Kobject: convert drivers/* from kobject_unregister() to kobject_put()
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / cpufreq / cpufreq.c
1 /*
2 * linux/drivers/cpufreq/cpufreq.c
3 *
4 * Copyright (C) 2001 Russell King
5 * (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6 *
7 * Oct 2005 - Ashok Raj <ashok.raj@intel.com>
8 * Added handling for CPU hotplug
9 * Feb 2006 - Jacob Shin <jacob.shin@amd.com>
10 * Fix handling for CPU hotplug -- affected CPUs
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 *
16 */
17
18 #include <linux/kernel.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/notifier.h>
22 #include <linux/cpufreq.h>
23 #include <linux/delay.h>
24 #include <linux/interrupt.h>
25 #include <linux/spinlock.h>
26 #include <linux/device.h>
27 #include <linux/slab.h>
28 #include <linux/cpu.h>
29 #include <linux/completion.h>
30 #include <linux/mutex.h>
31
32 #define dprintk(msg...) cpufreq_debug_printk(CPUFREQ_DEBUG_CORE, \
33 "cpufreq-core", msg)
34
35 /**
36 * The "cpufreq driver" - the arch- or hardware-dependent low
37 * level driver of CPUFreq support, and its spinlock. This lock
38 * also protects the cpufreq_cpu_data array.
39 */
40 static struct cpufreq_driver *cpufreq_driver;
41 static struct cpufreq_policy *cpufreq_cpu_data[NR_CPUS];
42 #ifdef CONFIG_HOTPLUG_CPU
43 /* This one keeps track of the previously set governor of a removed CPU */
44 static struct cpufreq_governor *cpufreq_cpu_governor[NR_CPUS];
45 #endif
46 static DEFINE_SPINLOCK(cpufreq_driver_lock);
47
48 /*
49 * cpu_policy_rwsem is a per CPU reader-writer semaphore designed to cure
50 * all cpufreq/hotplug/workqueue/etc related lock issues.
51 *
52 * The rules for this semaphore:
53 * - Any routine that wants to read from the policy structure will
54 * do a down_read on this semaphore.
55 * - Any routine that will write to the policy structure and/or may take away
56 * the policy altogether (eg. CPU hotplug), will hold this lock in write
57 * mode before doing so.
58 *
59 * Additional rules:
60 * - All holders of the lock should check to make sure that the CPU they
61 * are concerned with are online after they get the lock.
62 * - Governor routines that can be called in cpufreq hotplug path should not
63 * take this sem as top level hotplug notifier handler takes this.
64 */
65 static DEFINE_PER_CPU(int, policy_cpu);
66 static DEFINE_PER_CPU(struct rw_semaphore, cpu_policy_rwsem);
67
68 #define lock_policy_rwsem(mode, cpu) \
69 int lock_policy_rwsem_##mode \
70 (int cpu) \
71 { \
72 int policy_cpu = per_cpu(policy_cpu, cpu); \
73 BUG_ON(policy_cpu == -1); \
74 down_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
75 if (unlikely(!cpu_online(cpu))) { \
76 up_##mode(&per_cpu(cpu_policy_rwsem, policy_cpu)); \
77 return -1; \
78 } \
79 \
80 return 0; \
81 }
82
83 lock_policy_rwsem(read, cpu);
84 EXPORT_SYMBOL_GPL(lock_policy_rwsem_read);
85
86 lock_policy_rwsem(write, cpu);
87 EXPORT_SYMBOL_GPL(lock_policy_rwsem_write);
88
89 void unlock_policy_rwsem_read(int cpu)
90 {
91 int policy_cpu = per_cpu(policy_cpu, cpu);
92 BUG_ON(policy_cpu == -1);
93 up_read(&per_cpu(cpu_policy_rwsem, policy_cpu));
94 }
95 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_read);
96
97 void unlock_policy_rwsem_write(int cpu)
98 {
99 int policy_cpu = per_cpu(policy_cpu, cpu);
100 BUG_ON(policy_cpu == -1);
101 up_write(&per_cpu(cpu_policy_rwsem, policy_cpu));
102 }
103 EXPORT_SYMBOL_GPL(unlock_policy_rwsem_write);
104
105
106 /* internal prototypes */
107 static int __cpufreq_governor(struct cpufreq_policy *policy, unsigned int event);
108 static unsigned int __cpufreq_get(unsigned int cpu);
109 static void handle_update(struct work_struct *work);
110
111 /**
112 * Two notifier lists: the "policy" list is involved in the
113 * validation process for a new CPU frequency policy; the
114 * "transition" list for kernel code that needs to handle
115 * changes to devices when the CPU clock speed changes.
116 * The mutex locks both lists.
117 */
118 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
119 static struct srcu_notifier_head cpufreq_transition_notifier_list;
120
121 static int __init init_cpufreq_transition_notifier_list(void)
122 {
123 srcu_init_notifier_head(&cpufreq_transition_notifier_list);
124 return 0;
125 }
126 pure_initcall(init_cpufreq_transition_notifier_list);
127
128 static LIST_HEAD(cpufreq_governor_list);
129 static DEFINE_MUTEX (cpufreq_governor_mutex);
130
131 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
132 {
133 struct cpufreq_policy *data;
134 unsigned long flags;
135
136 if (cpu >= NR_CPUS)
137 goto err_out;
138
139 /* get the cpufreq driver */
140 spin_lock_irqsave(&cpufreq_driver_lock, flags);
141
142 if (!cpufreq_driver)
143 goto err_out_unlock;
144
145 if (!try_module_get(cpufreq_driver->owner))
146 goto err_out_unlock;
147
148
149 /* get the CPU */
150 data = cpufreq_cpu_data[cpu];
151
152 if (!data)
153 goto err_out_put_module;
154
155 if (!kobject_get(&data->kobj))
156 goto err_out_put_module;
157
158 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
159 return data;
160
161 err_out_put_module:
162 module_put(cpufreq_driver->owner);
163 err_out_unlock:
164 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
165 err_out:
166 return NULL;
167 }
168 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
169
170
171 void cpufreq_cpu_put(struct cpufreq_policy *data)
172 {
173 kobject_put(&data->kobj);
174 module_put(cpufreq_driver->owner);
175 }
176 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
177
178
179 /*********************************************************************
180 * UNIFIED DEBUG HELPERS *
181 *********************************************************************/
182 #ifdef CONFIG_CPU_FREQ_DEBUG
183
184 /* what part(s) of the CPUfreq subsystem are debugged? */
185 static unsigned int debug;
186
187 /* is the debug output ratelimit'ed using printk_ratelimit? User can
188 * set or modify this value.
189 */
190 static unsigned int debug_ratelimit = 1;
191
192 /* is the printk_ratelimit'ing enabled? It's enabled after a successful
193 * loading of a cpufreq driver, temporarily disabled when a new policy
194 * is set, and disabled upon cpufreq driver removal
195 */
196 static unsigned int disable_ratelimit = 1;
197 static DEFINE_SPINLOCK(disable_ratelimit_lock);
198
199 static void cpufreq_debug_enable_ratelimit(void)
200 {
201 unsigned long flags;
202
203 spin_lock_irqsave(&disable_ratelimit_lock, flags);
204 if (disable_ratelimit)
205 disable_ratelimit--;
206 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
207 }
208
209 static void cpufreq_debug_disable_ratelimit(void)
210 {
211 unsigned long flags;
212
213 spin_lock_irqsave(&disable_ratelimit_lock, flags);
214 disable_ratelimit++;
215 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
216 }
217
218 void cpufreq_debug_printk(unsigned int type, const char *prefix,
219 const char *fmt, ...)
220 {
221 char s[256];
222 va_list args;
223 unsigned int len;
224 unsigned long flags;
225
226 WARN_ON(!prefix);
227 if (type & debug) {
228 spin_lock_irqsave(&disable_ratelimit_lock, flags);
229 if (!disable_ratelimit && debug_ratelimit
230 && !printk_ratelimit()) {
231 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
232 return;
233 }
234 spin_unlock_irqrestore(&disable_ratelimit_lock, flags);
235
236 len = snprintf(s, 256, KERN_DEBUG "%s: ", prefix);
237
238 va_start(args, fmt);
239 len += vsnprintf(&s[len], (256 - len), fmt, args);
240 va_end(args);
241
242 printk(s);
243
244 WARN_ON(len < 5);
245 }
246 }
247 EXPORT_SYMBOL(cpufreq_debug_printk);
248
249
250 module_param(debug, uint, 0644);
251 MODULE_PARM_DESC(debug, "CPUfreq debugging: add 1 to debug core,"
252 " 2 to debug drivers, and 4 to debug governors.");
253
254 module_param(debug_ratelimit, uint, 0644);
255 MODULE_PARM_DESC(debug_ratelimit, "CPUfreq debugging:"
256 " set to 0 to disable ratelimiting.");
257
258 #else /* !CONFIG_CPU_FREQ_DEBUG */
259
260 static inline void cpufreq_debug_enable_ratelimit(void) { return; }
261 static inline void cpufreq_debug_disable_ratelimit(void) { return; }
262
263 #endif /* CONFIG_CPU_FREQ_DEBUG */
264
265
266 /*********************************************************************
267 * EXTERNALLY AFFECTING FREQUENCY CHANGES *
268 *********************************************************************/
269
270 /**
271 * adjust_jiffies - adjust the system "loops_per_jiffy"
272 *
273 * This function alters the system "loops_per_jiffy" for the clock
274 * speed change. Note that loops_per_jiffy cannot be updated on SMP
275 * systems as each CPU might be scaled differently. So, use the arch
276 * per-CPU loops_per_jiffy value wherever possible.
277 */
278 #ifndef CONFIG_SMP
279 static unsigned long l_p_j_ref;
280 static unsigned int l_p_j_ref_freq;
281
282 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
283 {
284 if (ci->flags & CPUFREQ_CONST_LOOPS)
285 return;
286
287 if (!l_p_j_ref_freq) {
288 l_p_j_ref = loops_per_jiffy;
289 l_p_j_ref_freq = ci->old;
290 dprintk("saving %lu as reference value for loops_per_jiffy;"
291 "freq is %u kHz\n", l_p_j_ref, l_p_j_ref_freq);
292 }
293 if ((val == CPUFREQ_PRECHANGE && ci->old < ci->new) ||
294 (val == CPUFREQ_POSTCHANGE && ci->old > ci->new) ||
295 (val == CPUFREQ_RESUMECHANGE || val == CPUFREQ_SUSPENDCHANGE)) {
296 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
297 ci->new);
298 dprintk("scaling loops_per_jiffy to %lu"
299 "for frequency %u kHz\n", loops_per_jiffy, ci->new);
300 }
301 }
302 #else
303 static inline void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
304 {
305 return;
306 }
307 #endif
308
309
310 /**
311 * cpufreq_notify_transition - call notifier chain and adjust_jiffies
312 * on frequency transition.
313 *
314 * This function calls the transition notifiers and the "adjust_jiffies"
315 * function. It is called twice on all CPU frequency changes that have
316 * external effects.
317 */
318 void cpufreq_notify_transition(struct cpufreq_freqs *freqs, unsigned int state)
319 {
320 struct cpufreq_policy *policy;
321
322 BUG_ON(irqs_disabled());
323
324 freqs->flags = cpufreq_driver->flags;
325 dprintk("notification %u of frequency transition to %u kHz\n",
326 state, freqs->new);
327
328 policy = cpufreq_cpu_data[freqs->cpu];
329 switch (state) {
330
331 case CPUFREQ_PRECHANGE:
332 /* detect if the driver reported a value as "old frequency"
333 * which is not equal to what the cpufreq core thinks is
334 * "old frequency".
335 */
336 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
337 if ((policy) && (policy->cpu == freqs->cpu) &&
338 (policy->cur) && (policy->cur != freqs->old)) {
339 dprintk("Warning: CPU frequency is"
340 " %u, cpufreq assumed %u kHz.\n",
341 freqs->old, policy->cur);
342 freqs->old = policy->cur;
343 }
344 }
345 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
346 CPUFREQ_PRECHANGE, freqs);
347 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
348 break;
349
350 case CPUFREQ_POSTCHANGE:
351 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
352 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
353 CPUFREQ_POSTCHANGE, freqs);
354 if (likely(policy) && likely(policy->cpu == freqs->cpu))
355 policy->cur = freqs->new;
356 break;
357 }
358 }
359 EXPORT_SYMBOL_GPL(cpufreq_notify_transition);
360
361
362
363 /*********************************************************************
364 * SYSFS INTERFACE *
365 *********************************************************************/
366
367 static struct cpufreq_governor *__find_governor(const char *str_governor)
368 {
369 struct cpufreq_governor *t;
370
371 list_for_each_entry(t, &cpufreq_governor_list, governor_list)
372 if (!strnicmp(str_governor,t->name,CPUFREQ_NAME_LEN))
373 return t;
374
375 return NULL;
376 }
377
378 /**
379 * cpufreq_parse_governor - parse a governor string
380 */
381 static int cpufreq_parse_governor (char *str_governor, unsigned int *policy,
382 struct cpufreq_governor **governor)
383 {
384 int err = -EINVAL;
385
386 if (!cpufreq_driver)
387 goto out;
388
389 if (cpufreq_driver->setpolicy) {
390 if (!strnicmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
391 *policy = CPUFREQ_POLICY_PERFORMANCE;
392 err = 0;
393 } else if (!strnicmp(str_governor, "powersave",
394 CPUFREQ_NAME_LEN)) {
395 *policy = CPUFREQ_POLICY_POWERSAVE;
396 err = 0;
397 }
398 } else if (cpufreq_driver->target) {
399 struct cpufreq_governor *t;
400
401 mutex_lock(&cpufreq_governor_mutex);
402
403 t = __find_governor(str_governor);
404
405 if (t == NULL) {
406 char *name = kasprintf(GFP_KERNEL, "cpufreq_%s",
407 str_governor);
408
409 if (name) {
410 int ret;
411
412 mutex_unlock(&cpufreq_governor_mutex);
413 ret = request_module(name);
414 mutex_lock(&cpufreq_governor_mutex);
415
416 if (ret == 0)
417 t = __find_governor(str_governor);
418 }
419
420 kfree(name);
421 }
422
423 if (t != NULL) {
424 *governor = t;
425 err = 0;
426 }
427
428 mutex_unlock(&cpufreq_governor_mutex);
429 }
430 out:
431 return err;
432 }
433
434
435 /* drivers/base/cpu.c */
436 extern struct sysdev_class cpu_sysdev_class;
437
438
439 /**
440 * cpufreq_per_cpu_attr_read() / show_##file_name() -
441 * print out cpufreq information
442 *
443 * Write out information from cpufreq_driver->policy[cpu]; object must be
444 * "unsigned int".
445 */
446
447 #define show_one(file_name, object) \
448 static ssize_t show_##file_name \
449 (struct cpufreq_policy * policy, char *buf) \
450 { \
451 return sprintf (buf, "%u\n", policy->object); \
452 }
453
454 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
455 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
456 show_one(scaling_min_freq, min);
457 show_one(scaling_max_freq, max);
458 show_one(scaling_cur_freq, cur);
459
460 static int __cpufreq_set_policy(struct cpufreq_policy *data,
461 struct cpufreq_policy *policy);
462
463 /**
464 * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
465 */
466 #define store_one(file_name, object) \
467 static ssize_t store_##file_name \
468 (struct cpufreq_policy * policy, const char *buf, size_t count) \
469 { \
470 unsigned int ret = -EINVAL; \
471 struct cpufreq_policy new_policy; \
472 \
473 ret = cpufreq_get_policy(&new_policy, policy->cpu); \
474 if (ret) \
475 return -EINVAL; \
476 \
477 ret = sscanf (buf, "%u", &new_policy.object); \
478 if (ret != 1) \
479 return -EINVAL; \
480 \
481 ret = __cpufreq_set_policy(policy, &new_policy); \
482 policy->user_policy.object = policy->object; \
483 \
484 return ret ? ret : count; \
485 }
486
487 store_one(scaling_min_freq,min);
488 store_one(scaling_max_freq,max);
489
490 /**
491 * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
492 */
493 static ssize_t show_cpuinfo_cur_freq (struct cpufreq_policy * policy,
494 char *buf)
495 {
496 unsigned int cur_freq = __cpufreq_get(policy->cpu);
497 if (!cur_freq)
498 return sprintf(buf, "<unknown>");
499 return sprintf(buf, "%u\n", cur_freq);
500 }
501
502
503 /**
504 * show_scaling_governor - show the current policy for the specified CPU
505 */
506 static ssize_t show_scaling_governor (struct cpufreq_policy * policy,
507 char *buf)
508 {
509 if(policy->policy == CPUFREQ_POLICY_POWERSAVE)
510 return sprintf(buf, "powersave\n");
511 else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
512 return sprintf(buf, "performance\n");
513 else if (policy->governor)
514 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", policy->governor->name);
515 return -EINVAL;
516 }
517
518
519 /**
520 * store_scaling_governor - store policy for the specified CPU
521 */
522 static ssize_t store_scaling_governor (struct cpufreq_policy * policy,
523 const char *buf, size_t count)
524 {
525 unsigned int ret = -EINVAL;
526 char str_governor[16];
527 struct cpufreq_policy new_policy;
528
529 ret = cpufreq_get_policy(&new_policy, policy->cpu);
530 if (ret)
531 return ret;
532
533 ret = sscanf (buf, "%15s", str_governor);
534 if (ret != 1)
535 return -EINVAL;
536
537 if (cpufreq_parse_governor(str_governor, &new_policy.policy,
538 &new_policy.governor))
539 return -EINVAL;
540
541 /* Do not use cpufreq_set_policy here or the user_policy.max
542 will be wrongly overridden */
543 ret = __cpufreq_set_policy(policy, &new_policy);
544
545 policy->user_policy.policy = policy->policy;
546 policy->user_policy.governor = policy->governor;
547
548 if (ret)
549 return ret;
550 else
551 return count;
552 }
553
554 /**
555 * show_scaling_driver - show the cpufreq driver currently loaded
556 */
557 static ssize_t show_scaling_driver (struct cpufreq_policy * policy, char *buf)
558 {
559 return scnprintf(buf, CPUFREQ_NAME_LEN, "%s\n", cpufreq_driver->name);
560 }
561
562 /**
563 * show_scaling_available_governors - show the available CPUfreq governors
564 */
565 static ssize_t show_scaling_available_governors (struct cpufreq_policy *policy,
566 char *buf)
567 {
568 ssize_t i = 0;
569 struct cpufreq_governor *t;
570
571 if (!cpufreq_driver->target) {
572 i += sprintf(buf, "performance powersave");
573 goto out;
574 }
575
576 list_for_each_entry(t, &cpufreq_governor_list, governor_list) {
577 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char)) - (CPUFREQ_NAME_LEN + 2)))
578 goto out;
579 i += scnprintf(&buf[i], CPUFREQ_NAME_LEN, "%s ", t->name);
580 }
581 out:
582 i += sprintf(&buf[i], "\n");
583 return i;
584 }
585 /**
586 * show_affected_cpus - show the CPUs affected by each transition
587 */
588 static ssize_t show_affected_cpus (struct cpufreq_policy * policy, char *buf)
589 {
590 ssize_t i = 0;
591 unsigned int cpu;
592
593 for_each_cpu_mask(cpu, policy->cpus) {
594 if (i)
595 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
596 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
597 if (i >= (PAGE_SIZE - 5))
598 break;
599 }
600 i += sprintf(&buf[i], "\n");
601 return i;
602 }
603
604
605 #define define_one_ro(_name) \
606 static struct freq_attr _name = \
607 __ATTR(_name, 0444, show_##_name, NULL)
608
609 #define define_one_ro0400(_name) \
610 static struct freq_attr _name = \
611 __ATTR(_name, 0400, show_##_name, NULL)
612
613 #define define_one_rw(_name) \
614 static struct freq_attr _name = \
615 __ATTR(_name, 0644, show_##_name, store_##_name)
616
617 define_one_ro0400(cpuinfo_cur_freq);
618 define_one_ro(cpuinfo_min_freq);
619 define_one_ro(cpuinfo_max_freq);
620 define_one_ro(scaling_available_governors);
621 define_one_ro(scaling_driver);
622 define_one_ro(scaling_cur_freq);
623 define_one_ro(affected_cpus);
624 define_one_rw(scaling_min_freq);
625 define_one_rw(scaling_max_freq);
626 define_one_rw(scaling_governor);
627
628 static struct attribute * default_attrs[] = {
629 &cpuinfo_min_freq.attr,
630 &cpuinfo_max_freq.attr,
631 &scaling_min_freq.attr,
632 &scaling_max_freq.attr,
633 &affected_cpus.attr,
634 &scaling_governor.attr,
635 &scaling_driver.attr,
636 &scaling_available_governors.attr,
637 NULL
638 };
639
640 #define to_policy(k) container_of(k,struct cpufreq_policy,kobj)
641 #define to_attr(a) container_of(a,struct freq_attr,attr)
642
643 static ssize_t show(struct kobject * kobj, struct attribute * attr ,char * buf)
644 {
645 struct cpufreq_policy * policy = to_policy(kobj);
646 struct freq_attr * fattr = to_attr(attr);
647 ssize_t ret;
648 policy = cpufreq_cpu_get(policy->cpu);
649 if (!policy)
650 return -EINVAL;
651
652 if (lock_policy_rwsem_read(policy->cpu) < 0)
653 return -EINVAL;
654
655 if (fattr->show)
656 ret = fattr->show(policy, buf);
657 else
658 ret = -EIO;
659
660 unlock_policy_rwsem_read(policy->cpu);
661
662 cpufreq_cpu_put(policy);
663 return ret;
664 }
665
666 static ssize_t store(struct kobject * kobj, struct attribute * attr,
667 const char * buf, size_t count)
668 {
669 struct cpufreq_policy * policy = to_policy(kobj);
670 struct freq_attr * fattr = to_attr(attr);
671 ssize_t ret;
672 policy = cpufreq_cpu_get(policy->cpu);
673 if (!policy)
674 return -EINVAL;
675
676 if (lock_policy_rwsem_write(policy->cpu) < 0)
677 return -EINVAL;
678
679 if (fattr->store)
680 ret = fattr->store(policy, buf, count);
681 else
682 ret = -EIO;
683
684 unlock_policy_rwsem_write(policy->cpu);
685
686 cpufreq_cpu_put(policy);
687 return ret;
688 }
689
690 static void cpufreq_sysfs_release(struct kobject * kobj)
691 {
692 struct cpufreq_policy * policy = to_policy(kobj);
693 dprintk("last reference is dropped\n");
694 complete(&policy->kobj_unregister);
695 }
696
697 static struct sysfs_ops sysfs_ops = {
698 .show = show,
699 .store = store,
700 };
701
702 static struct kobj_type ktype_cpufreq = {
703 .sysfs_ops = &sysfs_ops,
704 .default_attrs = default_attrs,
705 .release = cpufreq_sysfs_release,
706 };
707
708
709 /**
710 * cpufreq_add_dev - add a CPU device
711 *
712 * Adds the cpufreq interface for a CPU device.
713 */
714 static int cpufreq_add_dev (struct sys_device * sys_dev)
715 {
716 unsigned int cpu = sys_dev->id;
717 int ret = 0;
718 struct cpufreq_policy new_policy;
719 struct cpufreq_policy *policy;
720 struct freq_attr **drv_attr;
721 struct sys_device *cpu_sys_dev;
722 unsigned long flags;
723 unsigned int j;
724 #ifdef CONFIG_SMP
725 struct cpufreq_policy *managed_policy;
726 #endif
727
728 if (cpu_is_offline(cpu))
729 return 0;
730
731 cpufreq_debug_disable_ratelimit();
732 dprintk("adding CPU %u\n", cpu);
733
734 #ifdef CONFIG_SMP
735 /* check whether a different CPU already registered this
736 * CPU because it is in the same boat. */
737 policy = cpufreq_cpu_get(cpu);
738 if (unlikely(policy)) {
739 cpufreq_cpu_put(policy);
740 cpufreq_debug_enable_ratelimit();
741 return 0;
742 }
743 #endif
744
745 if (!try_module_get(cpufreq_driver->owner)) {
746 ret = -EINVAL;
747 goto module_out;
748 }
749
750 policy = kzalloc(sizeof(struct cpufreq_policy), GFP_KERNEL);
751 if (!policy) {
752 ret = -ENOMEM;
753 goto nomem_out;
754 }
755
756 policy->cpu = cpu;
757 policy->cpus = cpumask_of_cpu(cpu);
758
759 /* Initially set CPU itself as the policy_cpu */
760 per_cpu(policy_cpu, cpu) = cpu;
761 lock_policy_rwsem_write(cpu);
762
763 init_completion(&policy->kobj_unregister);
764 INIT_WORK(&policy->update, handle_update);
765
766 /* Set governor before ->init, so that driver could check it */
767 policy->governor = CPUFREQ_DEFAULT_GOVERNOR;
768 /* call driver. From then on the cpufreq must be able
769 * to accept all calls to ->verify and ->setpolicy for this CPU
770 */
771 ret = cpufreq_driver->init(policy);
772 if (ret) {
773 dprintk("initialization failed\n");
774 unlock_policy_rwsem_write(cpu);
775 goto err_out;
776 }
777 policy->user_policy.min = policy->cpuinfo.min_freq;
778 policy->user_policy.max = policy->cpuinfo.max_freq;
779
780 #ifdef CONFIG_SMP
781
782 #ifdef CONFIG_HOTPLUG_CPU
783 if (cpufreq_cpu_governor[cpu]){
784 policy->governor = cpufreq_cpu_governor[cpu];
785 dprintk("Restoring governor %s for cpu %d\n",
786 policy->governor->name, cpu);
787 }
788 #endif
789
790 for_each_cpu_mask(j, policy->cpus) {
791 if (cpu == j)
792 continue;
793
794 /* check for existing affected CPUs. They may not be aware
795 * of it due to CPU Hotplug.
796 */
797 managed_policy = cpufreq_cpu_get(j);
798 if (unlikely(managed_policy)) {
799
800 /* Set proper policy_cpu */
801 unlock_policy_rwsem_write(cpu);
802 per_cpu(policy_cpu, cpu) = managed_policy->cpu;
803
804 if (lock_policy_rwsem_write(cpu) < 0)
805 goto err_out_driver_exit;
806
807 spin_lock_irqsave(&cpufreq_driver_lock, flags);
808 managed_policy->cpus = policy->cpus;
809 cpufreq_cpu_data[cpu] = managed_policy;
810 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
811
812 dprintk("CPU already managed, adding link\n");
813 ret = sysfs_create_link(&sys_dev->kobj,
814 &managed_policy->kobj,
815 "cpufreq");
816 if (ret) {
817 unlock_policy_rwsem_write(cpu);
818 goto err_out_driver_exit;
819 }
820
821 cpufreq_debug_enable_ratelimit();
822 ret = 0;
823 unlock_policy_rwsem_write(cpu);
824 goto err_out_driver_exit; /* call driver->exit() */
825 }
826 }
827 #endif
828 memcpy(&new_policy, policy, sizeof(struct cpufreq_policy));
829
830 /* prepare interface data */
831 ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq, &sys_dev->kobj,
832 "cpufreq");
833 if (ret) {
834 unlock_policy_rwsem_write(cpu);
835 goto err_out_driver_exit;
836 }
837 /* set up files for this cpu device */
838 drv_attr = cpufreq_driver->attr;
839 while ((drv_attr) && (*drv_attr)) {
840 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
841 if (ret) {
842 unlock_policy_rwsem_write(cpu);
843 goto err_out_driver_exit;
844 }
845 drv_attr++;
846 }
847 if (cpufreq_driver->get){
848 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
849 if (ret) {
850 unlock_policy_rwsem_write(cpu);
851 goto err_out_driver_exit;
852 }
853 }
854 if (cpufreq_driver->target){
855 ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
856 if (ret) {
857 unlock_policy_rwsem_write(cpu);
858 goto err_out_driver_exit;
859 }
860 }
861
862 spin_lock_irqsave(&cpufreq_driver_lock, flags);
863 for_each_cpu_mask(j, policy->cpus) {
864 cpufreq_cpu_data[j] = policy;
865 per_cpu(policy_cpu, j) = policy->cpu;
866 }
867 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
868
869 /* symlink affected CPUs */
870 for_each_cpu_mask(j, policy->cpus) {
871 if (j == cpu)
872 continue;
873 if (!cpu_online(j))
874 continue;
875
876 dprintk("CPU %u already managed, adding link\n", j);
877 cpufreq_cpu_get(cpu);
878 cpu_sys_dev = get_cpu_sysdev(j);
879 ret = sysfs_create_link(&cpu_sys_dev->kobj, &policy->kobj,
880 "cpufreq");
881 if (ret) {
882 unlock_policy_rwsem_write(cpu);
883 goto err_out_unregister;
884 }
885 }
886
887 policy->governor = NULL; /* to assure that the starting sequence is
888 * run in cpufreq_set_policy */
889
890 /* set default policy */
891 ret = __cpufreq_set_policy(policy, &new_policy);
892 policy->user_policy.policy = policy->policy;
893 policy->user_policy.governor = policy->governor;
894
895 unlock_policy_rwsem_write(cpu);
896
897 if (ret) {
898 dprintk("setting policy failed\n");
899 goto err_out_unregister;
900 }
901
902 kobject_uevent(&policy->kobj, KOBJ_ADD);
903 module_put(cpufreq_driver->owner);
904 dprintk("initialization complete\n");
905 cpufreq_debug_enable_ratelimit();
906
907 return 0;
908
909
910 err_out_unregister:
911 spin_lock_irqsave(&cpufreq_driver_lock, flags);
912 for_each_cpu_mask(j, policy->cpus)
913 cpufreq_cpu_data[j] = NULL;
914 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
915
916 kobject_put(&policy->kobj);
917 wait_for_completion(&policy->kobj_unregister);
918
919 err_out_driver_exit:
920 if (cpufreq_driver->exit)
921 cpufreq_driver->exit(policy);
922
923 err_out:
924 kfree(policy);
925
926 nomem_out:
927 module_put(cpufreq_driver->owner);
928 module_out:
929 cpufreq_debug_enable_ratelimit();
930 return ret;
931 }
932
933
934 /**
935 * __cpufreq_remove_dev - remove a CPU device
936 *
937 * Removes the cpufreq interface for a CPU device.
938 * Caller should already have policy_rwsem in write mode for this CPU.
939 * This routine frees the rwsem before returning.
940 */
941 static int __cpufreq_remove_dev (struct sys_device * sys_dev)
942 {
943 unsigned int cpu = sys_dev->id;
944 unsigned long flags;
945 struct cpufreq_policy *data;
946 #ifdef CONFIG_SMP
947 struct sys_device *cpu_sys_dev;
948 unsigned int j;
949 #endif
950
951 cpufreq_debug_disable_ratelimit();
952 dprintk("unregistering CPU %u\n", cpu);
953
954 spin_lock_irqsave(&cpufreq_driver_lock, flags);
955 data = cpufreq_cpu_data[cpu];
956
957 if (!data) {
958 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
959 cpufreq_debug_enable_ratelimit();
960 unlock_policy_rwsem_write(cpu);
961 return -EINVAL;
962 }
963 cpufreq_cpu_data[cpu] = NULL;
964
965
966 #ifdef CONFIG_SMP
967 /* if this isn't the CPU which is the parent of the kobj, we
968 * only need to unlink, put and exit
969 */
970 if (unlikely(cpu != data->cpu)) {
971 dprintk("removing link\n");
972 cpu_clear(cpu, data->cpus);
973 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
974 sysfs_remove_link(&sys_dev->kobj, "cpufreq");
975 cpufreq_cpu_put(data);
976 cpufreq_debug_enable_ratelimit();
977 unlock_policy_rwsem_write(cpu);
978 return 0;
979 }
980 #endif
981
982
983 if (!kobject_get(&data->kobj)) {
984 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
985 cpufreq_debug_enable_ratelimit();
986 unlock_policy_rwsem_write(cpu);
987 return -EFAULT;
988 }
989
990 #ifdef CONFIG_SMP
991
992 #ifdef CONFIG_HOTPLUG_CPU
993 cpufreq_cpu_governor[cpu] = data->governor;
994 #endif
995
996 /* if we have other CPUs still registered, we need to unlink them,
997 * or else wait_for_completion below will lock up. Clean the
998 * cpufreq_cpu_data[] while holding the lock, and remove the sysfs
999 * links afterwards.
1000 */
1001 if (unlikely(cpus_weight(data->cpus) > 1)) {
1002 for_each_cpu_mask(j, data->cpus) {
1003 if (j == cpu)
1004 continue;
1005 cpufreq_cpu_data[j] = NULL;
1006 }
1007 }
1008
1009 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1010
1011 if (unlikely(cpus_weight(data->cpus) > 1)) {
1012 for_each_cpu_mask(j, data->cpus) {
1013 if (j == cpu)
1014 continue;
1015 dprintk("removing link for cpu %u\n", j);
1016 #ifdef CONFIG_HOTPLUG_CPU
1017 cpufreq_cpu_governor[j] = data->governor;
1018 #endif
1019 cpu_sys_dev = get_cpu_sysdev(j);
1020 sysfs_remove_link(&cpu_sys_dev->kobj, "cpufreq");
1021 cpufreq_cpu_put(data);
1022 }
1023 }
1024 #else
1025 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1026 #endif
1027
1028 if (cpufreq_driver->target)
1029 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1030
1031 unlock_policy_rwsem_write(cpu);
1032
1033 kobject_put(&data->kobj);
1034
1035 /* we need to make sure that the underlying kobj is actually
1036 * not referenced anymore by anybody before we proceed with
1037 * unloading.
1038 */
1039 dprintk("waiting for dropping of refcount\n");
1040 wait_for_completion(&data->kobj_unregister);
1041 dprintk("wait complete\n");
1042
1043 if (cpufreq_driver->exit)
1044 cpufreq_driver->exit(data);
1045
1046 kfree(data);
1047
1048 cpufreq_debug_enable_ratelimit();
1049 return 0;
1050 }
1051
1052
1053 static int cpufreq_remove_dev (struct sys_device * sys_dev)
1054 {
1055 unsigned int cpu = sys_dev->id;
1056 int retval;
1057
1058 if (cpu_is_offline(cpu))
1059 return 0;
1060
1061 if (unlikely(lock_policy_rwsem_write(cpu)))
1062 BUG();
1063
1064 retval = __cpufreq_remove_dev(sys_dev);
1065 return retval;
1066 }
1067
1068
1069 static void handle_update(struct work_struct *work)
1070 {
1071 struct cpufreq_policy *policy =
1072 container_of(work, struct cpufreq_policy, update);
1073 unsigned int cpu = policy->cpu;
1074 dprintk("handle_update for cpu %u called\n", cpu);
1075 cpufreq_update_policy(cpu);
1076 }
1077
1078 /**
1079 * cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're in deep trouble.
1080 * @cpu: cpu number
1081 * @old_freq: CPU frequency the kernel thinks the CPU runs at
1082 * @new_freq: CPU frequency the CPU actually runs at
1083 *
1084 * We adjust to current frequency first, and need to clean up later. So either call
1085 * to cpufreq_update_policy() or schedule handle_update()).
1086 */
1087 static void cpufreq_out_of_sync(unsigned int cpu, unsigned int old_freq,
1088 unsigned int new_freq)
1089 {
1090 struct cpufreq_freqs freqs;
1091
1092 dprintk("Warning: CPU frequency out of sync: cpufreq and timing "
1093 "core thinks of %u, is %u kHz.\n", old_freq, new_freq);
1094
1095 freqs.cpu = cpu;
1096 freqs.old = old_freq;
1097 freqs.new = new_freq;
1098 cpufreq_notify_transition(&freqs, CPUFREQ_PRECHANGE);
1099 cpufreq_notify_transition(&freqs, CPUFREQ_POSTCHANGE);
1100 }
1101
1102
1103 /**
1104 * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1105 * @cpu: CPU number
1106 *
1107 * This is the last known freq, without actually getting it from the driver.
1108 * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1109 */
1110 unsigned int cpufreq_quick_get(unsigned int cpu)
1111 {
1112 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1113 unsigned int ret_freq = 0;
1114
1115 if (policy) {
1116 ret_freq = policy->cur;
1117 cpufreq_cpu_put(policy);
1118 }
1119
1120 return (ret_freq);
1121 }
1122 EXPORT_SYMBOL(cpufreq_quick_get);
1123
1124
1125 static unsigned int __cpufreq_get(unsigned int cpu)
1126 {
1127 struct cpufreq_policy *policy = cpufreq_cpu_data[cpu];
1128 unsigned int ret_freq = 0;
1129
1130 if (!cpufreq_driver->get)
1131 return (ret_freq);
1132
1133 ret_freq = cpufreq_driver->get(cpu);
1134
1135 if (ret_freq && policy->cur &&
1136 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1137 /* verify no discrepancy between actual and
1138 saved value exists */
1139 if (unlikely(ret_freq != policy->cur)) {
1140 cpufreq_out_of_sync(cpu, policy->cur, ret_freq);
1141 schedule_work(&policy->update);
1142 }
1143 }
1144
1145 return (ret_freq);
1146 }
1147
1148 /**
1149 * cpufreq_get - get the current CPU frequency (in kHz)
1150 * @cpu: CPU number
1151 *
1152 * Get the CPU current (static) CPU frequency
1153 */
1154 unsigned int cpufreq_get(unsigned int cpu)
1155 {
1156 unsigned int ret_freq = 0;
1157 struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1158
1159 if (!policy)
1160 goto out;
1161
1162 if (unlikely(lock_policy_rwsem_read(cpu)))
1163 goto out_policy;
1164
1165 ret_freq = __cpufreq_get(cpu);
1166
1167 unlock_policy_rwsem_read(cpu);
1168
1169 out_policy:
1170 cpufreq_cpu_put(policy);
1171 out:
1172 return (ret_freq);
1173 }
1174 EXPORT_SYMBOL(cpufreq_get);
1175
1176
1177 /**
1178 * cpufreq_suspend - let the low level driver prepare for suspend
1179 */
1180
1181 static int cpufreq_suspend(struct sys_device * sysdev, pm_message_t pmsg)
1182 {
1183 int cpu = sysdev->id;
1184 int ret = 0;
1185 unsigned int cur_freq = 0;
1186 struct cpufreq_policy *cpu_policy;
1187
1188 dprintk("suspending cpu %u\n", cpu);
1189
1190 if (!cpu_online(cpu))
1191 return 0;
1192
1193 /* we may be lax here as interrupts are off. Nonetheless
1194 * we need to grab the correct cpu policy, as to check
1195 * whether we really run on this CPU.
1196 */
1197
1198 cpu_policy = cpufreq_cpu_get(cpu);
1199 if (!cpu_policy)
1200 return -EINVAL;
1201
1202 /* only handle each CPU group once */
1203 if (unlikely(cpu_policy->cpu != cpu)) {
1204 cpufreq_cpu_put(cpu_policy);
1205 return 0;
1206 }
1207
1208 if (cpufreq_driver->suspend) {
1209 ret = cpufreq_driver->suspend(cpu_policy, pmsg);
1210 if (ret) {
1211 printk(KERN_ERR "cpufreq: suspend failed in ->suspend "
1212 "step on CPU %u\n", cpu_policy->cpu);
1213 cpufreq_cpu_put(cpu_policy);
1214 return ret;
1215 }
1216 }
1217
1218
1219 if (cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)
1220 goto out;
1221
1222 if (cpufreq_driver->get)
1223 cur_freq = cpufreq_driver->get(cpu_policy->cpu);
1224
1225 if (!cur_freq || !cpu_policy->cur) {
1226 printk(KERN_ERR "cpufreq: suspend failed to assert current "
1227 "frequency is what timing core thinks it is.\n");
1228 goto out;
1229 }
1230
1231 if (unlikely(cur_freq != cpu_policy->cur)) {
1232 struct cpufreq_freqs freqs;
1233
1234 if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
1235 dprintk("Warning: CPU frequency is %u, "
1236 "cpufreq assumed %u kHz.\n",
1237 cur_freq, cpu_policy->cur);
1238
1239 freqs.cpu = cpu;
1240 freqs.old = cpu_policy->cur;
1241 freqs.new = cur_freq;
1242
1243 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
1244 CPUFREQ_SUSPENDCHANGE, &freqs);
1245 adjust_jiffies(CPUFREQ_SUSPENDCHANGE, &freqs);
1246
1247 cpu_policy->cur = cur_freq;
1248 }
1249
1250 out:
1251 cpufreq_cpu_put(cpu_policy);
1252 return 0;
1253 }
1254
1255 /**
1256 * cpufreq_resume - restore proper CPU frequency handling after resume
1257 *
1258 * 1.) resume CPUfreq hardware support (cpufreq_driver->resume())
1259 * 2.) if ->target and !CPUFREQ_CONST_LOOPS: verify we're in sync
1260 * 3.) schedule call cpufreq_update_policy() ASAP as interrupts are
1261 * restored.
1262 */
1263 static int cpufreq_resume(struct sys_device * sysdev)
1264 {
1265 int cpu = sysdev->id;
1266 int ret = 0;
1267 struct cpufreq_policy *cpu_policy;
1268
1269 dprintk("resuming cpu %u\n", cpu);
1270
1271 if (!cpu_online(cpu))
1272 return 0;
1273
1274 /* we may be lax here as interrupts are off. Nonetheless
1275 * we need to grab the correct cpu policy, as to check
1276 * whether we really run on this CPU.
1277 */
1278
1279 cpu_policy = cpufreq_cpu_get(cpu);
1280 if (!cpu_policy)
1281 return -EINVAL;
1282
1283 /* only handle each CPU group once */
1284 if (unlikely(cpu_policy->cpu != cpu)) {
1285 cpufreq_cpu_put(cpu_policy);
1286 return 0;
1287 }
1288
1289 if (cpufreq_driver->resume) {
1290 ret = cpufreq_driver->resume(cpu_policy);
1291 if (ret) {
1292 printk(KERN_ERR "cpufreq: resume failed in ->resume "
1293 "step on CPU %u\n", cpu_policy->cpu);
1294 cpufreq_cpu_put(cpu_policy);
1295 return ret;
1296 }
1297 }
1298
1299 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1300 unsigned int cur_freq = 0;
1301
1302 if (cpufreq_driver->get)
1303 cur_freq = cpufreq_driver->get(cpu_policy->cpu);
1304
1305 if (!cur_freq || !cpu_policy->cur) {
1306 printk(KERN_ERR "cpufreq: resume failed to assert "
1307 "current frequency is what timing core "
1308 "thinks it is.\n");
1309 goto out;
1310 }
1311
1312 if (unlikely(cur_freq != cpu_policy->cur)) {
1313 struct cpufreq_freqs freqs;
1314
1315 if (!(cpufreq_driver->flags & CPUFREQ_PM_NO_WARN))
1316 dprintk("Warning: CPU frequency"
1317 "is %u, cpufreq assumed %u kHz.\n",
1318 cur_freq, cpu_policy->cur);
1319
1320 freqs.cpu = cpu;
1321 freqs.old = cpu_policy->cur;
1322 freqs.new = cur_freq;
1323
1324 srcu_notifier_call_chain(
1325 &cpufreq_transition_notifier_list,
1326 CPUFREQ_RESUMECHANGE, &freqs);
1327 adjust_jiffies(CPUFREQ_RESUMECHANGE, &freqs);
1328
1329 cpu_policy->cur = cur_freq;
1330 }
1331 }
1332
1333 out:
1334 schedule_work(&cpu_policy->update);
1335 cpufreq_cpu_put(cpu_policy);
1336 return ret;
1337 }
1338
1339 static struct sysdev_driver cpufreq_sysdev_driver = {
1340 .add = cpufreq_add_dev,
1341 .remove = cpufreq_remove_dev,
1342 .suspend = cpufreq_suspend,
1343 .resume = cpufreq_resume,
1344 };
1345
1346
1347 /*********************************************************************
1348 * NOTIFIER LISTS INTERFACE *
1349 *********************************************************************/
1350
1351 /**
1352 * cpufreq_register_notifier - register a driver with cpufreq
1353 * @nb: notifier function to register
1354 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1355 *
1356 * Add a driver to one of two lists: either a list of drivers that
1357 * are notified about clock rate changes (once before and once after
1358 * the transition), or a list of drivers that are notified about
1359 * changes in cpufreq policy.
1360 *
1361 * This function may sleep, and has the same return conditions as
1362 * blocking_notifier_chain_register.
1363 */
1364 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1365 {
1366 int ret;
1367
1368 switch (list) {
1369 case CPUFREQ_TRANSITION_NOTIFIER:
1370 ret = srcu_notifier_chain_register(
1371 &cpufreq_transition_notifier_list, nb);
1372 break;
1373 case CPUFREQ_POLICY_NOTIFIER:
1374 ret = blocking_notifier_chain_register(
1375 &cpufreq_policy_notifier_list, nb);
1376 break;
1377 default:
1378 ret = -EINVAL;
1379 }
1380
1381 return ret;
1382 }
1383 EXPORT_SYMBOL(cpufreq_register_notifier);
1384
1385
1386 /**
1387 * cpufreq_unregister_notifier - unregister a driver with cpufreq
1388 * @nb: notifier block to be unregistered
1389 * @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1390 *
1391 * Remove a driver from the CPU frequency notifier list.
1392 *
1393 * This function may sleep, and has the same return conditions as
1394 * blocking_notifier_chain_unregister.
1395 */
1396 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1397 {
1398 int ret;
1399
1400 switch (list) {
1401 case CPUFREQ_TRANSITION_NOTIFIER:
1402 ret = srcu_notifier_chain_unregister(
1403 &cpufreq_transition_notifier_list, nb);
1404 break;
1405 case CPUFREQ_POLICY_NOTIFIER:
1406 ret = blocking_notifier_chain_unregister(
1407 &cpufreq_policy_notifier_list, nb);
1408 break;
1409 default:
1410 ret = -EINVAL;
1411 }
1412
1413 return ret;
1414 }
1415 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1416
1417
1418 /*********************************************************************
1419 * GOVERNORS *
1420 *********************************************************************/
1421
1422
1423 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1424 unsigned int target_freq,
1425 unsigned int relation)
1426 {
1427 int retval = -EINVAL;
1428
1429 dprintk("target for CPU %u: %u kHz, relation %u\n", policy->cpu,
1430 target_freq, relation);
1431 if (cpu_online(policy->cpu) && cpufreq_driver->target)
1432 retval = cpufreq_driver->target(policy, target_freq, relation);
1433
1434 return retval;
1435 }
1436 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1437
1438 int cpufreq_driver_target(struct cpufreq_policy *policy,
1439 unsigned int target_freq,
1440 unsigned int relation)
1441 {
1442 int ret;
1443
1444 policy = cpufreq_cpu_get(policy->cpu);
1445 if (!policy)
1446 return -EINVAL;
1447
1448 if (unlikely(lock_policy_rwsem_write(policy->cpu)))
1449 return -EINVAL;
1450
1451 ret = __cpufreq_driver_target(policy, target_freq, relation);
1452
1453 unlock_policy_rwsem_write(policy->cpu);
1454
1455 cpufreq_cpu_put(policy);
1456 return ret;
1457 }
1458 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1459
1460 int __cpufreq_driver_getavg(struct cpufreq_policy *policy)
1461 {
1462 int ret = 0;
1463
1464 policy = cpufreq_cpu_get(policy->cpu);
1465 if (!policy)
1466 return -EINVAL;
1467
1468 if (cpu_online(policy->cpu) && cpufreq_driver->getavg)
1469 ret = cpufreq_driver->getavg(policy->cpu);
1470
1471 cpufreq_cpu_put(policy);
1472 return ret;
1473 }
1474 EXPORT_SYMBOL_GPL(__cpufreq_driver_getavg);
1475
1476 /*
1477 * when "event" is CPUFREQ_GOV_LIMITS
1478 */
1479
1480 static int __cpufreq_governor(struct cpufreq_policy *policy,
1481 unsigned int event)
1482 {
1483 int ret;
1484
1485 /* Only must be defined when default governor is known to have latency
1486 restrictions, like e.g. conservative or ondemand.
1487 That this is the case is already ensured in Kconfig
1488 */
1489 #ifdef CONFIG_CPU_FREQ_GOV_PERFORMANCE
1490 struct cpufreq_governor *gov = &cpufreq_gov_performance;
1491 #else
1492 struct cpufreq_governor *gov = NULL;
1493 #endif
1494
1495 if (policy->governor->max_transition_latency &&
1496 policy->cpuinfo.transition_latency >
1497 policy->governor->max_transition_latency) {
1498 if (!gov)
1499 return -EINVAL;
1500 else {
1501 printk(KERN_WARNING "%s governor failed, too long"
1502 " transition latency of HW, fallback"
1503 " to %s governor\n",
1504 policy->governor->name,
1505 gov->name);
1506 policy->governor = gov;
1507 }
1508 }
1509
1510 if (!try_module_get(policy->governor->owner))
1511 return -EINVAL;
1512
1513 dprintk("__cpufreq_governor for CPU %u, event %u\n",
1514 policy->cpu, event);
1515 ret = policy->governor->governor(policy, event);
1516
1517 /* we keep one module reference alive for
1518 each CPU governed by this CPU */
1519 if ((event != CPUFREQ_GOV_START) || ret)
1520 module_put(policy->governor->owner);
1521 if ((event == CPUFREQ_GOV_STOP) && !ret)
1522 module_put(policy->governor->owner);
1523
1524 return ret;
1525 }
1526
1527
1528 int cpufreq_register_governor(struct cpufreq_governor *governor)
1529 {
1530 int err;
1531
1532 if (!governor)
1533 return -EINVAL;
1534
1535 mutex_lock(&cpufreq_governor_mutex);
1536
1537 err = -EBUSY;
1538 if (__find_governor(governor->name) == NULL) {
1539 err = 0;
1540 list_add(&governor->governor_list, &cpufreq_governor_list);
1541 }
1542
1543 mutex_unlock(&cpufreq_governor_mutex);
1544 return err;
1545 }
1546 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
1547
1548
1549 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
1550 {
1551 if (!governor)
1552 return;
1553
1554 mutex_lock(&cpufreq_governor_mutex);
1555 list_del(&governor->governor_list);
1556 mutex_unlock(&cpufreq_governor_mutex);
1557 return;
1558 }
1559 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
1560
1561
1562
1563 /*********************************************************************
1564 * POLICY INTERFACE *
1565 *********************************************************************/
1566
1567 /**
1568 * cpufreq_get_policy - get the current cpufreq_policy
1569 * @policy: struct cpufreq_policy into which the current cpufreq_policy is written
1570 *
1571 * Reads the current cpufreq policy.
1572 */
1573 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
1574 {
1575 struct cpufreq_policy *cpu_policy;
1576 if (!policy)
1577 return -EINVAL;
1578
1579 cpu_policy = cpufreq_cpu_get(cpu);
1580 if (!cpu_policy)
1581 return -EINVAL;
1582
1583 memcpy(policy, cpu_policy, sizeof(struct cpufreq_policy));
1584
1585 cpufreq_cpu_put(cpu_policy);
1586 return 0;
1587 }
1588 EXPORT_SYMBOL(cpufreq_get_policy);
1589
1590
1591 /*
1592 * data : current policy.
1593 * policy : policy to be set.
1594 */
1595 static int __cpufreq_set_policy(struct cpufreq_policy *data,
1596 struct cpufreq_policy *policy)
1597 {
1598 int ret = 0;
1599
1600 cpufreq_debug_disable_ratelimit();
1601 dprintk("setting new policy for CPU %u: %u - %u kHz\n", policy->cpu,
1602 policy->min, policy->max);
1603
1604 memcpy(&policy->cpuinfo, &data->cpuinfo,
1605 sizeof(struct cpufreq_cpuinfo));
1606
1607 if (policy->min > data->min && policy->min > policy->max) {
1608 ret = -EINVAL;
1609 goto error_out;
1610 }
1611
1612 /* verify the cpu speed can be set within this limit */
1613 ret = cpufreq_driver->verify(policy);
1614 if (ret)
1615 goto error_out;
1616
1617 /* adjust if necessary - all reasons */
1618 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1619 CPUFREQ_ADJUST, policy);
1620
1621 /* adjust if necessary - hardware incompatibility*/
1622 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1623 CPUFREQ_INCOMPATIBLE, policy);
1624
1625 /* verify the cpu speed can be set within this limit,
1626 which might be different to the first one */
1627 ret = cpufreq_driver->verify(policy);
1628 if (ret)
1629 goto error_out;
1630
1631 /* notification of the new policy */
1632 blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
1633 CPUFREQ_NOTIFY, policy);
1634
1635 data->min = policy->min;
1636 data->max = policy->max;
1637
1638 dprintk("new min and max freqs are %u - %u kHz\n",
1639 data->min, data->max);
1640
1641 if (cpufreq_driver->setpolicy) {
1642 data->policy = policy->policy;
1643 dprintk("setting range\n");
1644 ret = cpufreq_driver->setpolicy(policy);
1645 } else {
1646 if (policy->governor != data->governor) {
1647 /* save old, working values */
1648 struct cpufreq_governor *old_gov = data->governor;
1649
1650 dprintk("governor switch\n");
1651
1652 /* end old governor */
1653 if (data->governor)
1654 __cpufreq_governor(data, CPUFREQ_GOV_STOP);
1655
1656 /* start new governor */
1657 data->governor = policy->governor;
1658 if (__cpufreq_governor(data, CPUFREQ_GOV_START)) {
1659 /* new governor failed, so re-start old one */
1660 dprintk("starting governor %s failed\n",
1661 data->governor->name);
1662 if (old_gov) {
1663 data->governor = old_gov;
1664 __cpufreq_governor(data,
1665 CPUFREQ_GOV_START);
1666 }
1667 ret = -EINVAL;
1668 goto error_out;
1669 }
1670 /* might be a policy change, too, so fall through */
1671 }
1672 dprintk("governor: change or update limits\n");
1673 __cpufreq_governor(data, CPUFREQ_GOV_LIMITS);
1674 }
1675
1676 error_out:
1677 cpufreq_debug_enable_ratelimit();
1678 return ret;
1679 }
1680
1681 /**
1682 * cpufreq_update_policy - re-evaluate an existing cpufreq policy
1683 * @cpu: CPU which shall be re-evaluated
1684 *
1685 * Usefull for policy notifiers which have different necessities
1686 * at different times.
1687 */
1688 int cpufreq_update_policy(unsigned int cpu)
1689 {
1690 struct cpufreq_policy *data = cpufreq_cpu_get(cpu);
1691 struct cpufreq_policy policy;
1692 int ret = 0;
1693
1694 if (!data)
1695 return -ENODEV;
1696
1697 if (unlikely(lock_policy_rwsem_write(cpu)))
1698 return -EINVAL;
1699
1700 dprintk("updating policy for CPU %u\n", cpu);
1701 memcpy(&policy, data, sizeof(struct cpufreq_policy));
1702 policy.min = data->user_policy.min;
1703 policy.max = data->user_policy.max;
1704 policy.policy = data->user_policy.policy;
1705 policy.governor = data->user_policy.governor;
1706
1707 /* BIOS might change freq behind our back
1708 -> ask driver for current freq and notify governors about a change */
1709 if (cpufreq_driver->get) {
1710 policy.cur = cpufreq_driver->get(cpu);
1711 if (!data->cur) {
1712 dprintk("Driver did not initialize current freq");
1713 data->cur = policy.cur;
1714 } else {
1715 if (data->cur != policy.cur)
1716 cpufreq_out_of_sync(cpu, data->cur,
1717 policy.cur);
1718 }
1719 }
1720
1721 ret = __cpufreq_set_policy(data, &policy);
1722
1723 unlock_policy_rwsem_write(cpu);
1724
1725 cpufreq_cpu_put(data);
1726 return ret;
1727 }
1728 EXPORT_SYMBOL(cpufreq_update_policy);
1729
1730 static int __cpuinit cpufreq_cpu_callback(struct notifier_block *nfb,
1731 unsigned long action, void *hcpu)
1732 {
1733 unsigned int cpu = (unsigned long)hcpu;
1734 struct sys_device *sys_dev;
1735
1736 sys_dev = get_cpu_sysdev(cpu);
1737 if (sys_dev) {
1738 switch (action) {
1739 case CPU_ONLINE:
1740 case CPU_ONLINE_FROZEN:
1741 cpufreq_add_dev(sys_dev);
1742 break;
1743 case CPU_DOWN_PREPARE:
1744 case CPU_DOWN_PREPARE_FROZEN:
1745 if (unlikely(lock_policy_rwsem_write(cpu)))
1746 BUG();
1747
1748 __cpufreq_remove_dev(sys_dev);
1749 break;
1750 case CPU_DOWN_FAILED:
1751 case CPU_DOWN_FAILED_FROZEN:
1752 cpufreq_add_dev(sys_dev);
1753 break;
1754 }
1755 }
1756 return NOTIFY_OK;
1757 }
1758
1759 static struct notifier_block __cpuinitdata cpufreq_cpu_notifier =
1760 {
1761 .notifier_call = cpufreq_cpu_callback,
1762 };
1763
1764 /*********************************************************************
1765 * REGISTER / UNREGISTER CPUFREQ DRIVER *
1766 *********************************************************************/
1767
1768 /**
1769 * cpufreq_register_driver - register a CPU Frequency driver
1770 * @driver_data: A struct cpufreq_driver containing the values#
1771 * submitted by the CPU Frequency driver.
1772 *
1773 * Registers a CPU Frequency driver to this core code. This code
1774 * returns zero on success, -EBUSY when another driver got here first
1775 * (and isn't unregistered in the meantime).
1776 *
1777 */
1778 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
1779 {
1780 unsigned long flags;
1781 int ret;
1782
1783 if (!driver_data || !driver_data->verify || !driver_data->init ||
1784 ((!driver_data->setpolicy) && (!driver_data->target)))
1785 return -EINVAL;
1786
1787 dprintk("trying to register driver %s\n", driver_data->name);
1788
1789 if (driver_data->setpolicy)
1790 driver_data->flags |= CPUFREQ_CONST_LOOPS;
1791
1792 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1793 if (cpufreq_driver) {
1794 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1795 return -EBUSY;
1796 }
1797 cpufreq_driver = driver_data;
1798 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1799
1800 ret = sysdev_driver_register(&cpu_sysdev_class,&cpufreq_sysdev_driver);
1801
1802 if ((!ret) && !(cpufreq_driver->flags & CPUFREQ_STICKY)) {
1803 int i;
1804 ret = -ENODEV;
1805
1806 /* check for at least one working CPU */
1807 for (i=0; i<NR_CPUS; i++)
1808 if (cpufreq_cpu_data[i])
1809 ret = 0;
1810
1811 /* if all ->init() calls failed, unregister */
1812 if (ret) {
1813 dprintk("no CPU initialized for driver %s\n",
1814 driver_data->name);
1815 sysdev_driver_unregister(&cpu_sysdev_class,
1816 &cpufreq_sysdev_driver);
1817
1818 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1819 cpufreq_driver = NULL;
1820 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1821 }
1822 }
1823
1824 if (!ret) {
1825 register_hotcpu_notifier(&cpufreq_cpu_notifier);
1826 dprintk("driver %s up and running\n", driver_data->name);
1827 cpufreq_debug_enable_ratelimit();
1828 }
1829
1830 return (ret);
1831 }
1832 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
1833
1834
1835 /**
1836 * cpufreq_unregister_driver - unregister the current CPUFreq driver
1837 *
1838 * Unregister the current CPUFreq driver. Only call this if you have
1839 * the right to do so, i.e. if you have succeeded in initialising before!
1840 * Returns zero if successful, and -EINVAL if the cpufreq_driver is
1841 * currently not initialised.
1842 */
1843 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
1844 {
1845 unsigned long flags;
1846
1847 cpufreq_debug_disable_ratelimit();
1848
1849 if (!cpufreq_driver || (driver != cpufreq_driver)) {
1850 cpufreq_debug_enable_ratelimit();
1851 return -EINVAL;
1852 }
1853
1854 dprintk("unregistering driver %s\n", driver->name);
1855
1856 sysdev_driver_unregister(&cpu_sysdev_class, &cpufreq_sysdev_driver);
1857 unregister_hotcpu_notifier(&cpufreq_cpu_notifier);
1858
1859 spin_lock_irqsave(&cpufreq_driver_lock, flags);
1860 cpufreq_driver = NULL;
1861 spin_unlock_irqrestore(&cpufreq_driver_lock, flags);
1862
1863 return 0;
1864 }
1865 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
1866
1867 static int __init cpufreq_core_init(void)
1868 {
1869 int cpu;
1870
1871 for_each_possible_cpu(cpu) {
1872 per_cpu(policy_cpu, cpu) = -1;
1873 init_rwsem(&per_cpu(cpu_policy_rwsem, cpu));
1874 }
1875 return 0;
1876 }
1877
1878 core_initcall(cpufreq_core_init);