cpufreq: Add support for x86 cpuinfo auto loading v4
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / cpufreq / powernow-k8.c
1 /*
2 * (c) 2003-2012 Advanced Micro Devices, Inc.
3 * Your use of this code is subject to the terms and conditions of the
4 * GNU general public license version 2. See "COPYING" or
5 * http://www.gnu.org/licenses/gpl.html
6 *
7 * Maintainer:
8 * Andreas Herrmann <andreas.herrmann3@amd.com>
9 *
10 * Based on the powernow-k7.c module written by Dave Jones.
11 * (C) 2003 Dave Jones on behalf of SuSE Labs
12 * (C) 2004 Dominik Brodowski <linux@brodo.de>
13 * (C) 2004 Pavel Machek <pavel@ucw.cz>
14 * Licensed under the terms of the GNU GPL License version 2.
15 * Based upon datasheets & sample CPUs kindly provided by AMD.
16 *
17 * Valuable input gratefully received from Dave Jones, Pavel Machek,
18 * Dominik Brodowski, Jacob Shin, and others.
19 * Originally developed by Paul Devriendt.
20 *
21 * Processor information obtained from Chapter 9 (Power and Thermal
22 * Management) of the "BIOS and Kernel Developer's Guide (BKDG) for
23 * the AMD Athlon 64 and AMD Opteron Processors" and section "2.x
24 * Power Management" in BKDGs for newer AMD CPU families.
25 *
26 * Tables for specific CPUs can be inferred from AMD's processor
27 * power and thermal data sheets, (e.g. 30417.pdf, 30430.pdf, 43375.pdf)
28 */
29
30 #include <linux/kernel.h>
31 #include <linux/smp.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/slab.h>
36 #include <linux/string.h>
37 #include <linux/cpumask.h>
38 #include <linux/sched.h> /* for current / set_cpus_allowed() */
39 #include <linux/io.h>
40 #include <linux/delay.h>
41
42 #include <asm/msr.h>
43 #include <asm/cpu_device_id.h>
44
45 #include <linux/acpi.h>
46 #include <linux/mutex.h>
47 #include <acpi/processor.h>
48
49 #define PFX "powernow-k8: "
50 #define VERSION "version 2.20.00"
51 #include "powernow-k8.h"
52 #include "mperf.h"
53
54 /* serialize freq changes */
55 static DEFINE_MUTEX(fidvid_mutex);
56
57 static DEFINE_PER_CPU(struct powernow_k8_data *, powernow_data);
58
59 static int cpu_family = CPU_OPTERON;
60
61 /* array to map SW pstate number to acpi state */
62 static u32 ps_to_as[8];
63
64 /* core performance boost */
65 static bool cpb_capable, cpb_enabled;
66 static struct msr __percpu *msrs;
67
68 static struct cpufreq_driver cpufreq_amd64_driver;
69
70 #ifndef CONFIG_SMP
71 static inline const struct cpumask *cpu_core_mask(int cpu)
72 {
73 return cpumask_of(0);
74 }
75 #endif
76
77 /* Return a frequency in MHz, given an input fid */
78 static u32 find_freq_from_fid(u32 fid)
79 {
80 return 800 + (fid * 100);
81 }
82
83 /* Return a frequency in KHz, given an input fid */
84 static u32 find_khz_freq_from_fid(u32 fid)
85 {
86 return 1000 * find_freq_from_fid(fid);
87 }
88
89 static u32 find_khz_freq_from_pstate(struct cpufreq_frequency_table *data,
90 u32 pstate)
91 {
92 return data[ps_to_as[pstate]].frequency;
93 }
94
95 /* Return the vco fid for an input fid
96 *
97 * Each "low" fid has corresponding "high" fid, and you can get to "low" fids
98 * only from corresponding high fids. This returns "high" fid corresponding to
99 * "low" one.
100 */
101 static u32 convert_fid_to_vco_fid(u32 fid)
102 {
103 if (fid < HI_FID_TABLE_BOTTOM)
104 return 8 + (2 * fid);
105 else
106 return fid;
107 }
108
109 /*
110 * Return 1 if the pending bit is set. Unless we just instructed the processor
111 * to transition to a new state, seeing this bit set is really bad news.
112 */
113 static int pending_bit_stuck(void)
114 {
115 u32 lo, hi;
116
117 if (cpu_family == CPU_HW_PSTATE)
118 return 0;
119
120 rdmsr(MSR_FIDVID_STATUS, lo, hi);
121 return lo & MSR_S_LO_CHANGE_PENDING ? 1 : 0;
122 }
123
124 /*
125 * Update the global current fid / vid values from the status msr.
126 * Returns 1 on error.
127 */
128 static int query_current_values_with_pending_wait(struct powernow_k8_data *data)
129 {
130 u32 lo, hi;
131 u32 i = 0;
132
133 if (cpu_family == CPU_HW_PSTATE) {
134 rdmsr(MSR_PSTATE_STATUS, lo, hi);
135 i = lo & HW_PSTATE_MASK;
136 data->currpstate = i;
137
138 /*
139 * a workaround for family 11h erratum 311 might cause
140 * an "out-of-range Pstate if the core is in Pstate-0
141 */
142 if ((boot_cpu_data.x86 == 0x11) && (i >= data->numps))
143 data->currpstate = HW_PSTATE_0;
144
145 return 0;
146 }
147 do {
148 if (i++ > 10000) {
149 pr_debug("detected change pending stuck\n");
150 return 1;
151 }
152 rdmsr(MSR_FIDVID_STATUS, lo, hi);
153 } while (lo & MSR_S_LO_CHANGE_PENDING);
154
155 data->currvid = hi & MSR_S_HI_CURRENT_VID;
156 data->currfid = lo & MSR_S_LO_CURRENT_FID;
157
158 return 0;
159 }
160
161 /* the isochronous relief time */
162 static void count_off_irt(struct powernow_k8_data *data)
163 {
164 udelay((1 << data->irt) * 10);
165 return;
166 }
167
168 /* the voltage stabilization time */
169 static void count_off_vst(struct powernow_k8_data *data)
170 {
171 udelay(data->vstable * VST_UNITS_20US);
172 return;
173 }
174
175 /* need to init the control msr to a safe value (for each cpu) */
176 static void fidvid_msr_init(void)
177 {
178 u32 lo, hi;
179 u8 fid, vid;
180
181 rdmsr(MSR_FIDVID_STATUS, lo, hi);
182 vid = hi & MSR_S_HI_CURRENT_VID;
183 fid = lo & MSR_S_LO_CURRENT_FID;
184 lo = fid | (vid << MSR_C_LO_VID_SHIFT);
185 hi = MSR_C_HI_STP_GNT_BENIGN;
186 pr_debug("cpu%d, init lo 0x%x, hi 0x%x\n", smp_processor_id(), lo, hi);
187 wrmsr(MSR_FIDVID_CTL, lo, hi);
188 }
189
190 /* write the new fid value along with the other control fields to the msr */
191 static int write_new_fid(struct powernow_k8_data *data, u32 fid)
192 {
193 u32 lo;
194 u32 savevid = data->currvid;
195 u32 i = 0;
196
197 if ((fid & INVALID_FID_MASK) || (data->currvid & INVALID_VID_MASK)) {
198 printk(KERN_ERR PFX "internal error - overflow on fid write\n");
199 return 1;
200 }
201
202 lo = fid;
203 lo |= (data->currvid << MSR_C_LO_VID_SHIFT);
204 lo |= MSR_C_LO_INIT_FID_VID;
205
206 pr_debug("writing fid 0x%x, lo 0x%x, hi 0x%x\n",
207 fid, lo, data->plllock * PLL_LOCK_CONVERSION);
208
209 do {
210 wrmsr(MSR_FIDVID_CTL, lo, data->plllock * PLL_LOCK_CONVERSION);
211 if (i++ > 100) {
212 printk(KERN_ERR PFX
213 "Hardware error - pending bit very stuck - "
214 "no further pstate changes possible\n");
215 return 1;
216 }
217 } while (query_current_values_with_pending_wait(data));
218
219 count_off_irt(data);
220
221 if (savevid != data->currvid) {
222 printk(KERN_ERR PFX
223 "vid change on fid trans, old 0x%x, new 0x%x\n",
224 savevid, data->currvid);
225 return 1;
226 }
227
228 if (fid != data->currfid) {
229 printk(KERN_ERR PFX
230 "fid trans failed, fid 0x%x, curr 0x%x\n", fid,
231 data->currfid);
232 return 1;
233 }
234
235 return 0;
236 }
237
238 /* Write a new vid to the hardware */
239 static int write_new_vid(struct powernow_k8_data *data, u32 vid)
240 {
241 u32 lo;
242 u32 savefid = data->currfid;
243 int i = 0;
244
245 if ((data->currfid & INVALID_FID_MASK) || (vid & INVALID_VID_MASK)) {
246 printk(KERN_ERR PFX "internal error - overflow on vid write\n");
247 return 1;
248 }
249
250 lo = data->currfid;
251 lo |= (vid << MSR_C_LO_VID_SHIFT);
252 lo |= MSR_C_LO_INIT_FID_VID;
253
254 pr_debug("writing vid 0x%x, lo 0x%x, hi 0x%x\n",
255 vid, lo, STOP_GRANT_5NS);
256
257 do {
258 wrmsr(MSR_FIDVID_CTL, lo, STOP_GRANT_5NS);
259 if (i++ > 100) {
260 printk(KERN_ERR PFX "internal error - pending bit "
261 "very stuck - no further pstate "
262 "changes possible\n");
263 return 1;
264 }
265 } while (query_current_values_with_pending_wait(data));
266
267 if (savefid != data->currfid) {
268 printk(KERN_ERR PFX "fid changed on vid trans, old "
269 "0x%x new 0x%x\n",
270 savefid, data->currfid);
271 return 1;
272 }
273
274 if (vid != data->currvid) {
275 printk(KERN_ERR PFX "vid trans failed, vid 0x%x, "
276 "curr 0x%x\n",
277 vid, data->currvid);
278 return 1;
279 }
280
281 return 0;
282 }
283
284 /*
285 * Reduce the vid by the max of step or reqvid.
286 * Decreasing vid codes represent increasing voltages:
287 * vid of 0 is 1.550V, vid of 0x1e is 0.800V, vid of VID_OFF is off.
288 */
289 static int decrease_vid_code_by_step(struct powernow_k8_data *data,
290 u32 reqvid, u32 step)
291 {
292 if ((data->currvid - reqvid) > step)
293 reqvid = data->currvid - step;
294
295 if (write_new_vid(data, reqvid))
296 return 1;
297
298 count_off_vst(data);
299
300 return 0;
301 }
302
303 /* Change hardware pstate by single MSR write */
304 static int transition_pstate(struct powernow_k8_data *data, u32 pstate)
305 {
306 wrmsr(MSR_PSTATE_CTRL, pstate, 0);
307 data->currpstate = pstate;
308 return 0;
309 }
310
311 /* Change Opteron/Athlon64 fid and vid, by the 3 phases. */
312 static int transition_fid_vid(struct powernow_k8_data *data,
313 u32 reqfid, u32 reqvid)
314 {
315 if (core_voltage_pre_transition(data, reqvid, reqfid))
316 return 1;
317
318 if (core_frequency_transition(data, reqfid))
319 return 1;
320
321 if (core_voltage_post_transition(data, reqvid))
322 return 1;
323
324 if (query_current_values_with_pending_wait(data))
325 return 1;
326
327 if ((reqfid != data->currfid) || (reqvid != data->currvid)) {
328 printk(KERN_ERR PFX "failed (cpu%d): req 0x%x 0x%x, "
329 "curr 0x%x 0x%x\n",
330 smp_processor_id(),
331 reqfid, reqvid, data->currfid, data->currvid);
332 return 1;
333 }
334
335 pr_debug("transitioned (cpu%d): new fid 0x%x, vid 0x%x\n",
336 smp_processor_id(), data->currfid, data->currvid);
337
338 return 0;
339 }
340
341 /* Phase 1 - core voltage transition ... setup voltage */
342 static int core_voltage_pre_transition(struct powernow_k8_data *data,
343 u32 reqvid, u32 reqfid)
344 {
345 u32 rvosteps = data->rvo;
346 u32 savefid = data->currfid;
347 u32 maxvid, lo, rvomult = 1;
348
349 pr_debug("ph1 (cpu%d): start, currfid 0x%x, currvid 0x%x, "
350 "reqvid 0x%x, rvo 0x%x\n",
351 smp_processor_id(),
352 data->currfid, data->currvid, reqvid, data->rvo);
353
354 if ((savefid < LO_FID_TABLE_TOP) && (reqfid < LO_FID_TABLE_TOP))
355 rvomult = 2;
356 rvosteps *= rvomult;
357 rdmsr(MSR_FIDVID_STATUS, lo, maxvid);
358 maxvid = 0x1f & (maxvid >> 16);
359 pr_debug("ph1 maxvid=0x%x\n", maxvid);
360 if (reqvid < maxvid) /* lower numbers are higher voltages */
361 reqvid = maxvid;
362
363 while (data->currvid > reqvid) {
364 pr_debug("ph1: curr 0x%x, req vid 0x%x\n",
365 data->currvid, reqvid);
366 if (decrease_vid_code_by_step(data, reqvid, data->vidmvs))
367 return 1;
368 }
369
370 while ((rvosteps > 0) &&
371 ((rvomult * data->rvo + data->currvid) > reqvid)) {
372 if (data->currvid == maxvid) {
373 rvosteps = 0;
374 } else {
375 pr_debug("ph1: changing vid for rvo, req 0x%x\n",
376 data->currvid - 1);
377 if (decrease_vid_code_by_step(data, data->currvid-1, 1))
378 return 1;
379 rvosteps--;
380 }
381 }
382
383 if (query_current_values_with_pending_wait(data))
384 return 1;
385
386 if (savefid != data->currfid) {
387 printk(KERN_ERR PFX "ph1 err, currfid changed 0x%x\n",
388 data->currfid);
389 return 1;
390 }
391
392 pr_debug("ph1 complete, currfid 0x%x, currvid 0x%x\n",
393 data->currfid, data->currvid);
394
395 return 0;
396 }
397
398 /* Phase 2 - core frequency transition */
399 static int core_frequency_transition(struct powernow_k8_data *data, u32 reqfid)
400 {
401 u32 vcoreqfid, vcocurrfid, vcofiddiff;
402 u32 fid_interval, savevid = data->currvid;
403
404 if (data->currfid == reqfid) {
405 printk(KERN_ERR PFX "ph2 null fid transition 0x%x\n",
406 data->currfid);
407 return 0;
408 }
409
410 pr_debug("ph2 (cpu%d): starting, currfid 0x%x, currvid 0x%x, "
411 "reqfid 0x%x\n",
412 smp_processor_id(),
413 data->currfid, data->currvid, reqfid);
414
415 vcoreqfid = convert_fid_to_vco_fid(reqfid);
416 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
417 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
418 : vcoreqfid - vcocurrfid;
419
420 if ((reqfid <= LO_FID_TABLE_TOP) && (data->currfid <= LO_FID_TABLE_TOP))
421 vcofiddiff = 0;
422
423 while (vcofiddiff > 2) {
424 (data->currfid & 1) ? (fid_interval = 1) : (fid_interval = 2);
425
426 if (reqfid > data->currfid) {
427 if (data->currfid > LO_FID_TABLE_TOP) {
428 if (write_new_fid(data,
429 data->currfid + fid_interval))
430 return 1;
431 } else {
432 if (write_new_fid
433 (data,
434 2 + convert_fid_to_vco_fid(data->currfid)))
435 return 1;
436 }
437 } else {
438 if (write_new_fid(data, data->currfid - fid_interval))
439 return 1;
440 }
441
442 vcocurrfid = convert_fid_to_vco_fid(data->currfid);
443 vcofiddiff = vcocurrfid > vcoreqfid ? vcocurrfid - vcoreqfid
444 : vcoreqfid - vcocurrfid;
445 }
446
447 if (write_new_fid(data, reqfid))
448 return 1;
449
450 if (query_current_values_with_pending_wait(data))
451 return 1;
452
453 if (data->currfid != reqfid) {
454 printk(KERN_ERR PFX
455 "ph2: mismatch, failed fid transition, "
456 "curr 0x%x, req 0x%x\n",
457 data->currfid, reqfid);
458 return 1;
459 }
460
461 if (savevid != data->currvid) {
462 printk(KERN_ERR PFX "ph2: vid changed, save 0x%x, curr 0x%x\n",
463 savevid, data->currvid);
464 return 1;
465 }
466
467 pr_debug("ph2 complete, currfid 0x%x, currvid 0x%x\n",
468 data->currfid, data->currvid);
469
470 return 0;
471 }
472
473 /* Phase 3 - core voltage transition flow ... jump to the final vid. */
474 static int core_voltage_post_transition(struct powernow_k8_data *data,
475 u32 reqvid)
476 {
477 u32 savefid = data->currfid;
478 u32 savereqvid = reqvid;
479
480 pr_debug("ph3 (cpu%d): starting, currfid 0x%x, currvid 0x%x\n",
481 smp_processor_id(),
482 data->currfid, data->currvid);
483
484 if (reqvid != data->currvid) {
485 if (write_new_vid(data, reqvid))
486 return 1;
487
488 if (savefid != data->currfid) {
489 printk(KERN_ERR PFX
490 "ph3: bad fid change, save 0x%x, curr 0x%x\n",
491 savefid, data->currfid);
492 return 1;
493 }
494
495 if (data->currvid != reqvid) {
496 printk(KERN_ERR PFX
497 "ph3: failed vid transition\n, "
498 "req 0x%x, curr 0x%x",
499 reqvid, data->currvid);
500 return 1;
501 }
502 }
503
504 if (query_current_values_with_pending_wait(data))
505 return 1;
506
507 if (savereqvid != data->currvid) {
508 pr_debug("ph3 failed, currvid 0x%x\n", data->currvid);
509 return 1;
510 }
511
512 if (savefid != data->currfid) {
513 pr_debug("ph3 failed, currfid changed 0x%x\n",
514 data->currfid);
515 return 1;
516 }
517
518 pr_debug("ph3 complete, currfid 0x%x, currvid 0x%x\n",
519 data->currfid, data->currvid);
520
521 return 0;
522 }
523
524 static const struct x86_cpu_id powernow_k8_ids[] = {
525 /* IO based frequency switching */
526 { X86_VENDOR_AMD, 0xf },
527 /* MSR based frequency switching supported */
528 X86_FEATURE_MATCH(X86_FEATURE_HW_PSTATE),
529 {}
530 };
531 MODULE_DEVICE_TABLE(x86cpu, powernow_k8_ids);
532
533 static void check_supported_cpu(void *_rc)
534 {
535 u32 eax, ebx, ecx, edx;
536 int *rc = _rc;
537
538 *rc = -ENODEV;
539
540 eax = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
541
542 if ((eax & CPUID_XFAM) == CPUID_XFAM_K8) {
543 if (((eax & CPUID_USE_XFAM_XMOD) != CPUID_USE_XFAM_XMOD) ||
544 ((eax & CPUID_XMOD) > CPUID_XMOD_REV_MASK)) {
545 printk(KERN_INFO PFX
546 "Processor cpuid %x not supported\n", eax);
547 return;
548 }
549
550 eax = cpuid_eax(CPUID_GET_MAX_CAPABILITIES);
551 if (eax < CPUID_FREQ_VOLT_CAPABILITIES) {
552 printk(KERN_INFO PFX
553 "No frequency change capabilities detected\n");
554 return;
555 }
556
557 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
558 if ((edx & P_STATE_TRANSITION_CAPABLE)
559 != P_STATE_TRANSITION_CAPABLE) {
560 printk(KERN_INFO PFX
561 "Power state transitions not supported\n");
562 return;
563 }
564 } else { /* must be a HW Pstate capable processor */
565 cpuid(CPUID_FREQ_VOLT_CAPABILITIES, &eax, &ebx, &ecx, &edx);
566 if ((edx & USE_HW_PSTATE) == USE_HW_PSTATE)
567 cpu_family = CPU_HW_PSTATE;
568 else
569 return;
570 }
571
572 *rc = 0;
573 }
574
575 static int check_pst_table(struct powernow_k8_data *data, struct pst_s *pst,
576 u8 maxvid)
577 {
578 unsigned int j;
579 u8 lastfid = 0xff;
580
581 for (j = 0; j < data->numps; j++) {
582 if (pst[j].vid > LEAST_VID) {
583 printk(KERN_ERR FW_BUG PFX "vid %d invalid : 0x%x\n",
584 j, pst[j].vid);
585 return -EINVAL;
586 }
587 if (pst[j].vid < data->rvo) {
588 /* vid + rvo >= 0 */
589 printk(KERN_ERR FW_BUG PFX "0 vid exceeded with pstate"
590 " %d\n", j);
591 return -ENODEV;
592 }
593 if (pst[j].vid < maxvid + data->rvo) {
594 /* vid + rvo >= maxvid */
595 printk(KERN_ERR FW_BUG PFX "maxvid exceeded with pstate"
596 " %d\n", j);
597 return -ENODEV;
598 }
599 if (pst[j].fid > MAX_FID) {
600 printk(KERN_ERR FW_BUG PFX "maxfid exceeded with pstate"
601 " %d\n", j);
602 return -ENODEV;
603 }
604 if (j && (pst[j].fid < HI_FID_TABLE_BOTTOM)) {
605 /* Only first fid is allowed to be in "low" range */
606 printk(KERN_ERR FW_BUG PFX "two low fids - %d : "
607 "0x%x\n", j, pst[j].fid);
608 return -EINVAL;
609 }
610 if (pst[j].fid < lastfid)
611 lastfid = pst[j].fid;
612 }
613 if (lastfid & 1) {
614 printk(KERN_ERR FW_BUG PFX "lastfid invalid\n");
615 return -EINVAL;
616 }
617 if (lastfid > LO_FID_TABLE_TOP)
618 printk(KERN_INFO FW_BUG PFX
619 "first fid not from lo freq table\n");
620
621 return 0;
622 }
623
624 static void invalidate_entry(struct cpufreq_frequency_table *powernow_table,
625 unsigned int entry)
626 {
627 powernow_table[entry].frequency = CPUFREQ_ENTRY_INVALID;
628 }
629
630 static void print_basics(struct powernow_k8_data *data)
631 {
632 int j;
633 for (j = 0; j < data->numps; j++) {
634 if (data->powernow_table[j].frequency !=
635 CPUFREQ_ENTRY_INVALID) {
636 if (cpu_family == CPU_HW_PSTATE) {
637 printk(KERN_INFO PFX
638 " %d : pstate %d (%d MHz)\n", j,
639 data->powernow_table[j].index,
640 data->powernow_table[j].frequency/1000);
641 } else {
642 printk(KERN_INFO PFX
643 "fid 0x%x (%d MHz), vid 0x%x\n",
644 data->powernow_table[j].index & 0xff,
645 data->powernow_table[j].frequency/1000,
646 data->powernow_table[j].index >> 8);
647 }
648 }
649 }
650 if (data->batps)
651 printk(KERN_INFO PFX "Only %d pstates on battery\n",
652 data->batps);
653 }
654
655 static u32 freq_from_fid_did(u32 fid, u32 did)
656 {
657 u32 mhz = 0;
658
659 if (boot_cpu_data.x86 == 0x10)
660 mhz = (100 * (fid + 0x10)) >> did;
661 else if (boot_cpu_data.x86 == 0x11)
662 mhz = (100 * (fid + 8)) >> did;
663 else
664 BUG();
665
666 return mhz * 1000;
667 }
668
669 static int fill_powernow_table(struct powernow_k8_data *data,
670 struct pst_s *pst, u8 maxvid)
671 {
672 struct cpufreq_frequency_table *powernow_table;
673 unsigned int j;
674
675 if (data->batps) {
676 /* use ACPI support to get full speed on mains power */
677 printk(KERN_WARNING PFX
678 "Only %d pstates usable (use ACPI driver for full "
679 "range\n", data->batps);
680 data->numps = data->batps;
681 }
682
683 for (j = 1; j < data->numps; j++) {
684 if (pst[j-1].fid >= pst[j].fid) {
685 printk(KERN_ERR PFX "PST out of sequence\n");
686 return -EINVAL;
687 }
688 }
689
690 if (data->numps < 2) {
691 printk(KERN_ERR PFX "no p states to transition\n");
692 return -ENODEV;
693 }
694
695 if (check_pst_table(data, pst, maxvid))
696 return -EINVAL;
697
698 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
699 * (data->numps + 1)), GFP_KERNEL);
700 if (!powernow_table) {
701 printk(KERN_ERR PFX "powernow_table memory alloc failure\n");
702 return -ENOMEM;
703 }
704
705 for (j = 0; j < data->numps; j++) {
706 int freq;
707 powernow_table[j].index = pst[j].fid; /* lower 8 bits */
708 powernow_table[j].index |= (pst[j].vid << 8); /* upper 8 bits */
709 freq = find_khz_freq_from_fid(pst[j].fid);
710 powernow_table[j].frequency = freq;
711 }
712 powernow_table[data->numps].frequency = CPUFREQ_TABLE_END;
713 powernow_table[data->numps].index = 0;
714
715 if (query_current_values_with_pending_wait(data)) {
716 kfree(powernow_table);
717 return -EIO;
718 }
719
720 pr_debug("cfid 0x%x, cvid 0x%x\n", data->currfid, data->currvid);
721 data->powernow_table = powernow_table;
722 if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
723 print_basics(data);
724
725 for (j = 0; j < data->numps; j++)
726 if ((pst[j].fid == data->currfid) &&
727 (pst[j].vid == data->currvid))
728 return 0;
729
730 pr_debug("currfid/vid do not match PST, ignoring\n");
731 return 0;
732 }
733
734 /* Find and validate the PSB/PST table in BIOS. */
735 static int find_psb_table(struct powernow_k8_data *data)
736 {
737 struct psb_s *psb;
738 unsigned int i;
739 u32 mvs;
740 u8 maxvid;
741 u32 cpst = 0;
742 u32 thiscpuid;
743
744 for (i = 0xc0000; i < 0xffff0; i += 0x10) {
745 /* Scan BIOS looking for the signature. */
746 /* It can not be at ffff0 - it is too big. */
747
748 psb = phys_to_virt(i);
749 if (memcmp(psb, PSB_ID_STRING, PSB_ID_STRING_LEN) != 0)
750 continue;
751
752 pr_debug("found PSB header at 0x%p\n", psb);
753
754 pr_debug("table vers: 0x%x\n", psb->tableversion);
755 if (psb->tableversion != PSB_VERSION_1_4) {
756 printk(KERN_ERR FW_BUG PFX "PSB table is not v1.4\n");
757 return -ENODEV;
758 }
759
760 pr_debug("flags: 0x%x\n", psb->flags1);
761 if (psb->flags1) {
762 printk(KERN_ERR FW_BUG PFX "unknown flags\n");
763 return -ENODEV;
764 }
765
766 data->vstable = psb->vstable;
767 pr_debug("voltage stabilization time: %d(*20us)\n",
768 data->vstable);
769
770 pr_debug("flags2: 0x%x\n", psb->flags2);
771 data->rvo = psb->flags2 & 3;
772 data->irt = ((psb->flags2) >> 2) & 3;
773 mvs = ((psb->flags2) >> 4) & 3;
774 data->vidmvs = 1 << mvs;
775 data->batps = ((psb->flags2) >> 6) & 3;
776
777 pr_debug("ramp voltage offset: %d\n", data->rvo);
778 pr_debug("isochronous relief time: %d\n", data->irt);
779 pr_debug("maximum voltage step: %d - 0x%x\n", mvs, data->vidmvs);
780
781 pr_debug("numpst: 0x%x\n", psb->num_tables);
782 cpst = psb->num_tables;
783 if ((psb->cpuid == 0x00000fc0) ||
784 (psb->cpuid == 0x00000fe0)) {
785 thiscpuid = cpuid_eax(CPUID_PROCESSOR_SIGNATURE);
786 if ((thiscpuid == 0x00000fc0) ||
787 (thiscpuid == 0x00000fe0))
788 cpst = 1;
789 }
790 if (cpst != 1) {
791 printk(KERN_ERR FW_BUG PFX "numpst must be 1\n");
792 return -ENODEV;
793 }
794
795 data->plllock = psb->plllocktime;
796 pr_debug("plllocktime: 0x%x (units 1us)\n", psb->plllocktime);
797 pr_debug("maxfid: 0x%x\n", psb->maxfid);
798 pr_debug("maxvid: 0x%x\n", psb->maxvid);
799 maxvid = psb->maxvid;
800
801 data->numps = psb->numps;
802 pr_debug("numpstates: 0x%x\n", data->numps);
803 return fill_powernow_table(data,
804 (struct pst_s *)(psb+1), maxvid);
805 }
806 /*
807 * If you see this message, complain to BIOS manufacturer. If
808 * he tells you "we do not support Linux" or some similar
809 * nonsense, remember that Windows 2000 uses the same legacy
810 * mechanism that the old Linux PSB driver uses. Tell them it
811 * is broken with Windows 2000.
812 *
813 * The reference to the AMD documentation is chapter 9 in the
814 * BIOS and Kernel Developer's Guide, which is available on
815 * www.amd.com
816 */
817 printk(KERN_ERR FW_BUG PFX "No PSB or ACPI _PSS objects\n");
818 printk(KERN_ERR PFX "Make sure that your BIOS is up to date"
819 " and Cool'N'Quiet support is enabled in BIOS setup\n");
820 return -ENODEV;
821 }
822
823 static void powernow_k8_acpi_pst_values(struct powernow_k8_data *data,
824 unsigned int index)
825 {
826 u64 control;
827
828 if (!data->acpi_data.state_count || (cpu_family == CPU_HW_PSTATE))
829 return;
830
831 control = data->acpi_data.states[index].control;
832 data->irt = (control >> IRT_SHIFT) & IRT_MASK;
833 data->rvo = (control >> RVO_SHIFT) & RVO_MASK;
834 data->exttype = (control >> EXT_TYPE_SHIFT) & EXT_TYPE_MASK;
835 data->plllock = (control >> PLL_L_SHIFT) & PLL_L_MASK;
836 data->vidmvs = 1 << ((control >> MVS_SHIFT) & MVS_MASK);
837 data->vstable = (control >> VST_SHIFT) & VST_MASK;
838 }
839
840 static int powernow_k8_cpu_init_acpi(struct powernow_k8_data *data)
841 {
842 struct cpufreq_frequency_table *powernow_table;
843 int ret_val = -ENODEV;
844 u64 control, status;
845
846 if (acpi_processor_register_performance(&data->acpi_data, data->cpu)) {
847 pr_debug("register performance failed: bad ACPI data\n");
848 return -EIO;
849 }
850
851 /* verify the data contained in the ACPI structures */
852 if (data->acpi_data.state_count <= 1) {
853 pr_debug("No ACPI P-States\n");
854 goto err_out;
855 }
856
857 control = data->acpi_data.control_register.space_id;
858 status = data->acpi_data.status_register.space_id;
859
860 if ((control != ACPI_ADR_SPACE_FIXED_HARDWARE) ||
861 (status != ACPI_ADR_SPACE_FIXED_HARDWARE)) {
862 pr_debug("Invalid control/status registers (%llx - %llx)\n",
863 control, status);
864 goto err_out;
865 }
866
867 /* fill in data->powernow_table */
868 powernow_table = kmalloc((sizeof(struct cpufreq_frequency_table)
869 * (data->acpi_data.state_count + 1)), GFP_KERNEL);
870 if (!powernow_table) {
871 pr_debug("powernow_table memory alloc failure\n");
872 goto err_out;
873 }
874
875 /* fill in data */
876 data->numps = data->acpi_data.state_count;
877 powernow_k8_acpi_pst_values(data, 0);
878
879 if (cpu_family == CPU_HW_PSTATE)
880 ret_val = fill_powernow_table_pstate(data, powernow_table);
881 else
882 ret_val = fill_powernow_table_fidvid(data, powernow_table);
883 if (ret_val)
884 goto err_out_mem;
885
886 powernow_table[data->acpi_data.state_count].frequency =
887 CPUFREQ_TABLE_END;
888 powernow_table[data->acpi_data.state_count].index = 0;
889 data->powernow_table = powernow_table;
890
891 if (cpumask_first(cpu_core_mask(data->cpu)) == data->cpu)
892 print_basics(data);
893
894 /* notify BIOS that we exist */
895 acpi_processor_notify_smm(THIS_MODULE);
896
897 if (!zalloc_cpumask_var(&data->acpi_data.shared_cpu_map, GFP_KERNEL)) {
898 printk(KERN_ERR PFX
899 "unable to alloc powernow_k8_data cpumask\n");
900 ret_val = -ENOMEM;
901 goto err_out_mem;
902 }
903
904 return 0;
905
906 err_out_mem:
907 kfree(powernow_table);
908
909 err_out:
910 acpi_processor_unregister_performance(&data->acpi_data, data->cpu);
911
912 /* data->acpi_data.state_count informs us at ->exit()
913 * whether ACPI was used */
914 data->acpi_data.state_count = 0;
915
916 return ret_val;
917 }
918
919 static int fill_powernow_table_pstate(struct powernow_k8_data *data,
920 struct cpufreq_frequency_table *powernow_table)
921 {
922 int i;
923 u32 hi = 0, lo = 0;
924 rdmsr(MSR_PSTATE_CUR_LIMIT, lo, hi);
925 data->max_hw_pstate = (lo & HW_PSTATE_MAX_MASK) >> HW_PSTATE_MAX_SHIFT;
926
927 for (i = 0; i < data->acpi_data.state_count; i++) {
928 u32 index;
929
930 index = data->acpi_data.states[i].control & HW_PSTATE_MASK;
931 if (index > data->max_hw_pstate) {
932 printk(KERN_ERR PFX "invalid pstate %d - "
933 "bad value %d.\n", i, index);
934 printk(KERN_ERR PFX "Please report to BIOS "
935 "manufacturer\n");
936 invalidate_entry(powernow_table, i);
937 continue;
938 }
939
940 ps_to_as[index] = i;
941
942 /* Frequency may be rounded for these */
943 if ((boot_cpu_data.x86 == 0x10 && boot_cpu_data.x86_model < 10)
944 || boot_cpu_data.x86 == 0x11) {
945
946 rdmsr(MSR_PSTATE_DEF_BASE + index, lo, hi);
947 if (!(hi & HW_PSTATE_VALID_MASK)) {
948 pr_debug("invalid pstate %d, ignoring\n", index);
949 invalidate_entry(powernow_table, i);
950 continue;
951 }
952
953 powernow_table[i].frequency =
954 freq_from_fid_did(lo & 0x3f, (lo >> 6) & 7);
955 } else
956 powernow_table[i].frequency =
957 data->acpi_data.states[i].core_frequency * 1000;
958
959 powernow_table[i].index = index;
960 }
961 return 0;
962 }
963
964 static int fill_powernow_table_fidvid(struct powernow_k8_data *data,
965 struct cpufreq_frequency_table *powernow_table)
966 {
967 int i;
968
969 for (i = 0; i < data->acpi_data.state_count; i++) {
970 u32 fid;
971 u32 vid;
972 u32 freq, index;
973 u64 status, control;
974
975 if (data->exttype) {
976 status = data->acpi_data.states[i].status;
977 fid = status & EXT_FID_MASK;
978 vid = (status >> VID_SHIFT) & EXT_VID_MASK;
979 } else {
980 control = data->acpi_data.states[i].control;
981 fid = control & FID_MASK;
982 vid = (control >> VID_SHIFT) & VID_MASK;
983 }
984
985 pr_debug(" %d : fid 0x%x, vid 0x%x\n", i, fid, vid);
986
987 index = fid | (vid<<8);
988 powernow_table[i].index = index;
989
990 freq = find_khz_freq_from_fid(fid);
991 powernow_table[i].frequency = freq;
992
993 /* verify frequency is OK */
994 if ((freq > (MAX_FREQ * 1000)) || (freq < (MIN_FREQ * 1000))) {
995 pr_debug("invalid freq %u kHz, ignoring\n", freq);
996 invalidate_entry(powernow_table, i);
997 continue;
998 }
999
1000 /* verify voltage is OK -
1001 * BIOSs are using "off" to indicate invalid */
1002 if (vid == VID_OFF) {
1003 pr_debug("invalid vid %u, ignoring\n", vid);
1004 invalidate_entry(powernow_table, i);
1005 continue;
1006 }
1007
1008 if (freq != (data->acpi_data.states[i].core_frequency * 1000)) {
1009 printk(KERN_INFO PFX "invalid freq entries "
1010 "%u kHz vs. %u kHz\n", freq,
1011 (unsigned int)
1012 (data->acpi_data.states[i].core_frequency
1013 * 1000));
1014 invalidate_entry(powernow_table, i);
1015 continue;
1016 }
1017 }
1018 return 0;
1019 }
1020
1021 static void powernow_k8_cpu_exit_acpi(struct powernow_k8_data *data)
1022 {
1023 if (data->acpi_data.state_count)
1024 acpi_processor_unregister_performance(&data->acpi_data,
1025 data->cpu);
1026 free_cpumask_var(data->acpi_data.shared_cpu_map);
1027 }
1028
1029 static int get_transition_latency(struct powernow_k8_data *data)
1030 {
1031 int max_latency = 0;
1032 int i;
1033 for (i = 0; i < data->acpi_data.state_count; i++) {
1034 int cur_latency = data->acpi_data.states[i].transition_latency
1035 + data->acpi_data.states[i].bus_master_latency;
1036 if (cur_latency > max_latency)
1037 max_latency = cur_latency;
1038 }
1039 if (max_latency == 0) {
1040 /*
1041 * Fam 11h and later may return 0 as transition latency. This
1042 * is intended and means "very fast". While cpufreq core and
1043 * governors currently can handle that gracefully, better set it
1044 * to 1 to avoid problems in the future.
1045 */
1046 if (boot_cpu_data.x86 < 0x11)
1047 printk(KERN_ERR FW_WARN PFX "Invalid zero transition "
1048 "latency\n");
1049 max_latency = 1;
1050 }
1051 /* value in usecs, needs to be in nanoseconds */
1052 return 1000 * max_latency;
1053 }
1054
1055 /* Take a frequency, and issue the fid/vid transition command */
1056 static int transition_frequency_fidvid(struct powernow_k8_data *data,
1057 unsigned int index)
1058 {
1059 u32 fid = 0;
1060 u32 vid = 0;
1061 int res, i;
1062 struct cpufreq_freqs freqs;
1063
1064 pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1065
1066 /* fid/vid correctness check for k8 */
1067 /* fid are the lower 8 bits of the index we stored into
1068 * the cpufreq frequency table in find_psb_table, vid
1069 * are the upper 8 bits.
1070 */
1071 fid = data->powernow_table[index].index & 0xFF;
1072 vid = (data->powernow_table[index].index & 0xFF00) >> 8;
1073
1074 pr_debug("table matched fid 0x%x, giving vid 0x%x\n", fid, vid);
1075
1076 if (query_current_values_with_pending_wait(data))
1077 return 1;
1078
1079 if ((data->currvid == vid) && (data->currfid == fid)) {
1080 pr_debug("target matches current values (fid 0x%x, vid 0x%x)\n",
1081 fid, vid);
1082 return 0;
1083 }
1084
1085 pr_debug("cpu %d, changing to fid 0x%x, vid 0x%x\n",
1086 smp_processor_id(), fid, vid);
1087 freqs.old = find_khz_freq_from_fid(data->currfid);
1088 freqs.new = find_khz_freq_from_fid(fid);
1089
1090 for_each_cpu(i, data->available_cores) {
1091 freqs.cpu = i;
1092 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1093 }
1094
1095 res = transition_fid_vid(data, fid, vid);
1096 if (res)
1097 return res;
1098
1099 freqs.new = find_khz_freq_from_fid(data->currfid);
1100
1101 for_each_cpu(i, data->available_cores) {
1102 freqs.cpu = i;
1103 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1104 }
1105 return res;
1106 }
1107
1108 /* Take a frequency, and issue the hardware pstate transition command */
1109 static int transition_frequency_pstate(struct powernow_k8_data *data,
1110 unsigned int index)
1111 {
1112 u32 pstate = 0;
1113 int res, i;
1114 struct cpufreq_freqs freqs;
1115
1116 pr_debug("cpu %d transition to index %u\n", smp_processor_id(), index);
1117
1118 /* get MSR index for hardware pstate transition */
1119 pstate = index & HW_PSTATE_MASK;
1120 if (pstate > data->max_hw_pstate)
1121 return -EINVAL;
1122
1123 freqs.old = find_khz_freq_from_pstate(data->powernow_table,
1124 data->currpstate);
1125 freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1126
1127 for_each_cpu(i, data->available_cores) {
1128 freqs.cpu = i;
1129 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1130 }
1131
1132 res = transition_pstate(data, pstate);
1133 freqs.new = find_khz_freq_from_pstate(data->powernow_table, pstate);
1134
1135 for_each_cpu(i, data->available_cores) {
1136 freqs.cpu = i;
1137 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1138 }
1139 return res;
1140 }
1141
1142 /* Driver entry point to switch to the target frequency */
1143 static int powernowk8_target(struct cpufreq_policy *pol,
1144 unsigned targfreq, unsigned relation)
1145 {
1146 cpumask_var_t oldmask;
1147 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1148 u32 checkfid;
1149 u32 checkvid;
1150 unsigned int newstate;
1151 int ret = -EIO;
1152
1153 if (!data)
1154 return -EINVAL;
1155
1156 checkfid = data->currfid;
1157 checkvid = data->currvid;
1158
1159 /* only run on specific CPU from here on. */
1160 /* This is poor form: use a workqueue or smp_call_function_single */
1161 if (!alloc_cpumask_var(&oldmask, GFP_KERNEL))
1162 return -ENOMEM;
1163
1164 cpumask_copy(oldmask, tsk_cpus_allowed(current));
1165 set_cpus_allowed_ptr(current, cpumask_of(pol->cpu));
1166
1167 if (smp_processor_id() != pol->cpu) {
1168 printk(KERN_ERR PFX "limiting to cpu %u failed\n", pol->cpu);
1169 goto err_out;
1170 }
1171
1172 if (pending_bit_stuck()) {
1173 printk(KERN_ERR PFX "failing targ, change pending bit set\n");
1174 goto err_out;
1175 }
1176
1177 pr_debug("targ: cpu %d, %d kHz, min %d, max %d, relation %d\n",
1178 pol->cpu, targfreq, pol->min, pol->max, relation);
1179
1180 if (query_current_values_with_pending_wait(data))
1181 goto err_out;
1182
1183 if (cpu_family != CPU_HW_PSTATE) {
1184 pr_debug("targ: curr fid 0x%x, vid 0x%x\n",
1185 data->currfid, data->currvid);
1186
1187 if ((checkvid != data->currvid) ||
1188 (checkfid != data->currfid)) {
1189 printk(KERN_INFO PFX
1190 "error - out of sync, fix 0x%x 0x%x, "
1191 "vid 0x%x 0x%x\n",
1192 checkfid, data->currfid,
1193 checkvid, data->currvid);
1194 }
1195 }
1196
1197 if (cpufreq_frequency_table_target(pol, data->powernow_table,
1198 targfreq, relation, &newstate))
1199 goto err_out;
1200
1201 mutex_lock(&fidvid_mutex);
1202
1203 powernow_k8_acpi_pst_values(data, newstate);
1204
1205 if (cpu_family == CPU_HW_PSTATE)
1206 ret = transition_frequency_pstate(data,
1207 data->powernow_table[newstate].index);
1208 else
1209 ret = transition_frequency_fidvid(data, newstate);
1210 if (ret) {
1211 printk(KERN_ERR PFX "transition frequency failed\n");
1212 ret = 1;
1213 mutex_unlock(&fidvid_mutex);
1214 goto err_out;
1215 }
1216 mutex_unlock(&fidvid_mutex);
1217
1218 if (cpu_family == CPU_HW_PSTATE)
1219 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1220 data->powernow_table[newstate].index);
1221 else
1222 pol->cur = find_khz_freq_from_fid(data->currfid);
1223 ret = 0;
1224
1225 err_out:
1226 set_cpus_allowed_ptr(current, oldmask);
1227 free_cpumask_var(oldmask);
1228 return ret;
1229 }
1230
1231 /* Driver entry point to verify the policy and range of frequencies */
1232 static int powernowk8_verify(struct cpufreq_policy *pol)
1233 {
1234 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1235
1236 if (!data)
1237 return -EINVAL;
1238
1239 return cpufreq_frequency_table_verify(pol, data->powernow_table);
1240 }
1241
1242 struct init_on_cpu {
1243 struct powernow_k8_data *data;
1244 int rc;
1245 };
1246
1247 static void __cpuinit powernowk8_cpu_init_on_cpu(void *_init_on_cpu)
1248 {
1249 struct init_on_cpu *init_on_cpu = _init_on_cpu;
1250
1251 if (pending_bit_stuck()) {
1252 printk(KERN_ERR PFX "failing init, change pending bit set\n");
1253 init_on_cpu->rc = -ENODEV;
1254 return;
1255 }
1256
1257 if (query_current_values_with_pending_wait(init_on_cpu->data)) {
1258 init_on_cpu->rc = -ENODEV;
1259 return;
1260 }
1261
1262 if (cpu_family == CPU_OPTERON)
1263 fidvid_msr_init();
1264
1265 init_on_cpu->rc = 0;
1266 }
1267
1268 /* per CPU init entry point to the driver */
1269 static int __cpuinit powernowk8_cpu_init(struct cpufreq_policy *pol)
1270 {
1271 static const char ACPI_PSS_BIOS_BUG_MSG[] =
1272 KERN_ERR FW_BUG PFX "No compatible ACPI _PSS objects found.\n"
1273 FW_BUG PFX "Try again with latest BIOS.\n";
1274 struct powernow_k8_data *data;
1275 struct init_on_cpu init_on_cpu;
1276 int rc;
1277 struct cpuinfo_x86 *c = &cpu_data(pol->cpu);
1278
1279 if (!cpu_online(pol->cpu))
1280 return -ENODEV;
1281
1282 smp_call_function_single(pol->cpu, check_supported_cpu, &rc, 1);
1283 if (rc)
1284 return -ENODEV;
1285
1286 data = kzalloc(sizeof(struct powernow_k8_data), GFP_KERNEL);
1287 if (!data) {
1288 printk(KERN_ERR PFX "unable to alloc powernow_k8_data");
1289 return -ENOMEM;
1290 }
1291
1292 data->cpu = pol->cpu;
1293 data->currpstate = HW_PSTATE_INVALID;
1294
1295 if (powernow_k8_cpu_init_acpi(data)) {
1296 /*
1297 * Use the PSB BIOS structure. This is only available on
1298 * an UP version, and is deprecated by AMD.
1299 */
1300 if (num_online_cpus() != 1) {
1301 printk_once(ACPI_PSS_BIOS_BUG_MSG);
1302 goto err_out;
1303 }
1304 if (pol->cpu != 0) {
1305 printk(KERN_ERR FW_BUG PFX "No ACPI _PSS objects for "
1306 "CPU other than CPU0. Complain to your BIOS "
1307 "vendor.\n");
1308 goto err_out;
1309 }
1310 rc = find_psb_table(data);
1311 if (rc)
1312 goto err_out;
1313
1314 /* Take a crude guess here.
1315 * That guess was in microseconds, so multiply with 1000 */
1316 pol->cpuinfo.transition_latency = (
1317 ((data->rvo + 8) * data->vstable * VST_UNITS_20US) +
1318 ((1 << data->irt) * 30)) * 1000;
1319 } else /* ACPI _PSS objects available */
1320 pol->cpuinfo.transition_latency = get_transition_latency(data);
1321
1322 /* only run on specific CPU from here on */
1323 init_on_cpu.data = data;
1324 smp_call_function_single(data->cpu, powernowk8_cpu_init_on_cpu,
1325 &init_on_cpu, 1);
1326 rc = init_on_cpu.rc;
1327 if (rc != 0)
1328 goto err_out_exit_acpi;
1329
1330 if (cpu_family == CPU_HW_PSTATE)
1331 cpumask_copy(pol->cpus, cpumask_of(pol->cpu));
1332 else
1333 cpumask_copy(pol->cpus, cpu_core_mask(pol->cpu));
1334 data->available_cores = pol->cpus;
1335
1336 if (cpu_family == CPU_HW_PSTATE)
1337 pol->cur = find_khz_freq_from_pstate(data->powernow_table,
1338 data->currpstate);
1339 else
1340 pol->cur = find_khz_freq_from_fid(data->currfid);
1341 pr_debug("policy current frequency %d kHz\n", pol->cur);
1342
1343 /* min/max the cpu is capable of */
1344 if (cpufreq_frequency_table_cpuinfo(pol, data->powernow_table)) {
1345 printk(KERN_ERR FW_BUG PFX "invalid powernow_table\n");
1346 powernow_k8_cpu_exit_acpi(data);
1347 kfree(data->powernow_table);
1348 kfree(data);
1349 return -EINVAL;
1350 }
1351
1352 /* Check for APERF/MPERF support in hardware */
1353 if (cpu_has(c, X86_FEATURE_APERFMPERF))
1354 cpufreq_amd64_driver.getavg = cpufreq_get_measured_perf;
1355
1356 cpufreq_frequency_table_get_attr(data->powernow_table, pol->cpu);
1357
1358 if (cpu_family == CPU_HW_PSTATE)
1359 pr_debug("cpu_init done, current pstate 0x%x\n",
1360 data->currpstate);
1361 else
1362 pr_debug("cpu_init done, current fid 0x%x, vid 0x%x\n",
1363 data->currfid, data->currvid);
1364
1365 per_cpu(powernow_data, pol->cpu) = data;
1366
1367 return 0;
1368
1369 err_out_exit_acpi:
1370 powernow_k8_cpu_exit_acpi(data);
1371
1372 err_out:
1373 kfree(data);
1374 return -ENODEV;
1375 }
1376
1377 static int __devexit powernowk8_cpu_exit(struct cpufreq_policy *pol)
1378 {
1379 struct powernow_k8_data *data = per_cpu(powernow_data, pol->cpu);
1380
1381 if (!data)
1382 return -EINVAL;
1383
1384 powernow_k8_cpu_exit_acpi(data);
1385
1386 cpufreq_frequency_table_put_attr(pol->cpu);
1387
1388 kfree(data->powernow_table);
1389 kfree(data);
1390 per_cpu(powernow_data, pol->cpu) = NULL;
1391
1392 return 0;
1393 }
1394
1395 static void query_values_on_cpu(void *_err)
1396 {
1397 int *err = _err;
1398 struct powernow_k8_data *data = __this_cpu_read(powernow_data);
1399
1400 *err = query_current_values_with_pending_wait(data);
1401 }
1402
1403 static unsigned int powernowk8_get(unsigned int cpu)
1404 {
1405 struct powernow_k8_data *data = per_cpu(powernow_data, cpu);
1406 unsigned int khz = 0;
1407 int err;
1408
1409 if (!data)
1410 return 0;
1411
1412 smp_call_function_single(cpu, query_values_on_cpu, &err, true);
1413 if (err)
1414 goto out;
1415
1416 if (cpu_family == CPU_HW_PSTATE)
1417 khz = find_khz_freq_from_pstate(data->powernow_table,
1418 data->currpstate);
1419 else
1420 khz = find_khz_freq_from_fid(data->currfid);
1421
1422
1423 out:
1424 return khz;
1425 }
1426
1427 static void _cpb_toggle_msrs(bool t)
1428 {
1429 int cpu;
1430
1431 get_online_cpus();
1432
1433 rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1434
1435 for_each_cpu(cpu, cpu_online_mask) {
1436 struct msr *reg = per_cpu_ptr(msrs, cpu);
1437 if (t)
1438 reg->l &= ~BIT(25);
1439 else
1440 reg->l |= BIT(25);
1441 }
1442 wrmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1443
1444 put_online_cpus();
1445 }
1446
1447 /*
1448 * Switch on/off core performance boosting.
1449 *
1450 * 0=disable
1451 * 1=enable.
1452 */
1453 static void cpb_toggle(bool t)
1454 {
1455 if (!cpb_capable)
1456 return;
1457
1458 if (t && !cpb_enabled) {
1459 cpb_enabled = true;
1460 _cpb_toggle_msrs(t);
1461 printk(KERN_INFO PFX "Core Boosting enabled.\n");
1462 } else if (!t && cpb_enabled) {
1463 cpb_enabled = false;
1464 _cpb_toggle_msrs(t);
1465 printk(KERN_INFO PFX "Core Boosting disabled.\n");
1466 }
1467 }
1468
1469 static ssize_t store_cpb(struct cpufreq_policy *policy, const char *buf,
1470 size_t count)
1471 {
1472 int ret = -EINVAL;
1473 unsigned long val = 0;
1474
1475 ret = strict_strtoul(buf, 10, &val);
1476 if (!ret && (val == 0 || val == 1) && cpb_capable)
1477 cpb_toggle(val);
1478 else
1479 return -EINVAL;
1480
1481 return count;
1482 }
1483
1484 static ssize_t show_cpb(struct cpufreq_policy *policy, char *buf)
1485 {
1486 return sprintf(buf, "%u\n", cpb_enabled);
1487 }
1488
1489 #define define_one_rw(_name) \
1490 static struct freq_attr _name = \
1491 __ATTR(_name, 0644, show_##_name, store_##_name)
1492
1493 define_one_rw(cpb);
1494
1495 static struct freq_attr *powernow_k8_attr[] = {
1496 &cpufreq_freq_attr_scaling_available_freqs,
1497 &cpb,
1498 NULL,
1499 };
1500
1501 static struct cpufreq_driver cpufreq_amd64_driver = {
1502 .verify = powernowk8_verify,
1503 .target = powernowk8_target,
1504 .bios_limit = acpi_processor_get_bios_limit,
1505 .init = powernowk8_cpu_init,
1506 .exit = __devexit_p(powernowk8_cpu_exit),
1507 .get = powernowk8_get,
1508 .name = "powernow-k8",
1509 .owner = THIS_MODULE,
1510 .attr = powernow_k8_attr,
1511 };
1512
1513 /*
1514 * Clear the boost-disable flag on the CPU_DOWN path so that this cpu
1515 * cannot block the remaining ones from boosting. On the CPU_UP path we
1516 * simply keep the boost-disable flag in sync with the current global
1517 * state.
1518 */
1519 static int cpb_notify(struct notifier_block *nb, unsigned long action,
1520 void *hcpu)
1521 {
1522 unsigned cpu = (long)hcpu;
1523 u32 lo, hi;
1524
1525 switch (action) {
1526 case CPU_UP_PREPARE:
1527 case CPU_UP_PREPARE_FROZEN:
1528
1529 if (!cpb_enabled) {
1530 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1531 lo |= BIT(25);
1532 wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1533 }
1534 break;
1535
1536 case CPU_DOWN_PREPARE:
1537 case CPU_DOWN_PREPARE_FROZEN:
1538 rdmsr_on_cpu(cpu, MSR_K7_HWCR, &lo, &hi);
1539 lo &= ~BIT(25);
1540 wrmsr_on_cpu(cpu, MSR_K7_HWCR, lo, hi);
1541 break;
1542
1543 default:
1544 break;
1545 }
1546
1547 return NOTIFY_OK;
1548 }
1549
1550 static struct notifier_block cpb_nb = {
1551 .notifier_call = cpb_notify,
1552 };
1553
1554 /* driver entry point for init */
1555 static int __cpuinit powernowk8_init(void)
1556 {
1557 unsigned int i, supported_cpus = 0, cpu;
1558 int rv;
1559
1560 if (!x86_match_cpu(powernow_k8_ids))
1561 return -ENODEV;
1562
1563 for_each_online_cpu(i) {
1564 int rc;
1565 smp_call_function_single(i, check_supported_cpu, &rc, 1);
1566 if (rc == 0)
1567 supported_cpus++;
1568 }
1569
1570 if (supported_cpus != num_online_cpus())
1571 return -ENODEV;
1572
1573 printk(KERN_INFO PFX "Found %d %s (%d cpu cores) (" VERSION ")\n",
1574 num_online_nodes(), boot_cpu_data.x86_model_id, supported_cpus);
1575
1576 if (boot_cpu_has(X86_FEATURE_CPB)) {
1577
1578 cpb_capable = true;
1579
1580 msrs = msrs_alloc();
1581 if (!msrs) {
1582 printk(KERN_ERR "%s: Error allocating msrs!\n", __func__);
1583 return -ENOMEM;
1584 }
1585
1586 register_cpu_notifier(&cpb_nb);
1587
1588 rdmsr_on_cpus(cpu_online_mask, MSR_K7_HWCR, msrs);
1589
1590 for_each_cpu(cpu, cpu_online_mask) {
1591 struct msr *reg = per_cpu_ptr(msrs, cpu);
1592 cpb_enabled |= !(!!(reg->l & BIT(25)));
1593 }
1594
1595 printk(KERN_INFO PFX "Core Performance Boosting: %s.\n",
1596 (cpb_enabled ? "on" : "off"));
1597 }
1598
1599 rv = cpufreq_register_driver(&cpufreq_amd64_driver);
1600 if (rv < 0 && boot_cpu_has(X86_FEATURE_CPB)) {
1601 unregister_cpu_notifier(&cpb_nb);
1602 msrs_free(msrs);
1603 msrs = NULL;
1604 }
1605 return rv;
1606 }
1607
1608 /* driver entry point for term */
1609 static void __exit powernowk8_exit(void)
1610 {
1611 pr_debug("exit\n");
1612
1613 if (boot_cpu_has(X86_FEATURE_CPB)) {
1614 msrs_free(msrs);
1615 msrs = NULL;
1616
1617 unregister_cpu_notifier(&cpb_nb);
1618 }
1619
1620 cpufreq_unregister_driver(&cpufreq_amd64_driver);
1621 }
1622
1623 MODULE_AUTHOR("Paul Devriendt <paul.devriendt@amd.com> and "
1624 "Mark Langsdorf <mark.langsdorf@amd.com>");
1625 MODULE_DESCRIPTION("AMD Athlon 64 and Opteron processor frequency driver.");
1626 MODULE_LICENSE("GPL");
1627
1628 late_initcall(powernowk8_init);
1629 module_exit(powernowk8_exit);