Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / clocksource / sh_cmt.c
1 /*
2 * SuperH Timer Support - CMT
3 *
4 * Copyright (C) 2008 Magnus Damm
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/init.h>
21 #include <linux/platform_device.h>
22 #include <linux/spinlock.h>
23 #include <linux/interrupt.h>
24 #include <linux/ioport.h>
25 #include <linux/io.h>
26 #include <linux/clk.h>
27 #include <linux/irq.h>
28 #include <linux/err.h>
29 #include <linux/delay.h>
30 #include <linux/clocksource.h>
31 #include <linux/clockchips.h>
32 #include <linux/sh_timer.h>
33 #include <linux/slab.h>
34 #include <linux/module.h>
35 #include <linux/pm_domain.h>
36 #include <linux/pm_runtime.h>
37
38 struct sh_cmt_priv {
39 void __iomem *mapbase;
40 struct clk *clk;
41 unsigned long width; /* 16 or 32 bit version of hardware block */
42 unsigned long overflow_bit;
43 unsigned long clear_bits;
44 struct irqaction irqaction;
45 struct platform_device *pdev;
46
47 unsigned long flags;
48 unsigned long match_value;
49 unsigned long next_match_value;
50 unsigned long max_match_value;
51 unsigned long rate;
52 raw_spinlock_t lock;
53 struct clock_event_device ced;
54 struct clocksource cs;
55 unsigned long total_cycles;
56 bool cs_enabled;
57
58 /* callbacks for CMSTR and CMCSR access */
59 unsigned long (*read_control)(void __iomem *base, unsigned long offs);
60 void (*write_control)(void __iomem *base, unsigned long offs,
61 unsigned long value);
62
63 /* callbacks for CMCNT and CMCOR access */
64 unsigned long (*read_count)(void __iomem *base, unsigned long offs);
65 void (*write_count)(void __iomem *base, unsigned long offs,
66 unsigned long value);
67 };
68
69 /* Examples of supported CMT timer register layouts and I/O access widths:
70 *
71 * "16-bit counter and 16-bit control" as found on sh7263:
72 * CMSTR 0xfffec000 16-bit
73 * CMCSR 0xfffec002 16-bit
74 * CMCNT 0xfffec004 16-bit
75 * CMCOR 0xfffec006 16-bit
76 *
77 * "32-bit counter and 16-bit control" as found on sh7372, sh73a0, r8a7740:
78 * CMSTR 0xffca0000 16-bit
79 * CMCSR 0xffca0060 16-bit
80 * CMCNT 0xffca0064 32-bit
81 * CMCOR 0xffca0068 32-bit
82 */
83
84 static unsigned long sh_cmt_read16(void __iomem *base, unsigned long offs)
85 {
86 return ioread16(base + (offs << 1));
87 }
88
89 static unsigned long sh_cmt_read32(void __iomem *base, unsigned long offs)
90 {
91 return ioread32(base + (offs << 2));
92 }
93
94 static void sh_cmt_write16(void __iomem *base, unsigned long offs,
95 unsigned long value)
96 {
97 iowrite16(value, base + (offs << 1));
98 }
99
100 static void sh_cmt_write32(void __iomem *base, unsigned long offs,
101 unsigned long value)
102 {
103 iowrite32(value, base + (offs << 2));
104 }
105
106 #define CMCSR 0 /* channel register */
107 #define CMCNT 1 /* channel register */
108 #define CMCOR 2 /* channel register */
109
110 static inline unsigned long sh_cmt_read_cmstr(struct sh_cmt_priv *p)
111 {
112 struct sh_timer_config *cfg = p->pdev->dev.platform_data;
113
114 return p->read_control(p->mapbase - cfg->channel_offset, 0);
115 }
116
117 static inline unsigned long sh_cmt_read_cmcsr(struct sh_cmt_priv *p)
118 {
119 return p->read_control(p->mapbase, CMCSR);
120 }
121
122 static inline unsigned long sh_cmt_read_cmcnt(struct sh_cmt_priv *p)
123 {
124 return p->read_count(p->mapbase, CMCNT);
125 }
126
127 static inline void sh_cmt_write_cmstr(struct sh_cmt_priv *p,
128 unsigned long value)
129 {
130 struct sh_timer_config *cfg = p->pdev->dev.platform_data;
131
132 p->write_control(p->mapbase - cfg->channel_offset, 0, value);
133 }
134
135 static inline void sh_cmt_write_cmcsr(struct sh_cmt_priv *p,
136 unsigned long value)
137 {
138 p->write_control(p->mapbase, CMCSR, value);
139 }
140
141 static inline void sh_cmt_write_cmcnt(struct sh_cmt_priv *p,
142 unsigned long value)
143 {
144 p->write_count(p->mapbase, CMCNT, value);
145 }
146
147 static inline void sh_cmt_write_cmcor(struct sh_cmt_priv *p,
148 unsigned long value)
149 {
150 p->write_count(p->mapbase, CMCOR, value);
151 }
152
153 static unsigned long sh_cmt_get_counter(struct sh_cmt_priv *p,
154 int *has_wrapped)
155 {
156 unsigned long v1, v2, v3;
157 int o1, o2;
158
159 o1 = sh_cmt_read_cmcsr(p) & p->overflow_bit;
160
161 /* Make sure the timer value is stable. Stolen from acpi_pm.c */
162 do {
163 o2 = o1;
164 v1 = sh_cmt_read_cmcnt(p);
165 v2 = sh_cmt_read_cmcnt(p);
166 v3 = sh_cmt_read_cmcnt(p);
167 o1 = sh_cmt_read_cmcsr(p) & p->overflow_bit;
168 } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
169 || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
170
171 *has_wrapped = o1;
172 return v2;
173 }
174
175 static DEFINE_RAW_SPINLOCK(sh_cmt_lock);
176
177 static void sh_cmt_start_stop_ch(struct sh_cmt_priv *p, int start)
178 {
179 struct sh_timer_config *cfg = p->pdev->dev.platform_data;
180 unsigned long flags, value;
181
182 /* start stop register shared by multiple timer channels */
183 raw_spin_lock_irqsave(&sh_cmt_lock, flags);
184 value = sh_cmt_read_cmstr(p);
185
186 if (start)
187 value |= 1 << cfg->timer_bit;
188 else
189 value &= ~(1 << cfg->timer_bit);
190
191 sh_cmt_write_cmstr(p, value);
192 raw_spin_unlock_irqrestore(&sh_cmt_lock, flags);
193 }
194
195 static int sh_cmt_enable(struct sh_cmt_priv *p, unsigned long *rate)
196 {
197 int k, ret;
198
199 pm_runtime_get_sync(&p->pdev->dev);
200 dev_pm_syscore_device(&p->pdev->dev, true);
201
202 /* enable clock */
203 ret = clk_enable(p->clk);
204 if (ret) {
205 dev_err(&p->pdev->dev, "cannot enable clock\n");
206 goto err0;
207 }
208
209 /* make sure channel is disabled */
210 sh_cmt_start_stop_ch(p, 0);
211
212 /* configure channel, periodic mode and maximum timeout */
213 if (p->width == 16) {
214 *rate = clk_get_rate(p->clk) / 512;
215 sh_cmt_write_cmcsr(p, 0x43);
216 } else {
217 *rate = clk_get_rate(p->clk) / 8;
218 sh_cmt_write_cmcsr(p, 0x01a4);
219 }
220
221 sh_cmt_write_cmcor(p, 0xffffffff);
222 sh_cmt_write_cmcnt(p, 0);
223
224 /*
225 * According to the sh73a0 user's manual, as CMCNT can be operated
226 * only by the RCLK (Pseudo 32 KHz), there's one restriction on
227 * modifying CMCNT register; two RCLK cycles are necessary before
228 * this register is either read or any modification of the value
229 * it holds is reflected in the LSI's actual operation.
230 *
231 * While at it, we're supposed to clear out the CMCNT as of this
232 * moment, so make sure it's processed properly here. This will
233 * take RCLKx2 at maximum.
234 */
235 for (k = 0; k < 100; k++) {
236 if (!sh_cmt_read_cmcnt(p))
237 break;
238 udelay(1);
239 }
240
241 if (sh_cmt_read_cmcnt(p)) {
242 dev_err(&p->pdev->dev, "cannot clear CMCNT\n");
243 ret = -ETIMEDOUT;
244 goto err1;
245 }
246
247 /* enable channel */
248 sh_cmt_start_stop_ch(p, 1);
249 return 0;
250 err1:
251 /* stop clock */
252 clk_disable(p->clk);
253
254 err0:
255 return ret;
256 }
257
258 static void sh_cmt_disable(struct sh_cmt_priv *p)
259 {
260 /* disable channel */
261 sh_cmt_start_stop_ch(p, 0);
262
263 /* disable interrupts in CMT block */
264 sh_cmt_write_cmcsr(p, 0);
265
266 /* stop clock */
267 clk_disable(p->clk);
268
269 dev_pm_syscore_device(&p->pdev->dev, false);
270 pm_runtime_put(&p->pdev->dev);
271 }
272
273 /* private flags */
274 #define FLAG_CLOCKEVENT (1 << 0)
275 #define FLAG_CLOCKSOURCE (1 << 1)
276 #define FLAG_REPROGRAM (1 << 2)
277 #define FLAG_SKIPEVENT (1 << 3)
278 #define FLAG_IRQCONTEXT (1 << 4)
279
280 static void sh_cmt_clock_event_program_verify(struct sh_cmt_priv *p,
281 int absolute)
282 {
283 unsigned long new_match;
284 unsigned long value = p->next_match_value;
285 unsigned long delay = 0;
286 unsigned long now = 0;
287 int has_wrapped;
288
289 now = sh_cmt_get_counter(p, &has_wrapped);
290 p->flags |= FLAG_REPROGRAM; /* force reprogram */
291
292 if (has_wrapped) {
293 /* we're competing with the interrupt handler.
294 * -> let the interrupt handler reprogram the timer.
295 * -> interrupt number two handles the event.
296 */
297 p->flags |= FLAG_SKIPEVENT;
298 return;
299 }
300
301 if (absolute)
302 now = 0;
303
304 do {
305 /* reprogram the timer hardware,
306 * but don't save the new match value yet.
307 */
308 new_match = now + value + delay;
309 if (new_match > p->max_match_value)
310 new_match = p->max_match_value;
311
312 sh_cmt_write_cmcor(p, new_match);
313
314 now = sh_cmt_get_counter(p, &has_wrapped);
315 if (has_wrapped && (new_match > p->match_value)) {
316 /* we are changing to a greater match value,
317 * so this wrap must be caused by the counter
318 * matching the old value.
319 * -> first interrupt reprograms the timer.
320 * -> interrupt number two handles the event.
321 */
322 p->flags |= FLAG_SKIPEVENT;
323 break;
324 }
325
326 if (has_wrapped) {
327 /* we are changing to a smaller match value,
328 * so the wrap must be caused by the counter
329 * matching the new value.
330 * -> save programmed match value.
331 * -> let isr handle the event.
332 */
333 p->match_value = new_match;
334 break;
335 }
336
337 /* be safe: verify hardware settings */
338 if (now < new_match) {
339 /* timer value is below match value, all good.
340 * this makes sure we won't miss any match events.
341 * -> save programmed match value.
342 * -> let isr handle the event.
343 */
344 p->match_value = new_match;
345 break;
346 }
347
348 /* the counter has reached a value greater
349 * than our new match value. and since the
350 * has_wrapped flag isn't set we must have
351 * programmed a too close event.
352 * -> increase delay and retry.
353 */
354 if (delay)
355 delay <<= 1;
356 else
357 delay = 1;
358
359 if (!delay)
360 dev_warn(&p->pdev->dev, "too long delay\n");
361
362 } while (delay);
363 }
364
365 static void __sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
366 {
367 if (delta > p->max_match_value)
368 dev_warn(&p->pdev->dev, "delta out of range\n");
369
370 p->next_match_value = delta;
371 sh_cmt_clock_event_program_verify(p, 0);
372 }
373
374 static void sh_cmt_set_next(struct sh_cmt_priv *p, unsigned long delta)
375 {
376 unsigned long flags;
377
378 raw_spin_lock_irqsave(&p->lock, flags);
379 __sh_cmt_set_next(p, delta);
380 raw_spin_unlock_irqrestore(&p->lock, flags);
381 }
382
383 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
384 {
385 struct sh_cmt_priv *p = dev_id;
386
387 /* clear flags */
388 sh_cmt_write_cmcsr(p, sh_cmt_read_cmcsr(p) & p->clear_bits);
389
390 /* update clock source counter to begin with if enabled
391 * the wrap flag should be cleared by the timer specific
392 * isr before we end up here.
393 */
394 if (p->flags & FLAG_CLOCKSOURCE)
395 p->total_cycles += p->match_value + 1;
396
397 if (!(p->flags & FLAG_REPROGRAM))
398 p->next_match_value = p->max_match_value;
399
400 p->flags |= FLAG_IRQCONTEXT;
401
402 if (p->flags & FLAG_CLOCKEVENT) {
403 if (!(p->flags & FLAG_SKIPEVENT)) {
404 if (p->ced.mode == CLOCK_EVT_MODE_ONESHOT) {
405 p->next_match_value = p->max_match_value;
406 p->flags |= FLAG_REPROGRAM;
407 }
408
409 p->ced.event_handler(&p->ced);
410 }
411 }
412
413 p->flags &= ~FLAG_SKIPEVENT;
414
415 if (p->flags & FLAG_REPROGRAM) {
416 p->flags &= ~FLAG_REPROGRAM;
417 sh_cmt_clock_event_program_verify(p, 1);
418
419 if (p->flags & FLAG_CLOCKEVENT)
420 if ((p->ced.mode == CLOCK_EVT_MODE_SHUTDOWN)
421 || (p->match_value == p->next_match_value))
422 p->flags &= ~FLAG_REPROGRAM;
423 }
424
425 p->flags &= ~FLAG_IRQCONTEXT;
426
427 return IRQ_HANDLED;
428 }
429
430 static int sh_cmt_start(struct sh_cmt_priv *p, unsigned long flag)
431 {
432 int ret = 0;
433 unsigned long flags;
434
435 raw_spin_lock_irqsave(&p->lock, flags);
436
437 if (!(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
438 ret = sh_cmt_enable(p, &p->rate);
439
440 if (ret)
441 goto out;
442 p->flags |= flag;
443
444 /* setup timeout if no clockevent */
445 if ((flag == FLAG_CLOCKSOURCE) && (!(p->flags & FLAG_CLOCKEVENT)))
446 __sh_cmt_set_next(p, p->max_match_value);
447 out:
448 raw_spin_unlock_irqrestore(&p->lock, flags);
449
450 return ret;
451 }
452
453 static void sh_cmt_stop(struct sh_cmt_priv *p, unsigned long flag)
454 {
455 unsigned long flags;
456 unsigned long f;
457
458 raw_spin_lock_irqsave(&p->lock, flags);
459
460 f = p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
461 p->flags &= ~flag;
462
463 if (f && !(p->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
464 sh_cmt_disable(p);
465
466 /* adjust the timeout to maximum if only clocksource left */
467 if ((flag == FLAG_CLOCKEVENT) && (p->flags & FLAG_CLOCKSOURCE))
468 __sh_cmt_set_next(p, p->max_match_value);
469
470 raw_spin_unlock_irqrestore(&p->lock, flags);
471 }
472
473 static struct sh_cmt_priv *cs_to_sh_cmt(struct clocksource *cs)
474 {
475 return container_of(cs, struct sh_cmt_priv, cs);
476 }
477
478 static cycle_t sh_cmt_clocksource_read(struct clocksource *cs)
479 {
480 struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
481 unsigned long flags, raw;
482 unsigned long value;
483 int has_wrapped;
484
485 raw_spin_lock_irqsave(&p->lock, flags);
486 value = p->total_cycles;
487 raw = sh_cmt_get_counter(p, &has_wrapped);
488
489 if (unlikely(has_wrapped))
490 raw += p->match_value + 1;
491 raw_spin_unlock_irqrestore(&p->lock, flags);
492
493 return value + raw;
494 }
495
496 static int sh_cmt_clocksource_enable(struct clocksource *cs)
497 {
498 int ret;
499 struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
500
501 WARN_ON(p->cs_enabled);
502
503 p->total_cycles = 0;
504
505 ret = sh_cmt_start(p, FLAG_CLOCKSOURCE);
506 if (!ret) {
507 __clocksource_updatefreq_hz(cs, p->rate);
508 p->cs_enabled = true;
509 }
510 return ret;
511 }
512
513 static void sh_cmt_clocksource_disable(struct clocksource *cs)
514 {
515 struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
516
517 WARN_ON(!p->cs_enabled);
518
519 sh_cmt_stop(p, FLAG_CLOCKSOURCE);
520 p->cs_enabled = false;
521 }
522
523 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
524 {
525 struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
526
527 sh_cmt_stop(p, FLAG_CLOCKSOURCE);
528 pm_genpd_syscore_poweroff(&p->pdev->dev);
529 }
530
531 static void sh_cmt_clocksource_resume(struct clocksource *cs)
532 {
533 struct sh_cmt_priv *p = cs_to_sh_cmt(cs);
534
535 pm_genpd_syscore_poweron(&p->pdev->dev);
536 sh_cmt_start(p, FLAG_CLOCKSOURCE);
537 }
538
539 static int sh_cmt_register_clocksource(struct sh_cmt_priv *p,
540 char *name, unsigned long rating)
541 {
542 struct clocksource *cs = &p->cs;
543
544 cs->name = name;
545 cs->rating = rating;
546 cs->read = sh_cmt_clocksource_read;
547 cs->enable = sh_cmt_clocksource_enable;
548 cs->disable = sh_cmt_clocksource_disable;
549 cs->suspend = sh_cmt_clocksource_suspend;
550 cs->resume = sh_cmt_clocksource_resume;
551 cs->mask = CLOCKSOURCE_MASK(sizeof(unsigned long) * 8);
552 cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
553
554 dev_info(&p->pdev->dev, "used as clock source\n");
555
556 /* Register with dummy 1 Hz value, gets updated in ->enable() */
557 clocksource_register_hz(cs, 1);
558 return 0;
559 }
560
561 static struct sh_cmt_priv *ced_to_sh_cmt(struct clock_event_device *ced)
562 {
563 return container_of(ced, struct sh_cmt_priv, ced);
564 }
565
566 static void sh_cmt_clock_event_start(struct sh_cmt_priv *p, int periodic)
567 {
568 struct clock_event_device *ced = &p->ced;
569
570 sh_cmt_start(p, FLAG_CLOCKEVENT);
571
572 /* TODO: calculate good shift from rate and counter bit width */
573
574 ced->shift = 32;
575 ced->mult = div_sc(p->rate, NSEC_PER_SEC, ced->shift);
576 ced->max_delta_ns = clockevent_delta2ns(p->max_match_value, ced);
577 ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
578
579 if (periodic)
580 sh_cmt_set_next(p, ((p->rate + HZ/2) / HZ) - 1);
581 else
582 sh_cmt_set_next(p, p->max_match_value);
583 }
584
585 static void sh_cmt_clock_event_mode(enum clock_event_mode mode,
586 struct clock_event_device *ced)
587 {
588 struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
589
590 /* deal with old setting first */
591 switch (ced->mode) {
592 case CLOCK_EVT_MODE_PERIODIC:
593 case CLOCK_EVT_MODE_ONESHOT:
594 sh_cmt_stop(p, FLAG_CLOCKEVENT);
595 break;
596 default:
597 break;
598 }
599
600 switch (mode) {
601 case CLOCK_EVT_MODE_PERIODIC:
602 dev_info(&p->pdev->dev, "used for periodic clock events\n");
603 sh_cmt_clock_event_start(p, 1);
604 break;
605 case CLOCK_EVT_MODE_ONESHOT:
606 dev_info(&p->pdev->dev, "used for oneshot clock events\n");
607 sh_cmt_clock_event_start(p, 0);
608 break;
609 case CLOCK_EVT_MODE_SHUTDOWN:
610 case CLOCK_EVT_MODE_UNUSED:
611 sh_cmt_stop(p, FLAG_CLOCKEVENT);
612 break;
613 default:
614 break;
615 }
616 }
617
618 static int sh_cmt_clock_event_next(unsigned long delta,
619 struct clock_event_device *ced)
620 {
621 struct sh_cmt_priv *p = ced_to_sh_cmt(ced);
622
623 BUG_ON(ced->mode != CLOCK_EVT_MODE_ONESHOT);
624 if (likely(p->flags & FLAG_IRQCONTEXT))
625 p->next_match_value = delta - 1;
626 else
627 sh_cmt_set_next(p, delta - 1);
628
629 return 0;
630 }
631
632 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
633 {
634 pm_genpd_syscore_poweroff(&ced_to_sh_cmt(ced)->pdev->dev);
635 }
636
637 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
638 {
639 pm_genpd_syscore_poweron(&ced_to_sh_cmt(ced)->pdev->dev);
640 }
641
642 static void sh_cmt_register_clockevent(struct sh_cmt_priv *p,
643 char *name, unsigned long rating)
644 {
645 struct clock_event_device *ced = &p->ced;
646
647 memset(ced, 0, sizeof(*ced));
648
649 ced->name = name;
650 ced->features = CLOCK_EVT_FEAT_PERIODIC;
651 ced->features |= CLOCK_EVT_FEAT_ONESHOT;
652 ced->rating = rating;
653 ced->cpumask = cpumask_of(0);
654 ced->set_next_event = sh_cmt_clock_event_next;
655 ced->set_mode = sh_cmt_clock_event_mode;
656 ced->suspend = sh_cmt_clock_event_suspend;
657 ced->resume = sh_cmt_clock_event_resume;
658
659 dev_info(&p->pdev->dev, "used for clock events\n");
660 clockevents_register_device(ced);
661 }
662
663 static int sh_cmt_register(struct sh_cmt_priv *p, char *name,
664 unsigned long clockevent_rating,
665 unsigned long clocksource_rating)
666 {
667 if (clockevent_rating)
668 sh_cmt_register_clockevent(p, name, clockevent_rating);
669
670 if (clocksource_rating)
671 sh_cmt_register_clocksource(p, name, clocksource_rating);
672
673 return 0;
674 }
675
676 static int sh_cmt_setup(struct sh_cmt_priv *p, struct platform_device *pdev)
677 {
678 struct sh_timer_config *cfg = pdev->dev.platform_data;
679 struct resource *res;
680 int irq, ret;
681 ret = -ENXIO;
682
683 memset(p, 0, sizeof(*p));
684 p->pdev = pdev;
685
686 if (!cfg) {
687 dev_err(&p->pdev->dev, "missing platform data\n");
688 goto err0;
689 }
690
691 res = platform_get_resource(p->pdev, IORESOURCE_MEM, 0);
692 if (!res) {
693 dev_err(&p->pdev->dev, "failed to get I/O memory\n");
694 goto err0;
695 }
696
697 irq = platform_get_irq(p->pdev, 0);
698 if (irq < 0) {
699 dev_err(&p->pdev->dev, "failed to get irq\n");
700 goto err0;
701 }
702
703 /* map memory, let mapbase point to our channel */
704 p->mapbase = ioremap_nocache(res->start, resource_size(res));
705 if (p->mapbase == NULL) {
706 dev_err(&p->pdev->dev, "failed to remap I/O memory\n");
707 goto err0;
708 }
709
710 /* request irq using setup_irq() (too early for request_irq()) */
711 p->irqaction.name = dev_name(&p->pdev->dev);
712 p->irqaction.handler = sh_cmt_interrupt;
713 p->irqaction.dev_id = p;
714 p->irqaction.flags = IRQF_DISABLED | IRQF_TIMER | \
715 IRQF_IRQPOLL | IRQF_NOBALANCING;
716
717 /* get hold of clock */
718 p->clk = clk_get(&p->pdev->dev, "cmt_fck");
719 if (IS_ERR(p->clk)) {
720 dev_err(&p->pdev->dev, "cannot get clock\n");
721 ret = PTR_ERR(p->clk);
722 goto err1;
723 }
724
725 p->read_control = sh_cmt_read16;
726 p->write_control = sh_cmt_write16;
727
728 if (resource_size(res) == 6) {
729 p->width = 16;
730 p->read_count = sh_cmt_read16;
731 p->write_count = sh_cmt_write16;
732 p->overflow_bit = 0x80;
733 p->clear_bits = ~0x80;
734 } else {
735 p->width = 32;
736 p->read_count = sh_cmt_read32;
737 p->write_count = sh_cmt_write32;
738 p->overflow_bit = 0x8000;
739 p->clear_bits = ~0xc000;
740 }
741
742 if (p->width == (sizeof(p->max_match_value) * 8))
743 p->max_match_value = ~0;
744 else
745 p->max_match_value = (1 << p->width) - 1;
746
747 p->match_value = p->max_match_value;
748 raw_spin_lock_init(&p->lock);
749
750 ret = sh_cmt_register(p, (char *)dev_name(&p->pdev->dev),
751 cfg->clockevent_rating,
752 cfg->clocksource_rating);
753 if (ret) {
754 dev_err(&p->pdev->dev, "registration failed\n");
755 goto err2;
756 }
757 p->cs_enabled = false;
758
759 ret = setup_irq(irq, &p->irqaction);
760 if (ret) {
761 dev_err(&p->pdev->dev, "failed to request irq %d\n", irq);
762 goto err2;
763 }
764
765 platform_set_drvdata(pdev, p);
766
767 return 0;
768 err2:
769 clk_put(p->clk);
770
771 err1:
772 iounmap(p->mapbase);
773 err0:
774 return ret;
775 }
776
777 static int sh_cmt_probe(struct platform_device *pdev)
778 {
779 struct sh_cmt_priv *p = platform_get_drvdata(pdev);
780 struct sh_timer_config *cfg = pdev->dev.platform_data;
781 int ret;
782
783 if (!is_early_platform_device(pdev)) {
784 pm_runtime_set_active(&pdev->dev);
785 pm_runtime_enable(&pdev->dev);
786 }
787
788 if (p) {
789 dev_info(&pdev->dev, "kept as earlytimer\n");
790 goto out;
791 }
792
793 p = kmalloc(sizeof(*p), GFP_KERNEL);
794 if (p == NULL) {
795 dev_err(&pdev->dev, "failed to allocate driver data\n");
796 return -ENOMEM;
797 }
798
799 ret = sh_cmt_setup(p, pdev);
800 if (ret) {
801 kfree(p);
802 pm_runtime_idle(&pdev->dev);
803 return ret;
804 }
805 if (is_early_platform_device(pdev))
806 return 0;
807
808 out:
809 if (cfg->clockevent_rating || cfg->clocksource_rating)
810 pm_runtime_irq_safe(&pdev->dev);
811 else
812 pm_runtime_idle(&pdev->dev);
813
814 return 0;
815 }
816
817 static int sh_cmt_remove(struct platform_device *pdev)
818 {
819 return -EBUSY; /* cannot unregister clockevent and clocksource */
820 }
821
822 static struct platform_driver sh_cmt_device_driver = {
823 .probe = sh_cmt_probe,
824 .remove = sh_cmt_remove,
825 .driver = {
826 .name = "sh_cmt",
827 }
828 };
829
830 static int __init sh_cmt_init(void)
831 {
832 return platform_driver_register(&sh_cmt_device_driver);
833 }
834
835 static void __exit sh_cmt_exit(void)
836 {
837 platform_driver_unregister(&sh_cmt_device_driver);
838 }
839
840 early_platform_init("earlytimer", &sh_cmt_device_driver);
841 subsys_initcall(sh_cmt_init);
842 module_exit(sh_cmt_exit);
843
844 MODULE_AUTHOR("Magnus Damm");
845 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
846 MODULE_LICENSE("GPL v2");