu_ptr(chan->local, i)->refcount);
233 atomic_sub(bias, &chan->refcount.refcount);
234 kref_put(&chan->refcount, dma_chan_cleanup);
235 }
236
237 static void dma_chan_release(struct dma_chan *chan)
238 {
239 atomic_add(0x7FFFFFFF, &chan->refcount.refcount);
240 chan->slow_ref = 1;
241 call_rcu(&chan->rcu, dma_chan_free_rcu);
242 }
243
244 /**
245 * dma_chans_notify_available - broadcast available channels to the clients
246 */
247 static void dma_clients_notify_available(void)
248 {
249 struct dma_client *client;
250
251 mutex_lock(&dma_list_mutex);
252
253 list_for_each_entry(client, &dma_client_list, global_node)
254 dma_client_chan_alloc(client);
255
256 mutex_unlock(&dma_list_mutex);
257 }
258
259 /**
260 * dma_chans_notify_available - tell the clients that a channel is going away
261 * @chan: channel on its way out
262 */
263 static void dma_clients_notify_removed(struct dma_chan *chan)
264 {
265 struct dma_client *client;
266 enum dma_state_client ack;
267
268 mutex_lock(&dma_list_mutex);
269
270 list_for_each_entry(client, &dma_client_list, global_node) {
271 ack = client->event_callback(client, chan,
272 DMA_RESOURCE_REMOVED);
273
274 /* client was holding resources for this channel so
275 * free it
276 */
277 if (ack == DMA_ACK) {
278 dma_chan_put(chan);
279 chan->client_count--;
280 }
281 }
282
283 mutex_unlock(&dma_list_mutex);
284 }
285
286 /**
287 * dma_async_client_register - register a &dma_client
288 * @client: ptr to a client structure with valid 'event_callback' and 'cap_mask'
289 */
290 void dma_async_client_register(struct dma_client *client)
291 {
292 mutex_lock(&dma_list_mutex);
293 list_add_tail(&client->global_node, &dma_client_list);
294 mutex_unlock(&dma_list_mutex);
295 }
296 EXPORT_SYMBOL(dma_async_client_register);
297
298 /**
299 * dma_async_client_unregister - unregister a client and free the &dma_client
300 * @client: &dma_client to free
301 *
302 * Force frees any allocated DMA channels, frees the &dma_client memory
303 */
304 void dma_async_client_unregister(struct dma_client *client)
305 {
306 struct dma_device *device;
307 struct dma_chan *chan;
308 enum dma_state_client ack;
309
310 if (!client)
311 return;
312
313 mutex_lock(&dma_list_mutex);
314 /* free all channels the client is holding */
315 list_for_each_entry(device, &dma_device_list, global_node)
316 list_for_each_entry(chan, &device->channels, device_node) {
317 ack = client->event_callback(client, chan,
318 DMA_RESOURCE_REMOVED);
319
320 if (ack == DMA_ACK) {
321 dma_chan_put(chan);
322 chan->client_count--;
323 }
324 }
325
326 list_del(&client->global_node);
327 mutex_unlock(&dma_list_mutex);
328 }
329 EXPORT_SYMBOL(dma_async_client_unregister);
330
331 /**
332 * dma_async_client_chan_request - send all available channels to the
333 * client that satisfy the capability mask
334 * @client - requester
335 */
336 void dma_async_client_chan_request(struct dma_client *client)
337 {
338 mutex_lock(&dma_list_mutex);
339 dma_client_chan_alloc(client);
340 mutex_unlock(&dma_list_mutex);
341 }
342 EXPORT_SYMBOL(dma_async_client_chan_request);
343
344 /**
345 * dma_async_device_register - registers DMA devices found
346 * @device: &dma_device
347 */
348 int dma_async_device_register(struct dma_device *device)
349 {
350 static int id;
351 int chancnt = 0, rc;
352 struct dma_chan* chan;
353
354 if (!device)
355 return -ENODEV;
356
357 /* validate device routines */
358 BUG_ON(dma_has_cap(DMA_MEMCPY, device->cap_mask) &&
359 !device->device_prep_dma_memcpy);
360 BUG_ON(dma_has_cap(DMA_XOR, device->cap_mask) &&
361 !device->device_prep_dma_xor);
362 BUG_ON(dma_has_cap(DMA_ZERO_SUM, device->cap_mask) &&
363 !device->device_prep_dma_zero_sum);
364 BUG_ON(dma_has_cap(DMA_MEMSET, device->cap_mask) &&
365 !device->device_prep_dma_memset);
366 BUG_ON(dma_has_cap(DMA_INTERRUPT, device->cap_mask) &&
367 !device->device_prep_dma_interrupt);
368
369 BUG_ON(!device->device_alloc_chan_resources);
370 BUG_ON(!device->device_free_chan_resources);
371 BUG_ON(!device->device_is_tx_complete);
372 BUG_ON(!device->device_issue_pending);
373 BUG_ON(!device->dev);
374
375 init_completion(&device->done);
376 kref_init(&device->refcount);
377 device->dev_id = id++;
378
379 /* represent channels in sysfs. Probably want devs too */
380 list_for_each_entry(chan, &device->channels, device_node) {
381 chan->local = alloc_percpu(typeof(*chan->local));
382 if (chan->local == NULL)
383 continue;
384
385 chan->chan_id = chancnt++;
386 chan->dev.class = &dma_devclass;
387 chan->dev.parent = device->dev;
388 snprintf(chan->dev.bus_id, BUS_ID_SIZE, "dma%dchan%d",
389 device->dev_id, chan->chan_id);
390
391 rc = device_register(&chan->dev);
392 if (rc) {
393 chancnt--;
394 free_percpu(chan->local);
395 chan->local = NULL;
396 goto err_out;
397 }
398
399 /* One for the channel, one of the class device */
400 kref_get(&device->refcount);
401 kref_get(&device->refcount);
402 kref_init(&chan->refcount);
403 chan->client_count = 0;
404 chan->slow_ref = 0;
405 INIT_RCU_HEAD(&chan->rcu);
406 }
407
408 mutex_lock(&dma_list_mutex);
409 list_add_tail(&device->global_node, &dma_device_list);
410 mutex_unlock(&dma_list_mutex);
411
412 dma_clients_notify_available();
413
414 return 0;
415
416 err_out:
417 list_for_each_entry(chan, &device->channels, device_node) {
418 if (chan->local == NULL)
419 continue;
420 kref_put(&device->refcount, dma_async_device_cleanup);
421 device_unregister(&chan->dev);
422 chancnt--;
423 free_percpu(chan->local);
424 }
425 return rc;
426 }
427 EXPORT_SYMBOL(dma_async_device_register);
428
429 /**
430 * dma_async_device_cleanup - function called when all references are released
431 * @kref: kernel reference object
432 */
433 static void dma_async_device_cleanup(struct kref *kref)
434 {
435 struct dma_device *device;
436
437 device = container_of(kref, struct dma_device, refcount);
438 complete(&device->done);
439 }
440
441 /**
442 * dma_async_device_unregister - unregisters DMA devices
443 * @device: &dma_device
444 */
445 void dma_async_device_unregister(struct dma_device *device)
446 {
447 struct dma_chan *chan;
448
449 mutex_lock(&dma_list_mutex);
450 list_del(&device->global_node);
451 mutex_unlock(&dma_list_mutex);
452
453 list_for_each_entry(chan, &device->channels, device_node) {
454 dma_clients_notify_removed(chan);
455 device_unregister(&chan->dev);
456 dma_chan_release(chan);
457 }
458
459 kref_put(&device->refcount, dma_async_device_cleanup);
460 wait_for_completion(&device->done);
461 }
462 EXPORT_SYMBOL(dma_async_device_unregister);
463
464 /**
465 * dma_async_memcpy_buf_to_buf - offloaded copy between virtual addresses
466 * @chan: DMA channel to offload copy to
467 * @dest: destination address (virtual)
468 * @src: source address (virtual)
469 * @len: length
470 *
471 * Both @dest and @src must be mappable to a bus address according to the
472 * DMA mapping API rules for streaming mappings.
473 * Both @dest and @src must stay memory resident (kernel memory or locked
474 * user space pages).
475 */
476 dma_cookie_t
477 dma_async_memcpy_buf_to_buf(struct dma_chan *chan, void *dest,
478 void *src, size_t len)
479 {
480 struct dma_device *dev = chan->device;
481 struct dma_async_tx_descriptor *tx;
482 dma_addr_t dma_dest, dma_src;
483 dma_cookie_t cookie;
484 int cpu;
485
486 dma_src = dma_map_single(dev->dev, src, len, DMA_TO_DEVICE);
487 dma_dest = dma_map_single(dev->dev, dest, len, DMA_FROM_DEVICE);
488 tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len,
489 DMA_CTRL_ACK);
490
491 if (!tx) {
492 dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
493 dma_unmap_single(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
494 return -ENOMEM;
495 }
496
497 tx->callback = NULL;
498 cookie = tx->tx_submit(tx);
499
500 cpu = get_cpu();
501 per_cpu_ptr(chan->local, cpu)->bytes_transferred += len;
502 per_cpu_ptr(chan->local, cpu)->memcpy_count++;
503 put_cpu();
504
505 return cookie;
506 }
507 EXPORT_SYMBOL(dma_async_memcpy_buf_to_buf);
508
509 /**
510 * dma_async_memcpy_buf_to_pg - offloaded copy from address to page
511 * @chan: DMA channel to offload copy to
512 * @page: destination page
513 * @offset: offset in page to copy to
514 * @kdata: source address (virtual)
515 * @len: length
516 *
517 * Both @page/@offset and @kdata must be mappable to a bus address according
518 * to the DMA mapping API rules for streaming mappings.
519 * Both @page/@offset and @kdata must stay memory resident (kernel memory or
520 * locked user space pages)
521 */
522 dma_cookie_t
523 dma_async_memcpy_buf_to_pg(struct dma_chan *chan, struct page *page,
524 unsigned int offset, void *kdata, size_t len)
525 {
526 struct dma_device *dev = chan->device;
527 struct dma_async_tx_descriptor *tx;
528 dma_addr_t dma_dest, dma_src;
529 dma_cookie_t cookie;
530 int cpu;
531
532 dma_src = dma_map_single(dev->dev, kdata, len, DMA_TO_DEVICE);
533 dma_dest = dma_map_page(dev->dev, page, offset, len, DMA_FROM_DEVICE);
534 tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len,
535 DMA_CTRL_ACK);
536
537 if (!tx) {
538 dma_unmap_single(dev->dev, dma_src, len, DMA_TO_DEVICE);
539 dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
540 return -ENOMEM;
541 }
542
543 tx->callback = NULL;
544 cookie = tx->tx_submit(tx);
545
546 cpu = get_cpu();
547 per_cpu_ptr(chan->local, cpu)->bytes_transferred += len;
548 per_cpu_ptr(chan->local, cpu)->memcpy_count++;
549 put_cpu();
550
551 return cookie;
552 }
553 EXPORT_SYMBOL(dma_async_memcpy_buf_to_pg);
554
555 /**
556 * dma_async_memcpy_pg_to_pg - offloaded copy from page to page
557 * @chan: DMA channel to offload copy to
558 * @dest_pg: destination page
559 * @dest_off: offset in page to copy to
560 * @src_pg: source page
561 * @src_off: offset in page to copy from
562 * @len: length
563 *
564 * Both @dest_page/@dest_off and @src_page/@src_off must be mappable to a bus
565 * address according to the DMA mapping API rules for streaming mappings.
566 * Both @dest_page/@dest_off and @src_page/@src_off must stay memory resident
567 * (kernel memory or locked user space pages).
568 */
569 dma_cookie_t
570 dma_async_memcpy_pg_to_pg(struct dma_chan *chan, struct page *dest_pg,
571 unsigned int dest_off, struct page *src_pg, unsigned int src_off,
572 size_t len)
573 {
574 struct dma_device *dev = chan->device;
575 struct dma_async_tx_descriptor *tx;
576 dma_addr_t dma_dest, dma_src;
577 dma_cookie_t cookie;
578 int cpu;
579
580 dma_src = dma_map_page(dev->dev, src_pg, src_off, len, DMA_TO_DEVICE);
581 dma_dest = dma_map_page(dev->dev, dest_pg, dest_off, len,
582 DMA_FROM_DEVICE);
583 tx = dev->device_prep_dma_memcpy(chan, dma_dest, dma_src, len,
584 DMA_CTRL_ACK);
585
586 if (!tx) {
587 dma_unmap_page(dev->dev, dma_src, len, DMA_TO_DEVICE);
588 dma_unmap_page(dev->dev, dma_dest, len, DMA_FROM_DEVICE);
589 return -ENOMEM;
590 }
591
592 tx->callback = NULL;
593 cookie = tx->tx_submit(tx);
594
595 cpu = get_cpu();
596 per_cpu_ptr(chan->local, cpu)->bytes_transferred += len;
597 per_cpu_ptr(chan->local, cpu)->memcpy_count++;
598 put_cpu();
599
600 return cookie;
601 }
602 EXPORT_SYMBOL(dma_async_memcpy_pg_to_pg);
603
604 void dma_async_tx_descriptor_init(struct dma_async_tx_descriptor *tx,
605 struct dma_chan *chan)
606 {
607 tx->chan = chan;
608 spin_lock_init(&tx->lock);
609 }
610 EXPORT_SYMBOL(dma_async_tx_descriptor_init);
611
612 static int __init dma_bus_init(void)
613 {
614 mutex_init(&dma_list_mutex);
615 return class_register(&dma_devclass);
616 }
617 subsys_initcall(dma_bus_init);
618