Merge git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6 into for-linus
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / char / tty_io.c
1 /*
2 * linux/drivers/char/tty_io.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
10 *
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12 *
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
18 *
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
23 *
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
27 *
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
31 *
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35 *
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38 *
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
41 *
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
44 *
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
47 *
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51 *
52 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
54 *
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57 *
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60 *
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
63 *
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc()
66 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67 */
68
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
102
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109
110 #undef TTY_DEBUG_HANGUP
111
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
114
115 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
116 .c_iflag = ICRNL | IXON,
117 .c_oflag = OPOST | ONLCR,
118 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120 ECHOCTL | ECHOKE | IEXTEN,
121 .c_cc = INIT_C_CC,
122 .c_ispeed = 38400,
123 .c_ospeed = 38400
124 };
125
126 EXPORT_SYMBOL(tty_std_termios);
127
128 /* This list gets poked at by procfs and various bits of boot up code. This
129 could do with some rationalisation such as pulling the tty proc function
130 into this file */
131
132 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
133
134 /* Mutex to protect creating and releasing a tty. This is shared with
135 vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
138
139 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
140 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
141 ssize_t redirected_tty_write(struct file *, const char __user *,
142 size_t, loff_t *);
143 static unsigned int tty_poll(struct file *, poll_table *);
144 static int tty_open(struct inode *, struct file *);
145 static int tty_release(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int tty_fasync(int fd, struct file *filp, int on);
154 static void release_tty(struct tty_struct *tty, int idx);
155 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
156 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157
158 /**
159 * alloc_tty_struct - allocate a tty object
160 *
161 * Return a new empty tty structure. The data fields have not
162 * been initialized in any way but has been zeroed
163 *
164 * Locking: none
165 */
166
167 struct tty_struct *alloc_tty_struct(void)
168 {
169 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
170 }
171
172 /**
173 * free_tty_struct - free a disused tty
174 * @tty: tty struct to free
175 *
176 * Free the write buffers, tty queue and tty memory itself.
177 *
178 * Locking: none. Must be called after tty is definitely unused
179 */
180
181 void free_tty_struct(struct tty_struct *tty)
182 {
183 kfree(tty->write_buf);
184 tty_buffer_free_all(tty);
185 kfree(tty);
186 }
187
188 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
189
190 /**
191 * tty_name - return tty naming
192 * @tty: tty structure
193 * @buf: buffer for output
194 *
195 * Convert a tty structure into a name. The name reflects the kernel
196 * naming policy and if udev is in use may not reflect user space
197 *
198 * Locking: none
199 */
200
201 char *tty_name(struct tty_struct *tty, char *buf)
202 {
203 if (!tty) /* Hmm. NULL pointer. That's fun. */
204 strcpy(buf, "NULL tty");
205 else
206 strcpy(buf, tty->name);
207 return buf;
208 }
209
210 EXPORT_SYMBOL(tty_name);
211
212 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
213 const char *routine)
214 {
215 #ifdef TTY_PARANOIA_CHECK
216 if (!tty) {
217 printk(KERN_WARNING
218 "null TTY for (%d:%d) in %s\n",
219 imajor(inode), iminor(inode), routine);
220 return 1;
221 }
222 if (tty->magic != TTY_MAGIC) {
223 printk(KERN_WARNING
224 "bad magic number for tty struct (%d:%d) in %s\n",
225 imajor(inode), iminor(inode), routine);
226 return 1;
227 }
228 #endif
229 return 0;
230 }
231
232 static int check_tty_count(struct tty_struct *tty, const char *routine)
233 {
234 #ifdef CHECK_TTY_COUNT
235 struct list_head *p;
236 int count = 0;
237
238 file_list_lock();
239 list_for_each(p, &tty->tty_files) {
240 count++;
241 }
242 file_list_unlock();
243 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
244 tty->driver->subtype == PTY_TYPE_SLAVE &&
245 tty->link && tty->link->count)
246 count++;
247 if (tty->count != count) {
248 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
249 "!= #fd's(%d) in %s\n",
250 tty->name, tty->count, count, routine);
251 return count;
252 }
253 #endif
254 return 0;
255 }
256
257 /**
258 * get_tty_driver - find device of a tty
259 * @dev_t: device identifier
260 * @index: returns the index of the tty
261 *
262 * This routine returns a tty driver structure, given a device number
263 * and also passes back the index number.
264 *
265 * Locking: caller must hold tty_mutex
266 */
267
268 static struct tty_driver *get_tty_driver(dev_t device, int *index)
269 {
270 struct tty_driver *p;
271
272 list_for_each_entry(p, &tty_drivers, tty_drivers) {
273 dev_t base = MKDEV(p->major, p->minor_start);
274 if (device < base || device >= base + p->num)
275 continue;
276 *index = device - base;
277 return tty_driver_kref_get(p);
278 }
279 return NULL;
280 }
281
282 #ifdef CONFIG_CONSOLE_POLL
283
284 /**
285 * tty_find_polling_driver - find device of a polled tty
286 * @name: name string to match
287 * @line: pointer to resulting tty line nr
288 *
289 * This routine returns a tty driver structure, given a name
290 * and the condition that the tty driver is capable of polled
291 * operation.
292 */
293 struct tty_driver *tty_find_polling_driver(char *name, int *line)
294 {
295 struct tty_driver *p, *res = NULL;
296 int tty_line = 0;
297 int len;
298 char *str;
299
300 for (str = name; *str; str++)
301 if ((*str >= '0' && *str <= '9') || *str == ',')
302 break;
303 if (!*str)
304 return NULL;
305
306 len = str - name;
307 tty_line = simple_strtoul(str, &str, 10);
308
309 mutex_lock(&tty_mutex);
310 /* Search through the tty devices to look for a match */
311 list_for_each_entry(p, &tty_drivers, tty_drivers) {
312 if (strncmp(name, p->name, len) != 0)
313 continue;
314 if (*str == ',')
315 str++;
316 if (*str == '\0')
317 str = NULL;
318
319 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
320 p->ops->poll_init && !p->ops->poll_init(p, tty_line, str)) {
321 res = tty_driver_kref_get(p);
322 *line = tty_line;
323 break;
324 }
325 }
326 mutex_unlock(&tty_mutex);
327
328 return res;
329 }
330 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
331 #endif
332
333 /**
334 * tty_check_change - check for POSIX terminal changes
335 * @tty: tty to check
336 *
337 * If we try to write to, or set the state of, a terminal and we're
338 * not in the foreground, send a SIGTTOU. If the signal is blocked or
339 * ignored, go ahead and perform the operation. (POSIX 7.2)
340 *
341 * Locking: ctrl_lock
342 */
343
344 int tty_check_change(struct tty_struct *tty)
345 {
346 unsigned long flags;
347 int ret = 0;
348
349 if (current->signal->tty != tty)
350 return 0;
351
352 spin_lock_irqsave(&tty->ctrl_lock, flags);
353
354 if (!tty->pgrp) {
355 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
356 goto out_unlock;
357 }
358 if (task_pgrp(current) == tty->pgrp)
359 goto out_unlock;
360 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
361 if (is_ignored(SIGTTOU))
362 goto out;
363 if (is_current_pgrp_orphaned()) {
364 ret = -EIO;
365 goto out;
366 }
367 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
368 set_thread_flag(TIF_SIGPENDING);
369 ret = -ERESTARTSYS;
370 out:
371 return ret;
372 out_unlock:
373 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
374 return ret;
375 }
376
377 EXPORT_SYMBOL(tty_check_change);
378
379 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
380 size_t count, loff_t *ppos)
381 {
382 return 0;
383 }
384
385 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
386 size_t count, loff_t *ppos)
387 {
388 return -EIO;
389 }
390
391 /* No kernel lock held - none needed ;) */
392 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
393 {
394 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
395 }
396
397 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
398 unsigned long arg)
399 {
400 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
401 }
402
403 static long hung_up_tty_compat_ioctl(struct file *file,
404 unsigned int cmd, unsigned long arg)
405 {
406 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
407 }
408
409 static const struct file_operations tty_fops = {
410 .llseek = no_llseek,
411 .read = tty_read,
412 .write = tty_write,
413 .poll = tty_poll,
414 .unlocked_ioctl = tty_ioctl,
415 .compat_ioctl = tty_compat_ioctl,
416 .open = tty_open,
417 .release = tty_release,
418 .fasync = tty_fasync,
419 };
420
421 static const struct file_operations console_fops = {
422 .llseek = no_llseek,
423 .read = tty_read,
424 .write = redirected_tty_write,
425 .poll = tty_poll,
426 .unlocked_ioctl = tty_ioctl,
427 .compat_ioctl = tty_compat_ioctl,
428 .open = tty_open,
429 .release = tty_release,
430 .fasync = tty_fasync,
431 };
432
433 static const struct file_operations hung_up_tty_fops = {
434 .llseek = no_llseek,
435 .read = hung_up_tty_read,
436 .write = hung_up_tty_write,
437 .poll = hung_up_tty_poll,
438 .unlocked_ioctl = hung_up_tty_ioctl,
439 .compat_ioctl = hung_up_tty_compat_ioctl,
440 .release = tty_release,
441 };
442
443 static DEFINE_SPINLOCK(redirect_lock);
444 static struct file *redirect;
445
446 /**
447 * tty_wakeup - request more data
448 * @tty: terminal
449 *
450 * Internal and external helper for wakeups of tty. This function
451 * informs the line discipline if present that the driver is ready
452 * to receive more output data.
453 */
454
455 void tty_wakeup(struct tty_struct *tty)
456 {
457 struct tty_ldisc *ld;
458
459 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
460 ld = tty_ldisc_ref(tty);
461 if (ld) {
462 if (ld->ops->write_wakeup)
463 ld->ops->write_wakeup(tty);
464 tty_ldisc_deref(ld);
465 }
466 }
467 wake_up_interruptible(&tty->write_wait);
468 }
469
470 EXPORT_SYMBOL_GPL(tty_wakeup);
471
472 /**
473 * tty_ldisc_flush - flush line discipline queue
474 * @tty: tty
475 *
476 * Flush the line discipline queue (if any) for this tty. If there
477 * is no line discipline active this is a no-op.
478 */
479
480 void tty_ldisc_flush(struct tty_struct *tty)
481 {
482 struct tty_ldisc *ld = tty_ldisc_ref(tty);
483 if (ld) {
484 if (ld->ops->flush_buffer)
485 ld->ops->flush_buffer(tty);
486 tty_ldisc_deref(ld);
487 }
488 tty_buffer_flush(tty);
489 }
490
491 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
492
493 /**
494 * tty_reset_termios - reset terminal state
495 * @tty: tty to reset
496 *
497 * Restore a terminal to the driver default state
498 */
499
500 static void tty_reset_termios(struct tty_struct *tty)
501 {
502 mutex_lock(&tty->termios_mutex);
503 *tty->termios = tty->driver->init_termios;
504 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
505 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
506 mutex_unlock(&tty->termios_mutex);
507 }
508
509 /**
510 * do_tty_hangup - actual handler for hangup events
511 * @work: tty device
512 *
513 * This can be called by the "eventd" kernel thread. That is process
514 * synchronous but doesn't hold any locks, so we need to make sure we
515 * have the appropriate locks for what we're doing.
516 *
517 * The hangup event clears any pending redirections onto the hung up
518 * device. It ensures future writes will error and it does the needed
519 * line discipline hangup and signal delivery. The tty object itself
520 * remains intact.
521 *
522 * Locking:
523 * BKL
524 * redirect lock for undoing redirection
525 * file list lock for manipulating list of ttys
526 * tty_ldisc_lock from called functions
527 * termios_mutex resetting termios data
528 * tasklist_lock to walk task list for hangup event
529 * ->siglock to protect ->signal/->sighand
530 */
531 static void do_tty_hangup(struct work_struct *work)
532 {
533 struct tty_struct *tty =
534 container_of(work, struct tty_struct, hangup_work);
535 struct file *cons_filp = NULL;
536 struct file *filp, *f = NULL;
537 struct task_struct *p;
538 struct tty_ldisc *ld;
539 int closecount = 0, n;
540 unsigned long flags;
541 int refs = 0;
542
543 if (!tty)
544 return;
545
546 /* inuse_filps is protected by the single kernel lock */
547 lock_kernel();
548
549 spin_lock(&redirect_lock);
550 if (redirect && redirect->private_data == tty) {
551 f = redirect;
552 redirect = NULL;
553 }
554 spin_unlock(&redirect_lock);
555
556 check_tty_count(tty, "do_tty_hangup");
557 file_list_lock();
558 /* This breaks for file handles being sent over AF_UNIX sockets ? */
559 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
560 if (filp->f_op->write == redirected_tty_write)
561 cons_filp = filp;
562 if (filp->f_op->write != tty_write)
563 continue;
564 closecount++;
565 tty_fasync(-1, filp, 0); /* can't block */
566 filp->f_op = &hung_up_tty_fops;
567 }
568 file_list_unlock();
569 /*
570 * FIXME! What are the locking issues here? This may me overdoing
571 * things... This question is especially important now that we've
572 * removed the irqlock.
573 */
574 ld = tty_ldisc_ref(tty);
575 if (ld != NULL) {
576 /* We may have no line discipline at this point */
577 if (ld->ops->flush_buffer)
578 ld->ops->flush_buffer(tty);
579 tty_driver_flush_buffer(tty);
580 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
581 ld->ops->write_wakeup)
582 ld->ops->write_wakeup(tty);
583 if (ld->ops->hangup)
584 ld->ops->hangup(tty);
585 }
586 /*
587 * FIXME: Once we trust the LDISC code better we can wait here for
588 * ldisc completion and fix the driver call race
589 */
590 wake_up_interruptible(&tty->write_wait);
591 wake_up_interruptible(&tty->read_wait);
592 /*
593 * Shutdown the current line discipline, and reset it to
594 * N_TTY.
595 */
596 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
597 tty_reset_termios(tty);
598 /* Defer ldisc switch */
599 /* tty_deferred_ldisc_switch(N_TTY);
600
601 This should get done automatically when the port closes and
602 tty_release is called */
603
604 read_lock(&tasklist_lock);
605 if (tty->session) {
606 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
607 spin_lock_irq(&p->sighand->siglock);
608 if (p->signal->tty == tty) {
609 p->signal->tty = NULL;
610 /* We defer the dereferences outside fo
611 the tasklist lock */
612 refs++;
613 }
614 if (!p->signal->leader) {
615 spin_unlock_irq(&p->sighand->siglock);
616 continue;
617 }
618 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
619 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
620 put_pid(p->signal->tty_old_pgrp); /* A noop */
621 spin_lock_irqsave(&tty->ctrl_lock, flags);
622 if (tty->pgrp)
623 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
624 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
625 spin_unlock_irq(&p->sighand->siglock);
626 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
627 }
628 read_unlock(&tasklist_lock);
629
630 spin_lock_irqsave(&tty->ctrl_lock, flags);
631 tty->flags = 0;
632 put_pid(tty->session);
633 put_pid(tty->pgrp);
634 tty->session = NULL;
635 tty->pgrp = NULL;
636 tty->ctrl_status = 0;
637 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
638
639 /* Account for the p->signal references we killed */
640 while (refs--)
641 tty_kref_put(tty);
642
643 /*
644 * If one of the devices matches a console pointer, we
645 * cannot just call hangup() because that will cause
646 * tty->count and state->count to go out of sync.
647 * So we just call close() the right number of times.
648 */
649 if (cons_filp) {
650 if (tty->ops->close)
651 for (n = 0; n < closecount; n++)
652 tty->ops->close(tty, cons_filp);
653 } else if (tty->ops->hangup)
654 (tty->ops->hangup)(tty);
655 /*
656 * We don't want to have driver/ldisc interactions beyond
657 * the ones we did here. The driver layer expects no
658 * calls after ->hangup() from the ldisc side. However we
659 * can't yet guarantee all that.
660 */
661 set_bit(TTY_HUPPED, &tty->flags);
662 if (ld) {
663 tty_ldisc_enable(tty);
664 tty_ldisc_deref(ld);
665 }
666 unlock_kernel();
667 if (f)
668 fput(f);
669 }
670
671 /**
672 * tty_hangup - trigger a hangup event
673 * @tty: tty to hangup
674 *
675 * A carrier loss (virtual or otherwise) has occurred on this like
676 * schedule a hangup sequence to run after this event.
677 */
678
679 void tty_hangup(struct tty_struct *tty)
680 {
681 #ifdef TTY_DEBUG_HANGUP
682 char buf[64];
683 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
684 #endif
685 schedule_work(&tty->hangup_work);
686 }
687
688 EXPORT_SYMBOL(tty_hangup);
689
690 /**
691 * tty_vhangup - process vhangup
692 * @tty: tty to hangup
693 *
694 * The user has asked via system call for the terminal to be hung up.
695 * We do this synchronously so that when the syscall returns the process
696 * is complete. That guarantee is necessary for security reasons.
697 */
698
699 void tty_vhangup(struct tty_struct *tty)
700 {
701 #ifdef TTY_DEBUG_HANGUP
702 char buf[64];
703
704 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
705 #endif
706 do_tty_hangup(&tty->hangup_work);
707 }
708
709 EXPORT_SYMBOL(tty_vhangup);
710
711 /**
712 * tty_vhangup_self - process vhangup for own ctty
713 *
714 * Perform a vhangup on the current controlling tty
715 */
716
717 void tty_vhangup_self(void)
718 {
719 struct tty_struct *tty;
720
721 tty = get_current_tty();
722 if (tty) {
723 tty_vhangup(tty);
724 tty_kref_put(tty);
725 }
726 }
727
728 /**
729 * tty_hung_up_p - was tty hung up
730 * @filp: file pointer of tty
731 *
732 * Return true if the tty has been subject to a vhangup or a carrier
733 * loss
734 */
735
736 int tty_hung_up_p(struct file *filp)
737 {
738 return (filp->f_op == &hung_up_tty_fops);
739 }
740
741 EXPORT_SYMBOL(tty_hung_up_p);
742
743 static void session_clear_tty(struct pid *session)
744 {
745 struct task_struct *p;
746 do_each_pid_task(session, PIDTYPE_SID, p) {
747 proc_clear_tty(p);
748 } while_each_pid_task(session, PIDTYPE_SID, p);
749 }
750
751 /**
752 * disassociate_ctty - disconnect controlling tty
753 * @on_exit: true if exiting so need to "hang up" the session
754 *
755 * This function is typically called only by the session leader, when
756 * it wants to disassociate itself from its controlling tty.
757 *
758 * It performs the following functions:
759 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
760 * (2) Clears the tty from being controlling the session
761 * (3) Clears the controlling tty for all processes in the
762 * session group.
763 *
764 * The argument on_exit is set to 1 if called when a process is
765 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
766 *
767 * Locking:
768 * BKL is taken for hysterical raisins
769 * tty_mutex is taken to protect tty
770 * ->siglock is taken to protect ->signal/->sighand
771 * tasklist_lock is taken to walk process list for sessions
772 * ->siglock is taken to protect ->signal/->sighand
773 */
774
775 void disassociate_ctty(int on_exit)
776 {
777 struct tty_struct *tty;
778 struct pid *tty_pgrp = NULL;
779
780
781 tty = get_current_tty();
782 if (tty) {
783 tty_pgrp = get_pid(tty->pgrp);
784 lock_kernel();
785 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
786 tty_vhangup(tty);
787 unlock_kernel();
788 tty_kref_put(tty);
789 } else if (on_exit) {
790 struct pid *old_pgrp;
791 spin_lock_irq(&current->sighand->siglock);
792 old_pgrp = current->signal->tty_old_pgrp;
793 current->signal->tty_old_pgrp = NULL;
794 spin_unlock_irq(&current->sighand->siglock);
795 if (old_pgrp) {
796 kill_pgrp(old_pgrp, SIGHUP, on_exit);
797 kill_pgrp(old_pgrp, SIGCONT, on_exit);
798 put_pid(old_pgrp);
799 }
800 return;
801 }
802 if (tty_pgrp) {
803 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
804 if (!on_exit)
805 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
806 put_pid(tty_pgrp);
807 }
808
809 spin_lock_irq(&current->sighand->siglock);
810 put_pid(current->signal->tty_old_pgrp);
811 current->signal->tty_old_pgrp = NULL;
812 spin_unlock_irq(&current->sighand->siglock);
813
814 tty = get_current_tty();
815 if (tty) {
816 unsigned long flags;
817 spin_lock_irqsave(&tty->ctrl_lock, flags);
818 put_pid(tty->session);
819 put_pid(tty->pgrp);
820 tty->session = NULL;
821 tty->pgrp = NULL;
822 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
823 tty_kref_put(tty);
824 } else {
825 #ifdef TTY_DEBUG_HANGUP
826 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
827 " = NULL", tty);
828 #endif
829 }
830
831 /* Now clear signal->tty under the lock */
832 read_lock(&tasklist_lock);
833 session_clear_tty(task_session(current));
834 read_unlock(&tasklist_lock);
835 }
836
837 /**
838 *
839 * no_tty - Ensure the current process does not have a controlling tty
840 */
841 void no_tty(void)
842 {
843 struct task_struct *tsk = current;
844 lock_kernel();
845 if (tsk->signal->leader)
846 disassociate_ctty(0);
847 unlock_kernel();
848 proc_clear_tty(tsk);
849 }
850
851
852 /**
853 * stop_tty - propagate flow control
854 * @tty: tty to stop
855 *
856 * Perform flow control to the driver. For PTY/TTY pairs we
857 * must also propagate the TIOCKPKT status. May be called
858 * on an already stopped device and will not re-call the driver
859 * method.
860 *
861 * This functionality is used by both the line disciplines for
862 * halting incoming flow and by the driver. It may therefore be
863 * called from any context, may be under the tty atomic_write_lock
864 * but not always.
865 *
866 * Locking:
867 * Uses the tty control lock internally
868 */
869
870 void stop_tty(struct tty_struct *tty)
871 {
872 unsigned long flags;
873 spin_lock_irqsave(&tty->ctrl_lock, flags);
874 if (tty->stopped) {
875 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
876 return;
877 }
878 tty->stopped = 1;
879 if (tty->link && tty->link->packet) {
880 tty->ctrl_status &= ~TIOCPKT_START;
881 tty->ctrl_status |= TIOCPKT_STOP;
882 wake_up_interruptible(&tty->link->read_wait);
883 }
884 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
885 if (tty->ops->stop)
886 (tty->ops->stop)(tty);
887 }
888
889 EXPORT_SYMBOL(stop_tty);
890
891 /**
892 * start_tty - propagate flow control
893 * @tty: tty to start
894 *
895 * Start a tty that has been stopped if at all possible. Perform
896 * any necessary wakeups and propagate the TIOCPKT status. If this
897 * is the tty was previous stopped and is being started then the
898 * driver start method is invoked and the line discipline woken.
899 *
900 * Locking:
901 * ctrl_lock
902 */
903
904 void start_tty(struct tty_struct *tty)
905 {
906 unsigned long flags;
907 spin_lock_irqsave(&tty->ctrl_lock, flags);
908 if (!tty->stopped || tty->flow_stopped) {
909 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
910 return;
911 }
912 tty->stopped = 0;
913 if (tty->link && tty->link->packet) {
914 tty->ctrl_status &= ~TIOCPKT_STOP;
915 tty->ctrl_status |= TIOCPKT_START;
916 wake_up_interruptible(&tty->link->read_wait);
917 }
918 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
919 if (tty->ops->start)
920 (tty->ops->start)(tty);
921 /* If we have a running line discipline it may need kicking */
922 tty_wakeup(tty);
923 }
924
925 EXPORT_SYMBOL(start_tty);
926
927 /**
928 * tty_read - read method for tty device files
929 * @file: pointer to tty file
930 * @buf: user buffer
931 * @count: size of user buffer
932 * @ppos: unused
933 *
934 * Perform the read system call function on this terminal device. Checks
935 * for hung up devices before calling the line discipline method.
936 *
937 * Locking:
938 * Locks the line discipline internally while needed. Multiple
939 * read calls may be outstanding in parallel.
940 */
941
942 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
943 loff_t *ppos)
944 {
945 int i;
946 struct tty_struct *tty;
947 struct inode *inode;
948 struct tty_ldisc *ld;
949
950 tty = (struct tty_struct *)file->private_data;
951 inode = file->f_path.dentry->d_inode;
952 if (tty_paranoia_check(tty, inode, "tty_read"))
953 return -EIO;
954 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
955 return -EIO;
956
957 /* We want to wait for the line discipline to sort out in this
958 situation */
959 ld = tty_ldisc_ref_wait(tty);
960 if (ld->ops->read)
961 i = (ld->ops->read)(tty, file, buf, count);
962 else
963 i = -EIO;
964 tty_ldisc_deref(ld);
965 if (i > 0)
966 inode->i_atime = current_fs_time(inode->i_sb);
967 return i;
968 }
969
970 void tty_write_unlock(struct tty_struct *tty)
971 {
972 mutex_unlock(&tty->atomic_write_lock);
973 wake_up_interruptible(&tty->write_wait);
974 }
975
976 int tty_write_lock(struct tty_struct *tty, int ndelay)
977 {
978 if (!mutex_trylock(&tty->atomic_write_lock)) {
979 if (ndelay)
980 return -EAGAIN;
981 if (mutex_lock_interruptible(&tty->atomic_write_lock))
982 return -ERESTARTSYS;
983 }
984 return 0;
985 }
986
987 /*
988 * Split writes up in sane blocksizes to avoid
989 * denial-of-service type attacks
990 */
991 static inline ssize_t do_tty_write(
992 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
993 struct tty_struct *tty,
994 struct file *file,
995 const char __user *buf,
996 size_t count)
997 {
998 ssize_t ret, written = 0;
999 unsigned int chunk;
1000
1001 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1002 if (ret < 0)
1003 return ret;
1004
1005 /*
1006 * We chunk up writes into a temporary buffer. This
1007 * simplifies low-level drivers immensely, since they
1008 * don't have locking issues and user mode accesses.
1009 *
1010 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1011 * big chunk-size..
1012 *
1013 * The default chunk-size is 2kB, because the NTTY
1014 * layer has problems with bigger chunks. It will
1015 * claim to be able to handle more characters than
1016 * it actually does.
1017 *
1018 * FIXME: This can probably go away now except that 64K chunks
1019 * are too likely to fail unless switched to vmalloc...
1020 */
1021 chunk = 2048;
1022 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1023 chunk = 65536;
1024 if (count < chunk)
1025 chunk = count;
1026
1027 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1028 if (tty->write_cnt < chunk) {
1029 unsigned char *buf_chunk;
1030
1031 if (chunk < 1024)
1032 chunk = 1024;
1033
1034 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1035 if (!buf_chunk) {
1036 ret = -ENOMEM;
1037 goto out;
1038 }
1039 kfree(tty->write_buf);
1040 tty->write_cnt = chunk;
1041 tty->write_buf = buf_chunk;
1042 }
1043
1044 /* Do the write .. */
1045 for (;;) {
1046 size_t size = count;
1047 if (size > chunk)
1048 size = chunk;
1049 ret = -EFAULT;
1050 if (copy_from_user(tty->write_buf, buf, size))
1051 break;
1052 ret = write(tty, file, tty->write_buf, size);
1053 if (ret <= 0)
1054 break;
1055 written += ret;
1056 buf += ret;
1057 count -= ret;
1058 if (!count)
1059 break;
1060 ret = -ERESTARTSYS;
1061 if (signal_pending(current))
1062 break;
1063 cond_resched();
1064 }
1065 if (written) {
1066 struct inode *inode = file->f_path.dentry->d_inode;
1067 inode->i_mtime = current_fs_time(inode->i_sb);
1068 ret = written;
1069 }
1070 out:
1071 tty_write_unlock(tty);
1072 return ret;
1073 }
1074
1075 /**
1076 * tty_write_message - write a message to a certain tty, not just the console.
1077 * @tty: the destination tty_struct
1078 * @msg: the message to write
1079 *
1080 * This is used for messages that need to be redirected to a specific tty.
1081 * We don't put it into the syslog queue right now maybe in the future if
1082 * really needed.
1083 *
1084 * We must still hold the BKL and test the CLOSING flag for the moment.
1085 */
1086
1087 void tty_write_message(struct tty_struct *tty, char *msg)
1088 {
1089 lock_kernel();
1090 if (tty) {
1091 mutex_lock(&tty->atomic_write_lock);
1092 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags))
1093 tty->ops->write(tty, msg, strlen(msg));
1094 tty_write_unlock(tty);
1095 }
1096 unlock_kernel();
1097 return;
1098 }
1099
1100
1101 /**
1102 * tty_write - write method for tty device file
1103 * @file: tty file pointer
1104 * @buf: user data to write
1105 * @count: bytes to write
1106 * @ppos: unused
1107 *
1108 * Write data to a tty device via the line discipline.
1109 *
1110 * Locking:
1111 * Locks the line discipline as required
1112 * Writes to the tty driver are serialized by the atomic_write_lock
1113 * and are then processed in chunks to the device. The line discipline
1114 * write method will not be invoked in parallel for each device.
1115 */
1116
1117 static ssize_t tty_write(struct file *file, const char __user *buf,
1118 size_t count, loff_t *ppos)
1119 {
1120 struct tty_struct *tty;
1121 struct inode *inode = file->f_path.dentry->d_inode;
1122 ssize_t ret;
1123 struct tty_ldisc *ld;
1124
1125 tty = (struct tty_struct *)file->private_data;
1126 if (tty_paranoia_check(tty, inode, "tty_write"))
1127 return -EIO;
1128 if (!tty || !tty->ops->write ||
1129 (test_bit(TTY_IO_ERROR, &tty->flags)))
1130 return -EIO;
1131 /* Short term debug to catch buggy drivers */
1132 if (tty->ops->write_room == NULL)
1133 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1134 tty->driver->name);
1135 ld = tty_ldisc_ref_wait(tty);
1136 if (!ld->ops->write)
1137 ret = -EIO;
1138 else
1139 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1140 tty_ldisc_deref(ld);
1141 return ret;
1142 }
1143
1144 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1145 size_t count, loff_t *ppos)
1146 {
1147 struct file *p = NULL;
1148
1149 spin_lock(&redirect_lock);
1150 if (redirect) {
1151 get_file(redirect);
1152 p = redirect;
1153 }
1154 spin_unlock(&redirect_lock);
1155
1156 if (p) {
1157 ssize_t res;
1158 res = vfs_write(p, buf, count, &p->f_pos);
1159 fput(p);
1160 return res;
1161 }
1162 return tty_write(file, buf, count, ppos);
1163 }
1164
1165 static char ptychar[] = "pqrstuvwxyzabcde";
1166
1167 /**
1168 * pty_line_name - generate name for a pty
1169 * @driver: the tty driver in use
1170 * @index: the minor number
1171 * @p: output buffer of at least 6 bytes
1172 *
1173 * Generate a name from a driver reference and write it to the output
1174 * buffer.
1175 *
1176 * Locking: None
1177 */
1178 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1179 {
1180 int i = index + driver->name_base;
1181 /* ->name is initialized to "ttyp", but "tty" is expected */
1182 sprintf(p, "%s%c%x",
1183 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1184 ptychar[i >> 4 & 0xf], i & 0xf);
1185 }
1186
1187 /**
1188 * tty_line_name - generate name for a tty
1189 * @driver: the tty driver in use
1190 * @index: the minor number
1191 * @p: output buffer of at least 7 bytes
1192 *
1193 * Generate a name from a driver reference and write it to the output
1194 * buffer.
1195 *
1196 * Locking: None
1197 */
1198 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1199 {
1200 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1201 }
1202
1203 /**
1204 * tty_driver_lookup_tty() - find an existing tty, if any
1205 * @driver: the driver for the tty
1206 * @idx: the minor number
1207 *
1208 * Return the tty, if found or ERR_PTR() otherwise.
1209 *
1210 * Locking: tty_mutex must be held. If tty is found, the mutex must
1211 * be held until the 'fast-open' is also done. Will change once we
1212 * have refcounting in the driver and per driver locking
1213 */
1214 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1215 struct inode *inode, int idx)
1216 {
1217 struct tty_struct *tty;
1218
1219 if (driver->ops->lookup)
1220 return driver->ops->lookup(driver, inode, idx);
1221
1222 tty = driver->ttys[idx];
1223 return tty;
1224 }
1225
1226 /**
1227 * tty_init_termios - helper for termios setup
1228 * @tty: the tty to set up
1229 *
1230 * Initialise the termios structures for this tty. Thus runs under
1231 * the tty_mutex currently so we can be relaxed about ordering.
1232 */
1233
1234 int tty_init_termios(struct tty_struct *tty)
1235 {
1236 struct ktermios *tp;
1237 int idx = tty->index;
1238
1239 tp = tty->driver->termios[idx];
1240 if (tp == NULL) {
1241 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1242 if (tp == NULL)
1243 return -ENOMEM;
1244 memcpy(tp, &tty->driver->init_termios,
1245 sizeof(struct ktermios));
1246 tty->driver->termios[idx] = tp;
1247 }
1248 tty->termios = tp;
1249 tty->termios_locked = tp + 1;
1250
1251 /* Compatibility until drivers always set this */
1252 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1253 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1254 return 0;
1255 }
1256
1257 /**
1258 * tty_driver_install_tty() - install a tty entry in the driver
1259 * @driver: the driver for the tty
1260 * @tty: the tty
1261 *
1262 * Install a tty object into the driver tables. The tty->index field
1263 * will be set by the time this is called. This method is responsible
1264 * for ensuring any need additional structures are allocated and
1265 * configured.
1266 *
1267 * Locking: tty_mutex for now
1268 */
1269 static int tty_driver_install_tty(struct tty_driver *driver,
1270 struct tty_struct *tty)
1271 {
1272 int idx = tty->index;
1273
1274 if (driver->ops->install)
1275 return driver->ops->install(driver, tty);
1276
1277 if (tty_init_termios(tty) == 0) {
1278 tty_driver_kref_get(driver);
1279 tty->count++;
1280 driver->ttys[idx] = tty;
1281 return 0;
1282 }
1283 return -ENOMEM;
1284 }
1285
1286 /**
1287 * tty_driver_remove_tty() - remove a tty from the driver tables
1288 * @driver: the driver for the tty
1289 * @idx: the minor number
1290 *
1291 * Remvoe a tty object from the driver tables. The tty->index field
1292 * will be set by the time this is called.
1293 *
1294 * Locking: tty_mutex for now
1295 */
1296 static void tty_driver_remove_tty(struct tty_driver *driver,
1297 struct tty_struct *tty)
1298 {
1299 if (driver->ops->remove)
1300 driver->ops->remove(driver, tty);
1301 else
1302 driver->ttys[tty->index] = NULL;
1303 }
1304
1305 /*
1306 * tty_reopen() - fast re-open of an open tty
1307 * @tty - the tty to open
1308 *
1309 * Return 0 on success, -errno on error.
1310 *
1311 * Locking: tty_mutex must be held from the time the tty was found
1312 * till this open completes.
1313 */
1314 static int tty_reopen(struct tty_struct *tty)
1315 {
1316 struct tty_driver *driver = tty->driver;
1317
1318 if (test_bit(TTY_CLOSING, &tty->flags))
1319 return -EIO;
1320
1321 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1322 driver->subtype == PTY_TYPE_MASTER) {
1323 /*
1324 * special case for PTY masters: only one open permitted,
1325 * and the slave side open count is incremented as well.
1326 */
1327 if (tty->count)
1328 return -EIO;
1329
1330 tty->link->count++;
1331 }
1332 tty->count++;
1333 tty->driver = driver; /* N.B. why do this every time?? */
1334
1335 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1336
1337 return 0;
1338 }
1339
1340 /**
1341 * tty_init_dev - initialise a tty device
1342 * @driver: tty driver we are opening a device on
1343 * @idx: device index
1344 * @ret_tty: returned tty structure
1345 * @first_ok: ok to open a new device (used by ptmx)
1346 *
1347 * Prepare a tty device. This may not be a "new" clean device but
1348 * could also be an active device. The pty drivers require special
1349 * handling because of this.
1350 *
1351 * Locking:
1352 * The function is called under the tty_mutex, which
1353 * protects us from the tty struct or driver itself going away.
1354 *
1355 * On exit the tty device has the line discipline attached and
1356 * a reference count of 1. If a pair was created for pty/tty use
1357 * and the other was a pty master then it too has a reference count of 1.
1358 *
1359 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1360 * failed open. The new code protects the open with a mutex, so it's
1361 * really quite straightforward. The mutex locking can probably be
1362 * relaxed for the (most common) case of reopening a tty.
1363 */
1364
1365 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1366 int first_ok)
1367 {
1368 struct tty_struct *tty;
1369 int retval;
1370
1371 /* Check if pty master is being opened multiple times */
1372 if (driver->subtype == PTY_TYPE_MASTER &&
1373 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok)
1374 return ERR_PTR(-EIO);
1375
1376 /*
1377 * First time open is complex, especially for PTY devices.
1378 * This code guarantees that either everything succeeds and the
1379 * TTY is ready for operation, or else the table slots are vacated
1380 * and the allocated memory released. (Except that the termios
1381 * and locked termios may be retained.)
1382 */
1383
1384 if (!try_module_get(driver->owner))
1385 return ERR_PTR(-ENODEV);
1386
1387 tty = alloc_tty_struct();
1388 if (!tty)
1389 goto fail_no_mem;
1390 initialize_tty_struct(tty, driver, idx);
1391
1392 retval = tty_driver_install_tty(driver, tty);
1393 if (retval < 0) {
1394 free_tty_struct(tty);
1395 module_put(driver->owner);
1396 return ERR_PTR(retval);
1397 }
1398
1399 /*
1400 * Structures all installed ... call the ldisc open routines.
1401 * If we fail here just call release_tty to clean up. No need
1402 * to decrement the use counts, as release_tty doesn't care.
1403 */
1404
1405 retval = tty_ldisc_setup(tty, tty->link);
1406 if (retval)
1407 goto release_mem_out;
1408 return tty;
1409
1410 fail_no_mem:
1411 module_put(driver->owner);
1412 return ERR_PTR(-ENOMEM);
1413
1414 /* call the tty release_tty routine to clean out this slot */
1415 release_mem_out:
1416 if (printk_ratelimit())
1417 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1418 "clearing slot %d\n", idx);
1419 release_tty(tty, idx);
1420 return ERR_PTR(retval);
1421 }
1422
1423 void tty_free_termios(struct tty_struct *tty)
1424 {
1425 struct ktermios *tp;
1426 int idx = tty->index;
1427 /* Kill this flag and push into drivers for locking etc */
1428 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1429 /* FIXME: Locking on ->termios array */
1430 tp = tty->termios;
1431 tty->driver->termios[idx] = NULL;
1432 kfree(tp);
1433 }
1434 }
1435 EXPORT_SYMBOL(tty_free_termios);
1436
1437 void tty_shutdown(struct tty_struct *tty)
1438 {
1439 tty_driver_remove_tty(tty->driver, tty);
1440 tty_free_termios(tty);
1441 }
1442 EXPORT_SYMBOL(tty_shutdown);
1443
1444 /**
1445 * release_one_tty - release tty structure memory
1446 * @kref: kref of tty we are obliterating
1447 *
1448 * Releases memory associated with a tty structure, and clears out the
1449 * driver table slots. This function is called when a device is no longer
1450 * in use. It also gets called when setup of a device fails.
1451 *
1452 * Locking:
1453 * tty_mutex - sometimes only
1454 * takes the file list lock internally when working on the list
1455 * of ttys that the driver keeps.
1456 */
1457 static void release_one_tty(struct kref *kref)
1458 {
1459 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1460 struct tty_driver *driver = tty->driver;
1461
1462 if (tty->ops->shutdown)
1463 tty->ops->shutdown(tty);
1464 else
1465 tty_shutdown(tty);
1466 tty->magic = 0;
1467 tty_driver_kref_put(driver);
1468 module_put(driver->owner);
1469
1470 file_list_lock();
1471 list_del_init(&tty->tty_files);
1472 file_list_unlock();
1473
1474 free_tty_struct(tty);
1475 }
1476
1477 /**
1478 * tty_kref_put - release a tty kref
1479 * @tty: tty device
1480 *
1481 * Release a reference to a tty device and if need be let the kref
1482 * layer destruct the object for us
1483 */
1484
1485 void tty_kref_put(struct tty_struct *tty)
1486 {
1487 if (tty)
1488 kref_put(&tty->kref, release_one_tty);
1489 }
1490 EXPORT_SYMBOL(tty_kref_put);
1491
1492 /**
1493 * release_tty - release tty structure memory
1494 *
1495 * Release both @tty and a possible linked partner (think pty pair),
1496 * and decrement the refcount of the backing module.
1497 *
1498 * Locking:
1499 * tty_mutex - sometimes only
1500 * takes the file list lock internally when working on the list
1501 * of ttys that the driver keeps.
1502 * FIXME: should we require tty_mutex is held here ??
1503 *
1504 */
1505 static void release_tty(struct tty_struct *tty, int idx)
1506 {
1507 /* This should always be true but check for the moment */
1508 WARN_ON(tty->index != idx);
1509
1510 if (tty->link)
1511 tty_kref_put(tty->link);
1512 tty_kref_put(tty);
1513 }
1514
1515 /*
1516 * Even releasing the tty structures is a tricky business.. We have
1517 * to be very careful that the structures are all released at the
1518 * same time, as interrupts might otherwise get the wrong pointers.
1519 *
1520 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1521 * lead to double frees or releasing memory still in use.
1522 */
1523 void tty_release_dev(struct file *filp)
1524 {
1525 struct tty_struct *tty, *o_tty;
1526 int pty_master, tty_closing, o_tty_closing, do_sleep;
1527 int devpts;
1528 int idx;
1529 char buf[64];
1530 struct inode *inode;
1531
1532 inode = filp->f_path.dentry->d_inode;
1533 tty = (struct tty_struct *)filp->private_data;
1534 if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1535 return;
1536
1537 check_tty_count(tty, "tty_release_dev");
1538
1539 tty_fasync(-1, filp, 0);
1540
1541 idx = tty->index;
1542 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1543 tty->driver->subtype == PTY_TYPE_MASTER);
1544 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1545 o_tty = tty->link;
1546
1547 #ifdef TTY_PARANOIA_CHECK
1548 if (idx < 0 || idx >= tty->driver->num) {
1549 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1550 "free (%s)\n", tty->name);
1551 return;
1552 }
1553 if (!devpts) {
1554 if (tty != tty->driver->ttys[idx]) {
1555 printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1556 "for (%s)\n", idx, tty->name);
1557 return;
1558 }
1559 if (tty->termios != tty->driver->termios[idx]) {
1560 printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1561 "for (%s)\n",
1562 idx, tty->name);
1563 return;
1564 }
1565 }
1566 #endif
1567
1568 #ifdef TTY_DEBUG_HANGUP
1569 printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1570 tty_name(tty, buf), tty->count);
1571 #endif
1572
1573 #ifdef TTY_PARANOIA_CHECK
1574 if (tty->driver->other &&
1575 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1576 if (o_tty != tty->driver->other->ttys[idx]) {
1577 printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1578 "not o_tty for (%s)\n",
1579 idx, tty->name);
1580 return;
1581 }
1582 if (o_tty->termios != tty->driver->other->termios[idx]) {
1583 printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1584 "not o_termios for (%s)\n",
1585 idx, tty->name);
1586 return;
1587 }
1588 if (o_tty->link != tty) {
1589 printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1590 return;
1591 }
1592 }
1593 #endif
1594 if (tty->ops->close)
1595 tty->ops->close(tty, filp);
1596
1597 /*
1598 * Sanity check: if tty->count is going to zero, there shouldn't be
1599 * any waiters on tty->read_wait or tty->write_wait. We test the
1600 * wait queues and kick everyone out _before_ actually starting to
1601 * close. This ensures that we won't block while releasing the tty
1602 * structure.
1603 *
1604 * The test for the o_tty closing is necessary, since the master and
1605 * slave sides may close in any order. If the slave side closes out
1606 * first, its count will be one, since the master side holds an open.
1607 * Thus this test wouldn't be triggered at the time the slave closes,
1608 * so we do it now.
1609 *
1610 * Note that it's possible for the tty to be opened again while we're
1611 * flushing out waiters. By recalculating the closing flags before
1612 * each iteration we avoid any problems.
1613 */
1614 while (1) {
1615 /* Guard against races with tty->count changes elsewhere and
1616 opens on /dev/tty */
1617
1618 mutex_lock(&tty_mutex);
1619 tty_closing = tty->count <= 1;
1620 o_tty_closing = o_tty &&
1621 (o_tty->count <= (pty_master ? 1 : 0));
1622 do_sleep = 0;
1623
1624 if (tty_closing) {
1625 if (waitqueue_active(&tty->read_wait)) {
1626 wake_up(&tty->read_wait);
1627 do_sleep++;
1628 }
1629 if (waitqueue_active(&tty->write_wait)) {
1630 wake_up(&tty->write_wait);
1631 do_sleep++;
1632 }
1633 }
1634 if (o_tty_closing) {
1635 if (waitqueue_active(&o_tty->read_wait)) {
1636 wake_up(&o_tty->read_wait);
1637 do_sleep++;
1638 }
1639 if (waitqueue_active(&o_tty->write_wait)) {
1640 wake_up(&o_tty->write_wait);
1641 do_sleep++;
1642 }
1643 }
1644 if (!do_sleep)
1645 break;
1646
1647 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1648 "active!\n", tty_name(tty, buf));
1649 mutex_unlock(&tty_mutex);
1650 schedule();
1651 }
1652
1653 /*
1654 * The closing flags are now consistent with the open counts on
1655 * both sides, and we've completed the last operation that could
1656 * block, so it's safe to proceed with closing.
1657 */
1658 if (pty_master) {
1659 if (--o_tty->count < 0) {
1660 printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1661 "(%d) for %s\n",
1662 o_tty->count, tty_name(o_tty, buf));
1663 o_tty->count = 0;
1664 }
1665 }
1666 if (--tty->count < 0) {
1667 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1668 tty->count, tty_name(tty, buf));
1669 tty->count = 0;
1670 }
1671
1672 /*
1673 * We've decremented tty->count, so we need to remove this file
1674 * descriptor off the tty->tty_files list; this serves two
1675 * purposes:
1676 * - check_tty_count sees the correct number of file descriptors
1677 * associated with this tty.
1678 * - do_tty_hangup no longer sees this file descriptor as
1679 * something that needs to be handled for hangups.
1680 */
1681 file_kill(filp);
1682 filp->private_data = NULL;
1683
1684 /*
1685 * Perform some housekeeping before deciding whether to return.
1686 *
1687 * Set the TTY_CLOSING flag if this was the last open. In the
1688 * case of a pty we may have to wait around for the other side
1689 * to close, and TTY_CLOSING makes sure we can't be reopened.
1690 */
1691 if (tty_closing)
1692 set_bit(TTY_CLOSING, &tty->flags);
1693 if (o_tty_closing)
1694 set_bit(TTY_CLOSING, &o_tty->flags);
1695
1696 /*
1697 * If _either_ side is closing, make sure there aren't any
1698 * processes that still think tty or o_tty is their controlling
1699 * tty.
1700 */
1701 if (tty_closing || o_tty_closing) {
1702 read_lock(&tasklist_lock);
1703 session_clear_tty(tty->session);
1704 if (o_tty)
1705 session_clear_tty(o_tty->session);
1706 read_unlock(&tasklist_lock);
1707 }
1708
1709 mutex_unlock(&tty_mutex);
1710
1711 /* check whether both sides are closing ... */
1712 if (!tty_closing || (o_tty && !o_tty_closing))
1713 return;
1714
1715 #ifdef TTY_DEBUG_HANGUP
1716 printk(KERN_DEBUG "freeing tty structure...");
1717 #endif
1718 /*
1719 * Ask the line discipline code to release its structures
1720 */
1721 tty_ldisc_release(tty, o_tty);
1722 /*
1723 * The release_tty function takes care of the details of clearing
1724 * the slots and preserving the termios structure.
1725 */
1726 release_tty(tty, idx);
1727
1728 /* Make this pty number available for reallocation */
1729 if (devpts)
1730 devpts_kill_index(inode, idx);
1731 }
1732
1733 /**
1734 * __tty_open - open a tty device
1735 * @inode: inode of device file
1736 * @filp: file pointer to tty
1737 *
1738 * tty_open and tty_release keep up the tty count that contains the
1739 * number of opens done on a tty. We cannot use the inode-count, as
1740 * different inodes might point to the same tty.
1741 *
1742 * Open-counting is needed for pty masters, as well as for keeping
1743 * track of serial lines: DTR is dropped when the last close happens.
1744 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1745 *
1746 * The termios state of a pty is reset on first open so that
1747 * settings don't persist across reuse.
1748 *
1749 * Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1750 * tty->count should protect the rest.
1751 * ->siglock protects ->signal/->sighand
1752 */
1753
1754 static int __tty_open(struct inode *inode, struct file *filp)
1755 {
1756 struct tty_struct *tty = NULL;
1757 int noctty, retval;
1758 struct tty_driver *driver;
1759 int index;
1760 dev_t device = inode->i_rdev;
1761 unsigned short saved_flags = filp->f_flags;
1762
1763 nonseekable_open(inode, filp);
1764
1765 retry_open:
1766 noctty = filp->f_flags & O_NOCTTY;
1767 index = -1;
1768 retval = 0;
1769
1770 mutex_lock(&tty_mutex);
1771
1772 if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1773 tty = get_current_tty();
1774 if (!tty) {
1775 mutex_unlock(&tty_mutex);
1776 return -ENXIO;
1777 }
1778 driver = tty_driver_kref_get(tty->driver);
1779 index = tty->index;
1780 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1781 /* noctty = 1; */
1782 /* FIXME: Should we take a driver reference ? */
1783 tty_kref_put(tty);
1784 goto got_driver;
1785 }
1786 #ifdef CONFIG_VT
1787 if (device == MKDEV(TTY_MAJOR, 0)) {
1788 extern struct tty_driver *console_driver;
1789 driver = tty_driver_kref_get(console_driver);
1790 index = fg_console;
1791 noctty = 1;
1792 goto got_driver;
1793 }
1794 #endif
1795 if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1796 struct tty_driver *console_driver = console_device(&index);
1797 if (console_driver) {
1798 driver = tty_driver_kref_get(console_driver);
1799 if (driver) {
1800 /* Don't let /dev/console block */
1801 filp->f_flags |= O_NONBLOCK;
1802 noctty = 1;
1803 goto got_driver;
1804 }
1805 }
1806 mutex_unlock(&tty_mutex);
1807 return -ENODEV;
1808 }
1809
1810 driver = get_tty_driver(device, &index);
1811 if (!driver) {
1812 mutex_unlock(&tty_mutex);
1813 return -ENODEV;
1814 }
1815 got_driver:
1816 if (!tty) {
1817 /* check whether we're reopening an existing tty */
1818 tty = tty_driver_lookup_tty(driver, inode, index);
1819
1820 if (IS_ERR(tty))
1821 return PTR_ERR(tty);
1822 }
1823
1824 if (tty) {
1825 retval = tty_reopen(tty);
1826 if (retval)
1827 tty = ERR_PTR(retval);
1828 } else
1829 tty = tty_init_dev(driver, index, 0);
1830
1831 mutex_unlock(&tty_mutex);
1832 tty_driver_kref_put(driver);
1833 if (IS_ERR(tty))
1834 return PTR_ERR(tty);
1835
1836 filp->private_data = tty;
1837 file_move(filp, &tty->tty_files);
1838 check_tty_count(tty, "tty_open");
1839 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1840 tty->driver->subtype == PTY_TYPE_MASTER)
1841 noctty = 1;
1842 #ifdef TTY_DEBUG_HANGUP
1843 printk(KERN_DEBUG "opening %s...", tty->name);
1844 #endif
1845 if (!retval) {
1846 if (tty->ops->open)
1847 retval = tty->ops->open(tty, filp);
1848 else
1849 retval = -ENODEV;
1850 }
1851 filp->f_flags = saved_flags;
1852
1853 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1854 !capable(CAP_SYS_ADMIN))
1855 retval = -EBUSY;
1856
1857 if (retval) {
1858 #ifdef TTY_DEBUG_HANGUP
1859 printk(KERN_DEBUG "error %d in opening %s...", retval,
1860 tty->name);
1861 #endif
1862 tty_release_dev(filp);
1863 if (retval != -ERESTARTSYS)
1864 return retval;
1865 if (signal_pending(current))
1866 return retval;
1867 schedule();
1868 /*
1869 * Need to reset f_op in case a hangup happened.
1870 */
1871 if (filp->f_op == &hung_up_tty_fops)
1872 filp->f_op = &tty_fops;
1873 goto retry_open;
1874 }
1875
1876 mutex_lock(&tty_mutex);
1877 spin_lock_irq(&current->sighand->siglock);
1878 if (!noctty &&
1879 current->signal->leader &&
1880 !current->signal->tty &&
1881 tty->session == NULL)
1882 __proc_set_tty(current, tty);
1883 spin_unlock_irq(&current->sighand->siglock);
1884 mutex_unlock(&tty_mutex);
1885 return 0;
1886 }
1887
1888 /* BKL pushdown: scary code avoidance wrapper */
1889 static int tty_open(struct inode *inode, struct file *filp)
1890 {
1891 int ret;
1892
1893 lock_kernel();
1894 ret = __tty_open(inode, filp);
1895 unlock_kernel();
1896 return ret;
1897 }
1898
1899
1900
1901
1902 /**
1903 * tty_release - vfs callback for close
1904 * @inode: inode of tty
1905 * @filp: file pointer for handle to tty
1906 *
1907 * Called the last time each file handle is closed that references
1908 * this tty. There may however be several such references.
1909 *
1910 * Locking:
1911 * Takes bkl. See tty_release_dev
1912 */
1913
1914 static int tty_release(struct inode *inode, struct file *filp)
1915 {
1916 lock_kernel();
1917 tty_release_dev(filp);
1918 unlock_kernel();
1919 return 0;
1920 }
1921
1922 /**
1923 * tty_poll - check tty status
1924 * @filp: file being polled
1925 * @wait: poll wait structures to update
1926 *
1927 * Call the line discipline polling method to obtain the poll
1928 * status of the device.
1929 *
1930 * Locking: locks called line discipline but ldisc poll method
1931 * may be re-entered freely by other callers.
1932 */
1933
1934 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1935 {
1936 struct tty_struct *tty;
1937 struct tty_ldisc *ld;
1938 int ret = 0;
1939
1940 tty = (struct tty_struct *)filp->private_data;
1941 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1942 return 0;
1943
1944 ld = tty_ldisc_ref_wait(tty);
1945 if (ld->ops->poll)
1946 ret = (ld->ops->poll)(tty, filp, wait);
1947 tty_ldisc_deref(ld);
1948 return ret;
1949 }
1950
1951 static int tty_fasync(int fd, struct file *filp, int on)
1952 {
1953 struct tty_struct *tty;
1954 unsigned long flags;
1955 int retval = 0;
1956
1957 lock_kernel();
1958 tty = (struct tty_struct *)filp->private_data;
1959 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1960 goto out;
1961
1962 retval = fasync_helper(fd, filp, on, &tty->fasync);
1963 if (retval <= 0)
1964 goto out;
1965
1966 if (on) {
1967 enum pid_type type;
1968 struct pid *pid;
1969 if (!waitqueue_active(&tty->read_wait))
1970 tty->minimum_to_wake = 1;
1971 spin_lock_irqsave(&tty->ctrl_lock, flags);
1972 if (tty->pgrp) {
1973 pid = tty->pgrp;
1974 type = PIDTYPE_PGID;
1975 } else {
1976 pid = task_pid(current);
1977 type = PIDTYPE_PID;
1978 }
1979 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1980 retval = __f_setown(filp, pid, type, 0);
1981 if (retval)
1982 goto out;
1983 } else {
1984 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
1985 tty->minimum_to_wake = N_TTY_BUF_SIZE;
1986 }
1987 retval = 0;
1988 out:
1989 unlock_kernel();
1990 return retval;
1991 }
1992
1993 /**
1994 * tiocsti - fake input character
1995 * @tty: tty to fake input into
1996 * @p: pointer to character
1997 *
1998 * Fake input to a tty device. Does the necessary locking and
1999 * input management.
2000 *
2001 * FIXME: does not honour flow control ??
2002 *
2003 * Locking:
2004 * Called functions take tty_ldisc_lock
2005 * current->signal->tty check is safe without locks
2006 *
2007 * FIXME: may race normal receive processing
2008 */
2009
2010 static int tiocsti(struct tty_struct *tty, char __user *p)
2011 {
2012 char ch, mbz = 0;
2013 struct tty_ldisc *ld;
2014
2015 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2016 return -EPERM;
2017 if (get_user(ch, p))
2018 return -EFAULT;
2019 tty_audit_tiocsti(tty, ch);
2020 ld = tty_ldisc_ref_wait(tty);
2021 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2022 tty_ldisc_deref(ld);
2023 return 0;
2024 }
2025
2026 /**
2027 * tiocgwinsz - implement window query ioctl
2028 * @tty; tty
2029 * @arg: user buffer for result
2030 *
2031 * Copies the kernel idea of the window size into the user buffer.
2032 *
2033 * Locking: tty->termios_mutex is taken to ensure the winsize data
2034 * is consistent.
2035 */
2036
2037 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2038 {
2039 int err;
2040
2041 mutex_lock(&tty->termios_mutex);
2042 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2043 mutex_unlock(&tty->termios_mutex);
2044
2045 return err ? -EFAULT: 0;
2046 }
2047
2048 /**
2049 * tty_do_resize - resize event
2050 * @tty: tty being resized
2051 * @rows: rows (character)
2052 * @cols: cols (character)
2053 *
2054 * Update the termios variables and send the neccessary signals to
2055 * peform a terminal resize correctly
2056 */
2057
2058 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2059 {
2060 struct pid *pgrp;
2061 unsigned long flags;
2062
2063 /* Lock the tty */
2064 mutex_lock(&tty->termios_mutex);
2065 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2066 goto done;
2067 /* Get the PID values and reference them so we can
2068 avoid holding the tty ctrl lock while sending signals */
2069 spin_lock_irqsave(&tty->ctrl_lock, flags);
2070 pgrp = get_pid(tty->pgrp);
2071 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2072
2073 if (pgrp)
2074 kill_pgrp(pgrp, SIGWINCH, 1);
2075 put_pid(pgrp);
2076
2077 tty->winsize = *ws;
2078 done:
2079 mutex_unlock(&tty->termios_mutex);
2080 return 0;
2081 }
2082
2083 /**
2084 * tiocswinsz - implement window size set ioctl
2085 * @tty; tty side of tty
2086 * @arg: user buffer for result
2087 *
2088 * Copies the user idea of the window size to the kernel. Traditionally
2089 * this is just advisory information but for the Linux console it
2090 * actually has driver level meaning and triggers a VC resize.
2091 *
2092 * Locking:
2093 * Driver dependant. The default do_resize method takes the
2094 * tty termios mutex and ctrl_lock. The console takes its own lock
2095 * then calls into the default method.
2096 */
2097
2098 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2099 {
2100 struct winsize tmp_ws;
2101 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2102 return -EFAULT;
2103
2104 if (tty->ops->resize)
2105 return tty->ops->resize(tty, &tmp_ws);
2106 else
2107 return tty_do_resize(tty, &tmp_ws);
2108 }
2109
2110 /**
2111 * tioccons - allow admin to move logical console
2112 * @file: the file to become console
2113 *
2114 * Allow the adminstrator to move the redirected console device
2115 *
2116 * Locking: uses redirect_lock to guard the redirect information
2117 */
2118
2119 static int tioccons(struct file *file)
2120 {
2121 if (!capable(CAP_SYS_ADMIN))
2122 return -EPERM;
2123 if (file->f_op->write == redirected_tty_write) {
2124 struct file *f;
2125 spin_lock(&redirect_lock);
2126 f = redirect;
2127 redirect = NULL;
2128 spin_unlock(&redirect_lock);
2129 if (f)
2130 fput(f);
2131 return 0;
2132 }
2133 spin_lock(&redirect_lock);
2134 if (redirect) {
2135 spin_unlock(&redirect_lock);
2136 return -EBUSY;
2137 }
2138 get_file(file);
2139 redirect = file;
2140 spin_unlock(&redirect_lock);
2141 return 0;
2142 }
2143
2144 /**
2145 * fionbio - non blocking ioctl
2146 * @file: file to set blocking value
2147 * @p: user parameter
2148 *
2149 * Historical tty interfaces had a blocking control ioctl before
2150 * the generic functionality existed. This piece of history is preserved
2151 * in the expected tty API of posix OS's.
2152 *
2153 * Locking: none, the open fle handle ensures it won't go away.
2154 */
2155
2156 static int fionbio(struct file *file, int __user *p)
2157 {
2158 int nonblock;
2159
2160 if (get_user(nonblock, p))
2161 return -EFAULT;
2162
2163 /* file->f_flags is still BKL protected in the fs layer - vomit */
2164 lock_kernel();
2165 if (nonblock)
2166 file->f_flags |= O_NONBLOCK;
2167 else
2168 file->f_flags &= ~O_NONBLOCK;
2169 unlock_kernel();
2170 return 0;
2171 }
2172
2173 /**
2174 * tiocsctty - set controlling tty
2175 * @tty: tty structure
2176 * @arg: user argument
2177 *
2178 * This ioctl is used to manage job control. It permits a session
2179 * leader to set this tty as the controlling tty for the session.
2180 *
2181 * Locking:
2182 * Takes tty_mutex() to protect tty instance
2183 * Takes tasklist_lock internally to walk sessions
2184 * Takes ->siglock() when updating signal->tty
2185 */
2186
2187 static int tiocsctty(struct tty_struct *tty, int arg)
2188 {
2189 int ret = 0;
2190 if (current->signal->leader && (task_session(current) == tty->session))
2191 return ret;
2192
2193 mutex_lock(&tty_mutex);
2194 /*
2195 * The process must be a session leader and
2196 * not have a controlling tty already.
2197 */
2198 if (!current->signal->leader || current->signal->tty) {
2199 ret = -EPERM;
2200 goto unlock;
2201 }
2202
2203 if (tty->session) {
2204 /*
2205 * This tty is already the controlling
2206 * tty for another session group!
2207 */
2208 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2209 /*
2210 * Steal it away
2211 */
2212 read_lock(&tasklist_lock);
2213 session_clear_tty(tty->session);
2214 read_unlock(&tasklist_lock);
2215 } else {
2216 ret = -EPERM;
2217 goto unlock;
2218 }
2219 }
2220 proc_set_tty(current, tty);
2221 unlock:
2222 mutex_unlock(&tty_mutex);
2223 return ret;
2224 }
2225
2226 /**
2227 * tty_get_pgrp - return a ref counted pgrp pid
2228 * @tty: tty to read
2229 *
2230 * Returns a refcounted instance of the pid struct for the process
2231 * group controlling the tty.
2232 */
2233
2234 struct pid *tty_get_pgrp(struct tty_struct *tty)
2235 {
2236 unsigned long flags;
2237 struct pid *pgrp;
2238
2239 spin_lock_irqsave(&tty->ctrl_lock, flags);
2240 pgrp = get_pid(tty->pgrp);
2241 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2242
2243 return pgrp;
2244 }
2245 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2246
2247 /**
2248 * tiocgpgrp - get process group
2249 * @tty: tty passed by user
2250 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2251 * @p: returned pid
2252 *
2253 * Obtain the process group of the tty. If there is no process group
2254 * return an error.
2255 *
2256 * Locking: none. Reference to current->signal->tty is safe.
2257 */
2258
2259 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2260 {
2261 struct pid *pid;
2262 int ret;
2263 /*
2264 * (tty == real_tty) is a cheap way of
2265 * testing if the tty is NOT a master pty.
2266 */
2267 if (tty == real_tty && current->signal->tty != real_tty)
2268 return -ENOTTY;
2269 pid = tty_get_pgrp(real_tty);
2270 ret = put_user(pid_vnr(pid), p);
2271 put_pid(pid);
2272 return ret;
2273 }
2274
2275 /**
2276 * tiocspgrp - attempt to set process group
2277 * @tty: tty passed by user
2278 * @real_tty: tty side device matching tty passed by user
2279 * @p: pid pointer
2280 *
2281 * Set the process group of the tty to the session passed. Only
2282 * permitted where the tty session is our session.
2283 *
2284 * Locking: RCU, ctrl lock
2285 */
2286
2287 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2288 {
2289 struct pid *pgrp;
2290 pid_t pgrp_nr;
2291 int retval = tty_check_change(real_tty);
2292 unsigned long flags;
2293
2294 if (retval == -EIO)
2295 return -ENOTTY;
2296 if (retval)
2297 return retval;
2298 if (!current->signal->tty ||
2299 (current->signal->tty != real_tty) ||
2300 (real_tty->session != task_session(current)))
2301 return -ENOTTY;
2302 if (get_user(pgrp_nr, p))
2303 return -EFAULT;
2304 if (pgrp_nr < 0)
2305 return -EINVAL;
2306 rcu_read_lock();
2307 pgrp = find_vpid(pgrp_nr);
2308 retval = -ESRCH;
2309 if (!pgrp)
2310 goto out_unlock;
2311 retval = -EPERM;
2312 if (session_of_pgrp(pgrp) != task_session(current))
2313 goto out_unlock;
2314 retval = 0;
2315 spin_lock_irqsave(&tty->ctrl_lock, flags);
2316 put_pid(real_tty->pgrp);
2317 real_tty->pgrp = get_pid(pgrp);
2318 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2319 out_unlock:
2320 rcu_read_unlock();
2321 return retval;
2322 }
2323
2324 /**
2325 * tiocgsid - get session id
2326 * @tty: tty passed by user
2327 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2328 * @p: pointer to returned session id
2329 *
2330 * Obtain the session id of the tty. If there is no session
2331 * return an error.
2332 *
2333 * Locking: none. Reference to current->signal->tty is safe.
2334 */
2335
2336 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2337 {
2338 /*
2339 * (tty == real_tty) is a cheap way of
2340 * testing if the tty is NOT a master pty.
2341 */
2342 if (tty == real_tty && current->signal->tty != real_tty)
2343 return -ENOTTY;
2344 if (!real_tty->session)
2345 return -ENOTTY;
2346 return put_user(pid_vnr(real_tty->session), p);
2347 }
2348
2349 /**
2350 * tiocsetd - set line discipline
2351 * @tty: tty device
2352 * @p: pointer to user data
2353 *
2354 * Set the line discipline according to user request.
2355 *
2356 * Locking: see tty_set_ldisc, this function is just a helper
2357 */
2358
2359 static int tiocsetd(struct tty_struct *tty, int __user *p)
2360 {
2361 int ldisc;
2362 int ret;
2363
2364 if (get_user(ldisc, p))
2365 return -EFAULT;
2366
2367 lock_kernel();
2368 ret = tty_set_ldisc(tty, ldisc);
2369 unlock_kernel();
2370
2371 return ret;
2372 }
2373
2374 /**
2375 * send_break - performed time break
2376 * @tty: device to break on
2377 * @duration: timeout in mS
2378 *
2379 * Perform a timed break on hardware that lacks its own driver level
2380 * timed break functionality.
2381 *
2382 * Locking:
2383 * atomic_write_lock serializes
2384 *
2385 */
2386
2387 static int send_break(struct tty_struct *tty, unsigned int duration)
2388 {
2389 int retval;
2390
2391 if (tty->ops->break_ctl == NULL)
2392 return 0;
2393
2394 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2395 retval = tty->ops->break_ctl(tty, duration);
2396 else {
2397 /* Do the work ourselves */
2398 if (tty_write_lock(tty, 0) < 0)
2399 return -EINTR;
2400 retval = tty->ops->break_ctl(tty, -1);
2401 if (retval)
2402 goto out;
2403 if (!signal_pending(current))
2404 msleep_interruptible(duration);
2405 retval = tty->ops->break_ctl(tty, 0);
2406 out:
2407 tty_write_unlock(tty);
2408 if (signal_pending(current))
2409 retval = -EINTR;
2410 }
2411 return retval;
2412 }
2413
2414 /**
2415 * tty_tiocmget - get modem status
2416 * @tty: tty device
2417 * @file: user file pointer
2418 * @p: pointer to result
2419 *
2420 * Obtain the modem status bits from the tty driver if the feature
2421 * is supported. Return -EINVAL if it is not available.
2422 *
2423 * Locking: none (up to the driver)
2424 */
2425
2426 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2427 {
2428 int retval = -EINVAL;
2429
2430 if (tty->ops->tiocmget) {
2431 retval = tty->ops->tiocmget(tty, file);
2432
2433 if (retval >= 0)
2434 retval = put_user(retval, p);
2435 }
2436 return retval;
2437 }
2438
2439 /**
2440 * tty_tiocmset - set modem status
2441 * @tty: tty device
2442 * @file: user file pointer
2443 * @cmd: command - clear bits, set bits or set all
2444 * @p: pointer to desired bits
2445 *
2446 * Set the modem status bits from the tty driver if the feature
2447 * is supported. Return -EINVAL if it is not available.
2448 *
2449 * Locking: none (up to the driver)
2450 */
2451
2452 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2453 unsigned __user *p)
2454 {
2455 int retval;
2456 unsigned int set, clear, val;
2457
2458 if (tty->ops->tiocmset == NULL)
2459 return -EINVAL;
2460
2461 retval = get_user(val, p);
2462 if (retval)
2463 return retval;
2464 set = clear = 0;
2465 switch (cmd) {
2466 case TIOCMBIS:
2467 set = val;
2468 break;
2469 case TIOCMBIC:
2470 clear = val;
2471 break;
2472 case TIOCMSET:
2473 set = val;
2474 clear = ~val;
2475 break;
2476 }
2477 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2478 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2479 return tty->ops->tiocmset(tty, file, set, clear);
2480 }
2481
2482 /*
2483 * Split this up, as gcc can choke on it otherwise..
2484 */
2485 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2486 {
2487 struct tty_struct *tty, *real_tty;
2488 void __user *p = (void __user *)arg;
2489 int retval;
2490 struct tty_ldisc *ld;
2491 struct inode *inode = file->f_dentry->d_inode;
2492
2493 tty = (struct tty_struct *)file->private_data;
2494 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2495 return -EINVAL;
2496
2497 real_tty = tty;
2498 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2499 tty->driver->subtype == PTY_TYPE_MASTER)
2500 real_tty = tty->link;
2501
2502
2503 /*
2504 * Factor out some common prep work
2505 */
2506 switch (cmd) {
2507 case TIOCSETD:
2508 case TIOCSBRK:
2509 case TIOCCBRK:
2510 case TCSBRK:
2511 case TCSBRKP:
2512 retval = tty_check_change(tty);
2513 if (retval)
2514 return retval;
2515 if (cmd != TIOCCBRK) {
2516 tty_wait_until_sent(tty, 0);
2517 if (signal_pending(current))
2518 return -EINTR;
2519 }
2520 break;
2521 }
2522
2523 /*
2524 * Now do the stuff.
2525 */
2526 switch (cmd) {
2527 case TIOCSTI:
2528 return tiocsti(tty, p);
2529 case TIOCGWINSZ:
2530 return tiocgwinsz(real_tty, p);
2531 case TIOCSWINSZ:
2532 return tiocswinsz(real_tty, p);
2533 case TIOCCONS:
2534 return real_tty != tty ? -EINVAL : tioccons(file);
2535 case FIONBIO:
2536 return fionbio(file, p);
2537 case TIOCEXCL:
2538 set_bit(TTY_EXCLUSIVE, &tty->flags);
2539 return 0;
2540 case TIOCNXCL:
2541 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2542 return 0;
2543 case TIOCNOTTY:
2544 if (current->signal->tty != tty)
2545 return -ENOTTY;
2546 no_tty();
2547 return 0;
2548 case TIOCSCTTY:
2549 return tiocsctty(tty, arg);
2550 case TIOCGPGRP:
2551 return tiocgpgrp(tty, real_tty, p);
2552 case TIOCSPGRP:
2553 return tiocspgrp(tty, real_tty, p);
2554 case TIOCGSID:
2555 return tiocgsid(tty, real_tty, p);
2556 case TIOCGETD:
2557 return put_user(tty->ldisc.ops->num, (int __user *)p);
2558 case TIOCSETD:
2559 return tiocsetd(tty, p);
2560 /*
2561 * Break handling
2562 */
2563 case TIOCSBRK: /* Turn break on, unconditionally */
2564 if (tty->ops->break_ctl)
2565 return tty->ops->break_ctl(tty, -1);
2566 return 0;
2567 case TIOCCBRK: /* Turn break off, unconditionally */
2568 if (tty->ops->break_ctl)
2569 return tty->ops->break_ctl(tty, 0);
2570 return 0;
2571 case TCSBRK: /* SVID version: non-zero arg --> no break */
2572 /* non-zero arg means wait for all output data
2573 * to be sent (performed above) but don't send break.
2574 * This is used by the tcdrain() termios function.
2575 */
2576 if (!arg)
2577 return send_break(tty, 250);
2578 return 0;
2579 case TCSBRKP: /* support for POSIX tcsendbreak() */
2580 return send_break(tty, arg ? arg*100 : 250);
2581
2582 case TIOCMGET:
2583 return tty_tiocmget(tty, file, p);
2584 case TIOCMSET:
2585 case TIOCMBIC:
2586 case TIOCMBIS:
2587 return tty_tiocmset(tty, file, cmd, p);
2588 case TCFLSH:
2589 switch (arg) {
2590 case TCIFLUSH:
2591 case TCIOFLUSH:
2592 /* flush tty buffer and allow ldisc to process ioctl */
2593 tty_buffer_flush(tty);
2594 break;
2595 }
2596 break;
2597 }
2598 if (tty->ops->ioctl) {
2599 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2600 if (retval != -ENOIOCTLCMD)
2601 return retval;
2602 }
2603 ld = tty_ldisc_ref_wait(tty);
2604 retval = -EINVAL;
2605 if (ld->ops->ioctl) {
2606 retval = ld->ops->ioctl(tty, file, cmd, arg);
2607 if (retval == -ENOIOCTLCMD)
2608 retval = -EINVAL;
2609 }
2610 tty_ldisc_deref(ld);
2611 return retval;
2612 }
2613
2614 #ifdef CONFIG_COMPAT
2615 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2616 unsigned long arg)
2617 {
2618 struct inode *inode = file->f_dentry->d_inode;
2619 struct tty_struct *tty = file->private_data;
2620 struct tty_ldisc *ld;
2621 int retval = -ENOIOCTLCMD;
2622
2623 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2624 return -EINVAL;
2625
2626 if (tty->ops->compat_ioctl) {
2627 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2628 if (retval != -ENOIOCTLCMD)
2629 return retval;
2630 }
2631
2632 ld = tty_ldisc_ref_wait(tty);
2633 if (ld->ops->compat_ioctl)
2634 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2635 tty_ldisc_deref(ld);
2636
2637 return retval;
2638 }
2639 #endif
2640
2641 /*
2642 * This implements the "Secure Attention Key" --- the idea is to
2643 * prevent trojan horses by killing all processes associated with this
2644 * tty when the user hits the "Secure Attention Key". Required for
2645 * super-paranoid applications --- see the Orange Book for more details.
2646 *
2647 * This code could be nicer; ideally it should send a HUP, wait a few
2648 * seconds, then send a INT, and then a KILL signal. But you then
2649 * have to coordinate with the init process, since all processes associated
2650 * with the current tty must be dead before the new getty is allowed
2651 * to spawn.
2652 *
2653 * Now, if it would be correct ;-/ The current code has a nasty hole -
2654 * it doesn't catch files in flight. We may send the descriptor to ourselves
2655 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2656 *
2657 * Nasty bug: do_SAK is being called in interrupt context. This can
2658 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2659 */
2660 void __do_SAK(struct tty_struct *tty)
2661 {
2662 #ifdef TTY_SOFT_SAK
2663 tty_hangup(tty);
2664 #else
2665 struct task_struct *g, *p;
2666 struct pid *session;
2667 int i;
2668 struct file *filp;
2669 struct fdtable *fdt;
2670
2671 if (!tty)
2672 return;
2673 session = tty->session;
2674
2675 tty_ldisc_flush(tty);
2676
2677 tty_driver_flush_buffer(tty);
2678
2679 read_lock(&tasklist_lock);
2680 /* Kill the entire session */
2681 do_each_pid_task(session, PIDTYPE_SID, p) {
2682 printk(KERN_NOTICE "SAK: killed process %d"
2683 " (%s): task_session_nr(p)==tty->session\n",
2684 task_pid_nr(p), p->comm);
2685 send_sig(SIGKILL, p, 1);
2686 } while_each_pid_task(session, PIDTYPE_SID, p);
2687 /* Now kill any processes that happen to have the
2688 * tty open.
2689 */
2690 do_each_thread(g, p) {
2691 if (p->signal->tty == tty) {
2692 printk(KERN_NOTICE "SAK: killed process %d"
2693 " (%s): task_session_nr(p)==tty->session\n",
2694 task_pid_nr(p), p->comm);
2695 send_sig(SIGKILL, p, 1);
2696 continue;
2697 }
2698 task_lock(p);
2699 if (p->files) {
2700 /*
2701 * We don't take a ref to the file, so we must
2702 * hold ->file_lock instead.
2703 */
2704 spin_lock(&p->files->file_lock);
2705 fdt = files_fdtable(p->files);
2706 for (i = 0; i < fdt->max_fds; i++) {
2707 filp = fcheck_files(p->files, i);
2708 if (!filp)
2709 continue;
2710 if (filp->f_op->read == tty_read &&
2711 filp->private_data == tty) {
2712 printk(KERN_NOTICE "SAK: killed process %d"
2713 " (%s): fd#%d opened to the tty\n",
2714 task_pid_nr(p), p->comm, i);
2715 force_sig(SIGKILL, p);
2716 break;
2717 }
2718 }
2719 spin_unlock(&p->files->file_lock);
2720 }
2721 task_unlock(p);
2722 } while_each_thread(g, p);
2723 read_unlock(&tasklist_lock);
2724 #endif
2725 }
2726
2727 static void do_SAK_work(struct work_struct *work)
2728 {
2729 struct tty_struct *tty =
2730 container_of(work, struct tty_struct, SAK_work);
2731 __do_SAK(tty);
2732 }
2733
2734 /*
2735 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2736 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2737 * the values which we write to it will be identical to the values which it
2738 * already has. --akpm
2739 */
2740 void do_SAK(struct tty_struct *tty)
2741 {
2742 if (!tty)
2743 return;
2744 schedule_work(&tty->SAK_work);
2745 }
2746
2747 EXPORT_SYMBOL(do_SAK);
2748
2749 /**
2750 * initialize_tty_struct
2751 * @tty: tty to initialize
2752 *
2753 * This subroutine initializes a tty structure that has been newly
2754 * allocated.
2755 *
2756 * Locking: none - tty in question must not be exposed at this point
2757 */
2758
2759 void initialize_tty_struct(struct tty_struct *tty,
2760 struct tty_driver *driver, int idx)
2761 {
2762 memset(tty, 0, sizeof(struct tty_struct));
2763 kref_init(&tty->kref);
2764 tty->magic = TTY_MAGIC;
2765 tty_ldisc_init(tty);
2766 tty->session = NULL;
2767 tty->pgrp = NULL;
2768 tty->overrun_time = jiffies;
2769 tty->buf.head = tty->buf.tail = NULL;
2770 tty_buffer_init(tty);
2771 mutex_init(&tty->termios_mutex);
2772 init_waitqueue_head(&tty->write_wait);
2773 init_waitqueue_head(&tty->read_wait);
2774 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2775 mutex_init(&tty->atomic_read_lock);
2776 mutex_init(&tty->atomic_write_lock);
2777 mutex_init(&tty->output_lock);
2778 mutex_init(&tty->echo_lock);
2779 spin_lock_init(&tty->read_lock);
2780 spin_lock_init(&tty->ctrl_lock);
2781 INIT_LIST_HEAD(&tty->tty_files);
2782 INIT_WORK(&tty->SAK_work, do_SAK_work);
2783
2784 tty->driver = driver;
2785 tty->ops = driver->ops;
2786 tty->index = idx;
2787 tty_line_name(driver, idx, tty->name);
2788 }
2789
2790 /**
2791 * tty_put_char - write one character to a tty
2792 * @tty: tty
2793 * @ch: character
2794 *
2795 * Write one byte to the tty using the provided put_char method
2796 * if present. Returns the number of characters successfully output.
2797 *
2798 * Note: the specific put_char operation in the driver layer may go
2799 * away soon. Don't call it directly, use this method
2800 */
2801
2802 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2803 {
2804 if (tty->ops->put_char)
2805 return tty->ops->put_char(tty, ch);
2806 return tty->ops->write(tty, &ch, 1);
2807 }
2808 EXPORT_SYMBOL_GPL(tty_put_char);
2809
2810 struct class *tty_class;
2811
2812 /**
2813 * tty_register_device - register a tty device
2814 * @driver: the tty driver that describes the tty device
2815 * @index: the index in the tty driver for this tty device
2816 * @device: a struct device that is associated with this tty device.
2817 * This field is optional, if there is no known struct device
2818 * for this tty device it can be set to NULL safely.
2819 *
2820 * Returns a pointer to the struct device for this tty device
2821 * (or ERR_PTR(-EFOO) on error).
2822 *
2823 * This call is required to be made to register an individual tty device
2824 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2825 * that bit is not set, this function should not be called by a tty
2826 * driver.
2827 *
2828 * Locking: ??
2829 */
2830
2831 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2832 struct device *device)
2833 {
2834 char name[64];
2835 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2836
2837 if (index >= driver->num) {
2838 printk(KERN_ERR "Attempt to register invalid tty line number "
2839 " (%d).\n", index);
2840 return ERR_PTR(-EINVAL);
2841 }
2842
2843 if (driver->type == TTY_DRIVER_TYPE_PTY)
2844 pty_line_name(driver, index, name);
2845 else
2846 tty_line_name(driver, index, name);
2847
2848 return device_create(tty_class, device, dev, NULL, name);
2849 }
2850 EXPORT_SYMBOL(tty_register_device);
2851
2852 /**
2853 * tty_unregister_device - unregister a tty device
2854 * @driver: the tty driver that describes the tty device
2855 * @index: the index in the tty driver for this tty device
2856 *
2857 * If a tty device is registered with a call to tty_register_device() then
2858 * this function must be called when the tty device is gone.
2859 *
2860 * Locking: ??
2861 */
2862
2863 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2864 {
2865 device_destroy(tty_class,
2866 MKDEV(driver->major, driver->minor_start) + index);
2867 }
2868 EXPORT_SYMBOL(tty_unregister_device);
2869
2870 struct tty_driver *alloc_tty_driver(int lines)
2871 {
2872 struct tty_driver *driver;
2873
2874 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2875 if (driver) {
2876 kref_init(&driver->kref);
2877 driver->magic = TTY_DRIVER_MAGIC;
2878 driver->num = lines;
2879 /* later we'll move allocation of tables here */
2880 }
2881 return driver;
2882 }
2883 EXPORT_SYMBOL(alloc_tty_driver);
2884
2885 static void destruct_tty_driver(struct kref *kref)
2886 {
2887 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2888 int i;
2889 struct ktermios *tp;
2890 void *p;
2891
2892 if (driver->flags & TTY_DRIVER_INSTALLED) {
2893 /*
2894 * Free the termios and termios_locked structures because
2895 * we don't want to get memory leaks when modular tty
2896 * drivers are removed from the kernel.
2897 */
2898 for (i = 0; i < driver->num; i++) {
2899 tp = driver->termios[i];
2900 if (tp) {
2901 driver->termios[i] = NULL;
2902 kfree(tp);
2903 }
2904 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
2905 tty_unregister_device(driver, i);
2906 }
2907 p = driver->ttys;
2908 proc_tty_unregister_driver(driver);
2909 driver->ttys = NULL;
2910 driver->termios = NULL;
2911 kfree(p);
2912 cdev_del(&driver->cdev);
2913 }
2914 kfree(driver);
2915 }
2916
2917 void tty_driver_kref_put(struct tty_driver *driver)
2918 {
2919 kref_put(&driver->kref, destruct_tty_driver);
2920 }
2921 EXPORT_SYMBOL(tty_driver_kref_put);
2922
2923 void tty_set_operations(struct tty_driver *driver,
2924 const struct tty_operations *op)
2925 {
2926 driver->ops = op;
2927 };
2928 EXPORT_SYMBOL(tty_set_operations);
2929
2930 void put_tty_driver(struct tty_driver *d)
2931 {
2932 tty_driver_kref_put(d);
2933 }
2934 EXPORT_SYMBOL(put_tty_driver);
2935
2936 /*
2937 * Called by a tty driver to register itself.
2938 */
2939 int tty_register_driver(struct tty_driver *driver)
2940 {
2941 int error;
2942 int i;
2943 dev_t dev;
2944 void **p = NULL;
2945
2946 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
2947 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
2948 if (!p)
2949 return -ENOMEM;
2950 }
2951
2952 if (!driver->major) {
2953 error = alloc_chrdev_region(&dev, driver->minor_start,
2954 driver->num, driver->name);
2955 if (!error) {
2956 driver->major = MAJOR(dev);
2957 driver->minor_start = MINOR(dev);
2958 }
2959 } else {
2960 dev = MKDEV(driver->major, driver->minor_start);
2961 error = register_chrdev_region(dev, driver->num, driver->name);
2962 }
2963 if (error < 0) {
2964 kfree(p);
2965 return error;
2966 }
2967
2968 if (p) {
2969 driver->ttys = (struct tty_struct **)p;
2970 driver->termios = (struct ktermios **)(p + driver->num);
2971 } else {
2972 driver->ttys = NULL;
2973 driver->termios = NULL;
2974 }
2975
2976 cdev_init(&driver->cdev, &tty_fops);
2977 driver->cdev.owner = driver->owner;
2978 error = cdev_add(&driver->cdev, dev, driver->num);
2979 if (error) {
2980 unregister_chrdev_region(dev, driver->num);
2981 driver->ttys = NULL;
2982 driver->termios = NULL;
2983 kfree(p);
2984 return error;
2985 }
2986
2987 mutex_lock(&tty_mutex);
2988 list_add(&driver->tty_drivers, &tty_drivers);
2989 mutex_unlock(&tty_mutex);
2990
2991 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
2992 for (i = 0; i < driver->num; i++)
2993 tty_register_device(driver, i, NULL);
2994 }
2995 proc_tty_register_driver(driver);
2996 driver->flags |= TTY_DRIVER_INSTALLED;
2997 return 0;
2998 }
2999
3000 EXPORT_SYMBOL(tty_register_driver);
3001
3002 /*
3003 * Called by a tty driver to unregister itself.
3004 */
3005 int tty_unregister_driver(struct tty_driver *driver)
3006 {
3007 #if 0
3008 /* FIXME */
3009 if (driver->refcount)
3010 return -EBUSY;
3011 #endif
3012 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3013 driver->num);
3014 mutex_lock(&tty_mutex);
3015 list_del(&driver->tty_drivers);
3016 mutex_unlock(&tty_mutex);
3017 return 0;
3018 }
3019
3020 EXPORT_SYMBOL(tty_unregister_driver);
3021
3022 dev_t tty_devnum(struct tty_struct *tty)
3023 {
3024 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3025 }
3026 EXPORT_SYMBOL(tty_devnum);
3027
3028 void proc_clear_tty(struct task_struct *p)
3029 {
3030 unsigned long flags;
3031 struct tty_struct *tty;
3032 spin_lock_irqsave(&p->sighand->siglock, flags);
3033 tty = p->signal->tty;
3034 p->signal->tty = NULL;
3035 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3036 tty_kref_put(tty);
3037 }
3038
3039 /* Called under the sighand lock */
3040
3041 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3042 {
3043 if (tty) {
3044 unsigned long flags;
3045 /* We should not have a session or pgrp to put here but.... */
3046 spin_lock_irqsave(&tty->ctrl_lock, flags);
3047 put_pid(tty->session);
3048 put_pid(tty->pgrp);
3049 tty->pgrp = get_pid(task_pgrp(tsk));
3050 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3051 tty->session = get_pid(task_session(tsk));
3052 if (tsk->signal->tty) {
3053 printk(KERN_DEBUG "tty not NULL!!\n");
3054 tty_kref_put(tsk->signal->tty);
3055 }
3056 }
3057 put_pid(tsk->signal->tty_old_pgrp);
3058 tsk->signal->tty = tty_kref_get(tty);
3059 tsk->signal->tty_old_pgrp = NULL;
3060 }
3061
3062 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3063 {
3064 spin_lock_irq(&tsk->sighand->siglock);
3065 __proc_set_tty(tsk, tty);
3066 spin_unlock_irq(&tsk->sighand->siglock);
3067 }
3068
3069 struct tty_struct *get_current_tty(void)
3070 {
3071 struct tty_struct *tty;
3072 unsigned long flags;
3073
3074 spin_lock_irqsave(&current->sighand->siglock, flags);
3075 tty = tty_kref_get(current->signal->tty);
3076 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3077 return tty;
3078 }
3079 EXPORT_SYMBOL_GPL(get_current_tty);
3080
3081 void tty_default_fops(struct file_operations *fops)
3082 {
3083 *fops = tty_fops;
3084 }
3085
3086 /*
3087 * Initialize the console device. This is called *early*, so
3088 * we can't necessarily depend on lots of kernel help here.
3089 * Just do some early initializations, and do the complex setup
3090 * later.
3091 */
3092 void __init console_init(void)
3093 {
3094 initcall_t *call;
3095
3096 /* Setup the default TTY line discipline. */
3097 tty_ldisc_begin();
3098
3099 /*
3100 * set up the console device so that later boot sequences can
3101 * inform about problems etc..
3102 */
3103 call = __con_initcall_start;
3104 while (call < __con_initcall_end) {
3105 (*call)();
3106 call++;
3107 }
3108 }
3109
3110 static int __init tty_class_init(void)
3111 {
3112 tty_class = class_create(THIS_MODULE, "tty");
3113 if (IS_ERR(tty_class))
3114 return PTR_ERR(tty_class);
3115 return 0;
3116 }
3117
3118 postcore_initcall(tty_class_init);
3119
3120 /* 3/2004 jmc: why do these devices exist? */
3121
3122 static struct cdev tty_cdev, console_cdev;
3123
3124 /*
3125 * Ok, now we can initialize the rest of the tty devices and can count
3126 * on memory allocations, interrupts etc..
3127 */
3128 static int __init tty_init(void)
3129 {
3130 cdev_init(&tty_cdev, &tty_fops);
3131 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3132 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3133 panic("Couldn't register /dev/tty driver\n");
3134 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3135 "tty");
3136
3137 cdev_init(&console_cdev, &console_fops);
3138 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3139 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3140 panic("Couldn't register /dev/console driver\n");
3141 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3142 "console");
3143
3144 #ifdef CONFIG_VT
3145 vty_init(&console_fops);
3146 #endif
3147 return 0;
3148 }
3149 module_init(tty_init);