Staging: sources for Init manager module
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / char / tty_io.c
1 /*
2 * linux/drivers/char/tty_io.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
10 *
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
12 *
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
18 *
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
23 *
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
27 *
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
31 *
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
35 *
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
38 *
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
41 *
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
44 *
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
47 *
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
51 *
52 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
54 *
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
57 *
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
60 *
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
63 *
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc()
66 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67 */
68
69 #include <linux/types.h>
70 #include <linux/major.h>
71 #include <linux/errno.h>
72 #include <linux/signal.h>
73 #include <linux/fcntl.h>
74 #include <linux/sched.h>
75 #include <linux/interrupt.h>
76 #include <linux/tty.h>
77 #include <linux/tty_driver.h>
78 #include <linux/tty_flip.h>
79 #include <linux/devpts_fs.h>
80 #include <linux/file.h>
81 #include <linux/fdtable.h>
82 #include <linux/console.h>
83 #include <linux/timer.h>
84 #include <linux/ctype.h>
85 #include <linux/kd.h>
86 #include <linux/mm.h>
87 #include <linux/string.h>
88 #include <linux/slab.h>
89 #include <linux/poll.h>
90 #include <linux/proc_fs.h>
91 #include <linux/init.h>
92 #include <linux/module.h>
93 #include <linux/smp_lock.h>
94 #include <linux/device.h>
95 #include <linux/wait.h>
96 #include <linux/bitops.h>
97 #include <linux/delay.h>
98 #include <linux/seq_file.h>
99
100 #include <linux/uaccess.h>
101 #include <asm/system.h>
102
103 #include <linux/kbd_kern.h>
104 #include <linux/vt_kern.h>
105 #include <linux/selection.h>
106
107 #include <linux/kmod.h>
108 #include <linux/nsproxy.h>
109
110 #undef TTY_DEBUG_HANGUP
111
112 #define TTY_PARANOIA_CHECK 1
113 #define CHECK_TTY_COUNT 1
114
115 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
116 .c_iflag = ICRNL | IXON,
117 .c_oflag = OPOST | ONLCR,
118 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
119 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
120 ECHOCTL | ECHOKE | IEXTEN,
121 .c_cc = INIT_C_CC,
122 .c_ispeed = 38400,
123 .c_ospeed = 38400
124 };
125
126 EXPORT_SYMBOL(tty_std_termios);
127
128 /* This list gets poked at by procfs and various bits of boot up code. This
129 could do with some rationalisation such as pulling the tty proc function
130 into this file */
131
132 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
133
134 /* Mutex to protect creating and releasing a tty. This is shared with
135 vt.c for deeply disgusting hack reasons */
136 DEFINE_MUTEX(tty_mutex);
137 EXPORT_SYMBOL(tty_mutex);
138
139 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
140 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
141 ssize_t redirected_tty_write(struct file *, const char __user *,
142 size_t, loff_t *);
143 static unsigned int tty_poll(struct file *, poll_table *);
144 static int tty_open(struct inode *, struct file *);
145 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
146 #ifdef CONFIG_COMPAT
147 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
148 unsigned long arg);
149 #else
150 #define tty_compat_ioctl NULL
151 #endif
152 static int tty_fasync(int fd, struct file *filp, int on);
153 static void release_tty(struct tty_struct *tty, int idx);
154 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
155 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
156
157 /**
158 * alloc_tty_struct - allocate a tty object
159 *
160 * Return a new empty tty structure. The data fields have not
161 * been initialized in any way but has been zeroed
162 *
163 * Locking: none
164 */
165
166 struct tty_struct *alloc_tty_struct(void)
167 {
168 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
169 }
170
171 /**
172 * free_tty_struct - free a disused tty
173 * @tty: tty struct to free
174 *
175 * Free the write buffers, tty queue and tty memory itself.
176 *
177 * Locking: none. Must be called after tty is definitely unused
178 */
179
180 void free_tty_struct(struct tty_struct *tty)
181 {
182 kfree(tty->write_buf);
183 tty_buffer_free_all(tty);
184 kfree(tty);
185 }
186
187 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
188
189 /**
190 * tty_name - return tty naming
191 * @tty: tty structure
192 * @buf: buffer for output
193 *
194 * Convert a tty structure into a name. The name reflects the kernel
195 * naming policy and if udev is in use may not reflect user space
196 *
197 * Locking: none
198 */
199
200 char *tty_name(struct tty_struct *tty, char *buf)
201 {
202 if (!tty) /* Hmm. NULL pointer. That's fun. */
203 strcpy(buf, "NULL tty");
204 else
205 strcpy(buf, tty->name);
206 return buf;
207 }
208
209 EXPORT_SYMBOL(tty_name);
210
211 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
212 const char *routine)
213 {
214 #ifdef TTY_PARANOIA_CHECK
215 if (!tty) {
216 printk(KERN_WARNING
217 "null TTY for (%d:%d) in %s\n",
218 imajor(inode), iminor(inode), routine);
219 return 1;
220 }
221 if (tty->magic != TTY_MAGIC) {
222 printk(KERN_WARNING
223 "bad magic number for tty struct (%d:%d) in %s\n",
224 imajor(inode), iminor(inode), routine);
225 return 1;
226 }
227 #endif
228 return 0;
229 }
230
231 static int check_tty_count(struct tty_struct *tty, const char *routine)
232 {
233 #ifdef CHECK_TTY_COUNT
234 struct list_head *p;
235 int count = 0;
236
237 file_list_lock();
238 list_for_each(p, &tty->tty_files) {
239 count++;
240 }
241 file_list_unlock();
242 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
243 tty->driver->subtype == PTY_TYPE_SLAVE &&
244 tty->link && tty->link->count)
245 count++;
246 if (tty->count != count) {
247 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
248 "!= #fd's(%d) in %s\n",
249 tty->name, tty->count, count, routine);
250 return count;
251 }
252 #endif
253 return 0;
254 }
255
256 /**
257 * get_tty_driver - find device of a tty
258 * @dev_t: device identifier
259 * @index: returns the index of the tty
260 *
261 * This routine returns a tty driver structure, given a device number
262 * and also passes back the index number.
263 *
264 * Locking: caller must hold tty_mutex
265 */
266
267 static struct tty_driver *get_tty_driver(dev_t device, int *index)
268 {
269 struct tty_driver *p;
270
271 list_for_each_entry(p, &tty_drivers, tty_drivers) {
272 dev_t base = MKDEV(p->major, p->minor_start);
273 if (device < base || device >= base + p->num)
274 continue;
275 *index = device - base;
276 return tty_driver_kref_get(p);
277 }
278 return NULL;
279 }
280
281 #ifdef CONFIG_CONSOLE_POLL
282
283 /**
284 * tty_find_polling_driver - find device of a polled tty
285 * @name: name string to match
286 * @line: pointer to resulting tty line nr
287 *
288 * This routine returns a tty driver structure, given a name
289 * and the condition that the tty driver is capable of polled
290 * operation.
291 */
292 struct tty_driver *tty_find_polling_driver(char *name, int *line)
293 {
294 struct tty_driver *p, *res = NULL;
295 int tty_line = 0;
296 int len;
297 char *str, *stp;
298
299 for (str = name; *str; str++)
300 if ((*str >= '0' && *str <= '9') || *str == ',')
301 break;
302 if (!*str)
303 return NULL;
304
305 len = str - name;
306 tty_line = simple_strtoul(str, &str, 10);
307
308 mutex_lock(&tty_mutex);
309 /* Search through the tty devices to look for a match */
310 list_for_each_entry(p, &tty_drivers, tty_drivers) {
311 if (strncmp(name, p->name, len) != 0)
312 continue;
313 stp = str;
314 if (*stp == ',')
315 stp++;
316 if (*stp == '\0')
317 stp = NULL;
318
319 if (tty_line >= 0 && tty_line <= p->num && p->ops &&
320 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
321 res = tty_driver_kref_get(p);
322 *line = tty_line;
323 break;
324 }
325 }
326 mutex_unlock(&tty_mutex);
327
328 return res;
329 }
330 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
331 #endif
332
333 /**
334 * tty_check_change - check for POSIX terminal changes
335 * @tty: tty to check
336 *
337 * If we try to write to, or set the state of, a terminal and we're
338 * not in the foreground, send a SIGTTOU. If the signal is blocked or
339 * ignored, go ahead and perform the operation. (POSIX 7.2)
340 *
341 * Locking: ctrl_lock
342 */
343
344 int tty_check_change(struct tty_struct *tty)
345 {
346 unsigned long flags;
347 int ret = 0;
348
349 if (current->signal->tty != tty)
350 return 0;
351
352 spin_lock_irqsave(&tty->ctrl_lock, flags);
353
354 if (!tty->pgrp) {
355 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
356 goto out_unlock;
357 }
358 if (task_pgrp(current) == tty->pgrp)
359 goto out_unlock;
360 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
361 if (is_ignored(SIGTTOU))
362 goto out;
363 if (is_current_pgrp_orphaned()) {
364 ret = -EIO;
365 goto out;
366 }
367 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
368 set_thread_flag(TIF_SIGPENDING);
369 ret = -ERESTARTSYS;
370 out:
371 return ret;
372 out_unlock:
373 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
374 return ret;
375 }
376
377 EXPORT_SYMBOL(tty_check_change);
378
379 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
380 size_t count, loff_t *ppos)
381 {
382 return 0;
383 }
384
385 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
386 size_t count, loff_t *ppos)
387 {
388 return -EIO;
389 }
390
391 /* No kernel lock held - none needed ;) */
392 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
393 {
394 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
395 }
396
397 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
398 unsigned long arg)
399 {
400 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
401 }
402
403 static long hung_up_tty_compat_ioctl(struct file *file,
404 unsigned int cmd, unsigned long arg)
405 {
406 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
407 }
408
409 static const struct file_operations tty_fops = {
410 .llseek = no_llseek,
411 .read = tty_read,
412 .write = tty_write,
413 .poll = tty_poll,
414 .unlocked_ioctl = tty_ioctl,
415 .compat_ioctl = tty_compat_ioctl,
416 .open = tty_open,
417 .release = tty_release,
418 .fasync = tty_fasync,
419 };
420
421 static const struct file_operations console_fops = {
422 .llseek = no_llseek,
423 .read = tty_read,
424 .write = redirected_tty_write,
425 .poll = tty_poll,
426 .unlocked_ioctl = tty_ioctl,
427 .compat_ioctl = tty_compat_ioctl,
428 .open = tty_open,
429 .release = tty_release,
430 .fasync = tty_fasync,
431 };
432
433 static const struct file_operations hung_up_tty_fops = {
434 .llseek = no_llseek,
435 .read = hung_up_tty_read,
436 .write = hung_up_tty_write,
437 .poll = hung_up_tty_poll,
438 .unlocked_ioctl = hung_up_tty_ioctl,
439 .compat_ioctl = hung_up_tty_compat_ioctl,
440 .release = tty_release,
441 };
442
443 static DEFINE_SPINLOCK(redirect_lock);
444 static struct file *redirect;
445
446 /**
447 * tty_wakeup - request more data
448 * @tty: terminal
449 *
450 * Internal and external helper for wakeups of tty. This function
451 * informs the line discipline if present that the driver is ready
452 * to receive more output data.
453 */
454
455 void tty_wakeup(struct tty_struct *tty)
456 {
457 struct tty_ldisc *ld;
458
459 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
460 ld = tty_ldisc_ref(tty);
461 if (ld) {
462 if (ld->ops->write_wakeup)
463 ld->ops->write_wakeup(tty);
464 tty_ldisc_deref(ld);
465 }
466 }
467 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
468 }
469
470 EXPORT_SYMBOL_GPL(tty_wakeup);
471
472 /**
473 * do_tty_hangup - actual handler for hangup events
474 * @work: tty device
475 *
476 * This can be called by the "eventd" kernel thread. That is process
477 * synchronous but doesn't hold any locks, so we need to make sure we
478 * have the appropriate locks for what we're doing.
479 *
480 * The hangup event clears any pending redirections onto the hung up
481 * device. It ensures future writes will error and it does the needed
482 * line discipline hangup and signal delivery. The tty object itself
483 * remains intact.
484 *
485 * Locking:
486 * BKL
487 * redirect lock for undoing redirection
488 * file list lock for manipulating list of ttys
489 * tty_ldisc_lock from called functions
490 * termios_mutex resetting termios data
491 * tasklist_lock to walk task list for hangup event
492 * ->siglock to protect ->signal/->sighand
493 */
494 static void do_tty_hangup(struct work_struct *work)
495 {
496 struct tty_struct *tty =
497 container_of(work, struct tty_struct, hangup_work);
498 struct file *cons_filp = NULL;
499 struct file *filp, *f = NULL;
500 struct task_struct *p;
501 int closecount = 0, n;
502 unsigned long flags;
503 int refs = 0;
504
505 if (!tty)
506 return;
507
508
509 spin_lock(&redirect_lock);
510 if (redirect && redirect->private_data == tty) {
511 f = redirect;
512 redirect = NULL;
513 }
514 spin_unlock(&redirect_lock);
515
516 /* inuse_filps is protected by the single kernel lock */
517 lock_kernel();
518 check_tty_count(tty, "do_tty_hangup");
519
520 file_list_lock();
521 /* This breaks for file handles being sent over AF_UNIX sockets ? */
522 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
523 if (filp->f_op->write == redirected_tty_write)
524 cons_filp = filp;
525 if (filp->f_op->write != tty_write)
526 continue;
527 closecount++;
528 tty_fasync(-1, filp, 0); /* can't block */
529 filp->f_op = &hung_up_tty_fops;
530 }
531 file_list_unlock();
532
533 tty_ldisc_hangup(tty);
534
535 read_lock(&tasklist_lock);
536 if (tty->session) {
537 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
538 spin_lock_irq(&p->sighand->siglock);
539 if (p->signal->tty == tty) {
540 p->signal->tty = NULL;
541 /* We defer the dereferences outside fo
542 the tasklist lock */
543 refs++;
544 }
545 if (!p->signal->leader) {
546 spin_unlock_irq(&p->sighand->siglock);
547 continue;
548 }
549 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
550 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
551 put_pid(p->signal->tty_old_pgrp); /* A noop */
552 spin_lock_irqsave(&tty->ctrl_lock, flags);
553 if (tty->pgrp)
554 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
555 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
556 spin_unlock_irq(&p->sighand->siglock);
557 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
558 }
559 read_unlock(&tasklist_lock);
560
561 spin_lock_irqsave(&tty->ctrl_lock, flags);
562 clear_bit(TTY_THROTTLED, &tty->flags);
563 clear_bit(TTY_PUSH, &tty->flags);
564 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
565 put_pid(tty->session);
566 put_pid(tty->pgrp);
567 tty->session = NULL;
568 tty->pgrp = NULL;
569 tty->ctrl_status = 0;
570 set_bit(TTY_HUPPED, &tty->flags);
571 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
572
573 /* Account for the p->signal references we killed */
574 while (refs--)
575 tty_kref_put(tty);
576
577 /*
578 * If one of the devices matches a console pointer, we
579 * cannot just call hangup() because that will cause
580 * tty->count and state->count to go out of sync.
581 * So we just call close() the right number of times.
582 */
583 if (cons_filp) {
584 if (tty->ops->close)
585 for (n = 0; n < closecount; n++)
586 tty->ops->close(tty, cons_filp);
587 } else if (tty->ops->hangup)
588 (tty->ops->hangup)(tty);
589 /*
590 * We don't want to have driver/ldisc interactions beyond
591 * the ones we did here. The driver layer expects no
592 * calls after ->hangup() from the ldisc side. However we
593 * can't yet guarantee all that.
594 */
595 set_bit(TTY_HUPPED, &tty->flags);
596 tty_ldisc_enable(tty);
597 unlock_kernel();
598 if (f)
599 fput(f);
600 }
601
602 /**
603 * tty_hangup - trigger a hangup event
604 * @tty: tty to hangup
605 *
606 * A carrier loss (virtual or otherwise) has occurred on this like
607 * schedule a hangup sequence to run after this event.
608 */
609
610 void tty_hangup(struct tty_struct *tty)
611 {
612 #ifdef TTY_DEBUG_HANGUP
613 char buf[64];
614 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
615 #endif
616 schedule_work(&tty->hangup_work);
617 }
618
619 EXPORT_SYMBOL(tty_hangup);
620
621 /**
622 * tty_vhangup - process vhangup
623 * @tty: tty to hangup
624 *
625 * The user has asked via system call for the terminal to be hung up.
626 * We do this synchronously so that when the syscall returns the process
627 * is complete. That guarantee is necessary for security reasons.
628 */
629
630 void tty_vhangup(struct tty_struct *tty)
631 {
632 #ifdef TTY_DEBUG_HANGUP
633 char buf[64];
634
635 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
636 #endif
637 do_tty_hangup(&tty->hangup_work);
638 }
639
640 EXPORT_SYMBOL(tty_vhangup);
641
642 /**
643 * tty_vhangup_self - process vhangup for own ctty
644 *
645 * Perform a vhangup on the current controlling tty
646 */
647
648 void tty_vhangup_self(void)
649 {
650 struct tty_struct *tty;
651
652 tty = get_current_tty();
653 if (tty) {
654 tty_vhangup(tty);
655 tty_kref_put(tty);
656 }
657 }
658
659 /**
660 * tty_hung_up_p - was tty hung up
661 * @filp: file pointer of tty
662 *
663 * Return true if the tty has been subject to a vhangup or a carrier
664 * loss
665 */
666
667 int tty_hung_up_p(struct file *filp)
668 {
669 return (filp->f_op == &hung_up_tty_fops);
670 }
671
672 EXPORT_SYMBOL(tty_hung_up_p);
673
674 static void session_clear_tty(struct pid *session)
675 {
676 struct task_struct *p;
677 do_each_pid_task(session, PIDTYPE_SID, p) {
678 proc_clear_tty(p);
679 } while_each_pid_task(session, PIDTYPE_SID, p);
680 }
681
682 /**
683 * disassociate_ctty - disconnect controlling tty
684 * @on_exit: true if exiting so need to "hang up" the session
685 *
686 * This function is typically called only by the session leader, when
687 * it wants to disassociate itself from its controlling tty.
688 *
689 * It performs the following functions:
690 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
691 * (2) Clears the tty from being controlling the session
692 * (3) Clears the controlling tty for all processes in the
693 * session group.
694 *
695 * The argument on_exit is set to 1 if called when a process is
696 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
697 *
698 * Locking:
699 * BKL is taken for hysterical raisins
700 * tty_mutex is taken to protect tty
701 * ->siglock is taken to protect ->signal/->sighand
702 * tasklist_lock is taken to walk process list for sessions
703 * ->siglock is taken to protect ->signal/->sighand
704 */
705
706 void disassociate_ctty(int on_exit)
707 {
708 struct tty_struct *tty;
709 struct pid *tty_pgrp = NULL;
710
711 if (!current->signal->leader)
712 return;
713
714 tty = get_current_tty();
715 if (tty) {
716 tty_pgrp = get_pid(tty->pgrp);
717 lock_kernel();
718 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
719 tty_vhangup(tty);
720 unlock_kernel();
721 tty_kref_put(tty);
722 } else if (on_exit) {
723 struct pid *old_pgrp;
724 spin_lock_irq(&current->sighand->siglock);
725 old_pgrp = current->signal->tty_old_pgrp;
726 current->signal->tty_old_pgrp = NULL;
727 spin_unlock_irq(&current->sighand->siglock);
728 if (old_pgrp) {
729 kill_pgrp(old_pgrp, SIGHUP, on_exit);
730 kill_pgrp(old_pgrp, SIGCONT, on_exit);
731 put_pid(old_pgrp);
732 }
733 return;
734 }
735 if (tty_pgrp) {
736 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
737 if (!on_exit)
738 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
739 put_pid(tty_pgrp);
740 }
741
742 spin_lock_irq(&current->sighand->siglock);
743 put_pid(current->signal->tty_old_pgrp);
744 current->signal->tty_old_pgrp = NULL;
745 spin_unlock_irq(&current->sighand->siglock);
746
747 tty = get_current_tty();
748 if (tty) {
749 unsigned long flags;
750 spin_lock_irqsave(&tty->ctrl_lock, flags);
751 put_pid(tty->session);
752 put_pid(tty->pgrp);
753 tty->session = NULL;
754 tty->pgrp = NULL;
755 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
756 tty_kref_put(tty);
757 } else {
758 #ifdef TTY_DEBUG_HANGUP
759 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
760 " = NULL", tty);
761 #endif
762 }
763
764 /* Now clear signal->tty under the lock */
765 read_lock(&tasklist_lock);
766 session_clear_tty(task_session(current));
767 read_unlock(&tasklist_lock);
768 }
769
770 /**
771 *
772 * no_tty - Ensure the current process does not have a controlling tty
773 */
774 void no_tty(void)
775 {
776 struct task_struct *tsk = current;
777 lock_kernel();
778 disassociate_ctty(0);
779 unlock_kernel();
780 proc_clear_tty(tsk);
781 }
782
783
784 /**
785 * stop_tty - propagate flow control
786 * @tty: tty to stop
787 *
788 * Perform flow control to the driver. For PTY/TTY pairs we
789 * must also propagate the TIOCKPKT status. May be called
790 * on an already stopped device and will not re-call the driver
791 * method.
792 *
793 * This functionality is used by both the line disciplines for
794 * halting incoming flow and by the driver. It may therefore be
795 * called from any context, may be under the tty atomic_write_lock
796 * but not always.
797 *
798 * Locking:
799 * Uses the tty control lock internally
800 */
801
802 void stop_tty(struct tty_struct *tty)
803 {
804 unsigned long flags;
805 spin_lock_irqsave(&tty->ctrl_lock, flags);
806 if (tty->stopped) {
807 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
808 return;
809 }
810 tty->stopped = 1;
811 if (tty->link && tty->link->packet) {
812 tty->ctrl_status &= ~TIOCPKT_START;
813 tty->ctrl_status |= TIOCPKT_STOP;
814 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
815 }
816 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
817 if (tty->ops->stop)
818 (tty->ops->stop)(tty);
819 }
820
821 EXPORT_SYMBOL(stop_tty);
822
823 /**
824 * start_tty - propagate flow control
825 * @tty: tty to start
826 *
827 * Start a tty that has been stopped if at all possible. Perform
828 * any necessary wakeups and propagate the TIOCPKT status. If this
829 * is the tty was previous stopped and is being started then the
830 * driver start method is invoked and the line discipline woken.
831 *
832 * Locking:
833 * ctrl_lock
834 */
835
836 void start_tty(struct tty_struct *tty)
837 {
838 unsigned long flags;
839 spin_lock_irqsave(&tty->ctrl_lock, flags);
840 if (!tty->stopped || tty->flow_stopped) {
841 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
842 return;
843 }
844 tty->stopped = 0;
845 if (tty->link && tty->link->packet) {
846 tty->ctrl_status &= ~TIOCPKT_STOP;
847 tty->ctrl_status |= TIOCPKT_START;
848 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
849 }
850 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
851 if (tty->ops->start)
852 (tty->ops->start)(tty);
853 /* If we have a running line discipline it may need kicking */
854 tty_wakeup(tty);
855 }
856
857 EXPORT_SYMBOL(start_tty);
858
859 /**
860 * tty_read - read method for tty device files
861 * @file: pointer to tty file
862 * @buf: user buffer
863 * @count: size of user buffer
864 * @ppos: unused
865 *
866 * Perform the read system call function on this terminal device. Checks
867 * for hung up devices before calling the line discipline method.
868 *
869 * Locking:
870 * Locks the line discipline internally while needed. Multiple
871 * read calls may be outstanding in parallel.
872 */
873
874 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
875 loff_t *ppos)
876 {
877 int i;
878 struct tty_struct *tty;
879 struct inode *inode;
880 struct tty_ldisc *ld;
881
882 tty = (struct tty_struct *)file->private_data;
883 inode = file->f_path.dentry->d_inode;
884 if (tty_paranoia_check(tty, inode, "tty_read"))
885 return -EIO;
886 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
887 return -EIO;
888
889 /* We want to wait for the line discipline to sort out in this
890 situation */
891 ld = tty_ldisc_ref_wait(tty);
892 if (ld->ops->read)
893 i = (ld->ops->read)(tty, file, buf, count);
894 else
895 i = -EIO;
896 tty_ldisc_deref(ld);
897 if (i > 0)
898 inode->i_atime = current_fs_time(inode->i_sb);
899 return i;
900 }
901
902 void tty_write_unlock(struct tty_struct *tty)
903 {
904 mutex_unlock(&tty->atomic_write_lock);
905 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
906 }
907
908 int tty_write_lock(struct tty_struct *tty, int ndelay)
909 {
910 if (!mutex_trylock(&tty->atomic_write_lock)) {
911 if (ndelay)
912 return -EAGAIN;
913 if (mutex_lock_interruptible(&tty->atomic_write_lock))
914 return -ERESTARTSYS;
915 }
916 return 0;
917 }
918
919 /*
920 * Split writes up in sane blocksizes to avoid
921 * denial-of-service type attacks
922 */
923 static inline ssize_t do_tty_write(
924 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
925 struct tty_struct *tty,
926 struct file *file,
927 const char __user *buf,
928 size_t count)
929 {
930 ssize_t ret, written = 0;
931 unsigned int chunk;
932
933 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
934 if (ret < 0)
935 return ret;
936
937 /*
938 * We chunk up writes into a temporary buffer. This
939 * simplifies low-level drivers immensely, since they
940 * don't have locking issues and user mode accesses.
941 *
942 * But if TTY_NO_WRITE_SPLIT is set, we should use a
943 * big chunk-size..
944 *
945 * The default chunk-size is 2kB, because the NTTY
946 * layer has problems with bigger chunks. It will
947 * claim to be able to handle more characters than
948 * it actually does.
949 *
950 * FIXME: This can probably go away now except that 64K chunks
951 * are too likely to fail unless switched to vmalloc...
952 */
953 chunk = 2048;
954 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
955 chunk = 65536;
956 if (count < chunk)
957 chunk = count;
958
959 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
960 if (tty->write_cnt < chunk) {
961 unsigned char *buf_chunk;
962
963 if (chunk < 1024)
964 chunk = 1024;
965
966 buf_chunk = kmalloc(chunk, GFP_KERNEL);
967 if (!buf_chunk) {
968 ret = -ENOMEM;
969 goto out;
970 }
971 kfree(tty->write_buf);
972 tty->write_cnt = chunk;
973 tty->write_buf = buf_chunk;
974 }
975
976 /* Do the write .. */
977 for (;;) {
978 size_t size = count;
979 if (size > chunk)
980 size = chunk;
981 ret = -EFAULT;
982 if (copy_from_user(tty->write_buf, buf, size))
983 break;
984 ret = write(tty, file, tty->write_buf, size);
985 if (ret <= 0)
986 break;
987 written += ret;
988 buf += ret;
989 count -= ret;
990 if (!count)
991 break;
992 ret = -ERESTARTSYS;
993 if (signal_pending(current))
994 break;
995 cond_resched();
996 }
997 if (written) {
998 struct inode *inode = file->f_path.dentry->d_inode;
999 inode->i_mtime = current_fs_time(inode->i_sb);
1000 ret = written;
1001 }
1002 out:
1003 tty_write_unlock(tty);
1004 return ret;
1005 }
1006
1007 /**
1008 * tty_write_message - write a message to a certain tty, not just the console.
1009 * @tty: the destination tty_struct
1010 * @msg: the message to write
1011 *
1012 * This is used for messages that need to be redirected to a specific tty.
1013 * We don't put it into the syslog queue right now maybe in the future if
1014 * really needed.
1015 *
1016 * We must still hold the BKL and test the CLOSING flag for the moment.
1017 */
1018
1019 void tty_write_message(struct tty_struct *tty, char *msg)
1020 {
1021 if (tty) {
1022 mutex_lock(&tty->atomic_write_lock);
1023 lock_kernel();
1024 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1025 unlock_kernel();
1026 tty->ops->write(tty, msg, strlen(msg));
1027 } else
1028 unlock_kernel();
1029 tty_write_unlock(tty);
1030 }
1031 return;
1032 }
1033
1034
1035 /**
1036 * tty_write - write method for tty device file
1037 * @file: tty file pointer
1038 * @buf: user data to write
1039 * @count: bytes to write
1040 * @ppos: unused
1041 *
1042 * Write data to a tty device via the line discipline.
1043 *
1044 * Locking:
1045 * Locks the line discipline as required
1046 * Writes to the tty driver are serialized by the atomic_write_lock
1047 * and are then processed in chunks to the device. The line discipline
1048 * write method will not be invoked in parallel for each device.
1049 */
1050
1051 static ssize_t tty_write(struct file *file, const char __user *buf,
1052 size_t count, loff_t *ppos)
1053 {
1054 struct tty_struct *tty;
1055 struct inode *inode = file->f_path.dentry->d_inode;
1056 ssize_t ret;
1057 struct tty_ldisc *ld;
1058
1059 tty = (struct tty_struct *)file->private_data;
1060 if (tty_paranoia_check(tty, inode, "tty_write"))
1061 return -EIO;
1062 if (!tty || !tty->ops->write ||
1063 (test_bit(TTY_IO_ERROR, &tty->flags)))
1064 return -EIO;
1065 /* Short term debug to catch buggy drivers */
1066 if (tty->ops->write_room == NULL)
1067 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1068 tty->driver->name);
1069 ld = tty_ldisc_ref_wait(tty);
1070 if (!ld->ops->write)
1071 ret = -EIO;
1072 else
1073 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1074 tty_ldisc_deref(ld);
1075 return ret;
1076 }
1077
1078 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1079 size_t count, loff_t *ppos)
1080 {
1081 struct file *p = NULL;
1082
1083 spin_lock(&redirect_lock);
1084 if (redirect) {
1085 get_file(redirect);
1086 p = redirect;
1087 }
1088 spin_unlock(&redirect_lock);
1089
1090 if (p) {
1091 ssize_t res;
1092 res = vfs_write(p, buf, count, &p->f_pos);
1093 fput(p);
1094 return res;
1095 }
1096 return tty_write(file, buf, count, ppos);
1097 }
1098
1099 static char ptychar[] = "pqrstuvwxyzabcde";
1100
1101 /**
1102 * pty_line_name - generate name for a pty
1103 * @driver: the tty driver in use
1104 * @index: the minor number
1105 * @p: output buffer of at least 6 bytes
1106 *
1107 * Generate a name from a driver reference and write it to the output
1108 * buffer.
1109 *
1110 * Locking: None
1111 */
1112 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1113 {
1114 int i = index + driver->name_base;
1115 /* ->name is initialized to "ttyp", but "tty" is expected */
1116 sprintf(p, "%s%c%x",
1117 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1118 ptychar[i >> 4 & 0xf], i & 0xf);
1119 }
1120
1121 /**
1122 * tty_line_name - generate name for a tty
1123 * @driver: the tty driver in use
1124 * @index: the minor number
1125 * @p: output buffer of at least 7 bytes
1126 *
1127 * Generate a name from a driver reference and write it to the output
1128 * buffer.
1129 *
1130 * Locking: None
1131 */
1132 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1133 {
1134 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1135 }
1136
1137 /**
1138 * tty_driver_lookup_tty() - find an existing tty, if any
1139 * @driver: the driver for the tty
1140 * @idx: the minor number
1141 *
1142 * Return the tty, if found or ERR_PTR() otherwise.
1143 *
1144 * Locking: tty_mutex must be held. If tty is found, the mutex must
1145 * be held until the 'fast-open' is also done. Will change once we
1146 * have refcounting in the driver and per driver locking
1147 */
1148 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1149 struct inode *inode, int idx)
1150 {
1151 struct tty_struct *tty;
1152
1153 if (driver->ops->lookup)
1154 return driver->ops->lookup(driver, inode, idx);
1155
1156 tty = driver->ttys[idx];
1157 return tty;
1158 }
1159
1160 /**
1161 * tty_init_termios - helper for termios setup
1162 * @tty: the tty to set up
1163 *
1164 * Initialise the termios structures for this tty. Thus runs under
1165 * the tty_mutex currently so we can be relaxed about ordering.
1166 */
1167
1168 int tty_init_termios(struct tty_struct *tty)
1169 {
1170 struct ktermios *tp;
1171 int idx = tty->index;
1172
1173 tp = tty->driver->termios[idx];
1174 if (tp == NULL) {
1175 tp = kzalloc(sizeof(struct ktermios[2]), GFP_KERNEL);
1176 if (tp == NULL)
1177 return -ENOMEM;
1178 memcpy(tp, &tty->driver->init_termios,
1179 sizeof(struct ktermios));
1180 tty->driver->termios[idx] = tp;
1181 }
1182 tty->termios = tp;
1183 tty->termios_locked = tp + 1;
1184
1185 /* Compatibility until drivers always set this */
1186 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1187 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1188 return 0;
1189 }
1190 EXPORT_SYMBOL_GPL(tty_init_termios);
1191
1192 /**
1193 * tty_driver_install_tty() - install a tty entry in the driver
1194 * @driver: the driver for the tty
1195 * @tty: the tty
1196 *
1197 * Install a tty object into the driver tables. The tty->index field
1198 * will be set by the time this is called. This method is responsible
1199 * for ensuring any need additional structures are allocated and
1200 * configured.
1201 *
1202 * Locking: tty_mutex for now
1203 */
1204 static int tty_driver_install_tty(struct tty_driver *driver,
1205 struct tty_struct *tty)
1206 {
1207 int idx = tty->index;
1208 int ret;
1209
1210 if (driver->ops->install) {
1211 lock_kernel();
1212 ret = driver->ops->install(driver, tty);
1213 unlock_kernel();
1214 return ret;
1215 }
1216
1217 if (tty_init_termios(tty) == 0) {
1218 lock_kernel();
1219 tty_driver_kref_get(driver);
1220 tty->count++;
1221 driver->ttys[idx] = tty;
1222 unlock_kernel();
1223 return 0;
1224 }
1225 return -ENOMEM;
1226 }
1227
1228 /**
1229 * tty_driver_remove_tty() - remove a tty from the driver tables
1230 * @driver: the driver for the tty
1231 * @idx: the minor number
1232 *
1233 * Remvoe a tty object from the driver tables. The tty->index field
1234 * will be set by the time this is called.
1235 *
1236 * Locking: tty_mutex for now
1237 */
1238 static void tty_driver_remove_tty(struct tty_driver *driver,
1239 struct tty_struct *tty)
1240 {
1241 if (driver->ops->remove)
1242 driver->ops->remove(driver, tty);
1243 else
1244 driver->ttys[tty->index] = NULL;
1245 }
1246
1247 /*
1248 * tty_reopen() - fast re-open of an open tty
1249 * @tty - the tty to open
1250 *
1251 * Return 0 on success, -errno on error.
1252 *
1253 * Locking: tty_mutex must be held from the time the tty was found
1254 * till this open completes.
1255 */
1256 static int tty_reopen(struct tty_struct *tty)
1257 {
1258 struct tty_driver *driver = tty->driver;
1259
1260 if (test_bit(TTY_CLOSING, &tty->flags))
1261 return -EIO;
1262
1263 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1264 driver->subtype == PTY_TYPE_MASTER) {
1265 /*
1266 * special case for PTY masters: only one open permitted,
1267 * and the slave side open count is incremented as well.
1268 */
1269 if (tty->count)
1270 return -EIO;
1271
1272 tty->link->count++;
1273 }
1274 tty->count++;
1275 tty->driver = driver; /* N.B. why do this every time?? */
1276
1277 mutex_lock(&tty->ldisc_mutex);
1278 WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1279 mutex_unlock(&tty->ldisc_mutex);
1280
1281 return 0;
1282 }
1283
1284 /**
1285 * tty_init_dev - initialise a tty device
1286 * @driver: tty driver we are opening a device on
1287 * @idx: device index
1288 * @ret_tty: returned tty structure
1289 * @first_ok: ok to open a new device (used by ptmx)
1290 *
1291 * Prepare a tty device. This may not be a "new" clean device but
1292 * could also be an active device. The pty drivers require special
1293 * handling because of this.
1294 *
1295 * Locking:
1296 * The function is called under the tty_mutex, which
1297 * protects us from the tty struct or driver itself going away.
1298 *
1299 * On exit the tty device has the line discipline attached and
1300 * a reference count of 1. If a pair was created for pty/tty use
1301 * and the other was a pty master then it too has a reference count of 1.
1302 *
1303 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1304 * failed open. The new code protects the open with a mutex, so it's
1305 * really quite straightforward. The mutex locking can probably be
1306 * relaxed for the (most common) case of reopening a tty.
1307 */
1308
1309 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx,
1310 int first_ok)
1311 {
1312 struct tty_struct *tty;
1313 int retval;
1314
1315 lock_kernel();
1316 /* Check if pty master is being opened multiple times */
1317 if (driver->subtype == PTY_TYPE_MASTER &&
1318 (driver->flags & TTY_DRIVER_DEVPTS_MEM) && !first_ok) {
1319 unlock_kernel();
1320 return ERR_PTR(-EIO);
1321 }
1322 unlock_kernel();
1323
1324 /*
1325 * First time open is complex, especially for PTY devices.
1326 * This code guarantees that either everything succeeds and the
1327 * TTY is ready for operation, or else the table slots are vacated
1328 * and the allocated memory released. (Except that the termios
1329 * and locked termios may be retained.)
1330 */
1331
1332 if (!try_module_get(driver->owner))
1333 return ERR_PTR(-ENODEV);
1334
1335 tty = alloc_tty_struct();
1336 if (!tty)
1337 goto fail_no_mem;
1338 initialize_tty_struct(tty, driver, idx);
1339
1340 retval = tty_driver_install_tty(driver, tty);
1341 if (retval < 0) {
1342 free_tty_struct(tty);
1343 module_put(driver->owner);
1344 return ERR_PTR(retval);
1345 }
1346
1347 /*
1348 * Structures all installed ... call the ldisc open routines.
1349 * If we fail here just call release_tty to clean up. No need
1350 * to decrement the use counts, as release_tty doesn't care.
1351 */
1352 retval = tty_ldisc_setup(tty, tty->link);
1353 if (retval)
1354 goto release_mem_out;
1355 return tty;
1356
1357 fail_no_mem:
1358 module_put(driver->owner);
1359 return ERR_PTR(-ENOMEM);
1360
1361 /* call the tty release_tty routine to clean out this slot */
1362 release_mem_out:
1363 if (printk_ratelimit())
1364 printk(KERN_INFO "tty_init_dev: ldisc open failed, "
1365 "clearing slot %d\n", idx);
1366 lock_kernel();
1367 release_tty(tty, idx);
1368 unlock_kernel();
1369 return ERR_PTR(retval);
1370 }
1371
1372 void tty_free_termios(struct tty_struct *tty)
1373 {
1374 struct ktermios *tp;
1375 int idx = tty->index;
1376 /* Kill this flag and push into drivers for locking etc */
1377 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
1378 /* FIXME: Locking on ->termios array */
1379 tp = tty->termios;
1380 tty->driver->termios[idx] = NULL;
1381 kfree(tp);
1382 }
1383 }
1384 EXPORT_SYMBOL(tty_free_termios);
1385
1386 void tty_shutdown(struct tty_struct *tty)
1387 {
1388 tty_driver_remove_tty(tty->driver, tty);
1389 tty_free_termios(tty);
1390 }
1391 EXPORT_SYMBOL(tty_shutdown);
1392
1393 /**
1394 * release_one_tty - release tty structure memory
1395 * @kref: kref of tty we are obliterating
1396 *
1397 * Releases memory associated with a tty structure, and clears out the
1398 * driver table slots. This function is called when a device is no longer
1399 * in use. It also gets called when setup of a device fails.
1400 *
1401 * Locking:
1402 * tty_mutex - sometimes only
1403 * takes the file list lock internally when working on the list
1404 * of ttys that the driver keeps.
1405 *
1406 * This method gets called from a work queue so that the driver private
1407 * cleanup ops can sleep (needed for USB at least)
1408 */
1409 static void release_one_tty(struct work_struct *work)
1410 {
1411 struct tty_struct *tty =
1412 container_of(work, struct tty_struct, hangup_work);
1413 struct tty_driver *driver = tty->driver;
1414
1415 if (tty->ops->cleanup)
1416 tty->ops->cleanup(tty);
1417
1418 tty->magic = 0;
1419 tty_driver_kref_put(driver);
1420 module_put(driver->owner);
1421
1422 file_list_lock();
1423 list_del_init(&tty->tty_files);
1424 file_list_unlock();
1425
1426 put_pid(tty->pgrp);
1427 put_pid(tty->session);
1428 free_tty_struct(tty);
1429 }
1430
1431 static void queue_release_one_tty(struct kref *kref)
1432 {
1433 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1434
1435 if (tty->ops->shutdown)
1436 tty->ops->shutdown(tty);
1437 else
1438 tty_shutdown(tty);
1439
1440 /* The hangup queue is now free so we can reuse it rather than
1441 waste a chunk of memory for each port */
1442 INIT_WORK(&tty->hangup_work, release_one_tty);
1443 schedule_work(&tty->hangup_work);
1444 }
1445
1446 /**
1447 * tty_kref_put - release a tty kref
1448 * @tty: tty device
1449 *
1450 * Release a reference to a tty device and if need be let the kref
1451 * layer destruct the object for us
1452 */
1453
1454 void tty_kref_put(struct tty_struct *tty)
1455 {
1456 if (tty)
1457 kref_put(&tty->kref, queue_release_one_tty);
1458 }
1459 EXPORT_SYMBOL(tty_kref_put);
1460
1461 /**
1462 * release_tty - release tty structure memory
1463 *
1464 * Release both @tty and a possible linked partner (think pty pair),
1465 * and decrement the refcount of the backing module.
1466 *
1467 * Locking:
1468 * tty_mutex - sometimes only
1469 * takes the file list lock internally when working on the list
1470 * of ttys that the driver keeps.
1471 * FIXME: should we require tty_mutex is held here ??
1472 *
1473 */
1474 static void release_tty(struct tty_struct *tty, int idx)
1475 {
1476 /* This should always be true but check for the moment */
1477 WARN_ON(tty->index != idx);
1478
1479 if (tty->link)
1480 tty_kref_put(tty->link);
1481 tty_kref_put(tty);
1482 }
1483
1484 /**
1485 * tty_release - vfs callback for close
1486 * @inode: inode of tty
1487 * @filp: file pointer for handle to tty
1488 *
1489 * Called the last time each file handle is closed that references
1490 * this tty. There may however be several such references.
1491 *
1492 * Locking:
1493 * Takes bkl. See tty_release_dev
1494 *
1495 * Even releasing the tty structures is a tricky business.. We have
1496 * to be very careful that the structures are all released at the
1497 * same time, as interrupts might otherwise get the wrong pointers.
1498 *
1499 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1500 * lead to double frees or releasing memory still in use.
1501 */
1502
1503 int tty_release(struct inode *inode, struct file *filp)
1504 {
1505 struct tty_struct *tty, *o_tty;
1506 int pty_master, tty_closing, o_tty_closing, do_sleep;
1507 int devpts;
1508 int idx;
1509 char buf[64];
1510
1511 tty = (struct tty_struct *)filp->private_data;
1512 if (tty_paranoia_check(tty, inode, "tty_release_dev"))
1513 return 0;
1514
1515 lock_kernel();
1516 check_tty_count(tty, "tty_release_dev");
1517
1518 tty_fasync(-1, filp, 0);
1519
1520 idx = tty->index;
1521 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1522 tty->driver->subtype == PTY_TYPE_MASTER);
1523 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
1524 o_tty = tty->link;
1525
1526 #ifdef TTY_PARANOIA_CHECK
1527 if (idx < 0 || idx >= tty->driver->num) {
1528 printk(KERN_DEBUG "tty_release_dev: bad idx when trying to "
1529 "free (%s)\n", tty->name);
1530 unlock_kernel();
1531 return 0;
1532 }
1533 if (!devpts) {
1534 if (tty != tty->driver->ttys[idx]) {
1535 unlock_kernel();
1536 printk(KERN_DEBUG "tty_release_dev: driver.table[%d] not tty "
1537 "for (%s)\n", idx, tty->name);
1538 return 0;
1539 }
1540 if (tty->termios != tty->driver->termios[idx]) {
1541 unlock_kernel();
1542 printk(KERN_DEBUG "tty_release_dev: driver.termios[%d] not termios "
1543 "for (%s)\n",
1544 idx, tty->name);
1545 return 0;
1546 }
1547 }
1548 #endif
1549
1550 #ifdef TTY_DEBUG_HANGUP
1551 printk(KERN_DEBUG "tty_release_dev of %s (tty count=%d)...",
1552 tty_name(tty, buf), tty->count);
1553 #endif
1554
1555 #ifdef TTY_PARANOIA_CHECK
1556 if (tty->driver->other &&
1557 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
1558 if (o_tty != tty->driver->other->ttys[idx]) {
1559 unlock_kernel();
1560 printk(KERN_DEBUG "tty_release_dev: other->table[%d] "
1561 "not o_tty for (%s)\n",
1562 idx, tty->name);
1563 return 0 ;
1564 }
1565 if (o_tty->termios != tty->driver->other->termios[idx]) {
1566 unlock_kernel();
1567 printk(KERN_DEBUG "tty_release_dev: other->termios[%d] "
1568 "not o_termios for (%s)\n",
1569 idx, tty->name);
1570 return 0;
1571 }
1572 if (o_tty->link != tty) {
1573 unlock_kernel();
1574 printk(KERN_DEBUG "tty_release_dev: bad pty pointers\n");
1575 return 0;
1576 }
1577 }
1578 #endif
1579 if (tty->ops->close)
1580 tty->ops->close(tty, filp);
1581
1582 unlock_kernel();
1583 /*
1584 * Sanity check: if tty->count is going to zero, there shouldn't be
1585 * any waiters on tty->read_wait or tty->write_wait. We test the
1586 * wait queues and kick everyone out _before_ actually starting to
1587 * close. This ensures that we won't block while releasing the tty
1588 * structure.
1589 *
1590 * The test for the o_tty closing is necessary, since the master and
1591 * slave sides may close in any order. If the slave side closes out
1592 * first, its count will be one, since the master side holds an open.
1593 * Thus this test wouldn't be triggered at the time the slave closes,
1594 * so we do it now.
1595 *
1596 * Note that it's possible for the tty to be opened again while we're
1597 * flushing out waiters. By recalculating the closing flags before
1598 * each iteration we avoid any problems.
1599 */
1600 while (1) {
1601 /* Guard against races with tty->count changes elsewhere and
1602 opens on /dev/tty */
1603
1604 mutex_lock(&tty_mutex);
1605 lock_kernel();
1606 tty_closing = tty->count <= 1;
1607 o_tty_closing = o_tty &&
1608 (o_tty->count <= (pty_master ? 1 : 0));
1609 do_sleep = 0;
1610
1611 if (tty_closing) {
1612 if (waitqueue_active(&tty->read_wait)) {
1613 wake_up_poll(&tty->read_wait, POLLIN);
1614 do_sleep++;
1615 }
1616 if (waitqueue_active(&tty->write_wait)) {
1617 wake_up_poll(&tty->write_wait, POLLOUT);
1618 do_sleep++;
1619 }
1620 }
1621 if (o_tty_closing) {
1622 if (waitqueue_active(&o_tty->read_wait)) {
1623 wake_up_poll(&o_tty->read_wait, POLLIN);
1624 do_sleep++;
1625 }
1626 if (waitqueue_active(&o_tty->write_wait)) {
1627 wake_up_poll(&o_tty->write_wait, POLLOUT);
1628 do_sleep++;
1629 }
1630 }
1631 if (!do_sleep)
1632 break;
1633
1634 printk(KERN_WARNING "tty_release_dev: %s: read/write wait queue "
1635 "active!\n", tty_name(tty, buf));
1636 unlock_kernel();
1637 mutex_unlock(&tty_mutex);
1638 schedule();
1639 }
1640
1641 /*
1642 * The closing flags are now consistent with the open counts on
1643 * both sides, and we've completed the last operation that could
1644 * block, so it's safe to proceed with closing.
1645 */
1646 if (pty_master) {
1647 if (--o_tty->count < 0) {
1648 printk(KERN_WARNING "tty_release_dev: bad pty slave count "
1649 "(%d) for %s\n",
1650 o_tty->count, tty_name(o_tty, buf));
1651 o_tty->count = 0;
1652 }
1653 }
1654 if (--tty->count < 0) {
1655 printk(KERN_WARNING "tty_release_dev: bad tty->count (%d) for %s\n",
1656 tty->count, tty_name(tty, buf));
1657 tty->count = 0;
1658 }
1659
1660 /*
1661 * We've decremented tty->count, so we need to remove this file
1662 * descriptor off the tty->tty_files list; this serves two
1663 * purposes:
1664 * - check_tty_count sees the correct number of file descriptors
1665 * associated with this tty.
1666 * - do_tty_hangup no longer sees this file descriptor as
1667 * something that needs to be handled for hangups.
1668 */
1669 file_kill(filp);
1670 filp->private_data = NULL;
1671
1672 /*
1673 * Perform some housekeeping before deciding whether to return.
1674 *
1675 * Set the TTY_CLOSING flag if this was the last open. In the
1676 * case of a pty we may have to wait around for the other side
1677 * to close, and TTY_CLOSING makes sure we can't be reopened.
1678 */
1679 if (tty_closing)
1680 set_bit(TTY_CLOSING, &tty->flags);
1681 if (o_tty_closing)
1682 set_bit(TTY_CLOSING, &o_tty->flags);
1683
1684 /*
1685 * If _either_ side is closing, make sure there aren't any
1686 * processes that still think tty or o_tty is their controlling
1687 * tty.
1688 */
1689 if (tty_closing || o_tty_closing) {
1690 read_lock(&tasklist_lock);
1691 session_clear_tty(tty->session);
1692 if (o_tty)
1693 session_clear_tty(o_tty->session);
1694 read_unlock(&tasklist_lock);
1695 }
1696
1697 mutex_unlock(&tty_mutex);
1698
1699 /* check whether both sides are closing ... */
1700 if (!tty_closing || (o_tty && !o_tty_closing)) {
1701 unlock_kernel();
1702 return 0;
1703 }
1704
1705 #ifdef TTY_DEBUG_HANGUP
1706 printk(KERN_DEBUG "freeing tty structure...");
1707 #endif
1708 /*
1709 * Ask the line discipline code to release its structures
1710 */
1711 tty_ldisc_release(tty, o_tty);
1712 /*
1713 * The release_tty function takes care of the details of clearing
1714 * the slots and preserving the termios structure.
1715 */
1716 release_tty(tty, idx);
1717
1718 /* Make this pty number available for reallocation */
1719 if (devpts)
1720 devpts_kill_index(inode, idx);
1721 unlock_kernel();
1722 return 0;
1723 }
1724
1725 /**
1726 * tty_open - open a tty device
1727 * @inode: inode of device file
1728 * @filp: file pointer to tty
1729 *
1730 * tty_open and tty_release keep up the tty count that contains the
1731 * number of opens done on a tty. We cannot use the inode-count, as
1732 * different inodes might point to the same tty.
1733 *
1734 * Open-counting is needed for pty masters, as well as for keeping
1735 * track of serial lines: DTR is dropped when the last close happens.
1736 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1737 *
1738 * The termios state of a pty is reset on first open so that
1739 * settings don't persist across reuse.
1740 *
1741 * Locking: tty_mutex protects tty, get_tty_driver and tty_init_dev work.
1742 * tty->count should protect the rest.
1743 * ->siglock protects ->signal/->sighand
1744 */
1745
1746 static int tty_open(struct inode *inode, struct file *filp)
1747 {
1748 struct tty_struct *tty = NULL;
1749 int noctty, retval;
1750 struct tty_driver *driver;
1751 int index;
1752 dev_t device = inode->i_rdev;
1753 unsigned saved_flags = filp->f_flags;
1754
1755 nonseekable_open(inode, filp);
1756
1757 retry_open:
1758 noctty = filp->f_flags & O_NOCTTY;
1759 index = -1;
1760 retval = 0;
1761
1762 mutex_lock(&tty_mutex);
1763 lock_kernel();
1764
1765 if (device == MKDEV(TTYAUX_MAJOR, 0)) {
1766 tty = get_current_tty();
1767 if (!tty) {
1768 unlock_kernel();
1769 mutex_unlock(&tty_mutex);
1770 return -ENXIO;
1771 }
1772 driver = tty_driver_kref_get(tty->driver);
1773 index = tty->index;
1774 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1775 /* noctty = 1; */
1776 /* FIXME: Should we take a driver reference ? */
1777 tty_kref_put(tty);
1778 goto got_driver;
1779 }
1780 #ifdef CONFIG_VT
1781 if (device == MKDEV(TTY_MAJOR, 0)) {
1782 extern struct tty_driver *console_driver;
1783 driver = tty_driver_kref_get(console_driver);
1784 index = fg_console;
1785 noctty = 1;
1786 goto got_driver;
1787 }
1788 #endif
1789 if (device == MKDEV(TTYAUX_MAJOR, 1)) {
1790 struct tty_driver *console_driver = console_device(&index);
1791 if (console_driver) {
1792 driver = tty_driver_kref_get(console_driver);
1793 if (driver) {
1794 /* Don't let /dev/console block */
1795 filp->f_flags |= O_NONBLOCK;
1796 noctty = 1;
1797 goto got_driver;
1798 }
1799 }
1800 unlock_kernel();
1801 mutex_unlock(&tty_mutex);
1802 return -ENODEV;
1803 }
1804
1805 driver = get_tty_driver(device, &index);
1806 if (!driver) {
1807 unlock_kernel();
1808 mutex_unlock(&tty_mutex);
1809 return -ENODEV;
1810 }
1811 got_driver:
1812 if (!tty) {
1813 /* check whether we're reopening an existing tty */
1814 tty = tty_driver_lookup_tty(driver, inode, index);
1815
1816 if (IS_ERR(tty)) {
1817 unlock_kernel();
1818 mutex_unlock(&tty_mutex);
1819 return PTR_ERR(tty);
1820 }
1821 }
1822
1823 if (tty) {
1824 retval = tty_reopen(tty);
1825 if (retval)
1826 tty = ERR_PTR(retval);
1827 } else
1828 tty = tty_init_dev(driver, index, 0);
1829
1830 mutex_unlock(&tty_mutex);
1831 tty_driver_kref_put(driver);
1832 if (IS_ERR(tty)) {
1833 unlock_kernel();
1834 return PTR_ERR(tty);
1835 }
1836
1837 filp->private_data = tty;
1838 file_move(filp, &tty->tty_files);
1839 check_tty_count(tty, "tty_open");
1840 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1841 tty->driver->subtype == PTY_TYPE_MASTER)
1842 noctty = 1;
1843 #ifdef TTY_DEBUG_HANGUP
1844 printk(KERN_DEBUG "opening %s...", tty->name);
1845 #endif
1846 if (!retval) {
1847 if (tty->ops->open)
1848 retval = tty->ops->open(tty, filp);
1849 else
1850 retval = -ENODEV;
1851 }
1852 filp->f_flags = saved_flags;
1853
1854 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
1855 !capable(CAP_SYS_ADMIN))
1856 retval = -EBUSY;
1857
1858 if (retval) {
1859 #ifdef TTY_DEBUG_HANGUP
1860 printk(KERN_DEBUG "error %d in opening %s...", retval,
1861 tty->name);
1862 #endif
1863 tty_release(inode, filp);
1864 if (retval != -ERESTARTSYS) {
1865 unlock_kernel();
1866 return retval;
1867 }
1868 if (signal_pending(current)) {
1869 unlock_kernel();
1870 return retval;
1871 }
1872 schedule();
1873 /*
1874 * Need to reset f_op in case a hangup happened.
1875 */
1876 if (filp->f_op == &hung_up_tty_fops)
1877 filp->f_op = &tty_fops;
1878 goto retry_open;
1879 }
1880 unlock_kernel();
1881
1882
1883 mutex_lock(&tty_mutex);
1884 lock_kernel();
1885 spin_lock_irq(&current->sighand->siglock);
1886 if (!noctty &&
1887 current->signal->leader &&
1888 !current->signal->tty &&
1889 tty->session == NULL)
1890 __proc_set_tty(current, tty);
1891 spin_unlock_irq(&current->sighand->siglock);
1892 unlock_kernel();
1893 mutex_unlock(&tty_mutex);
1894 return 0;
1895 }
1896
1897
1898
1899 /**
1900 * tty_poll - check tty status
1901 * @filp: file being polled
1902 * @wait: poll wait structures to update
1903 *
1904 * Call the line discipline polling method to obtain the poll
1905 * status of the device.
1906 *
1907 * Locking: locks called line discipline but ldisc poll method
1908 * may be re-entered freely by other callers.
1909 */
1910
1911 static unsigned int tty_poll(struct file *filp, poll_table *wait)
1912 {
1913 struct tty_struct *tty;
1914 struct tty_ldisc *ld;
1915 int ret = 0;
1916
1917 tty = (struct tty_struct *)filp->private_data;
1918 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
1919 return 0;
1920
1921 ld = tty_ldisc_ref_wait(tty);
1922 if (ld->ops->poll)
1923 ret = (ld->ops->poll)(tty, filp, wait);
1924 tty_ldisc_deref(ld);
1925 return ret;
1926 }
1927
1928 static int tty_fasync(int fd, struct file *filp, int on)
1929 {
1930 struct tty_struct *tty;
1931 unsigned long flags;
1932 int retval = 0;
1933
1934 lock_kernel();
1935 tty = (struct tty_struct *)filp->private_data;
1936 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
1937 goto out;
1938
1939 retval = fasync_helper(fd, filp, on, &tty->fasync);
1940 if (retval <= 0)
1941 goto out;
1942
1943 if (on) {
1944 enum pid_type type;
1945 struct pid *pid;
1946 if (!waitqueue_active(&tty->read_wait))
1947 tty->minimum_to_wake = 1;
1948 spin_lock_irqsave(&tty->ctrl_lock, flags);
1949 if (tty->pgrp) {
1950 pid = tty->pgrp;
1951 type = PIDTYPE_PGID;
1952 } else {
1953 pid = task_pid(current);
1954 type = PIDTYPE_PID;
1955 }
1956 get_pid(pid);
1957 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
1958 retval = __f_setown(filp, pid, type, 0);
1959 put_pid(pid);
1960 if (retval)
1961 goto out;
1962 } else {
1963 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
1964 tty->minimum_to_wake = N_TTY_BUF_SIZE;
1965 }
1966 retval = 0;
1967 out:
1968 unlock_kernel();
1969 return retval;
1970 }
1971
1972 /**
1973 * tiocsti - fake input character
1974 * @tty: tty to fake input into
1975 * @p: pointer to character
1976 *
1977 * Fake input to a tty device. Does the necessary locking and
1978 * input management.
1979 *
1980 * FIXME: does not honour flow control ??
1981 *
1982 * Locking:
1983 * Called functions take tty_ldisc_lock
1984 * current->signal->tty check is safe without locks
1985 *
1986 * FIXME: may race normal receive processing
1987 */
1988
1989 static int tiocsti(struct tty_struct *tty, char __user *p)
1990 {
1991 char ch, mbz = 0;
1992 struct tty_ldisc *ld;
1993
1994 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
1995 return -EPERM;
1996 if (get_user(ch, p))
1997 return -EFAULT;
1998 tty_audit_tiocsti(tty, ch);
1999 ld = tty_ldisc_ref_wait(tty);
2000 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2001 tty_ldisc_deref(ld);
2002 return 0;
2003 }
2004
2005 /**
2006 * tiocgwinsz - implement window query ioctl
2007 * @tty; tty
2008 * @arg: user buffer for result
2009 *
2010 * Copies the kernel idea of the window size into the user buffer.
2011 *
2012 * Locking: tty->termios_mutex is taken to ensure the winsize data
2013 * is consistent.
2014 */
2015
2016 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2017 {
2018 int err;
2019
2020 mutex_lock(&tty->termios_mutex);
2021 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2022 mutex_unlock(&tty->termios_mutex);
2023
2024 return err ? -EFAULT: 0;
2025 }
2026
2027 /**
2028 * tty_do_resize - resize event
2029 * @tty: tty being resized
2030 * @rows: rows (character)
2031 * @cols: cols (character)
2032 *
2033 * Update the termios variables and send the necessary signals to
2034 * peform a terminal resize correctly
2035 */
2036
2037 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2038 {
2039 struct pid *pgrp;
2040 unsigned long flags;
2041
2042 /* Lock the tty */
2043 mutex_lock(&tty->termios_mutex);
2044 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2045 goto done;
2046 /* Get the PID values and reference them so we can
2047 avoid holding the tty ctrl lock while sending signals */
2048 spin_lock_irqsave(&tty->ctrl_lock, flags);
2049 pgrp = get_pid(tty->pgrp);
2050 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2051
2052 if (pgrp)
2053 kill_pgrp(pgrp, SIGWINCH, 1);
2054 put_pid(pgrp);
2055
2056 tty->winsize = *ws;
2057 done:
2058 mutex_unlock(&tty->termios_mutex);
2059 return 0;
2060 }
2061
2062 /**
2063 * tiocswinsz - implement window size set ioctl
2064 * @tty; tty side of tty
2065 * @arg: user buffer for result
2066 *
2067 * Copies the user idea of the window size to the kernel. Traditionally
2068 * this is just advisory information but for the Linux console it
2069 * actually has driver level meaning and triggers a VC resize.
2070 *
2071 * Locking:
2072 * Driver dependant. The default do_resize method takes the
2073 * tty termios mutex and ctrl_lock. The console takes its own lock
2074 * then calls into the default method.
2075 */
2076
2077 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2078 {
2079 struct winsize tmp_ws;
2080 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2081 return -EFAULT;
2082
2083 if (tty->ops->resize)
2084 return tty->ops->resize(tty, &tmp_ws);
2085 else
2086 return tty_do_resize(tty, &tmp_ws);
2087 }
2088
2089 /**
2090 * tioccons - allow admin to move logical console
2091 * @file: the file to become console
2092 *
2093 * Allow the adminstrator to move the redirected console device
2094 *
2095 * Locking: uses redirect_lock to guard the redirect information
2096 */
2097
2098 static int tioccons(struct file *file)
2099 {
2100 if (!capable(CAP_SYS_ADMIN))
2101 return -EPERM;
2102 if (file->f_op->write == redirected_tty_write) {
2103 struct file *f;
2104 spin_lock(&redirect_lock);
2105 f = redirect;
2106 redirect = NULL;
2107 spin_unlock(&redirect_lock);
2108 if (f)
2109 fput(f);
2110 return 0;
2111 }
2112 spin_lock(&redirect_lock);
2113 if (redirect) {
2114 spin_unlock(&redirect_lock);
2115 return -EBUSY;
2116 }
2117 get_file(file);
2118 redirect = file;
2119 spin_unlock(&redirect_lock);
2120 return 0;
2121 }
2122
2123 /**
2124 * fionbio - non blocking ioctl
2125 * @file: file to set blocking value
2126 * @p: user parameter
2127 *
2128 * Historical tty interfaces had a blocking control ioctl before
2129 * the generic functionality existed. This piece of history is preserved
2130 * in the expected tty API of posix OS's.
2131 *
2132 * Locking: none, the open file handle ensures it won't go away.
2133 */
2134
2135 static int fionbio(struct file *file, int __user *p)
2136 {
2137 int nonblock;
2138
2139 if (get_user(nonblock, p))
2140 return -EFAULT;
2141
2142 spin_lock(&file->f_lock);
2143 if (nonblock)
2144 file->f_flags |= O_NONBLOCK;
2145 else
2146 file->f_flags &= ~O_NONBLOCK;
2147 spin_unlock(&file->f_lock);
2148 return 0;
2149 }
2150
2151 /**
2152 * tiocsctty - set controlling tty
2153 * @tty: tty structure
2154 * @arg: user argument
2155 *
2156 * This ioctl is used to manage job control. It permits a session
2157 * leader to set this tty as the controlling tty for the session.
2158 *
2159 * Locking:
2160 * Takes tty_mutex() to protect tty instance
2161 * Takes tasklist_lock internally to walk sessions
2162 * Takes ->siglock() when updating signal->tty
2163 */
2164
2165 static int tiocsctty(struct tty_struct *tty, int arg)
2166 {
2167 int ret = 0;
2168 if (current->signal->leader && (task_session(current) == tty->session))
2169 return ret;
2170
2171 mutex_lock(&tty_mutex);
2172 /*
2173 * The process must be a session leader and
2174 * not have a controlling tty already.
2175 */
2176 if (!current->signal->leader || current->signal->tty) {
2177 ret = -EPERM;
2178 goto unlock;
2179 }
2180
2181 if (tty->session) {
2182 /*
2183 * This tty is already the controlling
2184 * tty for another session group!
2185 */
2186 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2187 /*
2188 * Steal it away
2189 */
2190 read_lock(&tasklist_lock);
2191 session_clear_tty(tty->session);
2192 read_unlock(&tasklist_lock);
2193 } else {
2194 ret = -EPERM;
2195 goto unlock;
2196 }
2197 }
2198 proc_set_tty(current, tty);
2199 unlock:
2200 mutex_unlock(&tty_mutex);
2201 return ret;
2202 }
2203
2204 /**
2205 * tty_get_pgrp - return a ref counted pgrp pid
2206 * @tty: tty to read
2207 *
2208 * Returns a refcounted instance of the pid struct for the process
2209 * group controlling the tty.
2210 */
2211
2212 struct pid *tty_get_pgrp(struct tty_struct *tty)
2213 {
2214 unsigned long flags;
2215 struct pid *pgrp;
2216
2217 spin_lock_irqsave(&tty->ctrl_lock, flags);
2218 pgrp = get_pid(tty->pgrp);
2219 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2220
2221 return pgrp;
2222 }
2223 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2224
2225 /**
2226 * tiocgpgrp - get process group
2227 * @tty: tty passed by user
2228 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2229 * @p: returned pid
2230 *
2231 * Obtain the process group of the tty. If there is no process group
2232 * return an error.
2233 *
2234 * Locking: none. Reference to current->signal->tty is safe.
2235 */
2236
2237 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2238 {
2239 struct pid *pid;
2240 int ret;
2241 /*
2242 * (tty == real_tty) is a cheap way of
2243 * testing if the tty is NOT a master pty.
2244 */
2245 if (tty == real_tty && current->signal->tty != real_tty)
2246 return -ENOTTY;
2247 pid = tty_get_pgrp(real_tty);
2248 ret = put_user(pid_vnr(pid), p);
2249 put_pid(pid);
2250 return ret;
2251 }
2252
2253 /**
2254 * tiocspgrp - attempt to set process group
2255 * @tty: tty passed by user
2256 * @real_tty: tty side device matching tty passed by user
2257 * @p: pid pointer
2258 *
2259 * Set the process group of the tty to the session passed. Only
2260 * permitted where the tty session is our session.
2261 *
2262 * Locking: RCU, ctrl lock
2263 */
2264
2265 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2266 {
2267 struct pid *pgrp;
2268 pid_t pgrp_nr;
2269 int retval = tty_check_change(real_tty);
2270 unsigned long flags;
2271
2272 if (retval == -EIO)
2273 return -ENOTTY;
2274 if (retval)
2275 return retval;
2276 if (!current->signal->tty ||
2277 (current->signal->tty != real_tty) ||
2278 (real_tty->session != task_session(current)))
2279 return -ENOTTY;
2280 if (get_user(pgrp_nr, p))
2281 return -EFAULT;
2282 if (pgrp_nr < 0)
2283 return -EINVAL;
2284 rcu_read_lock();
2285 pgrp = find_vpid(pgrp_nr);
2286 retval = -ESRCH;
2287 if (!pgrp)
2288 goto out_unlock;
2289 retval = -EPERM;
2290 if (session_of_pgrp(pgrp) != task_session(current))
2291 goto out_unlock;
2292 retval = 0;
2293 spin_lock_irqsave(&tty->ctrl_lock, flags);
2294 put_pid(real_tty->pgrp);
2295 real_tty->pgrp = get_pid(pgrp);
2296 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2297 out_unlock:
2298 rcu_read_unlock();
2299 return retval;
2300 }
2301
2302 /**
2303 * tiocgsid - get session id
2304 * @tty: tty passed by user
2305 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2306 * @p: pointer to returned session id
2307 *
2308 * Obtain the session id of the tty. If there is no session
2309 * return an error.
2310 *
2311 * Locking: none. Reference to current->signal->tty is safe.
2312 */
2313
2314 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2315 {
2316 /*
2317 * (tty == real_tty) is a cheap way of
2318 * testing if the tty is NOT a master pty.
2319 */
2320 if (tty == real_tty && current->signal->tty != real_tty)
2321 return -ENOTTY;
2322 if (!real_tty->session)
2323 return -ENOTTY;
2324 return put_user(pid_vnr(real_tty->session), p);
2325 }
2326
2327 /**
2328 * tiocsetd - set line discipline
2329 * @tty: tty device
2330 * @p: pointer to user data
2331 *
2332 * Set the line discipline according to user request.
2333 *
2334 * Locking: see tty_set_ldisc, this function is just a helper
2335 */
2336
2337 static int tiocsetd(struct tty_struct *tty, int __user *p)
2338 {
2339 int ldisc;
2340 int ret;
2341
2342 if (get_user(ldisc, p))
2343 return -EFAULT;
2344
2345 ret = tty_set_ldisc(tty, ldisc);
2346
2347 return ret;
2348 }
2349
2350 /**
2351 * send_break - performed time break
2352 * @tty: device to break on
2353 * @duration: timeout in mS
2354 *
2355 * Perform a timed break on hardware that lacks its own driver level
2356 * timed break functionality.
2357 *
2358 * Locking:
2359 * atomic_write_lock serializes
2360 *
2361 */
2362
2363 static int send_break(struct tty_struct *tty, unsigned int duration)
2364 {
2365 int retval;
2366
2367 if (tty->ops->break_ctl == NULL)
2368 return 0;
2369
2370 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2371 retval = tty->ops->break_ctl(tty, duration);
2372 else {
2373 /* Do the work ourselves */
2374 if (tty_write_lock(tty, 0) < 0)
2375 return -EINTR;
2376 retval = tty->ops->break_ctl(tty, -1);
2377 if (retval)
2378 goto out;
2379 if (!signal_pending(current))
2380 msleep_interruptible(duration);
2381 retval = tty->ops->break_ctl(tty, 0);
2382 out:
2383 tty_write_unlock(tty);
2384 if (signal_pending(current))
2385 retval = -EINTR;
2386 }
2387 return retval;
2388 }
2389
2390 /**
2391 * tty_tiocmget - get modem status
2392 * @tty: tty device
2393 * @file: user file pointer
2394 * @p: pointer to result
2395 *
2396 * Obtain the modem status bits from the tty driver if the feature
2397 * is supported. Return -EINVAL if it is not available.
2398 *
2399 * Locking: none (up to the driver)
2400 */
2401
2402 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
2403 {
2404 int retval = -EINVAL;
2405
2406 if (tty->ops->tiocmget) {
2407 retval = tty->ops->tiocmget(tty, file);
2408
2409 if (retval >= 0)
2410 retval = put_user(retval, p);
2411 }
2412 return retval;
2413 }
2414
2415 /**
2416 * tty_tiocmset - set modem status
2417 * @tty: tty device
2418 * @file: user file pointer
2419 * @cmd: command - clear bits, set bits or set all
2420 * @p: pointer to desired bits
2421 *
2422 * Set the modem status bits from the tty driver if the feature
2423 * is supported. Return -EINVAL if it is not available.
2424 *
2425 * Locking: none (up to the driver)
2426 */
2427
2428 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
2429 unsigned __user *p)
2430 {
2431 int retval;
2432 unsigned int set, clear, val;
2433
2434 if (tty->ops->tiocmset == NULL)
2435 return -EINVAL;
2436
2437 retval = get_user(val, p);
2438 if (retval)
2439 return retval;
2440 set = clear = 0;
2441 switch (cmd) {
2442 case TIOCMBIS:
2443 set = val;
2444 break;
2445 case TIOCMBIC:
2446 clear = val;
2447 break;
2448 case TIOCMSET:
2449 set = val;
2450 clear = ~val;
2451 break;
2452 }
2453 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2454 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2455 return tty->ops->tiocmset(tty, file, set, clear);
2456 }
2457
2458 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2459 {
2460 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2461 tty->driver->subtype == PTY_TYPE_MASTER)
2462 tty = tty->link;
2463 return tty;
2464 }
2465 EXPORT_SYMBOL(tty_pair_get_tty);
2466
2467 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2468 {
2469 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2470 tty->driver->subtype == PTY_TYPE_MASTER)
2471 return tty;
2472 return tty->link;
2473 }
2474 EXPORT_SYMBOL(tty_pair_get_pty);
2475
2476 /*
2477 * Split this up, as gcc can choke on it otherwise..
2478 */
2479 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2480 {
2481 struct tty_struct *tty, *real_tty;
2482 void __user *p = (void __user *)arg;
2483 int retval;
2484 struct tty_ldisc *ld;
2485 struct inode *inode = file->f_dentry->d_inode;
2486
2487 tty = (struct tty_struct *)file->private_data;
2488 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2489 return -EINVAL;
2490
2491 real_tty = tty_pair_get_tty(tty);
2492
2493 /*
2494 * Factor out some common prep work
2495 */
2496 switch (cmd) {
2497 case TIOCSETD:
2498 case TIOCSBRK:
2499 case TIOCCBRK:
2500 case TCSBRK:
2501 case TCSBRKP:
2502 retval = tty_check_change(tty);
2503 if (retval)
2504 return retval;
2505 if (cmd != TIOCCBRK) {
2506 tty_wait_until_sent(tty, 0);
2507 if (signal_pending(current))
2508 return -EINTR;
2509 }
2510 break;
2511 }
2512
2513 /*
2514 * Now do the stuff.
2515 */
2516 switch (cmd) {
2517 case TIOCSTI:
2518 return tiocsti(tty, p);
2519 case TIOCGWINSZ:
2520 return tiocgwinsz(real_tty, p);
2521 case TIOCSWINSZ:
2522 return tiocswinsz(real_tty, p);
2523 case TIOCCONS:
2524 return real_tty != tty ? -EINVAL : tioccons(file);
2525 case FIONBIO:
2526 return fionbio(file, p);
2527 case TIOCEXCL:
2528 set_bit(TTY_EXCLUSIVE, &tty->flags);
2529 return 0;
2530 case TIOCNXCL:
2531 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2532 return 0;
2533 case TIOCNOTTY:
2534 if (current->signal->tty != tty)
2535 return -ENOTTY;
2536 no_tty();
2537 return 0;
2538 case TIOCSCTTY:
2539 return tiocsctty(tty, arg);
2540 case TIOCGPGRP:
2541 return tiocgpgrp(tty, real_tty, p);
2542 case TIOCSPGRP:
2543 return tiocspgrp(tty, real_tty, p);
2544 case TIOCGSID:
2545 return tiocgsid(tty, real_tty, p);
2546 case TIOCGETD:
2547 return put_user(tty->ldisc->ops->num, (int __user *)p);
2548 case TIOCSETD:
2549 return tiocsetd(tty, p);
2550 /*
2551 * Break handling
2552 */
2553 case TIOCSBRK: /* Turn break on, unconditionally */
2554 if (tty->ops->break_ctl)
2555 return tty->ops->break_ctl(tty, -1);
2556 return 0;
2557 case TIOCCBRK: /* Turn break off, unconditionally */
2558 if (tty->ops->break_ctl)
2559 return tty->ops->break_ctl(tty, 0);
2560 return 0;
2561 case TCSBRK: /* SVID version: non-zero arg --> no break */
2562 /* non-zero arg means wait for all output data
2563 * to be sent (performed above) but don't send break.
2564 * This is used by the tcdrain() termios function.
2565 */
2566 if (!arg)
2567 return send_break(tty, 250);
2568 return 0;
2569 case TCSBRKP: /* support for POSIX tcsendbreak() */
2570 return send_break(tty, arg ? arg*100 : 250);
2571
2572 case TIOCMGET:
2573 return tty_tiocmget(tty, file, p);
2574 case TIOCMSET:
2575 case TIOCMBIC:
2576 case TIOCMBIS:
2577 return tty_tiocmset(tty, file, cmd, p);
2578 case TCFLSH:
2579 switch (arg) {
2580 case TCIFLUSH:
2581 case TCIOFLUSH:
2582 /* flush tty buffer and allow ldisc to process ioctl */
2583 tty_buffer_flush(tty);
2584 break;
2585 }
2586 break;
2587 }
2588 if (tty->ops->ioctl) {
2589 retval = (tty->ops->ioctl)(tty, file, cmd, arg);
2590 if (retval != -ENOIOCTLCMD)
2591 return retval;
2592 }
2593 ld = tty_ldisc_ref_wait(tty);
2594 retval = -EINVAL;
2595 if (ld->ops->ioctl) {
2596 retval = ld->ops->ioctl(tty, file, cmd, arg);
2597 if (retval == -ENOIOCTLCMD)
2598 retval = -EINVAL;
2599 }
2600 tty_ldisc_deref(ld);
2601 return retval;
2602 }
2603
2604 #ifdef CONFIG_COMPAT
2605 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2606 unsigned long arg)
2607 {
2608 struct inode *inode = file->f_dentry->d_inode;
2609 struct tty_struct *tty = file->private_data;
2610 struct tty_ldisc *ld;
2611 int retval = -ENOIOCTLCMD;
2612
2613 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
2614 return -EINVAL;
2615
2616 if (tty->ops->compat_ioctl) {
2617 retval = (tty->ops->compat_ioctl)(tty, file, cmd, arg);
2618 if (retval != -ENOIOCTLCMD)
2619 return retval;
2620 }
2621
2622 ld = tty_ldisc_ref_wait(tty);
2623 if (ld->ops->compat_ioctl)
2624 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2625 tty_ldisc_deref(ld);
2626
2627 return retval;
2628 }
2629 #endif
2630
2631 /*
2632 * This implements the "Secure Attention Key" --- the idea is to
2633 * prevent trojan horses by killing all processes associated with this
2634 * tty when the user hits the "Secure Attention Key". Required for
2635 * super-paranoid applications --- see the Orange Book for more details.
2636 *
2637 * This code could be nicer; ideally it should send a HUP, wait a few
2638 * seconds, then send a INT, and then a KILL signal. But you then
2639 * have to coordinate with the init process, since all processes associated
2640 * with the current tty must be dead before the new getty is allowed
2641 * to spawn.
2642 *
2643 * Now, if it would be correct ;-/ The current code has a nasty hole -
2644 * it doesn't catch files in flight. We may send the descriptor to ourselves
2645 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2646 *
2647 * Nasty bug: do_SAK is being called in interrupt context. This can
2648 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2649 */
2650 void __do_SAK(struct tty_struct *tty)
2651 {
2652 #ifdef TTY_SOFT_SAK
2653 tty_hangup(tty);
2654 #else
2655 struct task_struct *g, *p;
2656 struct pid *session;
2657 int i;
2658 struct file *filp;
2659 struct fdtable *fdt;
2660
2661 if (!tty)
2662 return;
2663 session = tty->session;
2664
2665 tty_ldisc_flush(tty);
2666
2667 tty_driver_flush_buffer(tty);
2668
2669 read_lock(&tasklist_lock);
2670 /* Kill the entire session */
2671 do_each_pid_task(session, PIDTYPE_SID, p) {
2672 printk(KERN_NOTICE "SAK: killed process %d"
2673 " (%s): task_session(p)==tty->session\n",
2674 task_pid_nr(p), p->comm);
2675 send_sig(SIGKILL, p, 1);
2676 } while_each_pid_task(session, PIDTYPE_SID, p);
2677 /* Now kill any processes that happen to have the
2678 * tty open.
2679 */
2680 do_each_thread(g, p) {
2681 if (p->signal->tty == tty) {
2682 printk(KERN_NOTICE "SAK: killed process %d"
2683 " (%s): task_session(p)==tty->session\n",
2684 task_pid_nr(p), p->comm);
2685 send_sig(SIGKILL, p, 1);
2686 continue;
2687 }
2688 task_lock(p);
2689 if (p->files) {
2690 /*
2691 * We don't take a ref to the file, so we must
2692 * hold ->file_lock instead.
2693 */
2694 spin_lock(&p->files->file_lock);
2695 fdt = files_fdtable(p->files);
2696 for (i = 0; i < fdt->max_fds; i++) {
2697 filp = fcheck_files(p->files, i);
2698 if (!filp)
2699 continue;
2700 if (filp->f_op->read == tty_read &&
2701 filp->private_data == tty) {
2702 printk(KERN_NOTICE "SAK: killed process %d"
2703 " (%s): fd#%d opened to the tty\n",
2704 task_pid_nr(p), p->comm, i);
2705 force_sig(SIGKILL, p);
2706 break;
2707 }
2708 }
2709 spin_unlock(&p->files->file_lock);
2710 }
2711 task_unlock(p);
2712 } while_each_thread(g, p);
2713 read_unlock(&tasklist_lock);
2714 #endif
2715 }
2716
2717 static void do_SAK_work(struct work_struct *work)
2718 {
2719 struct tty_struct *tty =
2720 container_of(work, struct tty_struct, SAK_work);
2721 __do_SAK(tty);
2722 }
2723
2724 /*
2725 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2726 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2727 * the values which we write to it will be identical to the values which it
2728 * already has. --akpm
2729 */
2730 void do_SAK(struct tty_struct *tty)
2731 {
2732 if (!tty)
2733 return;
2734 schedule_work(&tty->SAK_work);
2735 }
2736
2737 EXPORT_SYMBOL(do_SAK);
2738
2739 /**
2740 * initialize_tty_struct
2741 * @tty: tty to initialize
2742 *
2743 * This subroutine initializes a tty structure that has been newly
2744 * allocated.
2745 *
2746 * Locking: none - tty in question must not be exposed at this point
2747 */
2748
2749 void initialize_tty_struct(struct tty_struct *tty,
2750 struct tty_driver *driver, int idx)
2751 {
2752 memset(tty, 0, sizeof(struct tty_struct));
2753 kref_init(&tty->kref);
2754 tty->magic = TTY_MAGIC;
2755 tty_ldisc_init(tty);
2756 tty->session = NULL;
2757 tty->pgrp = NULL;
2758 tty->overrun_time = jiffies;
2759 tty->buf.head = tty->buf.tail = NULL;
2760 tty_buffer_init(tty);
2761 mutex_init(&tty->termios_mutex);
2762 mutex_init(&tty->ldisc_mutex);
2763 init_waitqueue_head(&tty->write_wait);
2764 init_waitqueue_head(&tty->read_wait);
2765 INIT_WORK(&tty->hangup_work, do_tty_hangup);
2766 mutex_init(&tty->atomic_read_lock);
2767 mutex_init(&tty->atomic_write_lock);
2768 mutex_init(&tty->output_lock);
2769 mutex_init(&tty->echo_lock);
2770 spin_lock_init(&tty->read_lock);
2771 spin_lock_init(&tty->ctrl_lock);
2772 INIT_LIST_HEAD(&tty->tty_files);
2773 INIT_WORK(&tty->SAK_work, do_SAK_work);
2774
2775 tty->driver = driver;
2776 tty->ops = driver->ops;
2777 tty->index = idx;
2778 tty_line_name(driver, idx, tty->name);
2779 }
2780
2781 /**
2782 * tty_put_char - write one character to a tty
2783 * @tty: tty
2784 * @ch: character
2785 *
2786 * Write one byte to the tty using the provided put_char method
2787 * if present. Returns the number of characters successfully output.
2788 *
2789 * Note: the specific put_char operation in the driver layer may go
2790 * away soon. Don't call it directly, use this method
2791 */
2792
2793 int tty_put_char(struct tty_struct *tty, unsigned char ch)
2794 {
2795 if (tty->ops->put_char)
2796 return tty->ops->put_char(tty, ch);
2797 return tty->ops->write(tty, &ch, 1);
2798 }
2799 EXPORT_SYMBOL_GPL(tty_put_char);
2800
2801 struct class *tty_class;
2802
2803 /**
2804 * tty_register_device - register a tty device
2805 * @driver: the tty driver that describes the tty device
2806 * @index: the index in the tty driver for this tty device
2807 * @device: a struct device that is associated with this tty device.
2808 * This field is optional, if there is no known struct device
2809 * for this tty device it can be set to NULL safely.
2810 *
2811 * Returns a pointer to the struct device for this tty device
2812 * (or ERR_PTR(-EFOO) on error).
2813 *
2814 * This call is required to be made to register an individual tty device
2815 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
2816 * that bit is not set, this function should not be called by a tty
2817 * driver.
2818 *
2819 * Locking: ??
2820 */
2821
2822 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
2823 struct device *device)
2824 {
2825 char name[64];
2826 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
2827
2828 if (index >= driver->num) {
2829 printk(KERN_ERR "Attempt to register invalid tty line number "
2830 " (%d).\n", index);
2831 return ERR_PTR(-EINVAL);
2832 }
2833
2834 if (driver->type == TTY_DRIVER_TYPE_PTY)
2835 pty_line_name(driver, index, name);
2836 else
2837 tty_line_name(driver, index, name);
2838
2839 return device_create(tty_class, device, dev, NULL, name);
2840 }
2841 EXPORT_SYMBOL(tty_register_device);
2842
2843 /**
2844 * tty_unregister_device - unregister a tty device
2845 * @driver: the tty driver that describes the tty device
2846 * @index: the index in the tty driver for this tty device
2847 *
2848 * If a tty device is registered with a call to tty_register_device() then
2849 * this function must be called when the tty device is gone.
2850 *
2851 * Locking: ??
2852 */
2853
2854 void tty_unregister_device(struct tty_driver *driver, unsigned index)
2855 {
2856 device_destroy(tty_class,
2857 MKDEV(driver->major, driver->minor_start) + index);
2858 }
2859 EXPORT_SYMBOL(tty_unregister_device);
2860
2861 struct tty_driver *alloc_tty_driver(int lines)
2862 {
2863 struct tty_driver *driver;
2864
2865 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
2866 if (driver) {
2867 kref_init(&driver->kref);
2868 driver->magic = TTY_DRIVER_MAGIC;
2869 driver->num = lines;
2870 /* later we'll move allocation of tables here */
2871 }
2872 return driver;
2873 }
2874 EXPORT_SYMBOL(alloc_tty_driver);
2875
2876 static void destruct_tty_driver(struct kref *kref)
2877 {
2878 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
2879 int i;
2880 struct ktermios *tp;
2881 void *p;
2882
2883 if (driver->flags & TTY_DRIVER_INSTALLED) {
2884 /*
2885 * Free the termios and termios_locked structures because
2886 * we don't want to get memory leaks when modular tty
2887 * drivers are removed from the kernel.
2888 */
2889 for (i = 0; i < driver->num; i++) {
2890 tp = driver->termios[i];
2891 if (tp) {
2892 driver->termios[i] = NULL;
2893 kfree(tp);
2894 }
2895 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
2896 tty_unregister_device(driver, i);
2897 }
2898 p = driver->ttys;
2899 proc_tty_unregister_driver(driver);
2900 driver->ttys = NULL;
2901 driver->termios = NULL;
2902 kfree(p);
2903 cdev_del(&driver->cdev);
2904 }
2905 kfree(driver);
2906 }
2907
2908 void tty_driver_kref_put(struct tty_driver *driver)
2909 {
2910 kref_put(&driver->kref, destruct_tty_driver);
2911 }
2912 EXPORT_SYMBOL(tty_driver_kref_put);
2913
2914 void tty_set_operations(struct tty_driver *driver,
2915 const struct tty_operations *op)
2916 {
2917 driver->ops = op;
2918 };
2919 EXPORT_SYMBOL(tty_set_operations);
2920
2921 void put_tty_driver(struct tty_driver *d)
2922 {
2923 tty_driver_kref_put(d);
2924 }
2925 EXPORT_SYMBOL(put_tty_driver);
2926
2927 /*
2928 * Called by a tty driver to register itself.
2929 */
2930 int tty_register_driver(struct tty_driver *driver)
2931 {
2932 int error;
2933 int i;
2934 dev_t dev;
2935 void **p = NULL;
2936
2937 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM) && driver->num) {
2938 p = kzalloc(driver->num * 2 * sizeof(void *), GFP_KERNEL);
2939 if (!p)
2940 return -ENOMEM;
2941 }
2942
2943 if (!driver->major) {
2944 error = alloc_chrdev_region(&dev, driver->minor_start,
2945 driver->num, driver->name);
2946 if (!error) {
2947 driver->major = MAJOR(dev);
2948 driver->minor_start = MINOR(dev);
2949 }
2950 } else {
2951 dev = MKDEV(driver->major, driver->minor_start);
2952 error = register_chrdev_region(dev, driver->num, driver->name);
2953 }
2954 if (error < 0) {
2955 kfree(p);
2956 return error;
2957 }
2958
2959 if (p) {
2960 driver->ttys = (struct tty_struct **)p;
2961 driver->termios = (struct ktermios **)(p + driver->num);
2962 } else {
2963 driver->ttys = NULL;
2964 driver->termios = NULL;
2965 }
2966
2967 cdev_init(&driver->cdev, &tty_fops);
2968 driver->cdev.owner = driver->owner;
2969 error = cdev_add(&driver->cdev, dev, driver->num);
2970 if (error) {
2971 unregister_chrdev_region(dev, driver->num);
2972 driver->ttys = NULL;
2973 driver->termios = NULL;
2974 kfree(p);
2975 return error;
2976 }
2977
2978 mutex_lock(&tty_mutex);
2979 list_add(&driver->tty_drivers, &tty_drivers);
2980 mutex_unlock(&tty_mutex);
2981
2982 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
2983 for (i = 0; i < driver->num; i++)
2984 tty_register_device(driver, i, NULL);
2985 }
2986 proc_tty_register_driver(driver);
2987 driver->flags |= TTY_DRIVER_INSTALLED;
2988 return 0;
2989 }
2990
2991 EXPORT_SYMBOL(tty_register_driver);
2992
2993 /*
2994 * Called by a tty driver to unregister itself.
2995 */
2996 int tty_unregister_driver(struct tty_driver *driver)
2997 {
2998 #if 0
2999 /* FIXME */
3000 if (driver->refcount)
3001 return -EBUSY;
3002 #endif
3003 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3004 driver->num);
3005 mutex_lock(&tty_mutex);
3006 list_del(&driver->tty_drivers);
3007 mutex_unlock(&tty_mutex);
3008 return 0;
3009 }
3010
3011 EXPORT_SYMBOL(tty_unregister_driver);
3012
3013 dev_t tty_devnum(struct tty_struct *tty)
3014 {
3015 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3016 }
3017 EXPORT_SYMBOL(tty_devnum);
3018
3019 void proc_clear_tty(struct task_struct *p)
3020 {
3021 unsigned long flags;
3022 struct tty_struct *tty;
3023 spin_lock_irqsave(&p->sighand->siglock, flags);
3024 tty = p->signal->tty;
3025 p->signal->tty = NULL;
3026 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3027 tty_kref_put(tty);
3028 }
3029
3030 /* Called under the sighand lock */
3031
3032 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3033 {
3034 if (tty) {
3035 unsigned long flags;
3036 /* We should not have a session or pgrp to put here but.... */
3037 spin_lock_irqsave(&tty->ctrl_lock, flags);
3038 put_pid(tty->session);
3039 put_pid(tty->pgrp);
3040 tty->pgrp = get_pid(task_pgrp(tsk));
3041 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3042 tty->session = get_pid(task_session(tsk));
3043 if (tsk->signal->tty) {
3044 printk(KERN_DEBUG "tty not NULL!!\n");
3045 tty_kref_put(tsk->signal->tty);
3046 }
3047 }
3048 put_pid(tsk->signal->tty_old_pgrp);
3049 tsk->signal->tty = tty_kref_get(tty);
3050 tsk->signal->tty_old_pgrp = NULL;
3051 }
3052
3053 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3054 {
3055 spin_lock_irq(&tsk->sighand->siglock);
3056 __proc_set_tty(tsk, tty);
3057 spin_unlock_irq(&tsk->sighand->siglock);
3058 }
3059
3060 struct tty_struct *get_current_tty(void)
3061 {
3062 struct tty_struct *tty;
3063 unsigned long flags;
3064
3065 spin_lock_irqsave(&current->sighand->siglock, flags);
3066 tty = tty_kref_get(current->signal->tty);
3067 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3068 return tty;
3069 }
3070 EXPORT_SYMBOL_GPL(get_current_tty);
3071
3072 void tty_default_fops(struct file_operations *fops)
3073 {
3074 *fops = tty_fops;
3075 }
3076
3077 /*
3078 * Initialize the console device. This is called *early*, so
3079 * we can't necessarily depend on lots of kernel help here.
3080 * Just do some early initializations, and do the complex setup
3081 * later.
3082 */
3083 void __init console_init(void)
3084 {
3085 initcall_t *call;
3086
3087 /* Setup the default TTY line discipline. */
3088 tty_ldisc_begin();
3089
3090 /*
3091 * set up the console device so that later boot sequences can
3092 * inform about problems etc..
3093 */
3094 call = __con_initcall_start;
3095 while (call < __con_initcall_end) {
3096 (*call)();
3097 call++;
3098 }
3099 }
3100
3101 static char *tty_devnode(struct device *dev, mode_t *mode)
3102 {
3103 if (!mode)
3104 return NULL;
3105 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3106 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3107 *mode = 0666;
3108 return NULL;
3109 }
3110
3111 static int __init tty_class_init(void)
3112 {
3113 tty_class = class_create(THIS_MODULE, "tty");
3114 if (IS_ERR(tty_class))
3115 return PTR_ERR(tty_class);
3116 tty_class->devnode = tty_devnode;
3117 return 0;
3118 }
3119
3120 postcore_initcall(tty_class_init);
3121
3122 /* 3/2004 jmc: why do these devices exist? */
3123
3124 static struct cdev tty_cdev, console_cdev;
3125
3126 /*
3127 * Ok, now we can initialize the rest of the tty devices and can count
3128 * on memory allocations, interrupts etc..
3129 */
3130 static int __init tty_init(void)
3131 {
3132 cdev_init(&tty_cdev, &tty_fops);
3133 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3134 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3135 panic("Couldn't register /dev/tty driver\n");
3136 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL,
3137 "tty");
3138
3139 cdev_init(&console_cdev, &console_fops);
3140 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3141 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3142 panic("Couldn't register /dev/console driver\n");
3143 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3144 "console");
3145
3146 #ifdef CONFIG_VT
3147 vty_init(&console_fops);
3148 #endif
3149 return 0;
3150 }
3151 module_init(tty_init);