net: add skb_recycle_check() to enable netdriver skb recycling
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / char / rtc.c
1 /*
2 * Real Time Clock interface for Linux
3 *
4 * Copyright (C) 1996 Paul Gortmaker
5 *
6 * This driver allows use of the real time clock (built into
7 * nearly all computers) from user space. It exports the /dev/rtc
8 * interface supporting various ioctl() and also the
9 * /proc/driver/rtc pseudo-file for status information.
10 *
11 * The ioctls can be used to set the interrupt behaviour and
12 * generation rate from the RTC via IRQ 8. Then the /dev/rtc
13 * interface can be used to make use of these timer interrupts,
14 * be they interval or alarm based.
15 *
16 * The /dev/rtc interface will block on reads until an interrupt
17 * has been received. If a RTC interrupt has already happened,
18 * it will output an unsigned long and then block. The output value
19 * contains the interrupt status in the low byte and the number of
20 * interrupts since the last read in the remaining high bytes. The
21 * /dev/rtc interface can also be used with the select(2) call.
22 *
23 * This program is free software; you can redistribute it and/or
24 * modify it under the terms of the GNU General Public License
25 * as published by the Free Software Foundation; either version
26 * 2 of the License, or (at your option) any later version.
27 *
28 * Based on other minimal char device drivers, like Alan's
29 * watchdog, Ted's random, etc. etc.
30 *
31 * 1.07 Paul Gortmaker.
32 * 1.08 Miquel van Smoorenburg: disallow certain things on the
33 * DEC Alpha as the CMOS clock is also used for other things.
34 * 1.09 Nikita Schmidt: epoch support and some Alpha cleanup.
35 * 1.09a Pete Zaitcev: Sun SPARC
36 * 1.09b Jeff Garzik: Modularize, init cleanup
37 * 1.09c Jeff Garzik: SMP cleanup
38 * 1.10 Paul Barton-Davis: add support for async I/O
39 * 1.10a Andrea Arcangeli: Alpha updates
40 * 1.10b Andrew Morton: SMP lock fix
41 * 1.10c Cesar Barros: SMP locking fixes and cleanup
42 * 1.10d Paul Gortmaker: delete paranoia check in rtc_exit
43 * 1.10e Maciej W. Rozycki: Handle DECstation's year weirdness.
44 * 1.11 Takashi Iwai: Kernel access functions
45 * rtc_register/rtc_unregister/rtc_control
46 * 1.11a Daniele Bellucci: Audit create_proc_read_entry in rtc_init
47 * 1.12 Venkatesh Pallipadi: Hooks for emulating rtc on HPET base-timer
48 * CONFIG_HPET_EMULATE_RTC
49 * 1.12a Maciej W. Rozycki: Handle memory-mapped chips properly.
50 * 1.12ac Alan Cox: Allow read access to the day of week register
51 */
52
53 #define RTC_VERSION "1.12ac"
54
55 /*
56 * Note that *all* calls to CMOS_READ and CMOS_WRITE are done with
57 * interrupts disabled. Due to the index-port/data-port (0x70/0x71)
58 * design of the RTC, we don't want two different things trying to
59 * get to it at once. (e.g. the periodic 11 min sync from time.c vs.
60 * this driver.)
61 */
62
63 #include <linux/interrupt.h>
64 #include <linux/module.h>
65 #include <linux/kernel.h>
66 #include <linux/types.h>
67 #include <linux/miscdevice.h>
68 #include <linux/ioport.h>
69 #include <linux/fcntl.h>
70 #include <linux/mc146818rtc.h>
71 #include <linux/init.h>
72 #include <linux/poll.h>
73 #include <linux/proc_fs.h>
74 #include <linux/seq_file.h>
75 #include <linux/spinlock.h>
76 #include <linux/smp_lock.h>
77 #include <linux/sysctl.h>
78 #include <linux/wait.h>
79 #include <linux/bcd.h>
80 #include <linux/delay.h>
81 #include <linux/uaccess.h>
82
83 #include <asm/current.h>
84 #include <asm/system.h>
85
86 #ifdef CONFIG_X86
87 #include <asm/hpet.h>
88 #endif
89
90 #ifdef CONFIG_SPARC32
91 #include <linux/pci.h>
92 #include <linux/jiffies.h>
93 #include <asm/ebus.h>
94
95 static unsigned long rtc_port;
96 static int rtc_irq = PCI_IRQ_NONE;
97 #endif
98
99 #ifdef CONFIG_HPET_RTC_IRQ
100 #undef RTC_IRQ
101 #endif
102
103 #ifdef RTC_IRQ
104 static int rtc_has_irq = 1;
105 #endif
106
107 #ifndef CONFIG_HPET_EMULATE_RTC
108 #define is_hpet_enabled() 0
109 #define hpet_set_alarm_time(hrs, min, sec) 0
110 #define hpet_set_periodic_freq(arg) 0
111 #define hpet_mask_rtc_irq_bit(arg) 0
112 #define hpet_set_rtc_irq_bit(arg) 0
113 #define hpet_rtc_timer_init() do { } while (0)
114 #define hpet_rtc_dropped_irq() 0
115 #define hpet_register_irq_handler(h) ({ 0; })
116 #define hpet_unregister_irq_handler(h) ({ 0; })
117 #ifdef RTC_IRQ
118 static irqreturn_t hpet_rtc_interrupt(int irq, void *dev_id)
119 {
120 return 0;
121 }
122 #endif
123 #endif
124
125 /*
126 * We sponge a minor off of the misc major. No need slurping
127 * up another valuable major dev number for this. If you add
128 * an ioctl, make sure you don't conflict with SPARC's RTC
129 * ioctls.
130 */
131
132 static struct fasync_struct *rtc_async_queue;
133
134 static DECLARE_WAIT_QUEUE_HEAD(rtc_wait);
135
136 #ifdef RTC_IRQ
137 static void rtc_dropped_irq(unsigned long data);
138
139 static DEFINE_TIMER(rtc_irq_timer, rtc_dropped_irq, 0, 0);
140 #endif
141
142 static ssize_t rtc_read(struct file *file, char __user *buf,
143 size_t count, loff_t *ppos);
144
145 static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
146 static void rtc_get_rtc_time(struct rtc_time *rtc_tm);
147
148 #ifdef RTC_IRQ
149 static unsigned int rtc_poll(struct file *file, poll_table *wait);
150 #endif
151
152 static void get_rtc_alm_time(struct rtc_time *alm_tm);
153 #ifdef RTC_IRQ
154 static void set_rtc_irq_bit_locked(unsigned char bit);
155 static void mask_rtc_irq_bit_locked(unsigned char bit);
156
157 static inline void set_rtc_irq_bit(unsigned char bit)
158 {
159 spin_lock_irq(&rtc_lock);
160 set_rtc_irq_bit_locked(bit);
161 spin_unlock_irq(&rtc_lock);
162 }
163
164 static void mask_rtc_irq_bit(unsigned char bit)
165 {
166 spin_lock_irq(&rtc_lock);
167 mask_rtc_irq_bit_locked(bit);
168 spin_unlock_irq(&rtc_lock);
169 }
170 #endif
171
172 #ifdef CONFIG_PROC_FS
173 static int rtc_proc_open(struct inode *inode, struct file *file);
174 #endif
175
176 /*
177 * Bits in rtc_status. (6 bits of room for future expansion)
178 */
179
180 #define RTC_IS_OPEN 0x01 /* means /dev/rtc is in use */
181 #define RTC_TIMER_ON 0x02 /* missed irq timer active */
182
183 /*
184 * rtc_status is never changed by rtc_interrupt, and ioctl/open/close is
185 * protected by the big kernel lock. However, ioctl can still disable the timer
186 * in rtc_status and then with del_timer after the interrupt has read
187 * rtc_status but before mod_timer is called, which would then reenable the
188 * timer (but you would need to have an awful timing before you'd trip on it)
189 */
190 static unsigned long rtc_status; /* bitmapped status byte. */
191 static unsigned long rtc_freq; /* Current periodic IRQ rate */
192 static unsigned long rtc_irq_data; /* our output to the world */
193 static unsigned long rtc_max_user_freq = 64; /* > this, need CAP_SYS_RESOURCE */
194
195 #ifdef RTC_IRQ
196 /*
197 * rtc_task_lock nests inside rtc_lock.
198 */
199 static DEFINE_SPINLOCK(rtc_task_lock);
200 static rtc_task_t *rtc_callback;
201 #endif
202
203 /*
204 * If this driver ever becomes modularised, it will be really nice
205 * to make the epoch retain its value across module reload...
206 */
207
208 static unsigned long epoch = 1900; /* year corresponding to 0x00 */
209
210 static const unsigned char days_in_mo[] =
211 {0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31};
212
213 /*
214 * Returns true if a clock update is in progress
215 */
216 static inline unsigned char rtc_is_updating(void)
217 {
218 unsigned long flags;
219 unsigned char uip;
220
221 spin_lock_irqsave(&rtc_lock, flags);
222 uip = (CMOS_READ(RTC_FREQ_SELECT) & RTC_UIP);
223 spin_unlock_irqrestore(&rtc_lock, flags);
224 return uip;
225 }
226
227 #ifdef RTC_IRQ
228 /*
229 * A very tiny interrupt handler. It runs with IRQF_DISABLED set,
230 * but there is possibility of conflicting with the set_rtc_mmss()
231 * call (the rtc irq and the timer irq can easily run at the same
232 * time in two different CPUs). So we need to serialize
233 * accesses to the chip with the rtc_lock spinlock that each
234 * architecture should implement in the timer code.
235 * (See ./arch/XXXX/kernel/time.c for the set_rtc_mmss() function.)
236 */
237
238 static irqreturn_t rtc_interrupt(int irq, void *dev_id)
239 {
240 /*
241 * Can be an alarm interrupt, update complete interrupt,
242 * or a periodic interrupt. We store the status in the
243 * low byte and the number of interrupts received since
244 * the last read in the remainder of rtc_irq_data.
245 */
246
247 spin_lock(&rtc_lock);
248 rtc_irq_data += 0x100;
249 rtc_irq_data &= ~0xff;
250 if (is_hpet_enabled()) {
251 /*
252 * In this case it is HPET RTC interrupt handler
253 * calling us, with the interrupt information
254 * passed as arg1, instead of irq.
255 */
256 rtc_irq_data |= (unsigned long)irq & 0xF0;
257 } else {
258 rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0);
259 }
260
261 if (rtc_status & RTC_TIMER_ON)
262 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
263
264 spin_unlock(&rtc_lock);
265
266 /* Now do the rest of the actions */
267 spin_lock(&rtc_task_lock);
268 if (rtc_callback)
269 rtc_callback->func(rtc_callback->private_data);
270 spin_unlock(&rtc_task_lock);
271 wake_up_interruptible(&rtc_wait);
272
273 kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
274
275 return IRQ_HANDLED;
276 }
277 #endif
278
279 /*
280 * sysctl-tuning infrastructure.
281 */
282 static ctl_table rtc_table[] = {
283 {
284 .ctl_name = CTL_UNNUMBERED,
285 .procname = "max-user-freq",
286 .data = &rtc_max_user_freq,
287 .maxlen = sizeof(int),
288 .mode = 0644,
289 .proc_handler = &proc_dointvec,
290 },
291 { .ctl_name = 0 }
292 };
293
294 static ctl_table rtc_root[] = {
295 {
296 .ctl_name = CTL_UNNUMBERED,
297 .procname = "rtc",
298 .mode = 0555,
299 .child = rtc_table,
300 },
301 { .ctl_name = 0 }
302 };
303
304 static ctl_table dev_root[] = {
305 {
306 .ctl_name = CTL_DEV,
307 .procname = "dev",
308 .mode = 0555,
309 .child = rtc_root,
310 },
311 { .ctl_name = 0 }
312 };
313
314 static struct ctl_table_header *sysctl_header;
315
316 static int __init init_sysctl(void)
317 {
318 sysctl_header = register_sysctl_table(dev_root);
319 return 0;
320 }
321
322 static void __exit cleanup_sysctl(void)
323 {
324 unregister_sysctl_table(sysctl_header);
325 }
326
327 /*
328 * Now all the various file operations that we export.
329 */
330
331 static ssize_t rtc_read(struct file *file, char __user *buf,
332 size_t count, loff_t *ppos)
333 {
334 #ifndef RTC_IRQ
335 return -EIO;
336 #else
337 DECLARE_WAITQUEUE(wait, current);
338 unsigned long data;
339 ssize_t retval;
340
341 if (rtc_has_irq == 0)
342 return -EIO;
343
344 /*
345 * Historically this function used to assume that sizeof(unsigned long)
346 * is the same in userspace and kernelspace. This lead to problems
347 * for configurations with multiple ABIs such a the MIPS o32 and 64
348 * ABIs supported on the same kernel. So now we support read of both
349 * 4 and 8 bytes and assume that's the sizeof(unsigned long) in the
350 * userspace ABI.
351 */
352 if (count != sizeof(unsigned int) && count != sizeof(unsigned long))
353 return -EINVAL;
354
355 add_wait_queue(&rtc_wait, &wait);
356
357 do {
358 /* First make it right. Then make it fast. Putting this whole
359 * block within the parentheses of a while would be too
360 * confusing. And no, xchg() is not the answer. */
361
362 __set_current_state(TASK_INTERRUPTIBLE);
363
364 spin_lock_irq(&rtc_lock);
365 data = rtc_irq_data;
366 rtc_irq_data = 0;
367 spin_unlock_irq(&rtc_lock);
368
369 if (data != 0)
370 break;
371
372 if (file->f_flags & O_NONBLOCK) {
373 retval = -EAGAIN;
374 goto out;
375 }
376 if (signal_pending(current)) {
377 retval = -ERESTARTSYS;
378 goto out;
379 }
380 schedule();
381 } while (1);
382
383 if (count == sizeof(unsigned int)) {
384 retval = put_user(data,
385 (unsigned int __user *)buf) ?: sizeof(int);
386 } else {
387 retval = put_user(data,
388 (unsigned long __user *)buf) ?: sizeof(long);
389 }
390 if (!retval)
391 retval = count;
392 out:
393 __set_current_state(TASK_RUNNING);
394 remove_wait_queue(&rtc_wait, &wait);
395
396 return retval;
397 #endif
398 }
399
400 static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
401 {
402 struct rtc_time wtime;
403
404 #ifdef RTC_IRQ
405 if (rtc_has_irq == 0) {
406 switch (cmd) {
407 case RTC_AIE_OFF:
408 case RTC_AIE_ON:
409 case RTC_PIE_OFF:
410 case RTC_PIE_ON:
411 case RTC_UIE_OFF:
412 case RTC_UIE_ON:
413 case RTC_IRQP_READ:
414 case RTC_IRQP_SET:
415 return -EINVAL;
416 };
417 }
418 #endif
419
420 switch (cmd) {
421 #ifdef RTC_IRQ
422 case RTC_AIE_OFF: /* Mask alarm int. enab. bit */
423 {
424 mask_rtc_irq_bit(RTC_AIE);
425 return 0;
426 }
427 case RTC_AIE_ON: /* Allow alarm interrupts. */
428 {
429 set_rtc_irq_bit(RTC_AIE);
430 return 0;
431 }
432 case RTC_PIE_OFF: /* Mask periodic int. enab. bit */
433 {
434 /* can be called from isr via rtc_control() */
435 unsigned long flags;
436
437 spin_lock_irqsave(&rtc_lock, flags);
438 mask_rtc_irq_bit_locked(RTC_PIE);
439 if (rtc_status & RTC_TIMER_ON) {
440 rtc_status &= ~RTC_TIMER_ON;
441 del_timer(&rtc_irq_timer);
442 }
443 spin_unlock_irqrestore(&rtc_lock, flags);
444
445 return 0;
446 }
447 case RTC_PIE_ON: /* Allow periodic ints */
448 {
449 /* can be called from isr via rtc_control() */
450 unsigned long flags;
451
452 /*
453 * We don't really want Joe User enabling more
454 * than 64Hz of interrupts on a multi-user machine.
455 */
456 if (!kernel && (rtc_freq > rtc_max_user_freq) &&
457 (!capable(CAP_SYS_RESOURCE)))
458 return -EACCES;
459
460 spin_lock_irqsave(&rtc_lock, flags);
461 if (!(rtc_status & RTC_TIMER_ON)) {
462 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq +
463 2*HZ/100);
464 rtc_status |= RTC_TIMER_ON;
465 }
466 set_rtc_irq_bit_locked(RTC_PIE);
467 spin_unlock_irqrestore(&rtc_lock, flags);
468
469 return 0;
470 }
471 case RTC_UIE_OFF: /* Mask ints from RTC updates. */
472 {
473 mask_rtc_irq_bit(RTC_UIE);
474 return 0;
475 }
476 case RTC_UIE_ON: /* Allow ints for RTC updates. */
477 {
478 set_rtc_irq_bit(RTC_UIE);
479 return 0;
480 }
481 #endif
482 case RTC_ALM_READ: /* Read the present alarm time */
483 {
484 /*
485 * This returns a struct rtc_time. Reading >= 0xc0
486 * means "don't care" or "match all". Only the tm_hour,
487 * tm_min, and tm_sec values are filled in.
488 */
489 memset(&wtime, 0, sizeof(struct rtc_time));
490 get_rtc_alm_time(&wtime);
491 break;
492 }
493 case RTC_ALM_SET: /* Store a time into the alarm */
494 {
495 /*
496 * This expects a struct rtc_time. Writing 0xff means
497 * "don't care" or "match all". Only the tm_hour,
498 * tm_min and tm_sec are used.
499 */
500 unsigned char hrs, min, sec;
501 struct rtc_time alm_tm;
502
503 if (copy_from_user(&alm_tm, (struct rtc_time __user *)arg,
504 sizeof(struct rtc_time)))
505 return -EFAULT;
506
507 hrs = alm_tm.tm_hour;
508 min = alm_tm.tm_min;
509 sec = alm_tm.tm_sec;
510
511 spin_lock_irq(&rtc_lock);
512 if (hpet_set_alarm_time(hrs, min, sec)) {
513 /*
514 * Fallthru and set alarm time in CMOS too,
515 * so that we will get proper value in RTC_ALM_READ
516 */
517 }
518 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY) ||
519 RTC_ALWAYS_BCD) {
520 if (sec < 60)
521 BIN_TO_BCD(sec);
522 else
523 sec = 0xff;
524
525 if (min < 60)
526 BIN_TO_BCD(min);
527 else
528 min = 0xff;
529
530 if (hrs < 24)
531 BIN_TO_BCD(hrs);
532 else
533 hrs = 0xff;
534 }
535 CMOS_WRITE(hrs, RTC_HOURS_ALARM);
536 CMOS_WRITE(min, RTC_MINUTES_ALARM);
537 CMOS_WRITE(sec, RTC_SECONDS_ALARM);
538 spin_unlock_irq(&rtc_lock);
539
540 return 0;
541 }
542 case RTC_RD_TIME: /* Read the time/date from RTC */
543 {
544 memset(&wtime, 0, sizeof(struct rtc_time));
545 rtc_get_rtc_time(&wtime);
546 break;
547 }
548 case RTC_SET_TIME: /* Set the RTC */
549 {
550 struct rtc_time rtc_tm;
551 unsigned char mon, day, hrs, min, sec, leap_yr;
552 unsigned char save_control, save_freq_select;
553 unsigned int yrs;
554 #ifdef CONFIG_MACH_DECSTATION
555 unsigned int real_yrs;
556 #endif
557
558 if (!capable(CAP_SYS_TIME))
559 return -EACCES;
560
561 if (copy_from_user(&rtc_tm, (struct rtc_time __user *)arg,
562 sizeof(struct rtc_time)))
563 return -EFAULT;
564
565 yrs = rtc_tm.tm_year + 1900;
566 mon = rtc_tm.tm_mon + 1; /* tm_mon starts at zero */
567 day = rtc_tm.tm_mday;
568 hrs = rtc_tm.tm_hour;
569 min = rtc_tm.tm_min;
570 sec = rtc_tm.tm_sec;
571
572 if (yrs < 1970)
573 return -EINVAL;
574
575 leap_yr = ((!(yrs % 4) && (yrs % 100)) || !(yrs % 400));
576
577 if ((mon > 12) || (day == 0))
578 return -EINVAL;
579
580 if (day > (days_in_mo[mon] + ((mon == 2) && leap_yr)))
581 return -EINVAL;
582
583 if ((hrs >= 24) || (min >= 60) || (sec >= 60))
584 return -EINVAL;
585
586 yrs -= epoch;
587 if (yrs > 255) /* They are unsigned */
588 return -EINVAL;
589
590 spin_lock_irq(&rtc_lock);
591 #ifdef CONFIG_MACH_DECSTATION
592 real_yrs = yrs;
593 yrs = 72;
594
595 /*
596 * We want to keep the year set to 73 until March
597 * for non-leap years, so that Feb, 29th is handled
598 * correctly.
599 */
600 if (!leap_yr && mon < 3) {
601 real_yrs--;
602 yrs = 73;
603 }
604 #endif
605 /* These limits and adjustments are independent of
606 * whether the chip is in binary mode or not.
607 */
608 if (yrs > 169) {
609 spin_unlock_irq(&rtc_lock);
610 return -EINVAL;
611 }
612 if (yrs >= 100)
613 yrs -= 100;
614
615 if (!(CMOS_READ(RTC_CONTROL) & RTC_DM_BINARY)
616 || RTC_ALWAYS_BCD) {
617 BIN_TO_BCD(sec);
618 BIN_TO_BCD(min);
619 BIN_TO_BCD(hrs);
620 BIN_TO_BCD(day);
621 BIN_TO_BCD(mon);
622 BIN_TO_BCD(yrs);
623 }
624
625 save_control = CMOS_READ(RTC_CONTROL);
626 CMOS_WRITE((save_control|RTC_SET), RTC_CONTROL);
627 save_freq_select = CMOS_READ(RTC_FREQ_SELECT);
628 CMOS_WRITE((save_freq_select|RTC_DIV_RESET2), RTC_FREQ_SELECT);
629
630 #ifdef CONFIG_MACH_DECSTATION
631 CMOS_WRITE(real_yrs, RTC_DEC_YEAR);
632 #endif
633 CMOS_WRITE(yrs, RTC_YEAR);
634 CMOS_WRITE(mon, RTC_MONTH);
635 CMOS_WRITE(day, RTC_DAY_OF_MONTH);
636 CMOS_WRITE(hrs, RTC_HOURS);
637 CMOS_WRITE(min, RTC_MINUTES);
638 CMOS_WRITE(sec, RTC_SECONDS);
639
640 CMOS_WRITE(save_control, RTC_CONTROL);
641 CMOS_WRITE(save_freq_select, RTC_FREQ_SELECT);
642
643 spin_unlock_irq(&rtc_lock);
644 return 0;
645 }
646 #ifdef RTC_IRQ
647 case RTC_IRQP_READ: /* Read the periodic IRQ rate. */
648 {
649 return put_user(rtc_freq, (unsigned long __user *)arg);
650 }
651 case RTC_IRQP_SET: /* Set periodic IRQ rate. */
652 {
653 int tmp = 0;
654 unsigned char val;
655 /* can be called from isr via rtc_control() */
656 unsigned long flags;
657
658 /*
659 * The max we can do is 8192Hz.
660 */
661 if ((arg < 2) || (arg > 8192))
662 return -EINVAL;
663 /*
664 * We don't really want Joe User generating more
665 * than 64Hz of interrupts on a multi-user machine.
666 */
667 if (!kernel && (arg > rtc_max_user_freq) &&
668 !capable(CAP_SYS_RESOURCE))
669 return -EACCES;
670
671 while (arg > (1<<tmp))
672 tmp++;
673
674 /*
675 * Check that the input was really a power of 2.
676 */
677 if (arg != (1<<tmp))
678 return -EINVAL;
679
680 rtc_freq = arg;
681
682 spin_lock_irqsave(&rtc_lock, flags);
683 if (hpet_set_periodic_freq(arg)) {
684 spin_unlock_irqrestore(&rtc_lock, flags);
685 return 0;
686 }
687
688 val = CMOS_READ(RTC_FREQ_SELECT) & 0xf0;
689 val |= (16 - tmp);
690 CMOS_WRITE(val, RTC_FREQ_SELECT);
691 spin_unlock_irqrestore(&rtc_lock, flags);
692 return 0;
693 }
694 #endif
695 case RTC_EPOCH_READ: /* Read the epoch. */
696 {
697 return put_user(epoch, (unsigned long __user *)arg);
698 }
699 case RTC_EPOCH_SET: /* Set the epoch. */
700 {
701 /*
702 * There were no RTC clocks before 1900.
703 */
704 if (arg < 1900)
705 return -EINVAL;
706
707 if (!capable(CAP_SYS_TIME))
708 return -EACCES;
709
710 epoch = arg;
711 return 0;
712 }
713 default:
714 return -ENOTTY;
715 }
716 return copy_to_user((void __user *)arg,
717 &wtime, sizeof wtime) ? -EFAULT : 0;
718 }
719
720 static long rtc_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
721 {
722 long ret;
723 lock_kernel();
724 ret = rtc_do_ioctl(cmd, arg, 0);
725 unlock_kernel();
726 return ret;
727 }
728
729 /*
730 * We enforce only one user at a time here with the open/close.
731 * Also clear the previous interrupt data on an open, and clean
732 * up things on a close.
733 */
734
735 /* We use rtc_lock to protect against concurrent opens. So the BKL is not
736 * needed here. Or anywhere else in this driver. */
737 static int rtc_open(struct inode *inode, struct file *file)
738 {
739 lock_kernel();
740 spin_lock_irq(&rtc_lock);
741
742 if (rtc_status & RTC_IS_OPEN)
743 goto out_busy;
744
745 rtc_status |= RTC_IS_OPEN;
746
747 rtc_irq_data = 0;
748 spin_unlock_irq(&rtc_lock);
749 unlock_kernel();
750 return 0;
751
752 out_busy:
753 spin_unlock_irq(&rtc_lock);
754 unlock_kernel();
755 return -EBUSY;
756 }
757
758 static int rtc_fasync(int fd, struct file *filp, int on)
759 {
760 return fasync_helper(fd, filp, on, &rtc_async_queue);
761 }
762
763 static int rtc_release(struct inode *inode, struct file *file)
764 {
765 #ifdef RTC_IRQ
766 unsigned char tmp;
767
768 if (rtc_has_irq == 0)
769 goto no_irq;
770
771 /*
772 * Turn off all interrupts once the device is no longer
773 * in use, and clear the data.
774 */
775
776 spin_lock_irq(&rtc_lock);
777 if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
778 tmp = CMOS_READ(RTC_CONTROL);
779 tmp &= ~RTC_PIE;
780 tmp &= ~RTC_AIE;
781 tmp &= ~RTC_UIE;
782 CMOS_WRITE(tmp, RTC_CONTROL);
783 CMOS_READ(RTC_INTR_FLAGS);
784 }
785 if (rtc_status & RTC_TIMER_ON) {
786 rtc_status &= ~RTC_TIMER_ON;
787 del_timer(&rtc_irq_timer);
788 }
789 spin_unlock_irq(&rtc_lock);
790
791 if (file->f_flags & FASYNC)
792 rtc_fasync(-1, file, 0);
793 no_irq:
794 #endif
795
796 spin_lock_irq(&rtc_lock);
797 rtc_irq_data = 0;
798 rtc_status &= ~RTC_IS_OPEN;
799 spin_unlock_irq(&rtc_lock);
800
801 return 0;
802 }
803
804 #ifdef RTC_IRQ
805 /* Called without the kernel lock - fine */
806 static unsigned int rtc_poll(struct file *file, poll_table *wait)
807 {
808 unsigned long l;
809
810 if (rtc_has_irq == 0)
811 return 0;
812
813 poll_wait(file, &rtc_wait, wait);
814
815 spin_lock_irq(&rtc_lock);
816 l = rtc_irq_data;
817 spin_unlock_irq(&rtc_lock);
818
819 if (l != 0)
820 return POLLIN | POLLRDNORM;
821 return 0;
822 }
823 #endif
824
825 int rtc_register(rtc_task_t *task)
826 {
827 #ifndef RTC_IRQ
828 return -EIO;
829 #else
830 if (task == NULL || task->func == NULL)
831 return -EINVAL;
832 spin_lock_irq(&rtc_lock);
833 if (rtc_status & RTC_IS_OPEN) {
834 spin_unlock_irq(&rtc_lock);
835 return -EBUSY;
836 }
837 spin_lock(&rtc_task_lock);
838 if (rtc_callback) {
839 spin_unlock(&rtc_task_lock);
840 spin_unlock_irq(&rtc_lock);
841 return -EBUSY;
842 }
843 rtc_status |= RTC_IS_OPEN;
844 rtc_callback = task;
845 spin_unlock(&rtc_task_lock);
846 spin_unlock_irq(&rtc_lock);
847 return 0;
848 #endif
849 }
850 EXPORT_SYMBOL(rtc_register);
851
852 int rtc_unregister(rtc_task_t *task)
853 {
854 #ifndef RTC_IRQ
855 return -EIO;
856 #else
857 unsigned char tmp;
858
859 spin_lock_irq(&rtc_lock);
860 spin_lock(&rtc_task_lock);
861 if (rtc_callback != task) {
862 spin_unlock(&rtc_task_lock);
863 spin_unlock_irq(&rtc_lock);
864 return -ENXIO;
865 }
866 rtc_callback = NULL;
867
868 /* disable controls */
869 if (!hpet_mask_rtc_irq_bit(RTC_PIE | RTC_AIE | RTC_UIE)) {
870 tmp = CMOS_READ(RTC_CONTROL);
871 tmp &= ~RTC_PIE;
872 tmp &= ~RTC_AIE;
873 tmp &= ~RTC_UIE;
874 CMOS_WRITE(tmp, RTC_CONTROL);
875 CMOS_READ(RTC_INTR_FLAGS);
876 }
877 if (rtc_status & RTC_TIMER_ON) {
878 rtc_status &= ~RTC_TIMER_ON;
879 del_timer(&rtc_irq_timer);
880 }
881 rtc_status &= ~RTC_IS_OPEN;
882 spin_unlock(&rtc_task_lock);
883 spin_unlock_irq(&rtc_lock);
884 return 0;
885 #endif
886 }
887 EXPORT_SYMBOL(rtc_unregister);
888
889 int rtc_control(rtc_task_t *task, unsigned int cmd, unsigned long arg)
890 {
891 #ifndef RTC_IRQ
892 return -EIO;
893 #else
894 unsigned long flags;
895 if (cmd != RTC_PIE_ON && cmd != RTC_PIE_OFF && cmd != RTC_IRQP_SET)
896 return -EINVAL;
897 spin_lock_irqsave(&rtc_task_lock, flags);
898 if (rtc_callback != task) {
899 spin_unlock_irqrestore(&rtc_task_lock, flags);
900 return -ENXIO;
901 }
902 spin_unlock_irqrestore(&rtc_task_lock, flags);
903 return rtc_do_ioctl(cmd, arg, 1);
904 #endif
905 }
906 EXPORT_SYMBOL(rtc_control);
907
908 /*
909 * The various file operations we support.
910 */
911
912 static const struct file_operations rtc_fops = {
913 .owner = THIS_MODULE,
914 .llseek = no_llseek,
915 .read = rtc_read,
916 #ifdef RTC_IRQ
917 .poll = rtc_poll,
918 #endif
919 .unlocked_ioctl = rtc_ioctl,
920 .open = rtc_open,
921 .release = rtc_release,
922 .fasync = rtc_fasync,
923 };
924
925 static struct miscdevice rtc_dev = {
926 .minor = RTC_MINOR,
927 .name = "rtc",
928 .fops = &rtc_fops,
929 };
930
931 #ifdef CONFIG_PROC_FS
932 static const struct file_operations rtc_proc_fops = {
933 .owner = THIS_MODULE,
934 .open = rtc_proc_open,
935 .read = seq_read,
936 .llseek = seq_lseek,
937 .release = single_release,
938 };
939 #endif
940
941 static resource_size_t rtc_size;
942
943 static struct resource * __init rtc_request_region(resource_size_t size)
944 {
945 struct resource *r;
946
947 if (RTC_IOMAPPED)
948 r = request_region(RTC_PORT(0), size, "rtc");
949 else
950 r = request_mem_region(RTC_PORT(0), size, "rtc");
951
952 if (r)
953 rtc_size = size;
954
955 return r;
956 }
957
958 static void rtc_release_region(void)
959 {
960 if (RTC_IOMAPPED)
961 release_region(RTC_PORT(0), rtc_size);
962 else
963 release_mem_region(RTC_PORT(0), rtc_size);
964 }
965
966 static int __init rtc_init(void)
967 {
968 #ifdef CONFIG_PROC_FS
969 struct proc_dir_entry *ent;
970 #endif
971 #if defined(__alpha__) || defined(__mips__)
972 unsigned int year, ctrl;
973 char *guess = NULL;
974 #endif
975 #ifdef CONFIG_SPARC32
976 struct linux_ebus *ebus;
977 struct linux_ebus_device *edev;
978 #else
979 void *r;
980 #ifdef RTC_IRQ
981 irq_handler_t rtc_int_handler_ptr;
982 #endif
983 #endif
984
985 #ifdef CONFIG_SPARC32
986 for_each_ebus(ebus) {
987 for_each_ebusdev(edev, ebus) {
988 if (strcmp(edev->prom_node->name, "rtc") == 0) {
989 rtc_port = edev->resource[0].start;
990 rtc_irq = edev->irqs[0];
991 goto found;
992 }
993 }
994 }
995 rtc_has_irq = 0;
996 printk(KERN_ERR "rtc_init: no PC rtc found\n");
997 return -EIO;
998
999 found:
1000 if (rtc_irq == PCI_IRQ_NONE) {
1001 rtc_has_irq = 0;
1002 goto no_irq;
1003 }
1004
1005 /*
1006 * XXX Interrupt pin #7 in Espresso is shared between RTC and
1007 * PCI Slot 2 INTA# (and some INTx# in Slot 1).
1008 */
1009 if (request_irq(rtc_irq, rtc_interrupt, IRQF_SHARED, "rtc",
1010 (void *)&rtc_port)) {
1011 rtc_has_irq = 0;
1012 printk(KERN_ERR "rtc: cannot register IRQ %d\n", rtc_irq);
1013 return -EIO;
1014 }
1015 no_irq:
1016 #else
1017 r = rtc_request_region(RTC_IO_EXTENT);
1018
1019 /*
1020 * If we've already requested a smaller range (for example, because
1021 * PNPBIOS or ACPI told us how the device is configured), the request
1022 * above might fail because it's too big.
1023 *
1024 * If so, request just the range we actually use.
1025 */
1026 if (!r)
1027 r = rtc_request_region(RTC_IO_EXTENT_USED);
1028 if (!r) {
1029 #ifdef RTC_IRQ
1030 rtc_has_irq = 0;
1031 #endif
1032 printk(KERN_ERR "rtc: I/O resource %lx is not free.\n",
1033 (long)(RTC_PORT(0)));
1034 return -EIO;
1035 }
1036
1037 #ifdef RTC_IRQ
1038 if (is_hpet_enabled()) {
1039 int err;
1040
1041 rtc_int_handler_ptr = hpet_rtc_interrupt;
1042 err = hpet_register_irq_handler(rtc_interrupt);
1043 if (err != 0) {
1044 printk(KERN_WARNING "hpet_register_irq_handler failed "
1045 "in rtc_init().");
1046 return err;
1047 }
1048 } else {
1049 rtc_int_handler_ptr = rtc_interrupt;
1050 }
1051
1052 if (request_irq(RTC_IRQ, rtc_int_handler_ptr, IRQF_DISABLED,
1053 "rtc", NULL)) {
1054 /* Yeah right, seeing as irq 8 doesn't even hit the bus. */
1055 rtc_has_irq = 0;
1056 printk(KERN_ERR "rtc: IRQ %d is not free.\n", RTC_IRQ);
1057 rtc_release_region();
1058
1059 return -EIO;
1060 }
1061 hpet_rtc_timer_init();
1062
1063 #endif
1064
1065 #endif /* CONFIG_SPARC32 vs. others */
1066
1067 if (misc_register(&rtc_dev)) {
1068 #ifdef RTC_IRQ
1069 free_irq(RTC_IRQ, NULL);
1070 hpet_unregister_irq_handler(rtc_interrupt);
1071 rtc_has_irq = 0;
1072 #endif
1073 rtc_release_region();
1074 return -ENODEV;
1075 }
1076
1077 #ifdef CONFIG_PROC_FS
1078 ent = proc_create("driver/rtc", 0, NULL, &rtc_proc_fops);
1079 if (!ent)
1080 printk(KERN_WARNING "rtc: Failed to register with procfs.\n");
1081 #endif
1082
1083 #if defined(__alpha__) || defined(__mips__)
1084 rtc_freq = HZ;
1085
1086 /* Each operating system on an Alpha uses its own epoch.
1087 Let's try to guess which one we are using now. */
1088
1089 if (rtc_is_updating() != 0)
1090 msleep(20);
1091
1092 spin_lock_irq(&rtc_lock);
1093 year = CMOS_READ(RTC_YEAR);
1094 ctrl = CMOS_READ(RTC_CONTROL);
1095 spin_unlock_irq(&rtc_lock);
1096
1097 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1098 BCD_TO_BIN(year); /* This should never happen... */
1099
1100 if (year < 20) {
1101 epoch = 2000;
1102 guess = "SRM (post-2000)";
1103 } else if (year >= 20 && year < 48) {
1104 epoch = 1980;
1105 guess = "ARC console";
1106 } else if (year >= 48 && year < 72) {
1107 epoch = 1952;
1108 guess = "Digital UNIX";
1109 #if defined(__mips__)
1110 } else if (year >= 72 && year < 74) {
1111 epoch = 2000;
1112 guess = "Digital DECstation";
1113 #else
1114 } else if (year >= 70) {
1115 epoch = 1900;
1116 guess = "Standard PC (1900)";
1117 #endif
1118 }
1119 if (guess)
1120 printk(KERN_INFO "rtc: %s epoch (%lu) detected\n",
1121 guess, epoch);
1122 #endif
1123 #ifdef RTC_IRQ
1124 if (rtc_has_irq == 0)
1125 goto no_irq2;
1126
1127 spin_lock_irq(&rtc_lock);
1128 rtc_freq = 1024;
1129 if (!hpet_set_periodic_freq(rtc_freq)) {
1130 /*
1131 * Initialize periodic frequency to CMOS reset default,
1132 * which is 1024Hz
1133 */
1134 CMOS_WRITE(((CMOS_READ(RTC_FREQ_SELECT) & 0xF0) | 0x06),
1135 RTC_FREQ_SELECT);
1136 }
1137 spin_unlock_irq(&rtc_lock);
1138 no_irq2:
1139 #endif
1140
1141 (void) init_sysctl();
1142
1143 printk(KERN_INFO "Real Time Clock Driver v" RTC_VERSION "\n");
1144
1145 return 0;
1146 }
1147
1148 static void __exit rtc_exit(void)
1149 {
1150 cleanup_sysctl();
1151 remove_proc_entry("driver/rtc", NULL);
1152 misc_deregister(&rtc_dev);
1153
1154 #ifdef CONFIG_SPARC32
1155 if (rtc_has_irq)
1156 free_irq(rtc_irq, &rtc_port);
1157 #else
1158 rtc_release_region();
1159 #ifdef RTC_IRQ
1160 if (rtc_has_irq) {
1161 free_irq(RTC_IRQ, NULL);
1162 hpet_unregister_irq_handler(hpet_rtc_interrupt);
1163 }
1164 #endif
1165 #endif /* CONFIG_SPARC32 */
1166 }
1167
1168 module_init(rtc_init);
1169 module_exit(rtc_exit);
1170
1171 #ifdef RTC_IRQ
1172 /*
1173 * At IRQ rates >= 4096Hz, an interrupt may get lost altogether.
1174 * (usually during an IDE disk interrupt, with IRQ unmasking off)
1175 * Since the interrupt handler doesn't get called, the IRQ status
1176 * byte doesn't get read, and the RTC stops generating interrupts.
1177 * A timer is set, and will call this function if/when that happens.
1178 * To get it out of this stalled state, we just read the status.
1179 * At least a jiffy of interrupts (rtc_freq/HZ) will have been lost.
1180 * (You *really* shouldn't be trying to use a non-realtime system
1181 * for something that requires a steady > 1KHz signal anyways.)
1182 */
1183
1184 static void rtc_dropped_irq(unsigned long data)
1185 {
1186 unsigned long freq;
1187
1188 spin_lock_irq(&rtc_lock);
1189
1190 if (hpet_rtc_dropped_irq()) {
1191 spin_unlock_irq(&rtc_lock);
1192 return;
1193 }
1194
1195 /* Just in case someone disabled the timer from behind our back... */
1196 if (rtc_status & RTC_TIMER_ON)
1197 mod_timer(&rtc_irq_timer, jiffies + HZ/rtc_freq + 2*HZ/100);
1198
1199 rtc_irq_data += ((rtc_freq/HZ)<<8);
1200 rtc_irq_data &= ~0xff;
1201 rtc_irq_data |= (CMOS_READ(RTC_INTR_FLAGS) & 0xF0); /* restart */
1202
1203 freq = rtc_freq;
1204
1205 spin_unlock_irq(&rtc_lock);
1206
1207 if (printk_ratelimit()) {
1208 printk(KERN_WARNING "rtc: lost some interrupts at %ldHz.\n",
1209 freq);
1210 }
1211
1212 /* Now we have new data */
1213 wake_up_interruptible(&rtc_wait);
1214
1215 kill_fasync(&rtc_async_queue, SIGIO, POLL_IN);
1216 }
1217 #endif
1218
1219 #ifdef CONFIG_PROC_FS
1220 /*
1221 * Info exported via "/proc/driver/rtc".
1222 */
1223
1224 static int rtc_proc_show(struct seq_file *seq, void *v)
1225 {
1226 #define YN(bit) ((ctrl & bit) ? "yes" : "no")
1227 #define NY(bit) ((ctrl & bit) ? "no" : "yes")
1228 struct rtc_time tm;
1229 unsigned char batt, ctrl;
1230 unsigned long freq;
1231
1232 spin_lock_irq(&rtc_lock);
1233 batt = CMOS_READ(RTC_VALID) & RTC_VRT;
1234 ctrl = CMOS_READ(RTC_CONTROL);
1235 freq = rtc_freq;
1236 spin_unlock_irq(&rtc_lock);
1237
1238
1239 rtc_get_rtc_time(&tm);
1240
1241 /*
1242 * There is no way to tell if the luser has the RTC set for local
1243 * time or for Universal Standard Time (GMT). Probably local though.
1244 */
1245 seq_printf(seq,
1246 "rtc_time\t: %02d:%02d:%02d\n"
1247 "rtc_date\t: %04d-%02d-%02d\n"
1248 "rtc_epoch\t: %04lu\n",
1249 tm.tm_hour, tm.tm_min, tm.tm_sec,
1250 tm.tm_year + 1900, tm.tm_mon + 1, tm.tm_mday, epoch);
1251
1252 get_rtc_alm_time(&tm);
1253
1254 /*
1255 * We implicitly assume 24hr mode here. Alarm values >= 0xc0 will
1256 * match any value for that particular field. Values that are
1257 * greater than a valid time, but less than 0xc0 shouldn't appear.
1258 */
1259 seq_puts(seq, "alarm\t\t: ");
1260 if (tm.tm_hour <= 24)
1261 seq_printf(seq, "%02d:", tm.tm_hour);
1262 else
1263 seq_puts(seq, "**:");
1264
1265 if (tm.tm_min <= 59)
1266 seq_printf(seq, "%02d:", tm.tm_min);
1267 else
1268 seq_puts(seq, "**:");
1269
1270 if (tm.tm_sec <= 59)
1271 seq_printf(seq, "%02d\n", tm.tm_sec);
1272 else
1273 seq_puts(seq, "**\n");
1274
1275 seq_printf(seq,
1276 "DST_enable\t: %s\n"
1277 "BCD\t\t: %s\n"
1278 "24hr\t\t: %s\n"
1279 "square_wave\t: %s\n"
1280 "alarm_IRQ\t: %s\n"
1281 "update_IRQ\t: %s\n"
1282 "periodic_IRQ\t: %s\n"
1283 "periodic_freq\t: %ld\n"
1284 "batt_status\t: %s\n",
1285 YN(RTC_DST_EN),
1286 NY(RTC_DM_BINARY),
1287 YN(RTC_24H),
1288 YN(RTC_SQWE),
1289 YN(RTC_AIE),
1290 YN(RTC_UIE),
1291 YN(RTC_PIE),
1292 freq,
1293 batt ? "okay" : "dead");
1294
1295 return 0;
1296 #undef YN
1297 #undef NY
1298 }
1299
1300 static int rtc_proc_open(struct inode *inode, struct file *file)
1301 {
1302 return single_open(file, rtc_proc_show, NULL);
1303 }
1304 #endif
1305
1306 static void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1307 {
1308 unsigned long uip_watchdog = jiffies, flags;
1309 unsigned char ctrl;
1310 #ifdef CONFIG_MACH_DECSTATION
1311 unsigned int real_year;
1312 #endif
1313
1314 /*
1315 * read RTC once any update in progress is done. The update
1316 * can take just over 2ms. We wait 20ms. There is no need to
1317 * to poll-wait (up to 1s - eeccch) for the falling edge of RTC_UIP.
1318 * If you need to know *exactly* when a second has started, enable
1319 * periodic update complete interrupts, (via ioctl) and then
1320 * immediately read /dev/rtc which will block until you get the IRQ.
1321 * Once the read clears, read the RTC time (again via ioctl). Easy.
1322 */
1323
1324 while (rtc_is_updating() != 0 &&
1325 time_before(jiffies, uip_watchdog + 2*HZ/100))
1326 cpu_relax();
1327
1328 /*
1329 * Only the values that we read from the RTC are set. We leave
1330 * tm_wday, tm_yday and tm_isdst untouched. Note that while the
1331 * RTC has RTC_DAY_OF_WEEK, we should usually ignore it, as it is
1332 * only updated by the RTC when initially set to a non-zero value.
1333 */
1334 spin_lock_irqsave(&rtc_lock, flags);
1335 rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1336 rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1337 rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1338 rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1339 rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1340 rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1341 /* Only set from 2.6.16 onwards */
1342 rtc_tm->tm_wday = CMOS_READ(RTC_DAY_OF_WEEK);
1343
1344 #ifdef CONFIG_MACH_DECSTATION
1345 real_year = CMOS_READ(RTC_DEC_YEAR);
1346 #endif
1347 ctrl = CMOS_READ(RTC_CONTROL);
1348 spin_unlock_irqrestore(&rtc_lock, flags);
1349
1350 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1351 BCD_TO_BIN(rtc_tm->tm_sec);
1352 BCD_TO_BIN(rtc_tm->tm_min);
1353 BCD_TO_BIN(rtc_tm->tm_hour);
1354 BCD_TO_BIN(rtc_tm->tm_mday);
1355 BCD_TO_BIN(rtc_tm->tm_mon);
1356 BCD_TO_BIN(rtc_tm->tm_year);
1357 BCD_TO_BIN(rtc_tm->tm_wday);
1358 }
1359
1360 #ifdef CONFIG_MACH_DECSTATION
1361 rtc_tm->tm_year += real_year - 72;
1362 #endif
1363
1364 /*
1365 * Account for differences between how the RTC uses the values
1366 * and how they are defined in a struct rtc_time;
1367 */
1368 rtc_tm->tm_year += epoch - 1900;
1369 if (rtc_tm->tm_year <= 69)
1370 rtc_tm->tm_year += 100;
1371
1372 rtc_tm->tm_mon--;
1373 }
1374
1375 static void get_rtc_alm_time(struct rtc_time *alm_tm)
1376 {
1377 unsigned char ctrl;
1378
1379 /*
1380 * Only the values that we read from the RTC are set. That
1381 * means only tm_hour, tm_min, and tm_sec.
1382 */
1383 spin_lock_irq(&rtc_lock);
1384 alm_tm->tm_sec = CMOS_READ(RTC_SECONDS_ALARM);
1385 alm_tm->tm_min = CMOS_READ(RTC_MINUTES_ALARM);
1386 alm_tm->tm_hour = CMOS_READ(RTC_HOURS_ALARM);
1387 ctrl = CMOS_READ(RTC_CONTROL);
1388 spin_unlock_irq(&rtc_lock);
1389
1390 if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD) {
1391 BCD_TO_BIN(alm_tm->tm_sec);
1392 BCD_TO_BIN(alm_tm->tm_min);
1393 BCD_TO_BIN(alm_tm->tm_hour);
1394 }
1395 }
1396
1397 #ifdef RTC_IRQ
1398 /*
1399 * Used to disable/enable interrupts for any one of UIE, AIE, PIE.
1400 * Rumour has it that if you frob the interrupt enable/disable
1401 * bits in RTC_CONTROL, you should read RTC_INTR_FLAGS, to
1402 * ensure you actually start getting interrupts. Probably for
1403 * compatibility with older/broken chipset RTC implementations.
1404 * We also clear out any old irq data after an ioctl() that
1405 * meddles with the interrupt enable/disable bits.
1406 */
1407
1408 static void mask_rtc_irq_bit_locked(unsigned char bit)
1409 {
1410 unsigned char val;
1411
1412 if (hpet_mask_rtc_irq_bit(bit))
1413 return;
1414 val = CMOS_READ(RTC_CONTROL);
1415 val &= ~bit;
1416 CMOS_WRITE(val, RTC_CONTROL);
1417 CMOS_READ(RTC_INTR_FLAGS);
1418
1419 rtc_irq_data = 0;
1420 }
1421
1422 static void set_rtc_irq_bit_locked(unsigned char bit)
1423 {
1424 unsigned char val;
1425
1426 if (hpet_set_rtc_irq_bit(bit))
1427 return;
1428 val = CMOS_READ(RTC_CONTROL);
1429 val |= bit;
1430 CMOS_WRITE(val, RTC_CONTROL);
1431 CMOS_READ(RTC_INTR_FLAGS);
1432
1433 rtc_irq_data = 0;
1434 }
1435 #endif
1436
1437 MODULE_AUTHOR("Paul Gortmaker");
1438 MODULE_LICENSE("GPL");
1439 MODULE_ALIAS_MISCDEV(RTC_MINOR);