rtc: rtc-lp8788: use devm_rtc_device_register()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / cpuidle / governors / menu.c
1 /*
2 * menu.c - the menu idle governor
3 *
4 * Copyright (C) 2006-2007 Adam Belay <abelay@novell.com>
5 * Copyright (C) 2009 Intel Corporation
6 * Author:
7 * Arjan van de Ven <arjan@linux.intel.com>
8 *
9 * This code is licenced under the GPL version 2 as described
10 * in the COPYING file that acompanies the Linux Kernel.
11 */
12
13 #include <linux/kernel.h>
14 #include <linux/cpuidle.h>
15 #include <linux/pm_qos.h>
16 #include <linux/time.h>
17 #include <linux/ktime.h>
18 #include <linux/hrtimer.h>
19 #include <linux/tick.h>
20 #include <linux/sched.h>
21 #include <linux/math64.h>
22 #include <linux/module.h>
23
24 #define BUCKETS 12
25 #define INTERVALS 8
26 #define RESOLUTION 1024
27 #define DECAY 8
28 #define MAX_INTERESTING 50000
29 #define STDDEV_THRESH 400
30
31 /* 60 * 60 > STDDEV_THRESH * INTERVALS = 400 * 8 */
32 #define MAX_DEVIATION 60
33
34 static DEFINE_PER_CPU(struct hrtimer, menu_hrtimer);
35 static DEFINE_PER_CPU(int, hrtimer_status);
36 /* menu hrtimer mode */
37 enum {MENU_HRTIMER_STOP, MENU_HRTIMER_REPEAT, MENU_HRTIMER_GENERAL};
38
39 /*
40 * Concepts and ideas behind the menu governor
41 *
42 * For the menu governor, there are 3 decision factors for picking a C
43 * state:
44 * 1) Energy break even point
45 * 2) Performance impact
46 * 3) Latency tolerance (from pmqos infrastructure)
47 * These these three factors are treated independently.
48 *
49 * Energy break even point
50 * -----------------------
51 * C state entry and exit have an energy cost, and a certain amount of time in
52 * the C state is required to actually break even on this cost. CPUIDLE
53 * provides us this duration in the "target_residency" field. So all that we
54 * need is a good prediction of how long we'll be idle. Like the traditional
55 * menu governor, we start with the actual known "next timer event" time.
56 *
57 * Since there are other source of wakeups (interrupts for example) than
58 * the next timer event, this estimation is rather optimistic. To get a
59 * more realistic estimate, a correction factor is applied to the estimate,
60 * that is based on historic behavior. For example, if in the past the actual
61 * duration always was 50% of the next timer tick, the correction factor will
62 * be 0.5.
63 *
64 * menu uses a running average for this correction factor, however it uses a
65 * set of factors, not just a single factor. This stems from the realization
66 * that the ratio is dependent on the order of magnitude of the expected
67 * duration; if we expect 500 milliseconds of idle time the likelihood of
68 * getting an interrupt very early is much higher than if we expect 50 micro
69 * seconds of idle time. A second independent factor that has big impact on
70 * the actual factor is if there is (disk) IO outstanding or not.
71 * (as a special twist, we consider every sleep longer than 50 milliseconds
72 * as perfect; there are no power gains for sleeping longer than this)
73 *
74 * For these two reasons we keep an array of 12 independent factors, that gets
75 * indexed based on the magnitude of the expected duration as well as the
76 * "is IO outstanding" property.
77 *
78 * Repeatable-interval-detector
79 * ----------------------------
80 * There are some cases where "next timer" is a completely unusable predictor:
81 * Those cases where the interval is fixed, for example due to hardware
82 * interrupt mitigation, but also due to fixed transfer rate devices such as
83 * mice.
84 * For this, we use a different predictor: We track the duration of the last 8
85 * intervals and if the stand deviation of these 8 intervals is below a
86 * threshold value, we use the average of these intervals as prediction.
87 *
88 * Limiting Performance Impact
89 * ---------------------------
90 * C states, especially those with large exit latencies, can have a real
91 * noticeable impact on workloads, which is not acceptable for most sysadmins,
92 * and in addition, less performance has a power price of its own.
93 *
94 * As a general rule of thumb, menu assumes that the following heuristic
95 * holds:
96 * The busier the system, the less impact of C states is acceptable
97 *
98 * This rule-of-thumb is implemented using a performance-multiplier:
99 * If the exit latency times the performance multiplier is longer than
100 * the predicted duration, the C state is not considered a candidate
101 * for selection due to a too high performance impact. So the higher
102 * this multiplier is, the longer we need to be idle to pick a deep C
103 * state, and thus the less likely a busy CPU will hit such a deep
104 * C state.
105 *
106 * Two factors are used in determing this multiplier:
107 * a value of 10 is added for each point of "per cpu load average" we have.
108 * a value of 5 points is added for each process that is waiting for
109 * IO on this CPU.
110 * (these values are experimentally determined)
111 *
112 * The load average factor gives a longer term (few seconds) input to the
113 * decision, while the iowait value gives a cpu local instantanious input.
114 * The iowait factor may look low, but realize that this is also already
115 * represented in the system load average.
116 *
117 */
118
119 /*
120 * The C-state residency is so long that is is worthwhile to exit
121 * from the shallow C-state and re-enter into a deeper C-state.
122 */
123 static unsigned int perfect_cstate_ms __read_mostly = 30;
124 module_param(perfect_cstate_ms, uint, 0000);
125
126 struct menu_device {
127 int last_state_idx;
128 int needs_update;
129
130 unsigned int expected_us;
131 u64 predicted_us;
132 unsigned int exit_us;
133 unsigned int bucket;
134 u64 correction_factor[BUCKETS];
135 u32 intervals[INTERVALS];
136 int interval_ptr;
137 };
138
139
140 #define LOAD_INT(x) ((x) >> FSHIFT)
141 #define LOAD_FRAC(x) LOAD_INT(((x) & (FIXED_1-1)) * 100)
142
143 static int get_loadavg(void)
144 {
145 unsigned long this = this_cpu_load();
146
147
148 return LOAD_INT(this) * 10 + LOAD_FRAC(this) / 10;
149 }
150
151 static inline int which_bucket(unsigned int duration)
152 {
153 int bucket = 0;
154
155 /*
156 * We keep two groups of stats; one with no
157 * IO pending, one without.
158 * This allows us to calculate
159 * E(duration)|iowait
160 */
161 if (nr_iowait_cpu(smp_processor_id()))
162 bucket = BUCKETS/2;
163
164 if (duration < 10)
165 return bucket;
166 if (duration < 100)
167 return bucket + 1;
168 if (duration < 1000)
169 return bucket + 2;
170 if (duration < 10000)
171 return bucket + 3;
172 if (duration < 100000)
173 return bucket + 4;
174 return bucket + 5;
175 }
176
177 /*
178 * Return a multiplier for the exit latency that is intended
179 * to take performance requirements into account.
180 * The more performance critical we estimate the system
181 * to be, the higher this multiplier, and thus the higher
182 * the barrier to go to an expensive C state.
183 */
184 static inline int performance_multiplier(void)
185 {
186 int mult = 1;
187
188 /* for higher loadavg, we are more reluctant */
189
190 mult += 2 * get_loadavg();
191
192 /* for IO wait tasks (per cpu!) we add 5x each */
193 mult += 10 * nr_iowait_cpu(smp_processor_id());
194
195 return mult;
196 }
197
198 static DEFINE_PER_CPU(struct menu_device, menu_devices);
199
200 static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev);
201
202 /* This implements DIV_ROUND_CLOSEST but avoids 64 bit division */
203 static u64 div_round64(u64 dividend, u32 divisor)
204 {
205 return div_u64(dividend + (divisor / 2), divisor);
206 }
207
208 /* Cancel the hrtimer if it is not triggered yet */
209 void menu_hrtimer_cancel(void)
210 {
211 int cpu = smp_processor_id();
212 struct hrtimer *hrtmr = &per_cpu(menu_hrtimer, cpu);
213
214 /* The timer is still not time out*/
215 if (per_cpu(hrtimer_status, cpu)) {
216 hrtimer_cancel(hrtmr);
217 per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_STOP;
218 }
219 }
220 EXPORT_SYMBOL_GPL(menu_hrtimer_cancel);
221
222 /* Call back for hrtimer is triggered */
223 static enum hrtimer_restart menu_hrtimer_notify(struct hrtimer *hrtimer)
224 {
225 int cpu = smp_processor_id();
226 struct menu_device *data = &per_cpu(menu_devices, cpu);
227
228 /* In general case, the expected residency is much larger than
229 * deepest C-state target residency, but prediction logic still
230 * predicts a small predicted residency, so the prediction
231 * history is totally broken if the timer is triggered.
232 * So reset the correction factor.
233 */
234 if (per_cpu(hrtimer_status, cpu) == MENU_HRTIMER_GENERAL)
235 data->correction_factor[data->bucket] = RESOLUTION * DECAY;
236
237 per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_STOP;
238
239 return HRTIMER_NORESTART;
240 }
241
242 /*
243 * Try detecting repeating patterns by keeping track of the last 8
244 * intervals, and checking if the standard deviation of that set
245 * of points is below a threshold. If it is... then use the
246 * average of these 8 points as the estimated value.
247 */
248 static u32 get_typical_interval(struct menu_device *data)
249 {
250 int i = 0, divisor = 0;
251 uint64_t max = 0, avg = 0, stddev = 0;
252 int64_t thresh = LLONG_MAX; /* Discard outliers above this value. */
253 unsigned int ret = 0;
254
255 again:
256
257 /* first calculate average and standard deviation of the past */
258 max = avg = divisor = stddev = 0;
259 for (i = 0; i < INTERVALS; i++) {
260 int64_t value = data->intervals[i];
261 if (value <= thresh) {
262 avg += value;
263 divisor++;
264 if (value > max)
265 max = value;
266 }
267 }
268 do_div(avg, divisor);
269
270 for (i = 0; i < INTERVALS; i++) {
271 int64_t value = data->intervals[i];
272 if (value <= thresh) {
273 int64_t diff = value - avg;
274 stddev += diff * diff;
275 }
276 }
277 do_div(stddev, divisor);
278 stddev = int_sqrt(stddev);
279 /*
280 * If we have outliers to the upside in our distribution, discard
281 * those by setting the threshold to exclude these outliers, then
282 * calculate the average and standard deviation again. Once we get
283 * down to the bottom 3/4 of our samples, stop excluding samples.
284 *
285 * This can deal with workloads that have long pauses interspersed
286 * with sporadic activity with a bunch of short pauses.
287 *
288 * The typical interval is obtained when standard deviation is small
289 * or standard deviation is small compared to the average interval.
290 */
291 if (((avg > stddev * 6) && (divisor * 4 >= INTERVALS * 3))
292 || stddev <= 20) {
293 data->predicted_us = avg;
294 ret = 1;
295 return ret;
296
297 } else if ((divisor * 4) > INTERVALS * 3) {
298 /* Exclude the max interval */
299 thresh = max - 1;
300 goto again;
301 }
302
303 return ret;
304 }
305
306 /**
307 * menu_select - selects the next idle state to enter
308 * @drv: cpuidle driver containing state data
309 * @dev: the CPU
310 */
311 static int menu_select(struct cpuidle_driver *drv, struct cpuidle_device *dev)
312 {
313 struct menu_device *data = &__get_cpu_var(menu_devices);
314 int latency_req = pm_qos_request(PM_QOS_CPU_DMA_LATENCY);
315 int i;
316 int multiplier;
317 struct timespec t;
318 int repeat = 0, low_predicted = 0;
319 int cpu = smp_processor_id();
320 struct hrtimer *hrtmr = &per_cpu(menu_hrtimer, cpu);
321
322 if (data->needs_update) {
323 menu_update(drv, dev);
324 data->needs_update = 0;
325 }
326
327 data->last_state_idx = 0;
328 data->exit_us = 0;
329
330 /* Special case when user has set very strict latency requirement */
331 if (unlikely(latency_req == 0))
332 return 0;
333
334 /* determine the expected residency time, round up */
335 t = ktime_to_timespec(tick_nohz_get_sleep_length());
336 data->expected_us =
337 t.tv_sec * USEC_PER_SEC + t.tv_nsec / NSEC_PER_USEC;
338
339
340 data->bucket = which_bucket(data->expected_us);
341
342 multiplier = performance_multiplier();
343
344 /*
345 * if the correction factor is 0 (eg first time init or cpu hotplug
346 * etc), we actually want to start out with a unity factor.
347 */
348 if (data->correction_factor[data->bucket] == 0)
349 data->correction_factor[data->bucket] = RESOLUTION * DECAY;
350
351 /* Make sure to round up for half microseconds */
352 data->predicted_us = div_round64(data->expected_us * data->correction_factor[data->bucket],
353 RESOLUTION * DECAY);
354
355 repeat = get_typical_interval(data);
356
357 /*
358 * We want to default to C1 (hlt), not to busy polling
359 * unless the timer is happening really really soon.
360 */
361 if (data->expected_us > 5 &&
362 !drv->states[CPUIDLE_DRIVER_STATE_START].disabled &&
363 dev->states_usage[CPUIDLE_DRIVER_STATE_START].disable == 0)
364 data->last_state_idx = CPUIDLE_DRIVER_STATE_START;
365
366 /*
367 * Find the idle state with the lowest power while satisfying
368 * our constraints.
369 */
370 for (i = CPUIDLE_DRIVER_STATE_START; i < drv->state_count; i++) {
371 struct cpuidle_state *s = &drv->states[i];
372 struct cpuidle_state_usage *su = &dev->states_usage[i];
373
374 if (s->disabled || su->disable)
375 continue;
376 if (s->target_residency > data->predicted_us) {
377 low_predicted = 1;
378 continue;
379 }
380 if (s->exit_latency > latency_req)
381 continue;
382 if (s->exit_latency * multiplier > data->predicted_us)
383 continue;
384
385 data->last_state_idx = i;
386 data->exit_us = s->exit_latency;
387 }
388
389 /* not deepest C-state chosen for low predicted residency */
390 if (low_predicted) {
391 unsigned int timer_us = 0;
392 unsigned int perfect_us = 0;
393
394 /*
395 * Set a timer to detect whether this sleep is much
396 * longer than repeat mode predicted. If the timer
397 * triggers, the code will evaluate whether to put
398 * the CPU into a deeper C-state.
399 * The timer is cancelled on CPU wakeup.
400 */
401 timer_us = 2 * (data->predicted_us + MAX_DEVIATION);
402
403 perfect_us = perfect_cstate_ms * 1000;
404
405 if (repeat && (4 * timer_us < data->expected_us)) {
406 RCU_NONIDLE(hrtimer_start(hrtmr,
407 ns_to_ktime(1000 * timer_us),
408 HRTIMER_MODE_REL_PINNED));
409 /* In repeat case, menu hrtimer is started */
410 per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_REPEAT;
411 } else if (perfect_us < data->expected_us) {
412 /*
413 * The next timer is long. This could be because
414 * we did not make a useful prediction.
415 * In that case, it makes sense to re-enter
416 * into a deeper C-state after some time.
417 */
418 RCU_NONIDLE(hrtimer_start(hrtmr,
419 ns_to_ktime(1000 * timer_us),
420 HRTIMER_MODE_REL_PINNED));
421 /* In general case, menu hrtimer is started */
422 per_cpu(hrtimer_status, cpu) = MENU_HRTIMER_GENERAL;
423 }
424
425 }
426
427 return data->last_state_idx;
428 }
429
430 /**
431 * menu_reflect - records that data structures need update
432 * @dev: the CPU
433 * @index: the index of actual entered state
434 *
435 * NOTE: it's important to be fast here because this operation will add to
436 * the overall exit latency.
437 */
438 static void menu_reflect(struct cpuidle_device *dev, int index)
439 {
440 struct menu_device *data = &__get_cpu_var(menu_devices);
441 data->last_state_idx = index;
442 if (index >= 0)
443 data->needs_update = 1;
444 }
445
446 /**
447 * menu_update - attempts to guess what happened after entry
448 * @drv: cpuidle driver containing state data
449 * @dev: the CPU
450 */
451 static void menu_update(struct cpuidle_driver *drv, struct cpuidle_device *dev)
452 {
453 struct menu_device *data = &__get_cpu_var(menu_devices);
454 int last_idx = data->last_state_idx;
455 unsigned int last_idle_us = cpuidle_get_last_residency(dev);
456 struct cpuidle_state *target = &drv->states[last_idx];
457 unsigned int measured_us;
458 u64 new_factor;
459
460 /*
461 * Ugh, this idle state doesn't support residency measurements, so we
462 * are basically lost in the dark. As a compromise, assume we slept
463 * for the whole expected time.
464 */
465 if (unlikely(!(target->flags & CPUIDLE_FLAG_TIME_VALID)))
466 last_idle_us = data->expected_us;
467
468
469 measured_us = last_idle_us;
470
471 /*
472 * We correct for the exit latency; we are assuming here that the
473 * exit latency happens after the event that we're interested in.
474 */
475 if (measured_us > data->exit_us)
476 measured_us -= data->exit_us;
477
478
479 /* update our correction ratio */
480
481 new_factor = data->correction_factor[data->bucket]
482 * (DECAY - 1) / DECAY;
483
484 if (data->expected_us > 0 && measured_us < MAX_INTERESTING)
485 new_factor += RESOLUTION * measured_us / data->expected_us;
486 else
487 /*
488 * we were idle so long that we count it as a perfect
489 * prediction
490 */
491 new_factor += RESOLUTION;
492
493 /*
494 * We don't want 0 as factor; we always want at least
495 * a tiny bit of estimated time.
496 */
497 if (new_factor == 0)
498 new_factor = 1;
499
500 data->correction_factor[data->bucket] = new_factor;
501
502 /* update the repeating-pattern data */
503 data->intervals[data->interval_ptr++] = last_idle_us;
504 if (data->interval_ptr >= INTERVALS)
505 data->interval_ptr = 0;
506 }
507
508 /**
509 * menu_enable_device - scans a CPU's states and does setup
510 * @drv: cpuidle driver
511 * @dev: the CPU
512 */
513 static int menu_enable_device(struct cpuidle_driver *drv,
514 struct cpuidle_device *dev)
515 {
516 struct menu_device *data = &per_cpu(menu_devices, dev->cpu);
517 struct hrtimer *t = &per_cpu(menu_hrtimer, dev->cpu);
518 hrtimer_init(t, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
519 t->function = menu_hrtimer_notify;
520
521 memset(data, 0, sizeof(struct menu_device));
522
523 return 0;
524 }
525
526 static struct cpuidle_governor menu_governor = {
527 .name = "menu",
528 .rating = 20,
529 .enable = menu_enable_device,
530 .select = menu_select,
531 .reflect = menu_reflect,
532 .owner = THIS_MODULE,
533 };
534
535 /**
536 * init_menu - initializes the governor
537 */
538 static int __init init_menu(void)
539 {
540 return cpuidle_register_governor(&menu_governor);
541 }
542
543 /**
544 * exit_menu - exits the governor
545 */
546 static void __exit exit_menu(void)
547 {
548 cpuidle_unregister_governor(&menu_governor);
549 }
550
551 MODULE_LICENSE("GPL");
552 module_init(init_menu);
553 module_exit(exit_menu);