[CPUFREQ] checkpatch cleanups for conservative governor
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / cpufreq / cpufreq_conservative.c
1 /*
2 * drivers/cpufreq/cpufreq_conservative.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2003 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>.
6 * Jun Nakajima <jun.nakajima@intel.com>
7 * (C) 2004 Alexander Clouter <alex-kernel@digriz.org.uk>
8 *
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
12 */
13
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/smp.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/ctype.h>
20 #include <linux/cpufreq.h>
21 #include <linux/sysctl.h>
22 #include <linux/types.h>
23 #include <linux/fs.h>
24 #include <linux/sysfs.h>
25 #include <linux/cpu.h>
26 #include <linux/kmod.h>
27 #include <linux/workqueue.h>
28 #include <linux/jiffies.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/percpu.h>
31 #include <linux/mutex.h>
32 /*
33 * dbs is used in this file as a shortform for demandbased switching
34 * It helps to keep variable names smaller, simpler
35 */
36
37 #define DEF_FREQUENCY_UP_THRESHOLD (80)
38 #define DEF_FREQUENCY_DOWN_THRESHOLD (20)
39
40 /*
41 * The polling frequency of this governor depends on the capability of
42 * the processor. Default polling frequency is 1000 times the transition
43 * latency of the processor. The governor will work on any processor with
44 * transition latency <= 10mS, using appropriate sampling
45 * rate.
46 * For CPUs with transition latency > 10mS (mostly drivers
47 * with CPUFREQ_ETERNAL), this governor will not work.
48 * All times here are in uS.
49 */
50 static unsigned int def_sampling_rate;
51 #define MIN_SAMPLING_RATE_RATIO (2)
52 /* for correct statistics, we need at least 10 ticks between each measure */
53 #define MIN_STAT_SAMPLING_RATE \
54 (MIN_SAMPLING_RATE_RATIO * jiffies_to_usecs(10))
55 #define MIN_SAMPLING_RATE \
56 (def_sampling_rate / MIN_SAMPLING_RATE_RATIO)
57 #define MAX_SAMPLING_RATE (500 * def_sampling_rate)
58 #define DEF_SAMPLING_RATE_LATENCY_MULTIPLIER (1000)
59 #define DEF_SAMPLING_DOWN_FACTOR (1)
60 #define MAX_SAMPLING_DOWN_FACTOR (10)
61 #define TRANSITION_LATENCY_LIMIT (10 * 1000 * 1000)
62
63 static void do_dbs_timer(struct work_struct *work);
64
65 struct cpu_dbs_info_s {
66 struct cpufreq_policy *cur_policy;
67 unsigned int prev_cpu_idle_up;
68 unsigned int prev_cpu_idle_down;
69 unsigned int enable;
70 unsigned int down_skip;
71 unsigned int requested_freq;
72 };
73 static DEFINE_PER_CPU(struct cpu_dbs_info_s, cpu_dbs_info);
74
75 static unsigned int dbs_enable; /* number of CPUs using this policy */
76
77 /*
78 * DEADLOCK ALERT! There is a ordering requirement between cpu_hotplug
79 * lock and dbs_mutex. cpu_hotplug lock should always be held before
80 * dbs_mutex. If any function that can potentially take cpu_hotplug lock
81 * (like __cpufreq_driver_target()) is being called with dbs_mutex taken, then
82 * cpu_hotplug lock should be taken before that. Note that cpu_hotplug lock
83 * is recursive for the same process. -Venki
84 */
85 static DEFINE_MUTEX(dbs_mutex);
86 static DECLARE_DELAYED_WORK(dbs_work, do_dbs_timer);
87
88 struct dbs_tuners {
89 unsigned int sampling_rate;
90 unsigned int sampling_down_factor;
91 unsigned int up_threshold;
92 unsigned int down_threshold;
93 unsigned int ignore_nice;
94 unsigned int freq_step;
95 };
96
97 static struct dbs_tuners dbs_tuners_ins = {
98 .up_threshold = DEF_FREQUENCY_UP_THRESHOLD,
99 .down_threshold = DEF_FREQUENCY_DOWN_THRESHOLD,
100 .sampling_down_factor = DEF_SAMPLING_DOWN_FACTOR,
101 .ignore_nice = 0,
102 .freq_step = 5,
103 };
104
105 static inline unsigned int get_cpu_idle_time(unsigned int cpu)
106 {
107 unsigned int add_nice = 0, ret;
108
109 if (dbs_tuners_ins.ignore_nice)
110 add_nice = kstat_cpu(cpu).cpustat.nice;
111
112 ret = kstat_cpu(cpu).cpustat.idle +
113 kstat_cpu(cpu).cpustat.iowait +
114 add_nice;
115
116 return ret;
117 }
118
119 /* keep track of frequency transitions */
120 static int
121 dbs_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
122 void *data)
123 {
124 struct cpufreq_freqs *freq = data;
125 struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info,
126 freq->cpu);
127
128 if (!this_dbs_info->enable)
129 return 0;
130
131 this_dbs_info->requested_freq = freq->new;
132
133 return 0;
134 }
135
136 static struct notifier_block dbs_cpufreq_notifier_block = {
137 .notifier_call = dbs_cpufreq_notifier
138 };
139
140 /************************** sysfs interface ************************/
141 static ssize_t show_sampling_rate_max(struct cpufreq_policy *policy, char *buf)
142 {
143 return sprintf(buf, "%u\n", MAX_SAMPLING_RATE);
144 }
145
146 static ssize_t show_sampling_rate_min(struct cpufreq_policy *policy, char *buf)
147 {
148 return sprintf(buf, "%u\n", MIN_SAMPLING_RATE);
149 }
150
151 #define define_one_ro(_name) \
152 static struct freq_attr _name = \
153 __ATTR(_name, 0444, show_##_name, NULL)
154
155 define_one_ro(sampling_rate_max);
156 define_one_ro(sampling_rate_min);
157
158 /* cpufreq_conservative Governor Tunables */
159 #define show_one(file_name, object) \
160 static ssize_t show_##file_name \
161 (struct cpufreq_policy *unused, char *buf) \
162 { \
163 return sprintf(buf, "%u\n", dbs_tuners_ins.object); \
164 }
165 show_one(sampling_rate, sampling_rate);
166 show_one(sampling_down_factor, sampling_down_factor);
167 show_one(up_threshold, up_threshold);
168 show_one(down_threshold, down_threshold);
169 show_one(ignore_nice_load, ignore_nice);
170 show_one(freq_step, freq_step);
171
172 static ssize_t store_sampling_down_factor(struct cpufreq_policy *unused,
173 const char *buf, size_t count)
174 {
175 unsigned int input;
176 int ret;
177 ret = sscanf(buf, "%u", &input);
178 if (ret != 1 || input > MAX_SAMPLING_DOWN_FACTOR || input < 1)
179 return -EINVAL;
180
181 mutex_lock(&dbs_mutex);
182 dbs_tuners_ins.sampling_down_factor = input;
183 mutex_unlock(&dbs_mutex);
184
185 return count;
186 }
187
188 static ssize_t store_sampling_rate(struct cpufreq_policy *unused,
189 const char *buf, size_t count)
190 {
191 unsigned int input;
192 int ret;
193 ret = sscanf(buf, "%u", &input);
194
195 mutex_lock(&dbs_mutex);
196 if (ret != 1 || input > MAX_SAMPLING_RATE ||
197 input < MIN_SAMPLING_RATE) {
198 mutex_unlock(&dbs_mutex);
199 return -EINVAL;
200 }
201
202 dbs_tuners_ins.sampling_rate = input;
203 mutex_unlock(&dbs_mutex);
204
205 return count;
206 }
207
208 static ssize_t store_up_threshold(struct cpufreq_policy *unused,
209 const char *buf, size_t count)
210 {
211 unsigned int input;
212 int ret;
213 ret = sscanf(buf, "%u", &input);
214
215 mutex_lock(&dbs_mutex);
216 if (ret != 1 || input > 100 ||
217 input <= dbs_tuners_ins.down_threshold) {
218 mutex_unlock(&dbs_mutex);
219 return -EINVAL;
220 }
221
222 dbs_tuners_ins.up_threshold = input;
223 mutex_unlock(&dbs_mutex);
224
225 return count;
226 }
227
228 static ssize_t store_down_threshold(struct cpufreq_policy *unused,
229 const char *buf, size_t count)
230 {
231 unsigned int input;
232 int ret;
233 ret = sscanf(buf, "%u", &input);
234
235 mutex_lock(&dbs_mutex);
236 if (ret != 1 || input > 100 || input >= dbs_tuners_ins.up_threshold) {
237 mutex_unlock(&dbs_mutex);
238 return -EINVAL;
239 }
240
241 dbs_tuners_ins.down_threshold = input;
242 mutex_unlock(&dbs_mutex);
243
244 return count;
245 }
246
247 static ssize_t store_ignore_nice_load(struct cpufreq_policy *policy,
248 const char *buf, size_t count)
249 {
250 unsigned int input;
251 int ret;
252
253 unsigned int j;
254
255 ret = sscanf(buf, "%u", &input);
256 if (ret != 1)
257 return -EINVAL;
258
259 if (input > 1)
260 input = 1;
261
262 mutex_lock(&dbs_mutex);
263 if (input == dbs_tuners_ins.ignore_nice) { /* nothing to do */
264 mutex_unlock(&dbs_mutex);
265 return count;
266 }
267 dbs_tuners_ins.ignore_nice = input;
268
269 /* we need to re-evaluate prev_cpu_idle_up and prev_cpu_idle_down */
270 for_each_online_cpu(j) {
271 struct cpu_dbs_info_s *j_dbs_info;
272 j_dbs_info = &per_cpu(cpu_dbs_info, j);
273 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(j);
274 j_dbs_info->prev_cpu_idle_down = j_dbs_info->prev_cpu_idle_up;
275 }
276 mutex_unlock(&dbs_mutex);
277
278 return count;
279 }
280
281 static ssize_t store_freq_step(struct cpufreq_policy *policy,
282 const char *buf, size_t count)
283 {
284 unsigned int input;
285 int ret;
286
287 ret = sscanf(buf, "%u", &input);
288
289 if (ret != 1)
290 return -EINVAL;
291
292 if (input > 100)
293 input = 100;
294
295 /* no need to test here if freq_step is zero as the user might actually
296 * want this, they would be crazy though :) */
297 mutex_lock(&dbs_mutex);
298 dbs_tuners_ins.freq_step = input;
299 mutex_unlock(&dbs_mutex);
300
301 return count;
302 }
303
304 #define define_one_rw(_name) \
305 static struct freq_attr _name = \
306 __ATTR(_name, 0644, show_##_name, store_##_name)
307
308 define_one_rw(sampling_rate);
309 define_one_rw(sampling_down_factor);
310 define_one_rw(up_threshold);
311 define_one_rw(down_threshold);
312 define_one_rw(ignore_nice_load);
313 define_one_rw(freq_step);
314
315 static struct attribute *dbs_attributes[] = {
316 &sampling_rate_max.attr,
317 &sampling_rate_min.attr,
318 &sampling_rate.attr,
319 &sampling_down_factor.attr,
320 &up_threshold.attr,
321 &down_threshold.attr,
322 &ignore_nice_load.attr,
323 &freq_step.attr,
324 NULL
325 };
326
327 static struct attribute_group dbs_attr_group = {
328 .attrs = dbs_attributes,
329 .name = "conservative",
330 };
331
332 /************************** sysfs end ************************/
333
334 static void dbs_check_cpu(int cpu)
335 {
336 unsigned int idle_ticks, up_idle_ticks, down_idle_ticks;
337 unsigned int tmp_idle_ticks, total_idle_ticks;
338 unsigned int freq_target;
339 unsigned int freq_down_sampling_rate;
340 struct cpu_dbs_info_s *this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
341 struct cpufreq_policy *policy;
342
343 if (!this_dbs_info->enable)
344 return;
345
346 policy = this_dbs_info->cur_policy;
347
348 /*
349 * The default safe range is 20% to 80%
350 * Every sampling_rate, we check
351 * - If current idle time is less than 20%, then we try to
352 * increase frequency
353 * Every sampling_rate*sampling_down_factor, we check
354 * - If current idle time is more than 80%, then we try to
355 * decrease frequency
356 *
357 * Any frequency increase takes it to the maximum frequency.
358 * Frequency reduction happens at minimum steps of
359 * 5% (default) of max_frequency
360 */
361
362 /* Check for frequency increase */
363 idle_ticks = UINT_MAX;
364
365 /* Check for frequency increase */
366 total_idle_ticks = get_cpu_idle_time(cpu);
367 tmp_idle_ticks = total_idle_ticks -
368 this_dbs_info->prev_cpu_idle_up;
369 this_dbs_info->prev_cpu_idle_up = total_idle_ticks;
370
371 if (tmp_idle_ticks < idle_ticks)
372 idle_ticks = tmp_idle_ticks;
373
374 /* Scale idle ticks by 100 and compare with up and down ticks */
375 idle_ticks *= 100;
376 up_idle_ticks = (100 - dbs_tuners_ins.up_threshold) *
377 usecs_to_jiffies(dbs_tuners_ins.sampling_rate);
378
379 if (idle_ticks < up_idle_ticks) {
380 this_dbs_info->down_skip = 0;
381 this_dbs_info->prev_cpu_idle_down =
382 this_dbs_info->prev_cpu_idle_up;
383
384 /* if we are already at full speed then break out early */
385 if (this_dbs_info->requested_freq == policy->max)
386 return;
387
388 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
389
390 /* max freq cannot be less than 100. But who knows.... */
391 if (unlikely(freq_target == 0))
392 freq_target = 5;
393
394 this_dbs_info->requested_freq += freq_target;
395 if (this_dbs_info->requested_freq > policy->max)
396 this_dbs_info->requested_freq = policy->max;
397
398 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
399 CPUFREQ_RELATION_H);
400 return;
401 }
402
403 /* Check for frequency decrease */
404 this_dbs_info->down_skip++;
405 if (this_dbs_info->down_skip < dbs_tuners_ins.sampling_down_factor)
406 return;
407
408 /* Check for frequency decrease */
409 total_idle_ticks = this_dbs_info->prev_cpu_idle_up;
410 tmp_idle_ticks = total_idle_ticks -
411 this_dbs_info->prev_cpu_idle_down;
412 this_dbs_info->prev_cpu_idle_down = total_idle_ticks;
413
414 if (tmp_idle_ticks < idle_ticks)
415 idle_ticks = tmp_idle_ticks;
416
417 /* Scale idle ticks by 100 and compare with up and down ticks */
418 idle_ticks *= 100;
419 this_dbs_info->down_skip = 0;
420
421 freq_down_sampling_rate = dbs_tuners_ins.sampling_rate *
422 dbs_tuners_ins.sampling_down_factor;
423 down_idle_ticks = (100 - dbs_tuners_ins.down_threshold) *
424 usecs_to_jiffies(freq_down_sampling_rate);
425
426 if (idle_ticks > down_idle_ticks) {
427 /*
428 * if we are already at the lowest speed then break out early
429 * or if we 'cannot' reduce the speed as the user might want
430 * freq_target to be zero
431 */
432 if (this_dbs_info->requested_freq == policy->min
433 || dbs_tuners_ins.freq_step == 0)
434 return;
435
436 freq_target = (dbs_tuners_ins.freq_step * policy->max) / 100;
437
438 /* max freq cannot be less than 100. But who knows.... */
439 if (unlikely(freq_target == 0))
440 freq_target = 5;
441
442 this_dbs_info->requested_freq -= freq_target;
443 if (this_dbs_info->requested_freq < policy->min)
444 this_dbs_info->requested_freq = policy->min;
445
446 __cpufreq_driver_target(policy, this_dbs_info->requested_freq,
447 CPUFREQ_RELATION_H);
448 return;
449 }
450 }
451
452 static void do_dbs_timer(struct work_struct *work)
453 {
454 int i;
455 mutex_lock(&dbs_mutex);
456 for_each_online_cpu(i)
457 dbs_check_cpu(i);
458 schedule_delayed_work(&dbs_work,
459 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
460 mutex_unlock(&dbs_mutex);
461 }
462
463 static inline void dbs_timer_init(void)
464 {
465 init_timer_deferrable(&dbs_work.timer);
466 schedule_delayed_work(&dbs_work,
467 usecs_to_jiffies(dbs_tuners_ins.sampling_rate));
468 return;
469 }
470
471 static inline void dbs_timer_exit(void)
472 {
473 cancel_delayed_work(&dbs_work);
474 return;
475 }
476
477 static int cpufreq_governor_dbs(struct cpufreq_policy *policy,
478 unsigned int event)
479 {
480 unsigned int cpu = policy->cpu;
481 struct cpu_dbs_info_s *this_dbs_info;
482 unsigned int j;
483 int rc;
484
485 this_dbs_info = &per_cpu(cpu_dbs_info, cpu);
486
487 switch (event) {
488 case CPUFREQ_GOV_START:
489 if ((!cpu_online(cpu)) || (!policy->cur))
490 return -EINVAL;
491
492 if (this_dbs_info->enable) /* Already enabled */
493 break;
494
495 mutex_lock(&dbs_mutex);
496
497 rc = sysfs_create_group(&policy->kobj, &dbs_attr_group);
498 if (rc) {
499 mutex_unlock(&dbs_mutex);
500 return rc;
501 }
502
503 for_each_cpu(j, policy->cpus) {
504 struct cpu_dbs_info_s *j_dbs_info;
505 j_dbs_info = &per_cpu(cpu_dbs_info, j);
506 j_dbs_info->cur_policy = policy;
507
508 j_dbs_info->prev_cpu_idle_up = get_cpu_idle_time(cpu);
509 j_dbs_info->prev_cpu_idle_down
510 = j_dbs_info->prev_cpu_idle_up;
511 }
512 this_dbs_info->enable = 1;
513 this_dbs_info->down_skip = 0;
514 this_dbs_info->requested_freq = policy->cur;
515
516 dbs_enable++;
517 /*
518 * Start the timerschedule work, when this governor
519 * is used for first time
520 */
521 if (dbs_enable == 1) {
522 unsigned int latency;
523 /* policy latency is in nS. Convert it to uS first */
524 latency = policy->cpuinfo.transition_latency / 1000;
525 if (latency == 0)
526 latency = 1;
527
528 def_sampling_rate = 10 * latency *
529 DEF_SAMPLING_RATE_LATENCY_MULTIPLIER;
530
531 if (def_sampling_rate < MIN_STAT_SAMPLING_RATE)
532 def_sampling_rate = MIN_STAT_SAMPLING_RATE;
533
534 dbs_tuners_ins.sampling_rate = def_sampling_rate;
535
536 dbs_timer_init();
537 cpufreq_register_notifier(
538 &dbs_cpufreq_notifier_block,
539 CPUFREQ_TRANSITION_NOTIFIER);
540 }
541
542 mutex_unlock(&dbs_mutex);
543 break;
544
545 case CPUFREQ_GOV_STOP:
546 mutex_lock(&dbs_mutex);
547 this_dbs_info->enable = 0;
548 sysfs_remove_group(&policy->kobj, &dbs_attr_group);
549 dbs_enable--;
550 /*
551 * Stop the timerschedule work, when this governor
552 * is used for first time
553 */
554 if (dbs_enable == 0) {
555 dbs_timer_exit();
556 cpufreq_unregister_notifier(
557 &dbs_cpufreq_notifier_block,
558 CPUFREQ_TRANSITION_NOTIFIER);
559 }
560
561 mutex_unlock(&dbs_mutex);
562
563 break;
564
565 case CPUFREQ_GOV_LIMITS:
566 mutex_lock(&dbs_mutex);
567 if (policy->max < this_dbs_info->cur_policy->cur)
568 __cpufreq_driver_target(
569 this_dbs_info->cur_policy,
570 policy->max, CPUFREQ_RELATION_H);
571 else if (policy->min > this_dbs_info->cur_policy->cur)
572 __cpufreq_driver_target(
573 this_dbs_info->cur_policy,
574 policy->min, CPUFREQ_RELATION_L);
575 mutex_unlock(&dbs_mutex);
576 break;
577 }
578 return 0;
579 }
580
581 #ifndef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
582 static
583 #endif
584 struct cpufreq_governor cpufreq_gov_conservative = {
585 .name = "conservative",
586 .governor = cpufreq_governor_dbs,
587 .max_transition_latency = TRANSITION_LATENCY_LIMIT,
588 .owner = THIS_MODULE,
589 };
590
591 static int __init cpufreq_gov_dbs_init(void)
592 {
593 return cpufreq_register_governor(&cpufreq_gov_conservative);
594 }
595
596 static void __exit cpufreq_gov_dbs_exit(void)
597 {
598 /* Make sure that the scheduled work is indeed not running */
599 flush_scheduled_work();
600
601 cpufreq_unregister_governor(&cpufreq_gov_conservative);
602 }
603
604
605 MODULE_AUTHOR("Alexander Clouter <alex-kernel@digriz.org.uk>");
606 MODULE_DESCRIPTION("'cpufreq_conservative' - A dynamic cpufreq governor for "
607 "Low Latency Frequency Transition capable processors "
608 "optimised for use in a battery environment");
609 MODULE_LICENSE("GPL");
610
611 #ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_CONSERVATIVE
612 fs_initcall(cpufreq_gov_dbs_init);
613 #else
614 module_init(cpufreq_gov_dbs_init);
615 #endif
616 module_exit(cpufreq_gov_dbs_exit);