Merge tag 'scsi-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/jejb/scsi
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / cpufreq / cpufreq_ondemand.c
1 /*
2 * drivers/cpufreq/cpufreq_ondemand.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
11 */
12
13 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
14
15 #include <linux/cpufreq.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/kobject.h>
20 #include <linux/module.h>
21 #include <linux/mutex.h>
22 #include <linux/percpu-defs.h>
23 #include <linux/slab.h>
24 #include <linux/sysfs.h>
25 #include <linux/tick.h>
26 #include <linux/types.h>
27 #include <linux/cpu.h>
28
29 #include "cpufreq_governor.h"
30
31 /* On-demand governor macros */
32 #define DEF_FREQUENCY_DOWN_DIFFERENTIAL (10)
33 #define DEF_FREQUENCY_UP_THRESHOLD (80)
34 #define DEF_SAMPLING_DOWN_FACTOR (1)
35 #define MAX_SAMPLING_DOWN_FACTOR (100000)
36 #define MICRO_FREQUENCY_DOWN_DIFFERENTIAL (3)
37 #define MICRO_FREQUENCY_UP_THRESHOLD (95)
38 #define MICRO_FREQUENCY_MIN_SAMPLE_RATE (10000)
39 #define MIN_FREQUENCY_UP_THRESHOLD (11)
40 #define MAX_FREQUENCY_UP_THRESHOLD (100)
41
42 static DEFINE_PER_CPU(struct od_cpu_dbs_info_s, od_cpu_dbs_info);
43
44 static struct od_ops od_ops;
45
46 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
47 static struct cpufreq_governor cpufreq_gov_ondemand;
48 #endif
49
50 static unsigned int default_powersave_bias;
51
52 static void ondemand_powersave_bias_init_cpu(int cpu)
53 {
54 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
55
56 dbs_info->freq_table = cpufreq_frequency_get_table(cpu);
57 dbs_info->freq_lo = 0;
58 }
59
60 /*
61 * Not all CPUs want IO time to be accounted as busy; this depends on how
62 * efficient idling at a higher frequency/voltage is.
63 * Pavel Machek says this is not so for various generations of AMD and old
64 * Intel systems.
65 * Mike Chan (android.com) claims this is also not true for ARM.
66 * Because of this, whitelist specific known (series) of CPUs by default, and
67 * leave all others up to the user.
68 */
69 static int should_io_be_busy(void)
70 {
71 #if defined(CONFIG_X86)
72 /*
73 * For Intel, Core 2 (model 15) and later have an efficient idle.
74 */
75 if (boot_cpu_data.x86_vendor == X86_VENDOR_INTEL &&
76 boot_cpu_data.x86 == 6 &&
77 boot_cpu_data.x86_model >= 15)
78 return 1;
79 #endif
80 return 0;
81 }
82
83 /*
84 * Find right freq to be set now with powersave_bias on.
85 * Returns the freq_hi to be used right now and will set freq_hi_jiffies,
86 * freq_lo, and freq_lo_jiffies in percpu area for averaging freqs.
87 */
88 static unsigned int generic_powersave_bias_target(struct cpufreq_policy *policy,
89 unsigned int freq_next, unsigned int relation)
90 {
91 unsigned int freq_req, freq_reduc, freq_avg;
92 unsigned int freq_hi, freq_lo;
93 unsigned int index = 0;
94 unsigned int jiffies_total, jiffies_hi, jiffies_lo;
95 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
96 policy->cpu);
97 struct dbs_data *dbs_data = policy->governor_data;
98 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
99
100 if (!dbs_info->freq_table) {
101 dbs_info->freq_lo = 0;
102 dbs_info->freq_lo_jiffies = 0;
103 return freq_next;
104 }
105
106 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_next,
107 relation, &index);
108 freq_req = dbs_info->freq_table[index].frequency;
109 freq_reduc = freq_req * od_tuners->powersave_bias / 1000;
110 freq_avg = freq_req - freq_reduc;
111
112 /* Find freq bounds for freq_avg in freq_table */
113 index = 0;
114 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
115 CPUFREQ_RELATION_H, &index);
116 freq_lo = dbs_info->freq_table[index].frequency;
117 index = 0;
118 cpufreq_frequency_table_target(policy, dbs_info->freq_table, freq_avg,
119 CPUFREQ_RELATION_L, &index);
120 freq_hi = dbs_info->freq_table[index].frequency;
121
122 /* Find out how long we have to be in hi and lo freqs */
123 if (freq_hi == freq_lo) {
124 dbs_info->freq_lo = 0;
125 dbs_info->freq_lo_jiffies = 0;
126 return freq_lo;
127 }
128 jiffies_total = usecs_to_jiffies(od_tuners->sampling_rate);
129 jiffies_hi = (freq_avg - freq_lo) * jiffies_total;
130 jiffies_hi += ((freq_hi - freq_lo) / 2);
131 jiffies_hi /= (freq_hi - freq_lo);
132 jiffies_lo = jiffies_total - jiffies_hi;
133 dbs_info->freq_lo = freq_lo;
134 dbs_info->freq_lo_jiffies = jiffies_lo;
135 dbs_info->freq_hi_jiffies = jiffies_hi;
136 return freq_hi;
137 }
138
139 static void ondemand_powersave_bias_init(void)
140 {
141 int i;
142 for_each_online_cpu(i) {
143 ondemand_powersave_bias_init_cpu(i);
144 }
145 }
146
147 static void dbs_freq_increase(struct cpufreq_policy *p, unsigned int freq)
148 {
149 struct dbs_data *dbs_data = p->governor_data;
150 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
151
152 if (od_tuners->powersave_bias)
153 freq = od_ops.powersave_bias_target(p, freq,
154 CPUFREQ_RELATION_H);
155 else if (p->cur == p->max)
156 return;
157
158 __cpufreq_driver_target(p, freq, od_tuners->powersave_bias ?
159 CPUFREQ_RELATION_L : CPUFREQ_RELATION_H);
160 }
161
162 /*
163 * Every sampling_rate, we check, if current idle time is less than 20%
164 * (default), then we try to increase frequency. Every sampling_rate, we look
165 * for the lowest frequency which can sustain the load while keeping idle time
166 * over 30%. If such a frequency exist, we try to decrease to this frequency.
167 *
168 * Any frequency increase takes it to the maximum frequency. Frequency reduction
169 * happens at minimum steps of 5% (default) of current frequency
170 */
171 static void od_check_cpu(int cpu, unsigned int load_freq)
172 {
173 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
174 struct cpufreq_policy *policy = dbs_info->cdbs.cur_policy;
175 struct dbs_data *dbs_data = policy->governor_data;
176 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
177
178 dbs_info->freq_lo = 0;
179
180 /* Check for frequency increase */
181 if (load_freq > od_tuners->up_threshold * policy->cur) {
182 /* If switching to max speed, apply sampling_down_factor */
183 if (policy->cur < policy->max)
184 dbs_info->rate_mult =
185 od_tuners->sampling_down_factor;
186 dbs_freq_increase(policy, policy->max);
187 return;
188 }
189
190 /* Check for frequency decrease */
191 /* if we cannot reduce the frequency anymore, break out early */
192 if (policy->cur == policy->min)
193 return;
194
195 /*
196 * The optimal frequency is the frequency that is the lowest that can
197 * support the current CPU usage without triggering the up policy. To be
198 * safe, we focus 10 points under the threshold.
199 */
200 if (load_freq < od_tuners->adj_up_threshold
201 * policy->cur) {
202 unsigned int freq_next;
203 freq_next = load_freq / od_tuners->adj_up_threshold;
204
205 /* No longer fully busy, reset rate_mult */
206 dbs_info->rate_mult = 1;
207
208 if (freq_next < policy->min)
209 freq_next = policy->min;
210
211 if (!od_tuners->powersave_bias) {
212 __cpufreq_driver_target(policy, freq_next,
213 CPUFREQ_RELATION_L);
214 return;
215 }
216
217 freq_next = od_ops.powersave_bias_target(policy, freq_next,
218 CPUFREQ_RELATION_L);
219 __cpufreq_driver_target(policy, freq_next, CPUFREQ_RELATION_L);
220 }
221 }
222
223 static void od_dbs_timer(struct work_struct *work)
224 {
225 struct od_cpu_dbs_info_s *dbs_info =
226 container_of(work, struct od_cpu_dbs_info_s, cdbs.work.work);
227 unsigned int cpu = dbs_info->cdbs.cur_policy->cpu;
228 struct od_cpu_dbs_info_s *core_dbs_info = &per_cpu(od_cpu_dbs_info,
229 cpu);
230 struct dbs_data *dbs_data = dbs_info->cdbs.cur_policy->governor_data;
231 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
232 int delay = 0, sample_type = core_dbs_info->sample_type;
233 bool modify_all = true;
234
235 mutex_lock(&core_dbs_info->cdbs.timer_mutex);
236 if (!need_load_eval(&core_dbs_info->cdbs, od_tuners->sampling_rate)) {
237 modify_all = false;
238 goto max_delay;
239 }
240
241 /* Common NORMAL_SAMPLE setup */
242 core_dbs_info->sample_type = OD_NORMAL_SAMPLE;
243 if (sample_type == OD_SUB_SAMPLE) {
244 delay = core_dbs_info->freq_lo_jiffies;
245 __cpufreq_driver_target(core_dbs_info->cdbs.cur_policy,
246 core_dbs_info->freq_lo, CPUFREQ_RELATION_H);
247 } else {
248 dbs_check_cpu(dbs_data, cpu);
249 if (core_dbs_info->freq_lo) {
250 /* Setup timer for SUB_SAMPLE */
251 core_dbs_info->sample_type = OD_SUB_SAMPLE;
252 delay = core_dbs_info->freq_hi_jiffies;
253 }
254 }
255
256 max_delay:
257 if (!delay)
258 delay = delay_for_sampling_rate(od_tuners->sampling_rate
259 * core_dbs_info->rate_mult);
260
261 gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy, delay, modify_all);
262 mutex_unlock(&core_dbs_info->cdbs.timer_mutex);
263 }
264
265 /************************** sysfs interface ************************/
266 static struct common_dbs_data od_dbs_cdata;
267
268 /**
269 * update_sampling_rate - update sampling rate effective immediately if needed.
270 * @new_rate: new sampling rate
271 *
272 * If new rate is smaller than the old, simply updating
273 * dbs_tuners_int.sampling_rate might not be appropriate. For example, if the
274 * original sampling_rate was 1 second and the requested new sampling rate is 10
275 * ms because the user needs immediate reaction from ondemand governor, but not
276 * sure if higher frequency will be required or not, then, the governor may
277 * change the sampling rate too late; up to 1 second later. Thus, if we are
278 * reducing the sampling rate, we need to make the new value effective
279 * immediately.
280 */
281 static void update_sampling_rate(struct dbs_data *dbs_data,
282 unsigned int new_rate)
283 {
284 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
285 int cpu;
286
287 od_tuners->sampling_rate = new_rate = max(new_rate,
288 dbs_data->min_sampling_rate);
289
290 for_each_online_cpu(cpu) {
291 struct cpufreq_policy *policy;
292 struct od_cpu_dbs_info_s *dbs_info;
293 unsigned long next_sampling, appointed_at;
294
295 policy = cpufreq_cpu_get(cpu);
296 if (!policy)
297 continue;
298 if (policy->governor != &cpufreq_gov_ondemand) {
299 cpufreq_cpu_put(policy);
300 continue;
301 }
302 dbs_info = &per_cpu(od_cpu_dbs_info, cpu);
303 cpufreq_cpu_put(policy);
304
305 mutex_lock(&dbs_info->cdbs.timer_mutex);
306
307 if (!delayed_work_pending(&dbs_info->cdbs.work)) {
308 mutex_unlock(&dbs_info->cdbs.timer_mutex);
309 continue;
310 }
311
312 next_sampling = jiffies + usecs_to_jiffies(new_rate);
313 appointed_at = dbs_info->cdbs.work.timer.expires;
314
315 if (time_before(next_sampling, appointed_at)) {
316
317 mutex_unlock(&dbs_info->cdbs.timer_mutex);
318 cancel_delayed_work_sync(&dbs_info->cdbs.work);
319 mutex_lock(&dbs_info->cdbs.timer_mutex);
320
321 gov_queue_work(dbs_data, dbs_info->cdbs.cur_policy,
322 usecs_to_jiffies(new_rate), true);
323
324 }
325 mutex_unlock(&dbs_info->cdbs.timer_mutex);
326 }
327 }
328
329 static ssize_t store_sampling_rate(struct dbs_data *dbs_data, const char *buf,
330 size_t count)
331 {
332 unsigned int input;
333 int ret;
334 ret = sscanf(buf, "%u", &input);
335 if (ret != 1)
336 return -EINVAL;
337
338 update_sampling_rate(dbs_data, input);
339 return count;
340 }
341
342 static ssize_t store_io_is_busy(struct dbs_data *dbs_data, const char *buf,
343 size_t count)
344 {
345 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
346 unsigned int input;
347 int ret;
348 unsigned int j;
349
350 ret = sscanf(buf, "%u", &input);
351 if (ret != 1)
352 return -EINVAL;
353 od_tuners->io_is_busy = !!input;
354
355 /* we need to re-evaluate prev_cpu_idle */
356 for_each_online_cpu(j) {
357 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
358 j);
359 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
360 &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
361 }
362 return count;
363 }
364
365 static ssize_t store_up_threshold(struct dbs_data *dbs_data, const char *buf,
366 size_t count)
367 {
368 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
369 unsigned int input;
370 int ret;
371 ret = sscanf(buf, "%u", &input);
372
373 if (ret != 1 || input > MAX_FREQUENCY_UP_THRESHOLD ||
374 input < MIN_FREQUENCY_UP_THRESHOLD) {
375 return -EINVAL;
376 }
377 /* Calculate the new adj_up_threshold */
378 od_tuners->adj_up_threshold += input;
379 od_tuners->adj_up_threshold -= od_tuners->up_threshold;
380
381 od_tuners->up_threshold = input;
382 return count;
383 }
384
385 static ssize_t store_sampling_down_factor(struct dbs_data *dbs_data,
386 const char *buf, size_t count)
387 {
388 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
389 unsigned int input, j;
390 int ret;
391 ret = sscanf(buf, "%u", &input);
392
393 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
394 return -EINVAL;
395 od_tuners->sampling_down_factor = input;
396
397 /* Reset down sampling multiplier in case it was active */
398 for_each_online_cpu(j) {
399 struct od_cpu_dbs_info_s *dbs_info = &per_cpu(od_cpu_dbs_info,
400 j);
401 dbs_info->rate_mult = 1;
402 }
403 return count;
404 }
405
406 static ssize_t store_ignore_nice(struct dbs_data *dbs_data, const char *buf,
407 size_t count)
408 {
409 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
410 unsigned int input;
411 int ret;
412
413 unsigned int j;
414
415 ret = sscanf(buf, "%u", &input);
416 if (ret != 1)
417 return -EINVAL;
418
419 if (input > 1)
420 input = 1;
421
422 if (input == od_tuners->ignore_nice) { /* nothing to do */
423 return count;
424 }
425 od_tuners->ignore_nice = input;
426
427 /* we need to re-evaluate prev_cpu_idle */
428 for_each_online_cpu(j) {
429 struct od_cpu_dbs_info_s *dbs_info;
430 dbs_info = &per_cpu(od_cpu_dbs_info, j);
431 dbs_info->cdbs.prev_cpu_idle = get_cpu_idle_time(j,
432 &dbs_info->cdbs.prev_cpu_wall, od_tuners->io_is_busy);
433 if (od_tuners->ignore_nice)
434 dbs_info->cdbs.prev_cpu_nice =
435 kcpustat_cpu(j).cpustat[CPUTIME_NICE];
436
437 }
438 return count;
439 }
440
441 static ssize_t store_powersave_bias(struct dbs_data *dbs_data, const char *buf,
442 size_t count)
443 {
444 struct od_dbs_tuners *od_tuners = dbs_data->tuners;
445 unsigned int input;
446 int ret;
447 ret = sscanf(buf, "%u", &input);
448
449 if (ret != 1)
450 return -EINVAL;
451
452 if (input > 1000)
453 input = 1000;
454
455 od_tuners->powersave_bias = input;
456 ondemand_powersave_bias_init();
457 return count;
458 }
459
460 show_store_one(od, sampling_rate);
461 show_store_one(od, io_is_busy);
462 show_store_one(od, up_threshold);
463 show_store_one(od, sampling_down_factor);
464 show_store_one(od, ignore_nice);
465 show_store_one(od, powersave_bias);
466 declare_show_sampling_rate_min(od);
467
468 gov_sys_pol_attr_rw(sampling_rate);
469 gov_sys_pol_attr_rw(io_is_busy);
470 gov_sys_pol_attr_rw(up_threshold);
471 gov_sys_pol_attr_rw(sampling_down_factor);
472 gov_sys_pol_attr_rw(ignore_nice);
473 gov_sys_pol_attr_rw(powersave_bias);
474 gov_sys_pol_attr_ro(sampling_rate_min);
475
476 static struct attribute *dbs_attributes_gov_sys[] = {
477 &sampling_rate_min_gov_sys.attr,
478 &sampling_rate_gov_sys.attr,
479 &up_threshold_gov_sys.attr,
480 &sampling_down_factor_gov_sys.attr,
481 &ignore_nice_gov_sys.attr,
482 &powersave_bias_gov_sys.attr,
483 &io_is_busy_gov_sys.attr,
484 NULL
485 };
486
487 static struct attribute_group od_attr_group_gov_sys = {
488 .attrs = dbs_attributes_gov_sys,
489 .name = "ondemand",
490 };
491
492 static struct attribute *dbs_attributes_gov_pol[] = {
493 &sampling_rate_min_gov_pol.attr,
494 &sampling_rate_gov_pol.attr,
495 &up_threshold_gov_pol.attr,
496 &sampling_down_factor_gov_pol.attr,
497 &ignore_nice_gov_pol.attr,
498 &powersave_bias_gov_pol.attr,
499 &io_is_busy_gov_pol.attr,
500 NULL
501 };
502
503 static struct attribute_group od_attr_group_gov_pol = {
504 .attrs = dbs_attributes_gov_pol,
505 .name = "ondemand",
506 };
507
508 /************************** sysfs end ************************/
509
510 static int od_init(struct dbs_data *dbs_data)
511 {
512 struct od_dbs_tuners *tuners;
513 u64 idle_time;
514 int cpu;
515
516 tuners = kzalloc(sizeof(struct od_dbs_tuners), GFP_KERNEL);
517 if (!tuners) {
518 pr_err("%s: kzalloc failed\n", __func__);
519 return -ENOMEM;
520 }
521
522 cpu = get_cpu();
523 idle_time = get_cpu_idle_time_us(cpu, NULL);
524 put_cpu();
525 if (idle_time != -1ULL) {
526 /* Idle micro accounting is supported. Use finer thresholds */
527 tuners->up_threshold = MICRO_FREQUENCY_UP_THRESHOLD;
528 tuners->adj_up_threshold = MICRO_FREQUENCY_UP_THRESHOLD -
529 MICRO_FREQUENCY_DOWN_DIFFERENTIAL;
530 /*
531 * In nohz/micro accounting case we set the minimum frequency
532 * not depending on HZ, but fixed (very low). The deferred
533 * timer might skip some samples if idle/sleeping as needed.
534 */
535 dbs_data->min_sampling_rate = MICRO_FREQUENCY_MIN_SAMPLE_RATE;
536 } else {
537 tuners->up_threshold = DEF_FREQUENCY_UP_THRESHOLD;
538 tuners->adj_up_threshold = DEF_FREQUENCY_UP_THRESHOLD -
539 DEF_FREQUENCY_DOWN_DIFFERENTIAL;
540
541 /* For correct statistics, we need 10 ticks for each measure */
542 dbs_data->min_sampling_rate = MIN_SAMPLING_RATE_RATIO *
543 jiffies_to_usecs(10);
544 }
545
546 tuners->sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR;
547 tuners->ignore_nice = 0;
548 tuners->powersave_bias = default_powersave_bias;
549 tuners->io_is_busy = should_io_be_busy();
550
551 dbs_data->tuners = tuners;
552 mutex_init(&dbs_data->mutex);
553 return 0;
554 }
555
556 static void od_exit(struct dbs_data *dbs_data)
557 {
558 kfree(dbs_data->tuners);
559 }
560
561 define_get_cpu_dbs_routines(od_cpu_dbs_info);
562
563 static struct od_ops od_ops = {
564 .powersave_bias_init_cpu = ondemand_powersave_bias_init_cpu,
565 .powersave_bias_target = generic_powersave_bias_target,
566 .freq_increase = dbs_freq_increase,
567 };
568
569 static struct common_dbs_data od_dbs_cdata = {
570 .governor = GOV_ONDEMAND,
571 .attr_group_gov_sys = &od_attr_group_gov_sys,
572 .attr_group_gov_pol = &od_attr_group_gov_pol,
573 .get_cpu_cdbs = get_cpu_cdbs,
574 .get_cpu_dbs_info_s = get_cpu_dbs_info_s,
575 .gov_dbs_timer = od_dbs_timer,
576 .gov_check_cpu = od_check_cpu,
577 .gov_ops = &od_ops,
578 .init = od_init,
579 .exit = od_exit,
580 };
581
582 static void od_set_powersave_bias(unsigned int powersave_bias)
583 {
584 struct cpufreq_policy *policy;
585 struct dbs_data *dbs_data;
586 struct od_dbs_tuners *od_tuners;
587 unsigned int cpu;
588 cpumask_t done;
589
590 default_powersave_bias = powersave_bias;
591 cpumask_clear(&done);
592
593 get_online_cpus();
594 for_each_online_cpu(cpu) {
595 if (cpumask_test_cpu(cpu, &done))
596 continue;
597
598 policy = per_cpu(od_cpu_dbs_info, cpu).cdbs.cur_policy;
599 if (!policy)
600 continue;
601
602 cpumask_or(&done, &done, policy->cpus);
603
604 if (policy->governor != &cpufreq_gov_ondemand)
605 continue;
606
607 dbs_data = policy->governor_data;
608 od_tuners = dbs_data->tuners;
609 od_tuners->powersave_bias = default_powersave_bias;
610 }
611 put_online_cpus();
612 }
613
614 void od_register_powersave_bias_handler(unsigned int (*f)
615 (struct cpufreq_policy *, unsigned int, unsigned int),
616 unsigned int powersave_bias)
617 {
618 od_ops.powersave_bias_target = f;
619 od_set_powersave_bias(powersave_bias);
620 }
621 EXPORT_SYMBOL_GPL(od_register_powersave_bias_handler);
622
623 void od_unregister_powersave_bias_handler(void)
624 {
625 od_ops.powersave_bias_target = generic_powersave_bias_target;
626 od_set_powersave_bias(0);
627 }
628 EXPORT_SYMBOL_GPL(od_unregister_powersave_bias_handler);
629
630 static int od_cpufreq_governor_dbs(struct cpufreq_policy *policy,
631 unsigned int event)
632 {
633 return cpufreq_governor_dbs(policy, &od_dbs_cdata, event);
634 }
635
636 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
637 static
638 #endif
639 struct cpufreq_governor cpufreq_gov_ondemand = {
640 .name = "ondemand",
641 .governor = od_cpufreq_governor_dbs,
642 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
643 .owner = THIS_MODULE,
644 };
645
646 static int __init cpufreq_gov_dbs_init(void)
647 {
648 return cpufreq_register_governor(&cpufreq_gov_ondemand);
649 }
650
651 static void __exit cpufreq_gov_dbs_exit(void)
652 {
653 cpufreq_unregister_governor(&cpufreq_gov_ondemand);
654 }
655
656 MODULE_AUTHOR("Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>");
657 MODULE_AUTHOR("Alexey Starikovskiy <alexey.y.starikovskiy@intel.com>");
658 MODULE_DESCRIPTION("'cpufreq_ondemand' - A dynamic cpufreq governor for "
659 "Low Latency Frequency Transition capable processors");
660 MODULE_LICENSE("GPL");
661
662 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_ONDEMAND
663 fs_initcall(cpufreq_gov_dbs_init);
664 #else
665 module_init(cpufreq_gov_dbs_init);
666 #endif
667 module_exit(cpufreq_gov_dbs_exit);