Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/penberg...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / char / rocket.c
1 /*
2 * RocketPort device driver for Linux
3 *
4 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000.
5 *
6 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of the
11 * License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 /*
24 * Kernel Synchronization:
25 *
26 * This driver has 2 kernel control paths - exception handlers (calls into the driver
27 * from user mode) and the timer bottom half (tasklet). This is a polled driver, interrupts
28 * are not used.
29 *
30 * Critical data:
31 * - rp_table[], accessed through passed "info" pointers, is a global (static) array of
32 * serial port state information and the xmit_buf circular buffer. Protected by
33 * a per port spinlock.
34 * - xmit_flags[], an array of ints indexed by line (port) number, indicating that there
35 * is data to be transmitted. Protected by atomic bit operations.
36 * - rp_num_ports, int indicating number of open ports, protected by atomic operations.
37 *
38 * rp_write() and rp_write_char() functions use a per port semaphore to protect against
39 * simultaneous access to the same port by more than one process.
40 */
41
42 /****** Defines ******/
43 #define ROCKET_PARANOIA_CHECK
44 #define ROCKET_DISABLE_SIMUSAGE
45
46 #undef ROCKET_SOFT_FLOW
47 #undef ROCKET_DEBUG_OPEN
48 #undef ROCKET_DEBUG_INTR
49 #undef ROCKET_DEBUG_WRITE
50 #undef ROCKET_DEBUG_FLOW
51 #undef ROCKET_DEBUG_THROTTLE
52 #undef ROCKET_DEBUG_WAIT_UNTIL_SENT
53 #undef ROCKET_DEBUG_RECEIVE
54 #undef ROCKET_DEBUG_HANGUP
55 #undef REV_PCI_ORDER
56 #undef ROCKET_DEBUG_IO
57
58 #define POLL_PERIOD HZ/100 /* Polling period .01 seconds (10ms) */
59
60 /****** Kernel includes ******/
61
62 #include <linux/module.h>
63 #include <linux/errno.h>
64 #include <linux/major.h>
65 #include <linux/kernel.h>
66 #include <linux/signal.h>
67 #include <linux/slab.h>
68 #include <linux/mm.h>
69 #include <linux/sched.h>
70 #include <linux/timer.h>
71 #include <linux/interrupt.h>
72 #include <linux/tty.h>
73 #include <linux/tty_driver.h>
74 #include <linux/tty_flip.h>
75 #include <linux/serial.h>
76 #include <linux/string.h>
77 #include <linux/fcntl.h>
78 #include <linux/ptrace.h>
79 #include <linux/mutex.h>
80 #include <linux/ioport.h>
81 #include <linux/delay.h>
82 #include <linux/completion.h>
83 #include <linux/wait.h>
84 #include <linux/pci.h>
85 #include <linux/uaccess.h>
86 #include <asm/atomic.h>
87 #include <asm/unaligned.h>
88 #include <linux/bitops.h>
89 #include <linux/spinlock.h>
90 #include <linux/init.h>
91
92 /****** RocketPort includes ******/
93
94 #include "rocket_int.h"
95 #include "rocket.h"
96
97 #define ROCKET_VERSION "2.09"
98 #define ROCKET_DATE "12-June-2003"
99
100 /****** RocketPort Local Variables ******/
101
102 static void rp_do_poll(unsigned long dummy);
103
104 static struct tty_driver *rocket_driver;
105
106 static struct rocket_version driver_version = {
107 ROCKET_VERSION, ROCKET_DATE
108 };
109
110 static struct r_port *rp_table[MAX_RP_PORTS]; /* The main repository of serial port state information. */
111 static unsigned int xmit_flags[NUM_BOARDS]; /* Bit significant, indicates port had data to transmit. */
112 /* eg. Bit 0 indicates port 0 has xmit data, ... */
113 static atomic_t rp_num_ports_open; /* Number of serial ports open */
114 static DEFINE_TIMER(rocket_timer, rp_do_poll, 0, 0);
115
116 static unsigned long board1; /* ISA addresses, retrieved from rocketport.conf */
117 static unsigned long board2;
118 static unsigned long board3;
119 static unsigned long board4;
120 static unsigned long controller;
121 static int support_low_speed;
122 static unsigned long modem1;
123 static unsigned long modem2;
124 static unsigned long modem3;
125 static unsigned long modem4;
126 static unsigned long pc104_1[8];
127 static unsigned long pc104_2[8];
128 static unsigned long pc104_3[8];
129 static unsigned long pc104_4[8];
130 static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 };
131
132 static int rp_baud_base[NUM_BOARDS]; /* Board config info (Someday make a per-board structure) */
133 static unsigned long rcktpt_io_addr[NUM_BOARDS];
134 static int rcktpt_type[NUM_BOARDS];
135 static int is_PCI[NUM_BOARDS];
136 static rocketModel_t rocketModel[NUM_BOARDS];
137 static int max_board;
138
139 /*
140 * The following arrays define the interrupt bits corresponding to each AIOP.
141 * These bits are different between the ISA and regular PCI boards and the
142 * Universal PCI boards.
143 */
144
145 static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = {
146 AIOP_INTR_BIT_0,
147 AIOP_INTR_BIT_1,
148 AIOP_INTR_BIT_2,
149 AIOP_INTR_BIT_3
150 };
151
152 static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = {
153 UPCI_AIOP_INTR_BIT_0,
154 UPCI_AIOP_INTR_BIT_1,
155 UPCI_AIOP_INTR_BIT_2,
156 UPCI_AIOP_INTR_BIT_3
157 };
158
159 static Byte_t RData[RDATASIZE] = {
160 0x00, 0x09, 0xf6, 0x82,
161 0x02, 0x09, 0x86, 0xfb,
162 0x04, 0x09, 0x00, 0x0a,
163 0x06, 0x09, 0x01, 0x0a,
164 0x08, 0x09, 0x8a, 0x13,
165 0x0a, 0x09, 0xc5, 0x11,
166 0x0c, 0x09, 0x86, 0x85,
167 0x0e, 0x09, 0x20, 0x0a,
168 0x10, 0x09, 0x21, 0x0a,
169 0x12, 0x09, 0x41, 0xff,
170 0x14, 0x09, 0x82, 0x00,
171 0x16, 0x09, 0x82, 0x7b,
172 0x18, 0x09, 0x8a, 0x7d,
173 0x1a, 0x09, 0x88, 0x81,
174 0x1c, 0x09, 0x86, 0x7a,
175 0x1e, 0x09, 0x84, 0x81,
176 0x20, 0x09, 0x82, 0x7c,
177 0x22, 0x09, 0x0a, 0x0a
178 };
179
180 static Byte_t RRegData[RREGDATASIZE] = {
181 0x00, 0x09, 0xf6, 0x82, /* 00: Stop Rx processor */
182 0x08, 0x09, 0x8a, 0x13, /* 04: Tx software flow control */
183 0x0a, 0x09, 0xc5, 0x11, /* 08: XON char */
184 0x0c, 0x09, 0x86, 0x85, /* 0c: XANY */
185 0x12, 0x09, 0x41, 0xff, /* 10: Rx mask char */
186 0x14, 0x09, 0x82, 0x00, /* 14: Compare/Ignore #0 */
187 0x16, 0x09, 0x82, 0x7b, /* 18: Compare #1 */
188 0x18, 0x09, 0x8a, 0x7d, /* 1c: Compare #2 */
189 0x1a, 0x09, 0x88, 0x81, /* 20: Interrupt #1 */
190 0x1c, 0x09, 0x86, 0x7a, /* 24: Ignore/Replace #1 */
191 0x1e, 0x09, 0x84, 0x81, /* 28: Interrupt #2 */
192 0x20, 0x09, 0x82, 0x7c, /* 2c: Ignore/Replace #2 */
193 0x22, 0x09, 0x0a, 0x0a /* 30: Rx FIFO Enable */
194 };
195
196 static CONTROLLER_T sController[CTL_SIZE] = {
197 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
198 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
199 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
200 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
201 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
202 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
203 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
204 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}
205 };
206
207 static Byte_t sBitMapClrTbl[8] = {
208 0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f
209 };
210
211 static Byte_t sBitMapSetTbl[8] = {
212 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80
213 };
214
215 static int sClockPrescale = 0x14;
216
217 /*
218 * Line number is the ttySIx number (x), the Minor number. We
219 * assign them sequentially, starting at zero. The following
220 * array keeps track of the line number assigned to a given board/aiop/channel.
221 */
222 static unsigned char lineNumbers[MAX_RP_PORTS];
223 static unsigned long nextLineNumber;
224
225 /***** RocketPort Static Prototypes *********/
226 static int __init init_ISA(int i);
227 static void rp_wait_until_sent(struct tty_struct *tty, int timeout);
228 static void rp_flush_buffer(struct tty_struct *tty);
229 static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model);
230 static unsigned char GetLineNumber(int ctrl, int aiop, int ch);
231 static unsigned char SetLineNumber(int ctrl, int aiop, int ch);
232 static void rp_start(struct tty_struct *tty);
233 static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
234 int ChanNum);
235 static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode);
236 static void sFlushRxFIFO(CHANNEL_T * ChP);
237 static void sFlushTxFIFO(CHANNEL_T * ChP);
238 static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags);
239 static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags);
240 static void sModemReset(CONTROLLER_T * CtlP, int chan, int on);
241 static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on);
242 static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data);
243 static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
244 ByteIO_t * AiopIOList, int AiopIOListSize,
245 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
246 int PeriodicOnly, int altChanRingIndicator,
247 int UPCIRingInd);
248 static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
249 ByteIO_t * AiopIOList, int AiopIOListSize,
250 int IRQNum, Byte_t Frequency, int PeriodicOnly);
251 static int sReadAiopID(ByteIO_t io);
252 static int sReadAiopNumChan(WordIO_t io);
253
254 MODULE_AUTHOR("Theodore Ts'o");
255 MODULE_DESCRIPTION("Comtrol RocketPort driver");
256 module_param(board1, ulong, 0);
257 MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1");
258 module_param(board2, ulong, 0);
259 MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2");
260 module_param(board3, ulong, 0);
261 MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3");
262 module_param(board4, ulong, 0);
263 MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4");
264 module_param(controller, ulong, 0);
265 MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller");
266 module_param(support_low_speed, bool, 0);
267 MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud");
268 module_param(modem1, ulong, 0);
269 MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem");
270 module_param(modem2, ulong, 0);
271 MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem");
272 module_param(modem3, ulong, 0);
273 MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem");
274 module_param(modem4, ulong, 0);
275 MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem");
276 module_param_array(pc104_1, ulong, NULL, 0);
277 MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,...");
278 module_param_array(pc104_2, ulong, NULL, 0);
279 MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,...");
280 module_param_array(pc104_3, ulong, NULL, 0);
281 MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,...");
282 module_param_array(pc104_4, ulong, NULL, 0);
283 MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,...");
284
285 static int rp_init(void);
286 static void rp_cleanup_module(void);
287
288 module_init(rp_init);
289 module_exit(rp_cleanup_module);
290
291
292 MODULE_LICENSE("Dual BSD/GPL");
293
294 /*************************************************************************/
295 /* Module code starts here */
296
297 static inline int rocket_paranoia_check(struct r_port *info,
298 const char *routine)
299 {
300 #ifdef ROCKET_PARANOIA_CHECK
301 if (!info)
302 return 1;
303 if (info->magic != RPORT_MAGIC) {
304 printk(KERN_WARNING "Warning: bad magic number for rocketport "
305 "struct in %s\n", routine);
306 return 1;
307 }
308 #endif
309 return 0;
310 }
311
312
313 /* Serial port receive data function. Called (from timer poll) when an AIOPIC signals
314 * that receive data is present on a serial port. Pulls data from FIFO, moves it into the
315 * tty layer.
316 */
317 static void rp_do_receive(struct r_port *info,
318 struct tty_struct *tty,
319 CHANNEL_t * cp, unsigned int ChanStatus)
320 {
321 unsigned int CharNStat;
322 int ToRecv, wRecv, space;
323 unsigned char *cbuf;
324
325 ToRecv = sGetRxCnt(cp);
326 #ifdef ROCKET_DEBUG_INTR
327 printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv);
328 #endif
329 if (ToRecv == 0)
330 return;
331
332 /*
333 * if status indicates there are errored characters in the
334 * FIFO, then enter status mode (a word in FIFO holds
335 * character and status).
336 */
337 if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) {
338 if (!(ChanStatus & STATMODE)) {
339 #ifdef ROCKET_DEBUG_RECEIVE
340 printk(KERN_INFO "Entering STATMODE...\n");
341 #endif
342 ChanStatus |= STATMODE;
343 sEnRxStatusMode(cp);
344 }
345 }
346
347 /*
348 * if we previously entered status mode, then read down the
349 * FIFO one word at a time, pulling apart the character and
350 * the status. Update error counters depending on status
351 */
352 if (ChanStatus & STATMODE) {
353 #ifdef ROCKET_DEBUG_RECEIVE
354 printk(KERN_INFO "Ignore %x, read %x...\n",
355 info->ignore_status_mask, info->read_status_mask);
356 #endif
357 while (ToRecv) {
358 char flag;
359
360 CharNStat = sInW(sGetTxRxDataIO(cp));
361 #ifdef ROCKET_DEBUG_RECEIVE
362 printk(KERN_INFO "%x...\n", CharNStat);
363 #endif
364 if (CharNStat & STMBREAKH)
365 CharNStat &= ~(STMFRAMEH | STMPARITYH);
366 if (CharNStat & info->ignore_status_mask) {
367 ToRecv--;
368 continue;
369 }
370 CharNStat &= info->read_status_mask;
371 if (CharNStat & STMBREAKH)
372 flag = TTY_BREAK;
373 else if (CharNStat & STMPARITYH)
374 flag = TTY_PARITY;
375 else if (CharNStat & STMFRAMEH)
376 flag = TTY_FRAME;
377 else if (CharNStat & STMRCVROVRH)
378 flag = TTY_OVERRUN;
379 else
380 flag = TTY_NORMAL;
381 tty_insert_flip_char(tty, CharNStat & 0xff, flag);
382 ToRecv--;
383 }
384
385 /*
386 * after we've emptied the FIFO in status mode, turn
387 * status mode back off
388 */
389 if (sGetRxCnt(cp) == 0) {
390 #ifdef ROCKET_DEBUG_RECEIVE
391 printk(KERN_INFO "Status mode off.\n");
392 #endif
393 sDisRxStatusMode(cp);
394 }
395 } else {
396 /*
397 * we aren't in status mode, so read down the FIFO two
398 * characters at time by doing repeated word IO
399 * transfer.
400 */
401 space = tty_prepare_flip_string(tty, &cbuf, ToRecv);
402 if (space < ToRecv) {
403 #ifdef ROCKET_DEBUG_RECEIVE
404 printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space);
405 #endif
406 if (space <= 0)
407 return;
408 ToRecv = space;
409 }
410 wRecv = ToRecv >> 1;
411 if (wRecv)
412 sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv);
413 if (ToRecv & 1)
414 cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp));
415 }
416 /* Push the data up to the tty layer */
417 tty_flip_buffer_push(tty);
418 }
419
420 /*
421 * Serial port transmit data function. Called from the timer polling loop as a
422 * result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready
423 * to be sent out the serial port. Data is buffered in rp_table[line].xmit_buf, it is
424 * moved to the port's xmit FIFO. *info is critical data, protected by spinlocks.
425 */
426 static void rp_do_transmit(struct r_port *info)
427 {
428 int c;
429 CHANNEL_t *cp = &info->channel;
430 struct tty_struct *tty;
431 unsigned long flags;
432
433 #ifdef ROCKET_DEBUG_INTR
434 printk(KERN_DEBUG "%s\n", __func__);
435 #endif
436 if (!info)
437 return;
438 if (!info->port.tty) {
439 printk(KERN_WARNING "rp: WARNING %s called with "
440 "info->port.tty==NULL\n", __func__);
441 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
442 return;
443 }
444
445 spin_lock_irqsave(&info->slock, flags);
446 tty = info->port.tty;
447 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
448
449 /* Loop sending data to FIFO until done or FIFO full */
450 while (1) {
451 if (tty->stopped || tty->hw_stopped)
452 break;
453 c = min(info->xmit_fifo_room, info->xmit_cnt);
454 c = min(c, XMIT_BUF_SIZE - info->xmit_tail);
455 if (c <= 0 || info->xmit_fifo_room <= 0)
456 break;
457 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2);
458 if (c & 1)
459 sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]);
460 info->xmit_tail += c;
461 info->xmit_tail &= XMIT_BUF_SIZE - 1;
462 info->xmit_cnt -= c;
463 info->xmit_fifo_room -= c;
464 #ifdef ROCKET_DEBUG_INTR
465 printk(KERN_INFO "tx %d chars...\n", c);
466 #endif
467 }
468
469 if (info->xmit_cnt == 0)
470 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
471
472 if (info->xmit_cnt < WAKEUP_CHARS) {
473 tty_wakeup(tty);
474 #ifdef ROCKETPORT_HAVE_POLL_WAIT
475 wake_up_interruptible(&tty->poll_wait);
476 #endif
477 }
478
479 spin_unlock_irqrestore(&info->slock, flags);
480
481 #ifdef ROCKET_DEBUG_INTR
482 printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head,
483 info->xmit_tail, info->xmit_fifo_room);
484 #endif
485 }
486
487 /*
488 * Called when a serial port signals it has read data in it's RX FIFO.
489 * It checks what interrupts are pending and services them, including
490 * receiving serial data.
491 */
492 static void rp_handle_port(struct r_port *info)
493 {
494 CHANNEL_t *cp;
495 struct tty_struct *tty;
496 unsigned int IntMask, ChanStatus;
497
498 if (!info)
499 return;
500
501 if ((info->flags & ROCKET_INITIALIZED) == 0) {
502 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
503 "info->flags & NOT_INIT\n");
504 return;
505 }
506 if (!info->port.tty) {
507 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
508 "info->port.tty==NULL\n");
509 return;
510 }
511 cp = &info->channel;
512 tty = info->port.tty;
513
514 IntMask = sGetChanIntID(cp) & info->intmask;
515 #ifdef ROCKET_DEBUG_INTR
516 printk(KERN_INFO "rp_interrupt %02x...\n", IntMask);
517 #endif
518 ChanStatus = sGetChanStatus(cp);
519 if (IntMask & RXF_TRIG) { /* Rx FIFO trigger level */
520 rp_do_receive(info, tty, cp, ChanStatus);
521 }
522 if (IntMask & DELTA_CD) { /* CD change */
523 #if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP))
524 printk(KERN_INFO "ttyR%d CD now %s...\n", info->line,
525 (ChanStatus & CD_ACT) ? "on" : "off");
526 #endif
527 if (!(ChanStatus & CD_ACT) && info->cd_status) {
528 #ifdef ROCKET_DEBUG_HANGUP
529 printk(KERN_INFO "CD drop, calling hangup.\n");
530 #endif
531 tty_hangup(tty);
532 }
533 info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0;
534 wake_up_interruptible(&info->port.open_wait);
535 }
536 #ifdef ROCKET_DEBUG_INTR
537 if (IntMask & DELTA_CTS) { /* CTS change */
538 printk(KERN_INFO "CTS change...\n");
539 }
540 if (IntMask & DELTA_DSR) { /* DSR change */
541 printk(KERN_INFO "DSR change...\n");
542 }
543 #endif
544 }
545
546 /*
547 * The top level polling routine. Repeats every 1/100 HZ (10ms).
548 */
549 static void rp_do_poll(unsigned long dummy)
550 {
551 CONTROLLER_t *ctlp;
552 int ctrl, aiop, ch, line;
553 unsigned int xmitmask, i;
554 unsigned int CtlMask;
555 unsigned char AiopMask;
556 Word_t bit;
557
558 /* Walk through all the boards (ctrl's) */
559 for (ctrl = 0; ctrl < max_board; ctrl++) {
560 if (rcktpt_io_addr[ctrl] <= 0)
561 continue;
562
563 /* Get a ptr to the board's control struct */
564 ctlp = sCtlNumToCtlPtr(ctrl);
565
566 /* Get the interrupt status from the board */
567 #ifdef CONFIG_PCI
568 if (ctlp->BusType == isPCI)
569 CtlMask = sPCIGetControllerIntStatus(ctlp);
570 else
571 #endif
572 CtlMask = sGetControllerIntStatus(ctlp);
573
574 /* Check if any AIOP read bits are set */
575 for (aiop = 0; CtlMask; aiop++) {
576 bit = ctlp->AiopIntrBits[aiop];
577 if (CtlMask & bit) {
578 CtlMask &= ~bit;
579 AiopMask = sGetAiopIntStatus(ctlp, aiop);
580
581 /* Check if any port read bits are set */
582 for (ch = 0; AiopMask; AiopMask >>= 1, ch++) {
583 if (AiopMask & 1) {
584
585 /* Get the line number (/dev/ttyRx number). */
586 /* Read the data from the port. */
587 line = GetLineNumber(ctrl, aiop, ch);
588 rp_handle_port(rp_table[line]);
589 }
590 }
591 }
592 }
593
594 xmitmask = xmit_flags[ctrl];
595
596 /*
597 * xmit_flags contains bit-significant flags, indicating there is data
598 * to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port
599 * 1, ... (32 total possible). The variable i has the aiop and ch
600 * numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc).
601 */
602 if (xmitmask) {
603 for (i = 0; i < rocketModel[ctrl].numPorts; i++) {
604 if (xmitmask & (1 << i)) {
605 aiop = (i & 0x18) >> 3;
606 ch = i & 0x07;
607 line = GetLineNumber(ctrl, aiop, ch);
608 rp_do_transmit(rp_table[line]);
609 }
610 }
611 }
612 }
613
614 /*
615 * Reset the timer so we get called at the next clock tick (10ms).
616 */
617 if (atomic_read(&rp_num_ports_open))
618 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
619 }
620
621 /*
622 * Initializes the r_port structure for a port, as well as enabling the port on
623 * the board.
624 * Inputs: board, aiop, chan numbers
625 */
626 static void init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev)
627 {
628 unsigned rocketMode;
629 struct r_port *info;
630 int line;
631 CONTROLLER_T *ctlp;
632
633 /* Get the next available line number */
634 line = SetLineNumber(board, aiop, chan);
635
636 ctlp = sCtlNumToCtlPtr(board);
637
638 /* Get a r_port struct for the port, fill it in and save it globally, indexed by line number */
639 info = kzalloc(sizeof (struct r_port), GFP_KERNEL);
640 if (!info) {
641 printk(KERN_ERR "Couldn't allocate info struct for line #%d\n",
642 line);
643 return;
644 }
645
646 info->magic = RPORT_MAGIC;
647 info->line = line;
648 info->ctlp = ctlp;
649 info->board = board;
650 info->aiop = aiop;
651 info->chan = chan;
652 info->port.closing_wait = 3000;
653 info->port.close_delay = 50;
654 init_waitqueue_head(&info->port.open_wait);
655 init_completion(&info->close_wait);
656 info->flags &= ~ROCKET_MODE_MASK;
657 switch (pc104[board][line]) {
658 case 422:
659 info->flags |= ROCKET_MODE_RS422;
660 break;
661 case 485:
662 info->flags |= ROCKET_MODE_RS485;
663 break;
664 case 232:
665 default:
666 info->flags |= ROCKET_MODE_RS232;
667 break;
668 }
669
670 info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR;
671 if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) {
672 printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n",
673 board, aiop, chan);
674 kfree(info);
675 return;
676 }
677
678 rocketMode = info->flags & ROCKET_MODE_MASK;
679
680 if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485))
681 sEnRTSToggle(&info->channel);
682 else
683 sDisRTSToggle(&info->channel);
684
685 if (ctlp->boardType == ROCKET_TYPE_PC104) {
686 switch (rocketMode) {
687 case ROCKET_MODE_RS485:
688 sSetInterfaceMode(&info->channel, InterfaceModeRS485);
689 break;
690 case ROCKET_MODE_RS422:
691 sSetInterfaceMode(&info->channel, InterfaceModeRS422);
692 break;
693 case ROCKET_MODE_RS232:
694 default:
695 if (info->flags & ROCKET_RTS_TOGGLE)
696 sSetInterfaceMode(&info->channel, InterfaceModeRS232T);
697 else
698 sSetInterfaceMode(&info->channel, InterfaceModeRS232);
699 break;
700 }
701 }
702 spin_lock_init(&info->slock);
703 mutex_init(&info->write_mtx);
704 rp_table[line] = info;
705 tty_register_device(rocket_driver, line, pci_dev ? &pci_dev->dev :
706 NULL);
707 }
708
709 /*
710 * Configures a rocketport port according to its termio settings. Called from
711 * user mode into the driver (exception handler). *info CD manipulation is spinlock protected.
712 */
713 static void configure_r_port(struct r_port *info,
714 struct ktermios *old_termios)
715 {
716 unsigned cflag;
717 unsigned long flags;
718 unsigned rocketMode;
719 int bits, baud, divisor;
720 CHANNEL_t *cp;
721 struct ktermios *t = info->port.tty->termios;
722
723 cp = &info->channel;
724 cflag = t->c_cflag;
725
726 /* Byte size and parity */
727 if ((cflag & CSIZE) == CS8) {
728 sSetData8(cp);
729 bits = 10;
730 } else {
731 sSetData7(cp);
732 bits = 9;
733 }
734 if (cflag & CSTOPB) {
735 sSetStop2(cp);
736 bits++;
737 } else {
738 sSetStop1(cp);
739 }
740
741 if (cflag & PARENB) {
742 sEnParity(cp);
743 bits++;
744 if (cflag & PARODD) {
745 sSetOddParity(cp);
746 } else {
747 sSetEvenParity(cp);
748 }
749 } else {
750 sDisParity(cp);
751 }
752
753 /* baud rate */
754 baud = tty_get_baud_rate(info->port.tty);
755 if (!baud)
756 baud = 9600;
757 divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1;
758 if ((divisor >= 8192 || divisor < 0) && old_termios) {
759 baud = tty_termios_baud_rate(old_termios);
760 if (!baud)
761 baud = 9600;
762 divisor = (rp_baud_base[info->board] / baud) - 1;
763 }
764 if (divisor >= 8192 || divisor < 0) {
765 baud = 9600;
766 divisor = (rp_baud_base[info->board] / baud) - 1;
767 }
768 info->cps = baud / bits;
769 sSetBaud(cp, divisor);
770
771 /* FIXME: Should really back compute a baud rate from the divisor */
772 tty_encode_baud_rate(info->port.tty, baud, baud);
773
774 if (cflag & CRTSCTS) {
775 info->intmask |= DELTA_CTS;
776 sEnCTSFlowCtl(cp);
777 } else {
778 info->intmask &= ~DELTA_CTS;
779 sDisCTSFlowCtl(cp);
780 }
781 if (cflag & CLOCAL) {
782 info->intmask &= ~DELTA_CD;
783 } else {
784 spin_lock_irqsave(&info->slock, flags);
785 if (sGetChanStatus(cp) & CD_ACT)
786 info->cd_status = 1;
787 else
788 info->cd_status = 0;
789 info->intmask |= DELTA_CD;
790 spin_unlock_irqrestore(&info->slock, flags);
791 }
792
793 /*
794 * Handle software flow control in the board
795 */
796 #ifdef ROCKET_SOFT_FLOW
797 if (I_IXON(info->port.tty)) {
798 sEnTxSoftFlowCtl(cp);
799 if (I_IXANY(info->port.tty)) {
800 sEnIXANY(cp);
801 } else {
802 sDisIXANY(cp);
803 }
804 sSetTxXONChar(cp, START_CHAR(info->port.tty));
805 sSetTxXOFFChar(cp, STOP_CHAR(info->port.tty));
806 } else {
807 sDisTxSoftFlowCtl(cp);
808 sDisIXANY(cp);
809 sClrTxXOFF(cp);
810 }
811 #endif
812
813 /*
814 * Set up ignore/read mask words
815 */
816 info->read_status_mask = STMRCVROVRH | 0xFF;
817 if (I_INPCK(info->port.tty))
818 info->read_status_mask |= STMFRAMEH | STMPARITYH;
819 if (I_BRKINT(info->port.tty) || I_PARMRK(info->port.tty))
820 info->read_status_mask |= STMBREAKH;
821
822 /*
823 * Characters to ignore
824 */
825 info->ignore_status_mask = 0;
826 if (I_IGNPAR(info->port.tty))
827 info->ignore_status_mask |= STMFRAMEH | STMPARITYH;
828 if (I_IGNBRK(info->port.tty)) {
829 info->ignore_status_mask |= STMBREAKH;
830 /*
831 * If we're ignoring parity and break indicators,
832 * ignore overruns too. (For real raw support).
833 */
834 if (I_IGNPAR(info->port.tty))
835 info->ignore_status_mask |= STMRCVROVRH;
836 }
837
838 rocketMode = info->flags & ROCKET_MODE_MASK;
839
840 if ((info->flags & ROCKET_RTS_TOGGLE)
841 || (rocketMode == ROCKET_MODE_RS485))
842 sEnRTSToggle(cp);
843 else
844 sDisRTSToggle(cp);
845
846 sSetRTS(&info->channel);
847
848 if (cp->CtlP->boardType == ROCKET_TYPE_PC104) {
849 switch (rocketMode) {
850 case ROCKET_MODE_RS485:
851 sSetInterfaceMode(cp, InterfaceModeRS485);
852 break;
853 case ROCKET_MODE_RS422:
854 sSetInterfaceMode(cp, InterfaceModeRS422);
855 break;
856 case ROCKET_MODE_RS232:
857 default:
858 if (info->flags & ROCKET_RTS_TOGGLE)
859 sSetInterfaceMode(cp, InterfaceModeRS232T);
860 else
861 sSetInterfaceMode(cp, InterfaceModeRS232);
862 break;
863 }
864 }
865 }
866
867 /* info->port.count is considered critical, protected by spinlocks. */
868 static int block_til_ready(struct tty_struct *tty, struct file *filp,
869 struct r_port *info)
870 {
871 DECLARE_WAITQUEUE(wait, current);
872 int retval;
873 int do_clocal = 0, extra_count = 0;
874 unsigned long flags;
875
876 /*
877 * If the device is in the middle of being closed, then block
878 * until it's done, and then try again.
879 */
880 if (tty_hung_up_p(filp))
881 return ((info->flags & ROCKET_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS);
882 if (info->flags & ROCKET_CLOSING) {
883 if (wait_for_completion_interruptible(&info->close_wait))
884 return -ERESTARTSYS;
885 return ((info->flags & ROCKET_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS);
886 }
887
888 /*
889 * If non-blocking mode is set, or the port is not enabled,
890 * then make the check up front and then exit.
891 */
892 if ((filp->f_flags & O_NONBLOCK) || (tty->flags & (1 << TTY_IO_ERROR))) {
893 info->flags |= ROCKET_NORMAL_ACTIVE;
894 return 0;
895 }
896 if (tty->termios->c_cflag & CLOCAL)
897 do_clocal = 1;
898
899 /*
900 * Block waiting for the carrier detect and the line to become free. While we are in
901 * this loop, info->port.count is dropped by one, so that rp_close() knows when to free things.
902 * We restore it upon exit, either normal or abnormal.
903 */
904 retval = 0;
905 add_wait_queue(&info->port.open_wait, &wait);
906 #ifdef ROCKET_DEBUG_OPEN
907 printk(KERN_INFO "block_til_ready before block: ttyR%d, count = %d\n", info->line, info->port.count);
908 #endif
909 spin_lock_irqsave(&info->slock, flags);
910
911 #ifdef ROCKET_DISABLE_SIMUSAGE
912 info->flags |= ROCKET_NORMAL_ACTIVE;
913 #else
914 if (!tty_hung_up_p(filp)) {
915 extra_count = 1;
916 info->port.count--;
917 }
918 #endif
919 info->port.blocked_open++;
920
921 spin_unlock_irqrestore(&info->slock, flags);
922
923 while (1) {
924 if (tty->termios->c_cflag & CBAUD) {
925 sSetDTR(&info->channel);
926 sSetRTS(&info->channel);
927 }
928 set_current_state(TASK_INTERRUPTIBLE);
929 if (tty_hung_up_p(filp) || !(info->flags & ROCKET_INITIALIZED)) {
930 if (info->flags & ROCKET_HUP_NOTIFY)
931 retval = -EAGAIN;
932 else
933 retval = -ERESTARTSYS;
934 break;
935 }
936 if (!(info->flags & ROCKET_CLOSING) && (do_clocal || (sGetChanStatusLo(&info->channel) & CD_ACT)))
937 break;
938 if (signal_pending(current)) {
939 retval = -ERESTARTSYS;
940 break;
941 }
942 #ifdef ROCKET_DEBUG_OPEN
943 printk(KERN_INFO "block_til_ready blocking: ttyR%d, count = %d, flags=0x%0x\n",
944 info->line, info->port.count, info->flags);
945 #endif
946 schedule(); /* Don't hold spinlock here, will hang PC */
947 }
948 __set_current_state(TASK_RUNNING);
949 remove_wait_queue(&info->port.open_wait, &wait);
950
951 spin_lock_irqsave(&info->slock, flags);
952
953 if (extra_count)
954 info->port.count++;
955 info->port.blocked_open--;
956
957 spin_unlock_irqrestore(&info->slock, flags);
958
959 #ifdef ROCKET_DEBUG_OPEN
960 printk(KERN_INFO "block_til_ready after blocking: ttyR%d, count = %d\n",
961 info->line, info->port.count);
962 #endif
963 if (retval)
964 return retval;
965 info->flags |= ROCKET_NORMAL_ACTIVE;
966 return 0;
967 }
968
969 /*
970 * Exception handler that opens a serial port. Creates xmit_buf storage, fills in
971 * port's r_port struct. Initializes the port hardware.
972 */
973 static int rp_open(struct tty_struct *tty, struct file *filp)
974 {
975 struct r_port *info;
976 int line = 0, retval;
977 CHANNEL_t *cp;
978 unsigned long page;
979
980 line = tty->index;
981 if ((line < 0) || (line >= MAX_RP_PORTS) || ((info = rp_table[line]) == NULL))
982 return -ENXIO;
983
984 page = __get_free_page(GFP_KERNEL);
985 if (!page)
986 return -ENOMEM;
987
988 if (info->flags & ROCKET_CLOSING) {
989 retval = wait_for_completion_interruptible(&info->close_wait);
990 free_page(page);
991 if (retval)
992 return retval;
993 return ((info->flags & ROCKET_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS);
994 }
995
996 /*
997 * We must not sleep from here until the port is marked fully in use.
998 */
999 if (info->xmit_buf)
1000 free_page(page);
1001 else
1002 info->xmit_buf = (unsigned char *) page;
1003
1004 tty->driver_data = info;
1005 info->port.tty = tty;
1006
1007 if (info->port.count++ == 0) {
1008 atomic_inc(&rp_num_ports_open);
1009
1010 #ifdef ROCKET_DEBUG_OPEN
1011 printk(KERN_INFO "rocket mod++ = %d...\n",
1012 atomic_read(&rp_num_ports_open));
1013 #endif
1014 }
1015 #ifdef ROCKET_DEBUG_OPEN
1016 printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->port.count);
1017 #endif
1018
1019 /*
1020 * Info->count is now 1; so it's safe to sleep now.
1021 */
1022 if ((info->flags & ROCKET_INITIALIZED) == 0) {
1023 cp = &info->channel;
1024 sSetRxTrigger(cp, TRIG_1);
1025 if (sGetChanStatus(cp) & CD_ACT)
1026 info->cd_status = 1;
1027 else
1028 info->cd_status = 0;
1029 sDisRxStatusMode(cp);
1030 sFlushRxFIFO(cp);
1031 sFlushTxFIFO(cp);
1032
1033 sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1034 sSetRxTrigger(cp, TRIG_1);
1035
1036 sGetChanStatus(cp);
1037 sDisRxStatusMode(cp);
1038 sClrTxXOFF(cp);
1039
1040 sDisCTSFlowCtl(cp);
1041 sDisTxSoftFlowCtl(cp);
1042
1043 sEnRxFIFO(cp);
1044 sEnTransmit(cp);
1045
1046 info->flags |= ROCKET_INITIALIZED;
1047
1048 /*
1049 * Set up the tty->alt_speed kludge
1050 */
1051 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
1052 info->port.tty->alt_speed = 57600;
1053 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
1054 info->port.tty->alt_speed = 115200;
1055 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
1056 info->port.tty->alt_speed = 230400;
1057 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
1058 info->port.tty->alt_speed = 460800;
1059
1060 configure_r_port(info, NULL);
1061 if (tty->termios->c_cflag & CBAUD) {
1062 sSetDTR(cp);
1063 sSetRTS(cp);
1064 }
1065 }
1066 /* Starts (or resets) the maint polling loop */
1067 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
1068
1069 retval = block_til_ready(tty, filp, info);
1070 if (retval) {
1071 #ifdef ROCKET_DEBUG_OPEN
1072 printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval);
1073 #endif
1074 return retval;
1075 }
1076 return 0;
1077 }
1078
1079 /*
1080 * Exception handler that closes a serial port. info->port.count is considered critical.
1081 */
1082 static void rp_close(struct tty_struct *tty, struct file *filp)
1083 {
1084 struct r_port *info = (struct r_port *) tty->driver_data;
1085 unsigned long flags;
1086 int timeout;
1087 CHANNEL_t *cp;
1088
1089 if (rocket_paranoia_check(info, "rp_close"))
1090 return;
1091
1092 #ifdef ROCKET_DEBUG_OPEN
1093 printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->port.count);
1094 #endif
1095
1096 if (tty_hung_up_p(filp))
1097 return;
1098 spin_lock_irqsave(&info->slock, flags);
1099
1100 if ((tty->count == 1) && (info->port.count != 1)) {
1101 /*
1102 * Uh, oh. tty->count is 1, which means that the tty
1103 * structure will be freed. Info->count should always
1104 * be one in these conditions. If it's greater than
1105 * one, we've got real problems, since it means the
1106 * serial port won't be shutdown.
1107 */
1108 printk(KERN_WARNING "rp_close: bad serial port count; "
1109 "tty->count is 1, info->port.count is %d\n", info->port.count);
1110 info->port.count = 1;
1111 }
1112 if (--info->port.count < 0) {
1113 printk(KERN_WARNING "rp_close: bad serial port count for "
1114 "ttyR%d: %d\n", info->line, info->port.count);
1115 info->port.count = 0;
1116 }
1117 if (info->port.count) {
1118 spin_unlock_irqrestore(&info->slock, flags);
1119 return;
1120 }
1121 info->flags |= ROCKET_CLOSING;
1122 spin_unlock_irqrestore(&info->slock, flags);
1123
1124 cp = &info->channel;
1125
1126 /*
1127 * Notify the line discpline to only process XON/XOFF characters
1128 */
1129 tty->closing = 1;
1130
1131 /*
1132 * If transmission was throttled by the application request,
1133 * just flush the xmit buffer.
1134 */
1135 if (tty->flow_stopped)
1136 rp_flush_buffer(tty);
1137
1138 /*
1139 * Wait for the transmit buffer to clear
1140 */
1141 if (info->port.closing_wait != ROCKET_CLOSING_WAIT_NONE)
1142 tty_wait_until_sent(tty, info->port.closing_wait);
1143 /*
1144 * Before we drop DTR, make sure the UART transmitter
1145 * has completely drained; this is especially
1146 * important if there is a transmit FIFO!
1147 */
1148 timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps;
1149 if (timeout == 0)
1150 timeout = 1;
1151 rp_wait_until_sent(tty, timeout);
1152 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1153
1154 sDisTransmit(cp);
1155 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1156 sDisCTSFlowCtl(cp);
1157 sDisTxSoftFlowCtl(cp);
1158 sClrTxXOFF(cp);
1159 sFlushRxFIFO(cp);
1160 sFlushTxFIFO(cp);
1161 sClrRTS(cp);
1162 if (C_HUPCL(tty))
1163 sClrDTR(cp);
1164
1165 rp_flush_buffer(tty);
1166
1167 tty_ldisc_flush(tty);
1168
1169 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1170
1171 if (info->port.blocked_open) {
1172 if (info->port.close_delay) {
1173 msleep_interruptible(jiffies_to_msecs(info->port.close_delay));
1174 }
1175 wake_up_interruptible(&info->port.open_wait);
1176 } else {
1177 if (info->xmit_buf) {
1178 free_page((unsigned long) info->xmit_buf);
1179 info->xmit_buf = NULL;
1180 }
1181 }
1182 info->flags &= ~(ROCKET_INITIALIZED | ROCKET_CLOSING | ROCKET_NORMAL_ACTIVE);
1183 tty->closing = 0;
1184 complete_all(&info->close_wait);
1185 atomic_dec(&rp_num_ports_open);
1186
1187 #ifdef ROCKET_DEBUG_OPEN
1188 printk(KERN_INFO "rocket mod-- = %d...\n",
1189 atomic_read(&rp_num_ports_open));
1190 printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line);
1191 #endif
1192
1193 }
1194
1195 static void rp_set_termios(struct tty_struct *tty,
1196 struct ktermios *old_termios)
1197 {
1198 struct r_port *info = (struct r_port *) tty->driver_data;
1199 CHANNEL_t *cp;
1200 unsigned cflag;
1201
1202 if (rocket_paranoia_check(info, "rp_set_termios"))
1203 return;
1204
1205 cflag = tty->termios->c_cflag;
1206
1207 /*
1208 * This driver doesn't support CS5 or CS6
1209 */
1210 if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6))
1211 tty->termios->c_cflag =
1212 ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE));
1213 /* Or CMSPAR */
1214 tty->termios->c_cflag &= ~CMSPAR;
1215
1216 configure_r_port(info, old_termios);
1217
1218 cp = &info->channel;
1219
1220 /* Handle transition to B0 status */
1221 if ((old_termios->c_cflag & CBAUD) && !(tty->termios->c_cflag & CBAUD)) {
1222 sClrDTR(cp);
1223 sClrRTS(cp);
1224 }
1225
1226 /* Handle transition away from B0 status */
1227 if (!(old_termios->c_cflag & CBAUD) && (tty->termios->c_cflag & CBAUD)) {
1228 if (!tty->hw_stopped || !(tty->termios->c_cflag & CRTSCTS))
1229 sSetRTS(cp);
1230 sSetDTR(cp);
1231 }
1232
1233 if ((old_termios->c_cflag & CRTSCTS) && !(tty->termios->c_cflag & CRTSCTS)) {
1234 tty->hw_stopped = 0;
1235 rp_start(tty);
1236 }
1237 }
1238
1239 static void rp_break(struct tty_struct *tty, int break_state)
1240 {
1241 struct r_port *info = (struct r_port *) tty->driver_data;
1242 unsigned long flags;
1243
1244 if (rocket_paranoia_check(info, "rp_break"))
1245 return;
1246
1247 spin_lock_irqsave(&info->slock, flags);
1248 if (break_state == -1)
1249 sSendBreak(&info->channel);
1250 else
1251 sClrBreak(&info->channel);
1252 spin_unlock_irqrestore(&info->slock, flags);
1253 }
1254
1255 /*
1256 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for
1257 * the UPCI boards was added, it was decided to make this a function because
1258 * the macro was getting too complicated. All cases except the first one
1259 * (UPCIRingInd) are taken directly from the original macro.
1260 */
1261 static int sGetChanRI(CHANNEL_T * ChP)
1262 {
1263 CONTROLLER_t *CtlP = ChP->CtlP;
1264 int ChanNum = ChP->ChanNum;
1265 int RingInd = 0;
1266
1267 if (CtlP->UPCIRingInd)
1268 RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]);
1269 else if (CtlP->AltChanRingIndicator)
1270 RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT;
1271 else if (CtlP->boardType == ROCKET_TYPE_PC104)
1272 RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]);
1273
1274 return RingInd;
1275 }
1276
1277 /********************************************************************************************/
1278 /* Here are the routines used by rp_ioctl. These are all called from exception handlers. */
1279
1280 /*
1281 * Returns the state of the serial modem control lines. These next 2 functions
1282 * are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs.
1283 */
1284 static int rp_tiocmget(struct tty_struct *tty, struct file *file)
1285 {
1286 struct r_port *info = (struct r_port *)tty->driver_data;
1287 unsigned int control, result, ChanStatus;
1288
1289 ChanStatus = sGetChanStatusLo(&info->channel);
1290 control = info->channel.TxControl[3];
1291 result = ((control & SET_RTS) ? TIOCM_RTS : 0) |
1292 ((control & SET_DTR) ? TIOCM_DTR : 0) |
1293 ((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) |
1294 (sGetChanRI(&info->channel) ? TIOCM_RNG : 0) |
1295 ((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) |
1296 ((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0);
1297
1298 return result;
1299 }
1300
1301 /*
1302 * Sets the modem control lines
1303 */
1304 static int rp_tiocmset(struct tty_struct *tty, struct file *file,
1305 unsigned int set, unsigned int clear)
1306 {
1307 struct r_port *info = (struct r_port *)tty->driver_data;
1308
1309 if (set & TIOCM_RTS)
1310 info->channel.TxControl[3] |= SET_RTS;
1311 if (set & TIOCM_DTR)
1312 info->channel.TxControl[3] |= SET_DTR;
1313 if (clear & TIOCM_RTS)
1314 info->channel.TxControl[3] &= ~SET_RTS;
1315 if (clear & TIOCM_DTR)
1316 info->channel.TxControl[3] &= ~SET_DTR;
1317
1318 out32(info->channel.IndexAddr, info->channel.TxControl);
1319 return 0;
1320 }
1321
1322 static int get_config(struct r_port *info, struct rocket_config __user *retinfo)
1323 {
1324 struct rocket_config tmp;
1325
1326 if (!retinfo)
1327 return -EFAULT;
1328 memset(&tmp, 0, sizeof (tmp));
1329 tmp.line = info->line;
1330 tmp.flags = info->flags;
1331 tmp.close_delay = info->port.close_delay;
1332 tmp.closing_wait = info->port.closing_wait;
1333 tmp.port = rcktpt_io_addr[(info->line >> 5) & 3];
1334
1335 if (copy_to_user(retinfo, &tmp, sizeof (*retinfo)))
1336 return -EFAULT;
1337 return 0;
1338 }
1339
1340 static int set_config(struct r_port *info, struct rocket_config __user *new_info)
1341 {
1342 struct rocket_config new_serial;
1343
1344 if (copy_from_user(&new_serial, new_info, sizeof (new_serial)))
1345 return -EFAULT;
1346
1347 if (!capable(CAP_SYS_ADMIN))
1348 {
1349 if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK))
1350 return -EPERM;
1351 info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK));
1352 configure_r_port(info, NULL);
1353 return 0;
1354 }
1355
1356 info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS));
1357 info->port.close_delay = new_serial.close_delay;
1358 info->port.closing_wait = new_serial.closing_wait;
1359
1360 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
1361 info->port.tty->alt_speed = 57600;
1362 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
1363 info->port.tty->alt_speed = 115200;
1364 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
1365 info->port.tty->alt_speed = 230400;
1366 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
1367 info->port.tty->alt_speed = 460800;
1368
1369 configure_r_port(info, NULL);
1370 return 0;
1371 }
1372
1373 /*
1374 * This function fills in a rocket_ports struct with information
1375 * about what boards/ports are in the system. This info is passed
1376 * to user space. See setrocket.c where the info is used to create
1377 * the /dev/ttyRx ports.
1378 */
1379 static int get_ports(struct r_port *info, struct rocket_ports __user *retports)
1380 {
1381 struct rocket_ports tmp;
1382 int board;
1383
1384 if (!retports)
1385 return -EFAULT;
1386 memset(&tmp, 0, sizeof (tmp));
1387 tmp.tty_major = rocket_driver->major;
1388
1389 for (board = 0; board < 4; board++) {
1390 tmp.rocketModel[board].model = rocketModel[board].model;
1391 strcpy(tmp.rocketModel[board].modelString, rocketModel[board].modelString);
1392 tmp.rocketModel[board].numPorts = rocketModel[board].numPorts;
1393 tmp.rocketModel[board].loadrm2 = rocketModel[board].loadrm2;
1394 tmp.rocketModel[board].startingPortNumber = rocketModel[board].startingPortNumber;
1395 }
1396 if (copy_to_user(retports, &tmp, sizeof (*retports)))
1397 return -EFAULT;
1398 return 0;
1399 }
1400
1401 static int reset_rm2(struct r_port *info, void __user *arg)
1402 {
1403 int reset;
1404
1405 if (!capable(CAP_SYS_ADMIN))
1406 return -EPERM;
1407
1408 if (copy_from_user(&reset, arg, sizeof (int)))
1409 return -EFAULT;
1410 if (reset)
1411 reset = 1;
1412
1413 if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII &&
1414 rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII)
1415 return -EINVAL;
1416
1417 if (info->ctlp->BusType == isISA)
1418 sModemReset(info->ctlp, info->chan, reset);
1419 else
1420 sPCIModemReset(info->ctlp, info->chan, reset);
1421
1422 return 0;
1423 }
1424
1425 static int get_version(struct r_port *info, struct rocket_version __user *retvers)
1426 {
1427 if (copy_to_user(retvers, &driver_version, sizeof (*retvers)))
1428 return -EFAULT;
1429 return 0;
1430 }
1431
1432 /* IOCTL call handler into the driver */
1433 static int rp_ioctl(struct tty_struct *tty, struct file *file,
1434 unsigned int cmd, unsigned long arg)
1435 {
1436 struct r_port *info = (struct r_port *) tty->driver_data;
1437 void __user *argp = (void __user *)arg;
1438 int ret = 0;
1439
1440 if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl"))
1441 return -ENXIO;
1442
1443 lock_kernel();
1444
1445 switch (cmd) {
1446 case RCKP_GET_STRUCT:
1447 if (copy_to_user(argp, info, sizeof (struct r_port)))
1448 ret = -EFAULT;
1449 break;
1450 case RCKP_GET_CONFIG:
1451 ret = get_config(info, argp);
1452 break;
1453 case RCKP_SET_CONFIG:
1454 ret = set_config(info, argp);
1455 break;
1456 case RCKP_GET_PORTS:
1457 ret = get_ports(info, argp);
1458 break;
1459 case RCKP_RESET_RM2:
1460 ret = reset_rm2(info, argp);
1461 break;
1462 case RCKP_GET_VERSION:
1463 ret = get_version(info, argp);
1464 break;
1465 default:
1466 ret = -ENOIOCTLCMD;
1467 }
1468 unlock_kernel();
1469 return ret;
1470 }
1471
1472 static void rp_send_xchar(struct tty_struct *tty, char ch)
1473 {
1474 struct r_port *info = (struct r_port *) tty->driver_data;
1475 CHANNEL_t *cp;
1476
1477 if (rocket_paranoia_check(info, "rp_send_xchar"))
1478 return;
1479
1480 cp = &info->channel;
1481 if (sGetTxCnt(cp))
1482 sWriteTxPrioByte(cp, ch);
1483 else
1484 sWriteTxByte(sGetTxRxDataIO(cp), ch);
1485 }
1486
1487 static void rp_throttle(struct tty_struct *tty)
1488 {
1489 struct r_port *info = (struct r_port *) tty->driver_data;
1490 CHANNEL_t *cp;
1491
1492 #ifdef ROCKET_DEBUG_THROTTLE
1493 printk(KERN_INFO "throttle %s: %d....\n", tty->name,
1494 tty->ldisc.chars_in_buffer(tty));
1495 #endif
1496
1497 if (rocket_paranoia_check(info, "rp_throttle"))
1498 return;
1499
1500 cp = &info->channel;
1501 if (I_IXOFF(tty))
1502 rp_send_xchar(tty, STOP_CHAR(tty));
1503
1504 sClrRTS(&info->channel);
1505 }
1506
1507 static void rp_unthrottle(struct tty_struct *tty)
1508 {
1509 struct r_port *info = (struct r_port *) tty->driver_data;
1510 CHANNEL_t *cp;
1511 #ifdef ROCKET_DEBUG_THROTTLE
1512 printk(KERN_INFO "unthrottle %s: %d....\n", tty->name,
1513 tty->ldisc.chars_in_buffer(tty));
1514 #endif
1515
1516 if (rocket_paranoia_check(info, "rp_throttle"))
1517 return;
1518
1519 cp = &info->channel;
1520 if (I_IXOFF(tty))
1521 rp_send_xchar(tty, START_CHAR(tty));
1522
1523 sSetRTS(&info->channel);
1524 }
1525
1526 /*
1527 * ------------------------------------------------------------
1528 * rp_stop() and rp_start()
1529 *
1530 * This routines are called before setting or resetting tty->stopped.
1531 * They enable or disable transmitter interrupts, as necessary.
1532 * ------------------------------------------------------------
1533 */
1534 static void rp_stop(struct tty_struct *tty)
1535 {
1536 struct r_port *info = (struct r_port *) tty->driver_data;
1537
1538 #ifdef ROCKET_DEBUG_FLOW
1539 printk(KERN_INFO "stop %s: %d %d....\n", tty->name,
1540 info->xmit_cnt, info->xmit_fifo_room);
1541 #endif
1542
1543 if (rocket_paranoia_check(info, "rp_stop"))
1544 return;
1545
1546 if (sGetTxCnt(&info->channel))
1547 sDisTransmit(&info->channel);
1548 }
1549
1550 static void rp_start(struct tty_struct *tty)
1551 {
1552 struct r_port *info = (struct r_port *) tty->driver_data;
1553
1554 #ifdef ROCKET_DEBUG_FLOW
1555 printk(KERN_INFO "start %s: %d %d....\n", tty->name,
1556 info->xmit_cnt, info->xmit_fifo_room);
1557 #endif
1558
1559 if (rocket_paranoia_check(info, "rp_stop"))
1560 return;
1561
1562 sEnTransmit(&info->channel);
1563 set_bit((info->aiop * 8) + info->chan,
1564 (void *) &xmit_flags[info->board]);
1565 }
1566
1567 /*
1568 * rp_wait_until_sent() --- wait until the transmitter is empty
1569 */
1570 static void rp_wait_until_sent(struct tty_struct *tty, int timeout)
1571 {
1572 struct r_port *info = (struct r_port *) tty->driver_data;
1573 CHANNEL_t *cp;
1574 unsigned long orig_jiffies;
1575 int check_time, exit_time;
1576 int txcnt;
1577
1578 if (rocket_paranoia_check(info, "rp_wait_until_sent"))
1579 return;
1580
1581 cp = &info->channel;
1582
1583 orig_jiffies = jiffies;
1584 #ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1585 printk(KERN_INFO "In RP_wait_until_sent(%d) (jiff=%lu)...\n", timeout,
1586 jiffies);
1587 printk(KERN_INFO "cps=%d...\n", info->cps);
1588 #endif
1589 lock_kernel();
1590 while (1) {
1591 txcnt = sGetTxCnt(cp);
1592 if (!txcnt) {
1593 if (sGetChanStatusLo(cp) & TXSHRMT)
1594 break;
1595 check_time = (HZ / info->cps) / 5;
1596 } else {
1597 check_time = HZ * txcnt / info->cps;
1598 }
1599 if (timeout) {
1600 exit_time = orig_jiffies + timeout - jiffies;
1601 if (exit_time <= 0)
1602 break;
1603 if (exit_time < check_time)
1604 check_time = exit_time;
1605 }
1606 if (check_time == 0)
1607 check_time = 1;
1608 #ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1609 printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt,
1610 jiffies, check_time);
1611 #endif
1612 msleep_interruptible(jiffies_to_msecs(check_time));
1613 if (signal_pending(current))
1614 break;
1615 }
1616 __set_current_state(TASK_RUNNING);
1617 unlock_kernel();
1618 #ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1619 printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies);
1620 #endif
1621 }
1622
1623 /*
1624 * rp_hangup() --- called by tty_hangup() when a hangup is signaled.
1625 */
1626 static void rp_hangup(struct tty_struct *tty)
1627 {
1628 CHANNEL_t *cp;
1629 struct r_port *info = (struct r_port *) tty->driver_data;
1630
1631 if (rocket_paranoia_check(info, "rp_hangup"))
1632 return;
1633
1634 #if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP))
1635 printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line);
1636 #endif
1637 rp_flush_buffer(tty);
1638 if (info->flags & ROCKET_CLOSING)
1639 return;
1640 if (info->port.count)
1641 atomic_dec(&rp_num_ports_open);
1642 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1643
1644 info->port.count = 0;
1645 info->flags &= ~ROCKET_NORMAL_ACTIVE;
1646 info->port.tty = NULL;
1647
1648 cp = &info->channel;
1649 sDisRxFIFO(cp);
1650 sDisTransmit(cp);
1651 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1652 sDisCTSFlowCtl(cp);
1653 sDisTxSoftFlowCtl(cp);
1654 sClrTxXOFF(cp);
1655 info->flags &= ~ROCKET_INITIALIZED;
1656
1657 wake_up_interruptible(&info->port.open_wait);
1658 }
1659
1660 /*
1661 * Exception handler - write char routine. The RocketPort driver uses a
1662 * double-buffering strategy, with the twist that if the in-memory CPU
1663 * buffer is empty, and there's space in the transmit FIFO, the
1664 * writing routines will write directly to transmit FIFO.
1665 * Write buffer and counters protected by spinlocks
1666 */
1667 static int rp_put_char(struct tty_struct *tty, unsigned char ch)
1668 {
1669 struct r_port *info = (struct r_port *) tty->driver_data;
1670 CHANNEL_t *cp;
1671 unsigned long flags;
1672
1673 if (rocket_paranoia_check(info, "rp_put_char"))
1674 return 0;
1675
1676 /*
1677 * Grab the port write mutex, locking out other processes that try to
1678 * write to this port
1679 */
1680 mutex_lock(&info->write_mtx);
1681
1682 #ifdef ROCKET_DEBUG_WRITE
1683 printk(KERN_INFO "rp_put_char %c...\n", ch);
1684 #endif
1685
1686 spin_lock_irqsave(&info->slock, flags);
1687 cp = &info->channel;
1688
1689 if (!tty->stopped && !tty->hw_stopped && info->xmit_fifo_room == 0)
1690 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1691
1692 if (tty->stopped || tty->hw_stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) {
1693 info->xmit_buf[info->xmit_head++] = ch;
1694 info->xmit_head &= XMIT_BUF_SIZE - 1;
1695 info->xmit_cnt++;
1696 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1697 } else {
1698 sOutB(sGetTxRxDataIO(cp), ch);
1699 info->xmit_fifo_room--;
1700 }
1701 spin_unlock_irqrestore(&info->slock, flags);
1702 mutex_unlock(&info->write_mtx);
1703 return 1;
1704 }
1705
1706 /*
1707 * Exception handler - write routine, called when user app writes to the device.
1708 * A per port write mutex is used to protect from another process writing to
1709 * this port at the same time. This other process could be running on the other CPU
1710 * or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out).
1711 * Spinlocks protect the info xmit members.
1712 */
1713 static int rp_write(struct tty_struct *tty,
1714 const unsigned char *buf, int count)
1715 {
1716 struct r_port *info = (struct r_port *) tty->driver_data;
1717 CHANNEL_t *cp;
1718 const unsigned char *b;
1719 int c, retval = 0;
1720 unsigned long flags;
1721
1722 if (count <= 0 || rocket_paranoia_check(info, "rp_write"))
1723 return 0;
1724
1725 if (mutex_lock_interruptible(&info->write_mtx))
1726 return -ERESTARTSYS;
1727
1728 #ifdef ROCKET_DEBUG_WRITE
1729 printk(KERN_INFO "rp_write %d chars...\n", count);
1730 #endif
1731 cp = &info->channel;
1732
1733 if (!tty->stopped && !tty->hw_stopped && info->xmit_fifo_room < count)
1734 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1735
1736 /*
1737 * If the write queue for the port is empty, and there is FIFO space, stuff bytes
1738 * into FIFO. Use the write queue for temp storage.
1739 */
1740 if (!tty->stopped && !tty->hw_stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) {
1741 c = min(count, info->xmit_fifo_room);
1742 b = buf;
1743
1744 /* Push data into FIFO, 2 bytes at a time */
1745 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2);
1746
1747 /* If there is a byte remaining, write it */
1748 if (c & 1)
1749 sOutB(sGetTxRxDataIO(cp), b[c - 1]);
1750
1751 retval += c;
1752 buf += c;
1753 count -= c;
1754
1755 spin_lock_irqsave(&info->slock, flags);
1756 info->xmit_fifo_room -= c;
1757 spin_unlock_irqrestore(&info->slock, flags);
1758 }
1759
1760 /* If count is zero, we wrote it all and are done */
1761 if (!count)
1762 goto end;
1763
1764 /* Write remaining data into the port's xmit_buf */
1765 while (1) {
1766 if (!info->port.tty) /* Seemingly obligatory check... */
1767 goto end;
1768 c = min(count, XMIT_BUF_SIZE - info->xmit_cnt - 1);
1769 c = min(c, XMIT_BUF_SIZE - info->xmit_head);
1770 if (c <= 0)
1771 break;
1772
1773 b = buf;
1774 memcpy(info->xmit_buf + info->xmit_head, b, c);
1775
1776 spin_lock_irqsave(&info->slock, flags);
1777 info->xmit_head =
1778 (info->xmit_head + c) & (XMIT_BUF_SIZE - 1);
1779 info->xmit_cnt += c;
1780 spin_unlock_irqrestore(&info->slock, flags);
1781
1782 buf += c;
1783 count -= c;
1784 retval += c;
1785 }
1786
1787 if ((retval > 0) && !tty->stopped && !tty->hw_stopped)
1788 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1789
1790 end:
1791 if (info->xmit_cnt < WAKEUP_CHARS) {
1792 tty_wakeup(tty);
1793 #ifdef ROCKETPORT_HAVE_POLL_WAIT
1794 wake_up_interruptible(&tty->poll_wait);
1795 #endif
1796 }
1797 mutex_unlock(&info->write_mtx);
1798 return retval;
1799 }
1800
1801 /*
1802 * Return the number of characters that can be sent. We estimate
1803 * only using the in-memory transmit buffer only, and ignore the
1804 * potential space in the transmit FIFO.
1805 */
1806 static int rp_write_room(struct tty_struct *tty)
1807 {
1808 struct r_port *info = (struct r_port *) tty->driver_data;
1809 int ret;
1810
1811 if (rocket_paranoia_check(info, "rp_write_room"))
1812 return 0;
1813
1814 ret = XMIT_BUF_SIZE - info->xmit_cnt - 1;
1815 if (ret < 0)
1816 ret = 0;
1817 #ifdef ROCKET_DEBUG_WRITE
1818 printk(KERN_INFO "rp_write_room returns %d...\n", ret);
1819 #endif
1820 return ret;
1821 }
1822
1823 /*
1824 * Return the number of characters in the buffer. Again, this only
1825 * counts those characters in the in-memory transmit buffer.
1826 */
1827 static int rp_chars_in_buffer(struct tty_struct *tty)
1828 {
1829 struct r_port *info = (struct r_port *) tty->driver_data;
1830 CHANNEL_t *cp;
1831
1832 if (rocket_paranoia_check(info, "rp_chars_in_buffer"))
1833 return 0;
1834
1835 cp = &info->channel;
1836
1837 #ifdef ROCKET_DEBUG_WRITE
1838 printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt);
1839 #endif
1840 return info->xmit_cnt;
1841 }
1842
1843 /*
1844 * Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the
1845 * r_port struct for the port. Note that spinlock are used to protect info members,
1846 * do not call this function if the spinlock is already held.
1847 */
1848 static void rp_flush_buffer(struct tty_struct *tty)
1849 {
1850 struct r_port *info = (struct r_port *) tty->driver_data;
1851 CHANNEL_t *cp;
1852 unsigned long flags;
1853
1854 if (rocket_paranoia_check(info, "rp_flush_buffer"))
1855 return;
1856
1857 spin_lock_irqsave(&info->slock, flags);
1858 info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
1859 spin_unlock_irqrestore(&info->slock, flags);
1860
1861 #ifdef ROCKETPORT_HAVE_POLL_WAIT
1862 wake_up_interruptible(&tty->poll_wait);
1863 #endif
1864 tty_wakeup(tty);
1865
1866 cp = &info->channel;
1867 sFlushTxFIFO(cp);
1868 }
1869
1870 #ifdef CONFIG_PCI
1871
1872 static struct pci_device_id __devinitdata rocket_pci_ids[] = {
1873 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_ANY_ID) },
1874 { }
1875 };
1876 MODULE_DEVICE_TABLE(pci, rocket_pci_ids);
1877
1878 /*
1879 * Called when a PCI card is found. Retrieves and stores model information,
1880 * init's aiopic and serial port hardware.
1881 * Inputs: i is the board number (0-n)
1882 */
1883 static __init int register_PCI(int i, struct pci_dev *dev)
1884 {
1885 int num_aiops, aiop, max_num_aiops, num_chan, chan;
1886 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
1887 char *str, *board_type;
1888 CONTROLLER_t *ctlp;
1889
1890 int fast_clock = 0;
1891 int altChanRingIndicator = 0;
1892 int ports_per_aiop = 8;
1893 WordIO_t ConfigIO = 0;
1894 ByteIO_t UPCIRingInd = 0;
1895
1896 if (!dev || pci_enable_device(dev))
1897 return 0;
1898
1899 rcktpt_io_addr[i] = pci_resource_start(dev, 0);
1900
1901 rcktpt_type[i] = ROCKET_TYPE_NORMAL;
1902 rocketModel[i].loadrm2 = 0;
1903 rocketModel[i].startingPortNumber = nextLineNumber;
1904
1905 /* Depending on the model, set up some config variables */
1906 switch (dev->device) {
1907 case PCI_DEVICE_ID_RP4QUAD:
1908 str = "Quadcable";
1909 max_num_aiops = 1;
1910 ports_per_aiop = 4;
1911 rocketModel[i].model = MODEL_RP4QUAD;
1912 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable");
1913 rocketModel[i].numPorts = 4;
1914 break;
1915 case PCI_DEVICE_ID_RP8OCTA:
1916 str = "Octacable";
1917 max_num_aiops = 1;
1918 rocketModel[i].model = MODEL_RP8OCTA;
1919 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable");
1920 rocketModel[i].numPorts = 8;
1921 break;
1922 case PCI_DEVICE_ID_URP8OCTA:
1923 str = "Octacable";
1924 max_num_aiops = 1;
1925 rocketModel[i].model = MODEL_UPCI_RP8OCTA;
1926 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable");
1927 rocketModel[i].numPorts = 8;
1928 break;
1929 case PCI_DEVICE_ID_RP8INTF:
1930 str = "8";
1931 max_num_aiops = 1;
1932 rocketModel[i].model = MODEL_RP8INTF;
1933 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F");
1934 rocketModel[i].numPorts = 8;
1935 break;
1936 case PCI_DEVICE_ID_URP8INTF:
1937 str = "8";
1938 max_num_aiops = 1;
1939 rocketModel[i].model = MODEL_UPCI_RP8INTF;
1940 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F");
1941 rocketModel[i].numPorts = 8;
1942 break;
1943 case PCI_DEVICE_ID_RP8J:
1944 str = "8J";
1945 max_num_aiops = 1;
1946 rocketModel[i].model = MODEL_RP8J;
1947 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors");
1948 rocketModel[i].numPorts = 8;
1949 break;
1950 case PCI_DEVICE_ID_RP4J:
1951 str = "4J";
1952 max_num_aiops = 1;
1953 ports_per_aiop = 4;
1954 rocketModel[i].model = MODEL_RP4J;
1955 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors");
1956 rocketModel[i].numPorts = 4;
1957 break;
1958 case PCI_DEVICE_ID_RP8SNI:
1959 str = "8 (DB78 Custom)";
1960 max_num_aiops = 1;
1961 rocketModel[i].model = MODEL_RP8SNI;
1962 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78");
1963 rocketModel[i].numPorts = 8;
1964 break;
1965 case PCI_DEVICE_ID_RP16SNI:
1966 str = "16 (DB78 Custom)";
1967 max_num_aiops = 2;
1968 rocketModel[i].model = MODEL_RP16SNI;
1969 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78");
1970 rocketModel[i].numPorts = 16;
1971 break;
1972 case PCI_DEVICE_ID_RP16INTF:
1973 str = "16";
1974 max_num_aiops = 2;
1975 rocketModel[i].model = MODEL_RP16INTF;
1976 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F");
1977 rocketModel[i].numPorts = 16;
1978 break;
1979 case PCI_DEVICE_ID_URP16INTF:
1980 str = "16";
1981 max_num_aiops = 2;
1982 rocketModel[i].model = MODEL_UPCI_RP16INTF;
1983 strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F");
1984 rocketModel[i].numPorts = 16;
1985 break;
1986 case PCI_DEVICE_ID_CRP16INTF:
1987 str = "16";
1988 max_num_aiops = 2;
1989 rocketModel[i].model = MODEL_CPCI_RP16INTF;
1990 strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F");
1991 rocketModel[i].numPorts = 16;
1992 break;
1993 case PCI_DEVICE_ID_RP32INTF:
1994 str = "32";
1995 max_num_aiops = 4;
1996 rocketModel[i].model = MODEL_RP32INTF;
1997 strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F");
1998 rocketModel[i].numPorts = 32;
1999 break;
2000 case PCI_DEVICE_ID_URP32INTF:
2001 str = "32";
2002 max_num_aiops = 4;
2003 rocketModel[i].model = MODEL_UPCI_RP32INTF;
2004 strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F");
2005 rocketModel[i].numPorts = 32;
2006 break;
2007 case PCI_DEVICE_ID_RPP4:
2008 str = "Plus Quadcable";
2009 max_num_aiops = 1;
2010 ports_per_aiop = 4;
2011 altChanRingIndicator++;
2012 fast_clock++;
2013 rocketModel[i].model = MODEL_RPP4;
2014 strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port");
2015 rocketModel[i].numPorts = 4;
2016 break;
2017 case PCI_DEVICE_ID_RPP8:
2018 str = "Plus Octacable";
2019 max_num_aiops = 2;
2020 ports_per_aiop = 4;
2021 altChanRingIndicator++;
2022 fast_clock++;
2023 rocketModel[i].model = MODEL_RPP8;
2024 strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port");
2025 rocketModel[i].numPorts = 8;
2026 break;
2027 case PCI_DEVICE_ID_RP2_232:
2028 str = "Plus 2 (RS-232)";
2029 max_num_aiops = 1;
2030 ports_per_aiop = 2;
2031 altChanRingIndicator++;
2032 fast_clock++;
2033 rocketModel[i].model = MODEL_RP2_232;
2034 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232");
2035 rocketModel[i].numPorts = 2;
2036 break;
2037 case PCI_DEVICE_ID_RP2_422:
2038 str = "Plus 2 (RS-422)";
2039 max_num_aiops = 1;
2040 ports_per_aiop = 2;
2041 altChanRingIndicator++;
2042 fast_clock++;
2043 rocketModel[i].model = MODEL_RP2_422;
2044 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422");
2045 rocketModel[i].numPorts = 2;
2046 break;
2047 case PCI_DEVICE_ID_RP6M:
2048
2049 max_num_aiops = 1;
2050 ports_per_aiop = 6;
2051 str = "6-port";
2052
2053 /* If revision is 1, the rocketmodem flash must be loaded.
2054 * If it is 2 it is a "socketed" version. */
2055 if (dev->revision == 1) {
2056 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2057 rocketModel[i].loadrm2 = 1;
2058 } else {
2059 rcktpt_type[i] = ROCKET_TYPE_MODEM;
2060 }
2061
2062 rocketModel[i].model = MODEL_RP6M;
2063 strcpy(rocketModel[i].modelString, "RocketModem 6 port");
2064 rocketModel[i].numPorts = 6;
2065 break;
2066 case PCI_DEVICE_ID_RP4M:
2067 max_num_aiops = 1;
2068 ports_per_aiop = 4;
2069 str = "4-port";
2070 if (dev->revision == 1) {
2071 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2072 rocketModel[i].loadrm2 = 1;
2073 } else {
2074 rcktpt_type[i] = ROCKET_TYPE_MODEM;
2075 }
2076
2077 rocketModel[i].model = MODEL_RP4M;
2078 strcpy(rocketModel[i].modelString, "RocketModem 4 port");
2079 rocketModel[i].numPorts = 4;
2080 break;
2081 default:
2082 str = "(unknown/unsupported)";
2083 max_num_aiops = 0;
2084 break;
2085 }
2086
2087 /*
2088 * Check for UPCI boards.
2089 */
2090
2091 switch (dev->device) {
2092 case PCI_DEVICE_ID_URP32INTF:
2093 case PCI_DEVICE_ID_URP8INTF:
2094 case PCI_DEVICE_ID_URP16INTF:
2095 case PCI_DEVICE_ID_CRP16INTF:
2096 case PCI_DEVICE_ID_URP8OCTA:
2097 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2098 ConfigIO = pci_resource_start(dev, 1);
2099 if (dev->device == PCI_DEVICE_ID_URP8OCTA) {
2100 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2101
2102 /*
2103 * Check for octa or quad cable.
2104 */
2105 if (!
2106 (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) &
2107 PCI_GPIO_CTRL_8PORT)) {
2108 str = "Quadcable";
2109 ports_per_aiop = 4;
2110 rocketModel[i].numPorts = 4;
2111 }
2112 }
2113 break;
2114 case PCI_DEVICE_ID_UPCI_RM3_8PORT:
2115 str = "8 ports";
2116 max_num_aiops = 1;
2117 rocketModel[i].model = MODEL_UPCI_RM3_8PORT;
2118 strcpy(rocketModel[i].modelString, "RocketModem III 8 port");
2119 rocketModel[i].numPorts = 8;
2120 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2121 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2122 ConfigIO = pci_resource_start(dev, 1);
2123 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2124 break;
2125 case PCI_DEVICE_ID_UPCI_RM3_4PORT:
2126 str = "4 ports";
2127 max_num_aiops = 1;
2128 rocketModel[i].model = MODEL_UPCI_RM3_4PORT;
2129 strcpy(rocketModel[i].modelString, "RocketModem III 4 port");
2130 rocketModel[i].numPorts = 4;
2131 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2132 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2133 ConfigIO = pci_resource_start(dev, 1);
2134 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2135 break;
2136 default:
2137 break;
2138 }
2139
2140 switch (rcktpt_type[i]) {
2141 case ROCKET_TYPE_MODEM:
2142 board_type = "RocketModem";
2143 break;
2144 case ROCKET_TYPE_MODEMII:
2145 board_type = "RocketModem II";
2146 break;
2147 case ROCKET_TYPE_MODEMIII:
2148 board_type = "RocketModem III";
2149 break;
2150 default:
2151 board_type = "RocketPort";
2152 break;
2153 }
2154
2155 if (fast_clock) {
2156 sClockPrescale = 0x12; /* mod 2 (divide by 3) */
2157 rp_baud_base[i] = 921600;
2158 } else {
2159 /*
2160 * If support_low_speed is set, use the slow clock
2161 * prescale, which supports 50 bps
2162 */
2163 if (support_low_speed) {
2164 /* mod 9 (divide by 10) prescale */
2165 sClockPrescale = 0x19;
2166 rp_baud_base[i] = 230400;
2167 } else {
2168 /* mod 4 (devide by 5) prescale */
2169 sClockPrescale = 0x14;
2170 rp_baud_base[i] = 460800;
2171 }
2172 }
2173
2174 for (aiop = 0; aiop < max_num_aiops; aiop++)
2175 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40);
2176 ctlp = sCtlNumToCtlPtr(i);
2177 num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd);
2178 for (aiop = 0; aiop < max_num_aiops; aiop++)
2179 ctlp->AiopNumChan[aiop] = ports_per_aiop;
2180
2181 dev_info(&dev->dev, "comtrol PCI controller #%d found at "
2182 "address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n",
2183 i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString,
2184 rocketModel[i].startingPortNumber,
2185 rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1);
2186
2187 if (num_aiops <= 0) {
2188 rcktpt_io_addr[i] = 0;
2189 return (0);
2190 }
2191 is_PCI[i] = 1;
2192
2193 /* Reset the AIOPIC, init the serial ports */
2194 for (aiop = 0; aiop < num_aiops; aiop++) {
2195 sResetAiopByNum(ctlp, aiop);
2196 num_chan = ports_per_aiop;
2197 for (chan = 0; chan < num_chan; chan++)
2198 init_r_port(i, aiop, chan, dev);
2199 }
2200
2201 /* Rocket modems must be reset */
2202 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) ||
2203 (rcktpt_type[i] == ROCKET_TYPE_MODEMII) ||
2204 (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) {
2205 num_chan = ports_per_aiop;
2206 for (chan = 0; chan < num_chan; chan++)
2207 sPCIModemReset(ctlp, chan, 1);
2208 msleep(500);
2209 for (chan = 0; chan < num_chan; chan++)
2210 sPCIModemReset(ctlp, chan, 0);
2211 msleep(500);
2212 rmSpeakerReset(ctlp, rocketModel[i].model);
2213 }
2214 return (1);
2215 }
2216
2217 /*
2218 * Probes for PCI cards, inits them if found
2219 * Input: board_found = number of ISA boards already found, or the
2220 * starting board number
2221 * Returns: Number of PCI boards found
2222 */
2223 static int __init init_PCI(int boards_found)
2224 {
2225 struct pci_dev *dev = NULL;
2226 int count = 0;
2227
2228 /* Work through the PCI device list, pulling out ours */
2229 while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) {
2230 if (register_PCI(count + boards_found, dev))
2231 count++;
2232 }
2233 return (count);
2234 }
2235
2236 #endif /* CONFIG_PCI */
2237
2238 /*
2239 * Probes for ISA cards
2240 * Input: i = the board number to look for
2241 * Returns: 1 if board found, 0 else
2242 */
2243 static int __init init_ISA(int i)
2244 {
2245 int num_aiops, num_chan = 0, total_num_chan = 0;
2246 int aiop, chan;
2247 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
2248 CONTROLLER_t *ctlp;
2249 char *type_string;
2250
2251 /* If io_addr is zero, no board configured */
2252 if (rcktpt_io_addr[i] == 0)
2253 return (0);
2254
2255 /* Reserve the IO region */
2256 if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) {
2257 printk(KERN_ERR "Unable to reserve IO region for configured "
2258 "ISA RocketPort at address 0x%lx, board not "
2259 "installed...\n", rcktpt_io_addr[i]);
2260 rcktpt_io_addr[i] = 0;
2261 return (0);
2262 }
2263
2264 ctlp = sCtlNumToCtlPtr(i);
2265
2266 ctlp->boardType = rcktpt_type[i];
2267
2268 switch (rcktpt_type[i]) {
2269 case ROCKET_TYPE_PC104:
2270 type_string = "(PC104)";
2271 break;
2272 case ROCKET_TYPE_MODEM:
2273 type_string = "(RocketModem)";
2274 break;
2275 case ROCKET_TYPE_MODEMII:
2276 type_string = "(RocketModem II)";
2277 break;
2278 default:
2279 type_string = "";
2280 break;
2281 }
2282
2283 /*
2284 * If support_low_speed is set, use the slow clock prescale,
2285 * which supports 50 bps
2286 */
2287 if (support_low_speed) {
2288 sClockPrescale = 0x19; /* mod 9 (divide by 10) prescale */
2289 rp_baud_base[i] = 230400;
2290 } else {
2291 sClockPrescale = 0x14; /* mod 4 (devide by 5) prescale */
2292 rp_baud_base[i] = 460800;
2293 }
2294
2295 for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++)
2296 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400);
2297
2298 num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio, MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0);
2299
2300 if (ctlp->boardType == ROCKET_TYPE_PC104) {
2301 sEnAiop(ctlp, 2); /* only one AIOPIC, but these */
2302 sEnAiop(ctlp, 3); /* CSels used for other stuff */
2303 }
2304
2305 /* If something went wrong initing the AIOP's release the ISA IO memory */
2306 if (num_aiops <= 0) {
2307 release_region(rcktpt_io_addr[i], 64);
2308 rcktpt_io_addr[i] = 0;
2309 return (0);
2310 }
2311
2312 rocketModel[i].startingPortNumber = nextLineNumber;
2313
2314 for (aiop = 0; aiop < num_aiops; aiop++) {
2315 sResetAiopByNum(ctlp, aiop);
2316 sEnAiop(ctlp, aiop);
2317 num_chan = sGetAiopNumChan(ctlp, aiop);
2318 total_num_chan += num_chan;
2319 for (chan = 0; chan < num_chan; chan++)
2320 init_r_port(i, aiop, chan, NULL);
2321 }
2322 is_PCI[i] = 0;
2323 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) {
2324 num_chan = sGetAiopNumChan(ctlp, 0);
2325 total_num_chan = num_chan;
2326 for (chan = 0; chan < num_chan; chan++)
2327 sModemReset(ctlp, chan, 1);
2328 msleep(500);
2329 for (chan = 0; chan < num_chan; chan++)
2330 sModemReset(ctlp, chan, 0);
2331 msleep(500);
2332 strcpy(rocketModel[i].modelString, "RocketModem ISA");
2333 } else {
2334 strcpy(rocketModel[i].modelString, "RocketPort ISA");
2335 }
2336 rocketModel[i].numPorts = total_num_chan;
2337 rocketModel[i].model = MODEL_ISA;
2338
2339 printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n",
2340 i, rcktpt_io_addr[i], num_aiops, type_string);
2341
2342 printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n",
2343 rocketModel[i].modelString,
2344 rocketModel[i].startingPortNumber,
2345 rocketModel[i].startingPortNumber +
2346 rocketModel[i].numPorts - 1);
2347
2348 return (1);
2349 }
2350
2351 static const struct tty_operations rocket_ops = {
2352 .open = rp_open,
2353 .close = rp_close,
2354 .write = rp_write,
2355 .put_char = rp_put_char,
2356 .write_room = rp_write_room,
2357 .chars_in_buffer = rp_chars_in_buffer,
2358 .flush_buffer = rp_flush_buffer,
2359 .ioctl = rp_ioctl,
2360 .throttle = rp_throttle,
2361 .unthrottle = rp_unthrottle,
2362 .set_termios = rp_set_termios,
2363 .stop = rp_stop,
2364 .start = rp_start,
2365 .hangup = rp_hangup,
2366 .break_ctl = rp_break,
2367 .send_xchar = rp_send_xchar,
2368 .wait_until_sent = rp_wait_until_sent,
2369 .tiocmget = rp_tiocmget,
2370 .tiocmset = rp_tiocmset,
2371 };
2372
2373 /*
2374 * The module "startup" routine; it's run when the module is loaded.
2375 */
2376 static int __init rp_init(void)
2377 {
2378 int ret = -ENOMEM, pci_boards_found, isa_boards_found, i;
2379
2380 printk(KERN_INFO "RocketPort device driver module, version %s, %s\n",
2381 ROCKET_VERSION, ROCKET_DATE);
2382
2383 rocket_driver = alloc_tty_driver(MAX_RP_PORTS);
2384 if (!rocket_driver)
2385 goto err;
2386
2387 /*
2388 * If board 1 is non-zero, there is at least one ISA configured. If controller is
2389 * zero, use the default controller IO address of board1 + 0x40.
2390 */
2391 if (board1) {
2392 if (controller == 0)
2393 controller = board1 + 0x40;
2394 } else {
2395 controller = 0; /* Used as a flag, meaning no ISA boards */
2396 }
2397
2398 /* If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */
2399 if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) {
2400 printk(KERN_ERR "Unable to reserve IO region for first "
2401 "configured ISA RocketPort controller 0x%lx. "
2402 "Driver exiting\n", controller);
2403 ret = -EBUSY;
2404 goto err_tty;
2405 }
2406
2407 /* Store ISA variable retrieved from command line or .conf file. */
2408 rcktpt_io_addr[0] = board1;
2409 rcktpt_io_addr[1] = board2;
2410 rcktpt_io_addr[2] = board3;
2411 rcktpt_io_addr[3] = board4;
2412
2413 rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2414 rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0];
2415 rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2416 rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1];
2417 rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2418 rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2];
2419 rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2420 rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3];
2421
2422 /*
2423 * Set up the tty driver structure and then register this
2424 * driver with the tty layer.
2425 */
2426
2427 rocket_driver->owner = THIS_MODULE;
2428 rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV;
2429 rocket_driver->name = "ttyR";
2430 rocket_driver->driver_name = "Comtrol RocketPort";
2431 rocket_driver->major = TTY_ROCKET_MAJOR;
2432 rocket_driver->minor_start = 0;
2433 rocket_driver->type = TTY_DRIVER_TYPE_SERIAL;
2434 rocket_driver->subtype = SERIAL_TYPE_NORMAL;
2435 rocket_driver->init_termios = tty_std_termios;
2436 rocket_driver->init_termios.c_cflag =
2437 B9600 | CS8 | CREAD | HUPCL | CLOCAL;
2438 rocket_driver->init_termios.c_ispeed = 9600;
2439 rocket_driver->init_termios.c_ospeed = 9600;
2440 #ifdef ROCKET_SOFT_FLOW
2441 rocket_driver->flags |= TTY_DRIVER_REAL_RAW;
2442 #endif
2443 tty_set_operations(rocket_driver, &rocket_ops);
2444
2445 ret = tty_register_driver(rocket_driver);
2446 if (ret < 0) {
2447 printk(KERN_ERR "Couldn't install tty RocketPort driver\n");
2448 goto err_tty;
2449 }
2450
2451 #ifdef ROCKET_DEBUG_OPEN
2452 printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major);
2453 #endif
2454
2455 /*
2456 * OK, let's probe each of the controllers looking for boards. Any boards found
2457 * will be initialized here.
2458 */
2459 isa_boards_found = 0;
2460 pci_boards_found = 0;
2461
2462 for (i = 0; i < NUM_BOARDS; i++) {
2463 if (init_ISA(i))
2464 isa_boards_found++;
2465 }
2466
2467 #ifdef CONFIG_PCI
2468 if (isa_boards_found < NUM_BOARDS)
2469 pci_boards_found = init_PCI(isa_boards_found);
2470 #endif
2471
2472 max_board = pci_boards_found + isa_boards_found;
2473
2474 if (max_board == 0) {
2475 printk(KERN_ERR "No rocketport ports found; unloading driver\n");
2476 ret = -ENXIO;
2477 goto err_ttyu;
2478 }
2479
2480 return 0;
2481 err_ttyu:
2482 tty_unregister_driver(rocket_driver);
2483 err_tty:
2484 put_tty_driver(rocket_driver);
2485 err:
2486 return ret;
2487 }
2488
2489
2490 static void rp_cleanup_module(void)
2491 {
2492 int retval;
2493 int i;
2494
2495 del_timer_sync(&rocket_timer);
2496
2497 retval = tty_unregister_driver(rocket_driver);
2498 if (retval)
2499 printk(KERN_ERR "Error %d while trying to unregister "
2500 "rocketport driver\n", -retval);
2501
2502 for (i = 0; i < MAX_RP_PORTS; i++)
2503 if (rp_table[i]) {
2504 tty_unregister_device(rocket_driver, i);
2505 kfree(rp_table[i]);
2506 }
2507
2508 put_tty_driver(rocket_driver);
2509
2510 for (i = 0; i < NUM_BOARDS; i++) {
2511 if (rcktpt_io_addr[i] <= 0 || is_PCI[i])
2512 continue;
2513 release_region(rcktpt_io_addr[i], 64);
2514 }
2515 if (controller)
2516 release_region(controller, 4);
2517 }
2518
2519 /***************************************************************************
2520 Function: sInitController
2521 Purpose: Initialization of controller global registers and controller
2522 structure.
2523 Call: sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize,
2524 IRQNum,Frequency,PeriodicOnly)
2525 CONTROLLER_T *CtlP; Ptr to controller structure
2526 int CtlNum; Controller number
2527 ByteIO_t MudbacIO; Mudbac base I/O address.
2528 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2529 This list must be in the order the AIOPs will be found on the
2530 controller. Once an AIOP in the list is not found, it is
2531 assumed that there are no more AIOPs on the controller.
2532 int AiopIOListSize; Number of addresses in AiopIOList
2533 int IRQNum; Interrupt Request number. Can be any of the following:
2534 0: Disable global interrupts
2535 3: IRQ 3
2536 4: IRQ 4
2537 5: IRQ 5
2538 9: IRQ 9
2539 10: IRQ 10
2540 11: IRQ 11
2541 12: IRQ 12
2542 15: IRQ 15
2543 Byte_t Frequency: A flag identifying the frequency
2544 of the periodic interrupt, can be any one of the following:
2545 FREQ_DIS - periodic interrupt disabled
2546 FREQ_137HZ - 137 Hertz
2547 FREQ_69HZ - 69 Hertz
2548 FREQ_34HZ - 34 Hertz
2549 FREQ_17HZ - 17 Hertz
2550 FREQ_9HZ - 9 Hertz
2551 FREQ_4HZ - 4 Hertz
2552 If IRQNum is set to 0 the Frequency parameter is
2553 overidden, it is forced to a value of FREQ_DIS.
2554 int PeriodicOnly: 1 if all interrupts except the periodic
2555 interrupt are to be blocked.
2556 0 is both the periodic interrupt and
2557 other channel interrupts are allowed.
2558 If IRQNum is set to 0 the PeriodicOnly parameter is
2559 overidden, it is forced to a value of 0.
2560 Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
2561 initialization failed.
2562
2563 Comments:
2564 If periodic interrupts are to be disabled but AIOP interrupts
2565 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2566
2567 If interrupts are to be completely disabled set IRQNum to 0.
2568
2569 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2570 invalid combination.
2571
2572 This function performs initialization of global interrupt modes,
2573 but it does not actually enable global interrupts. To enable
2574 and disable global interrupts use functions sEnGlobalInt() and
2575 sDisGlobalInt(). Enabling of global interrupts is normally not
2576 done until all other initializations are complete.
2577
2578 Even if interrupts are globally enabled, they must also be
2579 individually enabled for each channel that is to generate
2580 interrupts.
2581
2582 Warnings: No range checking on any of the parameters is done.
2583
2584 No context switches are allowed while executing this function.
2585
2586 After this function all AIOPs on the controller are disabled,
2587 they can be enabled with sEnAiop().
2588 */
2589 static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
2590 ByteIO_t * AiopIOList, int AiopIOListSize,
2591 int IRQNum, Byte_t Frequency, int PeriodicOnly)
2592 {
2593 int i;
2594 ByteIO_t io;
2595 int done;
2596
2597 CtlP->AiopIntrBits = aiop_intr_bits;
2598 CtlP->AltChanRingIndicator = 0;
2599 CtlP->CtlNum = CtlNum;
2600 CtlP->CtlID = CTLID_0001; /* controller release 1 */
2601 CtlP->BusType = isISA;
2602 CtlP->MBaseIO = MudbacIO;
2603 CtlP->MReg1IO = MudbacIO + 1;
2604 CtlP->MReg2IO = MudbacIO + 2;
2605 CtlP->MReg3IO = MudbacIO + 3;
2606 #if 1
2607 CtlP->MReg2 = 0; /* interrupt disable */
2608 CtlP->MReg3 = 0; /* no periodic interrupts */
2609 #else
2610 if (sIRQMap[IRQNum] == 0) { /* interrupts globally disabled */
2611 CtlP->MReg2 = 0; /* interrupt disable */
2612 CtlP->MReg3 = 0; /* no periodic interrupts */
2613 } else {
2614 CtlP->MReg2 = sIRQMap[IRQNum]; /* set IRQ number */
2615 CtlP->MReg3 = Frequency; /* set frequency */
2616 if (PeriodicOnly) { /* periodic interrupt only */
2617 CtlP->MReg3 |= PERIODIC_ONLY;
2618 }
2619 }
2620 #endif
2621 sOutB(CtlP->MReg2IO, CtlP->MReg2);
2622 sOutB(CtlP->MReg3IO, CtlP->MReg3);
2623 sControllerEOI(CtlP); /* clear EOI if warm init */
2624 /* Init AIOPs */
2625 CtlP->NumAiop = 0;
2626 for (i = done = 0; i < AiopIOListSize; i++) {
2627 io = AiopIOList[i];
2628 CtlP->AiopIO[i] = (WordIO_t) io;
2629 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2630 sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03)); /* AIOP index */
2631 sOutB(MudbacIO, (Byte_t) (io >> 6)); /* set up AIOP I/O in MUDBAC */
2632 if (done)
2633 continue;
2634 sEnAiop(CtlP, i); /* enable the AIOP */
2635 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
2636 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
2637 done = 1; /* done looking for AIOPs */
2638 else {
2639 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
2640 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
2641 sOutB(io + _INDX_DATA, sClockPrescale);
2642 CtlP->NumAiop++; /* bump count of AIOPs */
2643 }
2644 sDisAiop(CtlP, i); /* disable AIOP */
2645 }
2646
2647 if (CtlP->NumAiop == 0)
2648 return (-1);
2649 else
2650 return (CtlP->NumAiop);
2651 }
2652
2653 /***************************************************************************
2654 Function: sPCIInitController
2655 Purpose: Initialization of controller global registers and controller
2656 structure.
2657 Call: sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize,
2658 IRQNum,Frequency,PeriodicOnly)
2659 CONTROLLER_T *CtlP; Ptr to controller structure
2660 int CtlNum; Controller number
2661 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2662 This list must be in the order the AIOPs will be found on the
2663 controller. Once an AIOP in the list is not found, it is
2664 assumed that there are no more AIOPs on the controller.
2665 int AiopIOListSize; Number of addresses in AiopIOList
2666 int IRQNum; Interrupt Request number. Can be any of the following:
2667 0: Disable global interrupts
2668 3: IRQ 3
2669 4: IRQ 4
2670 5: IRQ 5
2671 9: IRQ 9
2672 10: IRQ 10
2673 11: IRQ 11
2674 12: IRQ 12
2675 15: IRQ 15
2676 Byte_t Frequency: A flag identifying the frequency
2677 of the periodic interrupt, can be any one of the following:
2678 FREQ_DIS - periodic interrupt disabled
2679 FREQ_137HZ - 137 Hertz
2680 FREQ_69HZ - 69 Hertz
2681 FREQ_34HZ - 34 Hertz
2682 FREQ_17HZ - 17 Hertz
2683 FREQ_9HZ - 9 Hertz
2684 FREQ_4HZ - 4 Hertz
2685 If IRQNum is set to 0 the Frequency parameter is
2686 overidden, it is forced to a value of FREQ_DIS.
2687 int PeriodicOnly: 1 if all interrupts except the periodic
2688 interrupt are to be blocked.
2689 0 is both the periodic interrupt and
2690 other channel interrupts are allowed.
2691 If IRQNum is set to 0 the PeriodicOnly parameter is
2692 overidden, it is forced to a value of 0.
2693 Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
2694 initialization failed.
2695
2696 Comments:
2697 If periodic interrupts are to be disabled but AIOP interrupts
2698 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2699
2700 If interrupts are to be completely disabled set IRQNum to 0.
2701
2702 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2703 invalid combination.
2704
2705 This function performs initialization of global interrupt modes,
2706 but it does not actually enable global interrupts. To enable
2707 and disable global interrupts use functions sEnGlobalInt() and
2708 sDisGlobalInt(). Enabling of global interrupts is normally not
2709 done until all other initializations are complete.
2710
2711 Even if interrupts are globally enabled, they must also be
2712 individually enabled for each channel that is to generate
2713 interrupts.
2714
2715 Warnings: No range checking on any of the parameters is done.
2716
2717 No context switches are allowed while executing this function.
2718
2719 After this function all AIOPs on the controller are disabled,
2720 they can be enabled with sEnAiop().
2721 */
2722 static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
2723 ByteIO_t * AiopIOList, int AiopIOListSize,
2724 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
2725 int PeriodicOnly, int altChanRingIndicator,
2726 int UPCIRingInd)
2727 {
2728 int i;
2729 ByteIO_t io;
2730
2731 CtlP->AltChanRingIndicator = altChanRingIndicator;
2732 CtlP->UPCIRingInd = UPCIRingInd;
2733 CtlP->CtlNum = CtlNum;
2734 CtlP->CtlID = CTLID_0001; /* controller release 1 */
2735 CtlP->BusType = isPCI; /* controller release 1 */
2736
2737 if (ConfigIO) {
2738 CtlP->isUPCI = 1;
2739 CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL;
2740 CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL;
2741 CtlP->AiopIntrBits = upci_aiop_intr_bits;
2742 } else {
2743 CtlP->isUPCI = 0;
2744 CtlP->PCIIO =
2745 (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC);
2746 CtlP->AiopIntrBits = aiop_intr_bits;
2747 }
2748
2749 sPCIControllerEOI(CtlP); /* clear EOI if warm init */
2750 /* Init AIOPs */
2751 CtlP->NumAiop = 0;
2752 for (i = 0; i < AiopIOListSize; i++) {
2753 io = AiopIOList[i];
2754 CtlP->AiopIO[i] = (WordIO_t) io;
2755 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2756
2757 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
2758 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
2759 break; /* done looking for AIOPs */
2760
2761 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
2762 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
2763 sOutB(io + _INDX_DATA, sClockPrescale);
2764 CtlP->NumAiop++; /* bump count of AIOPs */
2765 }
2766
2767 if (CtlP->NumAiop == 0)
2768 return (-1);
2769 else
2770 return (CtlP->NumAiop);
2771 }
2772
2773 /***************************************************************************
2774 Function: sReadAiopID
2775 Purpose: Read the AIOP idenfication number directly from an AIOP.
2776 Call: sReadAiopID(io)
2777 ByteIO_t io: AIOP base I/O address
2778 Return: int: Flag AIOPID_XXXX if a valid AIOP is found, where X
2779 is replace by an identifying number.
2780 Flag AIOPID_NULL if no valid AIOP is found
2781 Warnings: No context switches are allowed while executing this function.
2782
2783 */
2784 static int sReadAiopID(ByteIO_t io)
2785 {
2786 Byte_t AiopID; /* ID byte from AIOP */
2787
2788 sOutB(io + _CMD_REG, RESET_ALL); /* reset AIOP */
2789 sOutB(io + _CMD_REG, 0x0);
2790 AiopID = sInW(io + _CHN_STAT0) & 0x07;
2791 if (AiopID == 0x06)
2792 return (1);
2793 else /* AIOP does not exist */
2794 return (-1);
2795 }
2796
2797 /***************************************************************************
2798 Function: sReadAiopNumChan
2799 Purpose: Read the number of channels available in an AIOP directly from
2800 an AIOP.
2801 Call: sReadAiopNumChan(io)
2802 WordIO_t io: AIOP base I/O address
2803 Return: int: The number of channels available
2804 Comments: The number of channels is determined by write/reads from identical
2805 offsets within the SRAM address spaces for channels 0 and 4.
2806 If the channel 4 space is mirrored to channel 0 it is a 4 channel
2807 AIOP, otherwise it is an 8 channel.
2808 Warnings: No context switches are allowed while executing this function.
2809 */
2810 static int sReadAiopNumChan(WordIO_t io)
2811 {
2812 Word_t x;
2813 static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 };
2814
2815 /* write to chan 0 SRAM */
2816 out32((DWordIO_t) io + _INDX_ADDR, R);
2817 sOutW(io + _INDX_ADDR, 0); /* read from SRAM, chan 0 */
2818 x = sInW(io + _INDX_DATA);
2819 sOutW(io + _INDX_ADDR, 0x4000); /* read from SRAM, chan 4 */
2820 if (x != sInW(io + _INDX_DATA)) /* if different must be 8 chan */
2821 return (8);
2822 else
2823 return (4);
2824 }
2825
2826 /***************************************************************************
2827 Function: sInitChan
2828 Purpose: Initialization of a channel and channel structure
2829 Call: sInitChan(CtlP,ChP,AiopNum,ChanNum)
2830 CONTROLLER_T *CtlP; Ptr to controller structure
2831 CHANNEL_T *ChP; Ptr to channel structure
2832 int AiopNum; AIOP number within controller
2833 int ChanNum; Channel number within AIOP
2834 Return: int: 1 if initialization succeeded, 0 if it fails because channel
2835 number exceeds number of channels available in AIOP.
2836 Comments: This function must be called before a channel can be used.
2837 Warnings: No range checking on any of the parameters is done.
2838
2839 No context switches are allowed while executing this function.
2840 */
2841 static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
2842 int ChanNum)
2843 {
2844 int i;
2845 WordIO_t AiopIO;
2846 WordIO_t ChIOOff;
2847 Byte_t *ChR;
2848 Word_t ChOff;
2849 static Byte_t R[4];
2850 int brd9600;
2851
2852 if (ChanNum >= CtlP->AiopNumChan[AiopNum])
2853 return 0; /* exceeds num chans in AIOP */
2854
2855 /* Channel, AIOP, and controller identifiers */
2856 ChP->CtlP = CtlP;
2857 ChP->ChanID = CtlP->AiopID[AiopNum];
2858 ChP->AiopNum = AiopNum;
2859 ChP->ChanNum = ChanNum;
2860
2861 /* Global direct addresses */
2862 AiopIO = CtlP->AiopIO[AiopNum];
2863 ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG;
2864 ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN;
2865 ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK;
2866 ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR;
2867 ChP->IndexData = AiopIO + _INDX_DATA;
2868
2869 /* Channel direct addresses */
2870 ChIOOff = AiopIO + ChP->ChanNum * 2;
2871 ChP->TxRxData = ChIOOff + _TD0;
2872 ChP->ChanStat = ChIOOff + _CHN_STAT0;
2873 ChP->TxRxCount = ChIOOff + _FIFO_CNT0;
2874 ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0;
2875
2876 /* Initialize the channel from the RData array */
2877 for (i = 0; i < RDATASIZE; i += 4) {
2878 R[0] = RData[i];
2879 R[1] = RData[i + 1] + 0x10 * ChanNum;
2880 R[2] = RData[i + 2];
2881 R[3] = RData[i + 3];
2882 out32(ChP->IndexAddr, R);
2883 }
2884
2885 ChR = ChP->R;
2886 for (i = 0; i < RREGDATASIZE; i += 4) {
2887 ChR[i] = RRegData[i];
2888 ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum;
2889 ChR[i + 2] = RRegData[i + 2];
2890 ChR[i + 3] = RRegData[i + 3];
2891 }
2892
2893 /* Indexed registers */
2894 ChOff = (Word_t) ChanNum *0x1000;
2895
2896 if (sClockPrescale == 0x14)
2897 brd9600 = 47;
2898 else
2899 brd9600 = 23;
2900
2901 ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD);
2902 ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8);
2903 ChP->BaudDiv[2] = (Byte_t) brd9600;
2904 ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8);
2905 out32(ChP->IndexAddr, ChP->BaudDiv);
2906
2907 ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL);
2908 ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8);
2909 ChP->TxControl[2] = 0;
2910 ChP->TxControl[3] = 0;
2911 out32(ChP->IndexAddr, ChP->TxControl);
2912
2913 ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL);
2914 ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8);
2915 ChP->RxControl[2] = 0;
2916 ChP->RxControl[3] = 0;
2917 out32(ChP->IndexAddr, ChP->RxControl);
2918
2919 ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS);
2920 ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8);
2921 ChP->TxEnables[2] = 0;
2922 ChP->TxEnables[3] = 0;
2923 out32(ChP->IndexAddr, ChP->TxEnables);
2924
2925 ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1);
2926 ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8);
2927 ChP->TxCompare[2] = 0;
2928 ChP->TxCompare[3] = 0;
2929 out32(ChP->IndexAddr, ChP->TxCompare);
2930
2931 ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1);
2932 ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8);
2933 ChP->TxReplace1[2] = 0;
2934 ChP->TxReplace1[3] = 0;
2935 out32(ChP->IndexAddr, ChP->TxReplace1);
2936
2937 ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2);
2938 ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8);
2939 ChP->TxReplace2[2] = 0;
2940 ChP->TxReplace2[3] = 0;
2941 out32(ChP->IndexAddr, ChP->TxReplace2);
2942
2943 ChP->TxFIFOPtrs = ChOff + _TXF_OUTP;
2944 ChP->TxFIFO = ChOff + _TX_FIFO;
2945
2946 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT); /* apply reset Tx FIFO count */
2947 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Tx FIFO count */
2948 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
2949 sOutW(ChP->IndexData, 0);
2950 ChP->RxFIFOPtrs = ChOff + _RXF_OUTP;
2951 ChP->RxFIFO = ChOff + _RX_FIFO;
2952
2953 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT); /* apply reset Rx FIFO count */
2954 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Rx FIFO count */
2955 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
2956 sOutW(ChP->IndexData, 0);
2957 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
2958 sOutW(ChP->IndexData, 0);
2959 ChP->TxPrioCnt = ChOff + _TXP_CNT;
2960 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt);
2961 sOutB(ChP->IndexData, 0);
2962 ChP->TxPrioPtr = ChOff + _TXP_PNTR;
2963 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr);
2964 sOutB(ChP->IndexData, 0);
2965 ChP->TxPrioBuf = ChOff + _TXP_BUF;
2966 sEnRxProcessor(ChP); /* start the Rx processor */
2967
2968 return 1;
2969 }
2970
2971 /***************************************************************************
2972 Function: sStopRxProcessor
2973 Purpose: Stop the receive processor from processing a channel.
2974 Call: sStopRxProcessor(ChP)
2975 CHANNEL_T *ChP; Ptr to channel structure
2976
2977 Comments: The receive processor can be started again with sStartRxProcessor().
2978 This function causes the receive processor to skip over the
2979 stopped channel. It does not stop it from processing other channels.
2980
2981 Warnings: No context switches are allowed while executing this function.
2982
2983 Do not leave the receive processor stopped for more than one
2984 character time.
2985
2986 After calling this function a delay of 4 uS is required to ensure
2987 that the receive processor is no longer processing this channel.
2988 */
2989 static void sStopRxProcessor(CHANNEL_T * ChP)
2990 {
2991 Byte_t R[4];
2992
2993 R[0] = ChP->R[0];
2994 R[1] = ChP->R[1];
2995 R[2] = 0x0a;
2996 R[3] = ChP->R[3];
2997 out32(ChP->IndexAddr, R);
2998 }
2999
3000 /***************************************************************************
3001 Function: sFlushRxFIFO
3002 Purpose: Flush the Rx FIFO
3003 Call: sFlushRxFIFO(ChP)
3004 CHANNEL_T *ChP; Ptr to channel structure
3005 Return: void
3006 Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
3007 while it is being flushed the receive processor is stopped
3008 and the transmitter is disabled. After these operations a
3009 4 uS delay is done before clearing the pointers to allow
3010 the receive processor to stop. These items are handled inside
3011 this function.
3012 Warnings: No context switches are allowed while executing this function.
3013 */
3014 static void sFlushRxFIFO(CHANNEL_T * ChP)
3015 {
3016 int i;
3017 Byte_t Ch; /* channel number within AIOP */
3018 int RxFIFOEnabled; /* 1 if Rx FIFO enabled */
3019
3020 if (sGetRxCnt(ChP) == 0) /* Rx FIFO empty */
3021 return; /* don't need to flush */
3022
3023 RxFIFOEnabled = 0;
3024 if (ChP->R[0x32] == 0x08) { /* Rx FIFO is enabled */
3025 RxFIFOEnabled = 1;
3026 sDisRxFIFO(ChP); /* disable it */
3027 for (i = 0; i < 2000 / 200; i++) /* delay 2 uS to allow proc to disable FIFO */
3028 sInB(ChP->IntChan); /* depends on bus i/o timing */
3029 }
3030 sGetChanStatus(ChP); /* clear any pending Rx errors in chan stat */
3031 Ch = (Byte_t) sGetChanNum(ChP);
3032 sOutB(ChP->Cmd, Ch | RESRXFCNT); /* apply reset Rx FIFO count */
3033 sOutB(ChP->Cmd, Ch); /* remove reset Rx FIFO count */
3034 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
3035 sOutW(ChP->IndexData, 0);
3036 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
3037 sOutW(ChP->IndexData, 0);
3038 if (RxFIFOEnabled)
3039 sEnRxFIFO(ChP); /* enable Rx FIFO */
3040 }
3041
3042 /***************************************************************************
3043 Function: sFlushTxFIFO
3044 Purpose: Flush the Tx FIFO
3045 Call: sFlushTxFIFO(ChP)
3046 CHANNEL_T *ChP; Ptr to channel structure
3047 Return: void
3048 Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
3049 while it is being flushed the receive processor is stopped
3050 and the transmitter is disabled. After these operations a
3051 4 uS delay is done before clearing the pointers to allow
3052 the receive processor to stop. These items are handled inside
3053 this function.
3054 Warnings: No context switches are allowed while executing this function.
3055 */
3056 static void sFlushTxFIFO(CHANNEL_T * ChP)
3057 {
3058 int i;
3059 Byte_t Ch; /* channel number within AIOP */
3060 int TxEnabled; /* 1 if transmitter enabled */
3061
3062 if (sGetTxCnt(ChP) == 0) /* Tx FIFO empty */
3063 return; /* don't need to flush */
3064
3065 TxEnabled = 0;
3066 if (ChP->TxControl[3] & TX_ENABLE) {
3067 TxEnabled = 1;
3068 sDisTransmit(ChP); /* disable transmitter */
3069 }
3070 sStopRxProcessor(ChP); /* stop Rx processor */
3071 for (i = 0; i < 4000 / 200; i++) /* delay 4 uS to allow proc to stop */
3072 sInB(ChP->IntChan); /* depends on bus i/o timing */
3073 Ch = (Byte_t) sGetChanNum(ChP);
3074 sOutB(ChP->Cmd, Ch | RESTXFCNT); /* apply reset Tx FIFO count */
3075 sOutB(ChP->Cmd, Ch); /* remove reset Tx FIFO count */
3076 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
3077 sOutW(ChP->IndexData, 0);
3078 if (TxEnabled)
3079 sEnTransmit(ChP); /* enable transmitter */
3080 sStartRxProcessor(ChP); /* restart Rx processor */
3081 }
3082
3083 /***************************************************************************
3084 Function: sWriteTxPrioByte
3085 Purpose: Write a byte of priority transmit data to a channel
3086 Call: sWriteTxPrioByte(ChP,Data)
3087 CHANNEL_T *ChP; Ptr to channel structure
3088 Byte_t Data; The transmit data byte
3089
3090 Return: int: 1 if the bytes is successfully written, otherwise 0.
3091
3092 Comments: The priority byte is transmitted before any data in the Tx FIFO.
3093
3094 Warnings: No context switches are allowed while executing this function.
3095 */
3096 static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data)
3097 {
3098 Byte_t DWBuf[4]; /* buffer for double word writes */
3099 Word_t *WordPtr; /* must be far because Win SS != DS */
3100 register DWordIO_t IndexAddr;
3101
3102 if (sGetTxCnt(ChP) > 1) { /* write it to Tx priority buffer */
3103 IndexAddr = ChP->IndexAddr;
3104 sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt); /* get priority buffer status */
3105 if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND) /* priority buffer busy */
3106 return (0); /* nothing sent */
3107
3108 WordPtr = (Word_t *) (&DWBuf[0]);
3109 *WordPtr = ChP->TxPrioBuf; /* data byte address */
3110
3111 DWBuf[2] = Data; /* data byte value */
3112 out32(IndexAddr, DWBuf); /* write it out */
3113
3114 *WordPtr = ChP->TxPrioCnt; /* Tx priority count address */
3115
3116 DWBuf[2] = PRI_PEND + 1; /* indicate 1 byte pending */
3117 DWBuf[3] = 0; /* priority buffer pointer */
3118 out32(IndexAddr, DWBuf); /* write it out */
3119 } else { /* write it to Tx FIFO */
3120
3121 sWriteTxByte(sGetTxRxDataIO(ChP), Data);
3122 }
3123 return (1); /* 1 byte sent */
3124 }
3125
3126 /***************************************************************************
3127 Function: sEnInterrupts
3128 Purpose: Enable one or more interrupts for a channel
3129 Call: sEnInterrupts(ChP,Flags)
3130 CHANNEL_T *ChP; Ptr to channel structure
3131 Word_t Flags: Interrupt enable flags, can be any combination
3132 of the following flags:
3133 TXINT_EN: Interrupt on Tx FIFO empty
3134 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
3135 sSetRxTrigger())
3136 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
3137 MCINT_EN: Interrupt on modem input change
3138 CHANINT_EN: Allow channel interrupt signal to the AIOP's
3139 Interrupt Channel Register.
3140 Return: void
3141 Comments: If an interrupt enable flag is set in Flags, that interrupt will be
3142 enabled. If an interrupt enable flag is not set in Flags, that
3143 interrupt will not be changed. Interrupts can be disabled with
3144 function sDisInterrupts().
3145
3146 This function sets the appropriate bit for the channel in the AIOP's
3147 Interrupt Mask Register if the CHANINT_EN flag is set. This allows
3148 this channel's bit to be set in the AIOP's Interrupt Channel Register.
3149
3150 Interrupts must also be globally enabled before channel interrupts
3151 will be passed on to the host. This is done with function
3152 sEnGlobalInt().
3153
3154 In some cases it may be desirable to disable interrupts globally but
3155 enable channel interrupts. This would allow the global interrupt
3156 status register to be used to determine which AIOPs need service.
3157 */
3158 static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags)
3159 {
3160 Byte_t Mask; /* Interrupt Mask Register */
3161
3162 ChP->RxControl[2] |=
3163 ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3164
3165 out32(ChP->IndexAddr, ChP->RxControl);
3166
3167 ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN);
3168
3169 out32(ChP->IndexAddr, ChP->TxControl);
3170
3171 if (Flags & CHANINT_EN) {
3172 Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum];
3173 sOutB(ChP->IntMask, Mask);
3174 }
3175 }
3176
3177 /***************************************************************************
3178 Function: sDisInterrupts
3179 Purpose: Disable one or more interrupts for a channel
3180 Call: sDisInterrupts(ChP,Flags)
3181 CHANNEL_T *ChP; Ptr to channel structure
3182 Word_t Flags: Interrupt flags, can be any combination
3183 of the following flags:
3184 TXINT_EN: Interrupt on Tx FIFO empty
3185 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
3186 sSetRxTrigger())
3187 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
3188 MCINT_EN: Interrupt on modem input change
3189 CHANINT_EN: Disable channel interrupt signal to the
3190 AIOP's Interrupt Channel Register.
3191 Return: void
3192 Comments: If an interrupt flag is set in Flags, that interrupt will be
3193 disabled. If an interrupt flag is not set in Flags, that
3194 interrupt will not be changed. Interrupts can be enabled with
3195 function sEnInterrupts().
3196
3197 This function clears the appropriate bit for the channel in the AIOP's
3198 Interrupt Mask Register if the CHANINT_EN flag is set. This blocks
3199 this channel's bit from being set in the AIOP's Interrupt Channel
3200 Register.
3201 */
3202 static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags)
3203 {
3204 Byte_t Mask; /* Interrupt Mask Register */
3205
3206 ChP->RxControl[2] &=
3207 ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3208 out32(ChP->IndexAddr, ChP->RxControl);
3209 ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN);
3210 out32(ChP->IndexAddr, ChP->TxControl);
3211
3212 if (Flags & CHANINT_EN) {
3213 Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum];
3214 sOutB(ChP->IntMask, Mask);
3215 }
3216 }
3217
3218 static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode)
3219 {
3220 sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum);
3221 }
3222
3223 /*
3224 * Not an official SSCI function, but how to reset RocketModems.
3225 * ISA bus version
3226 */
3227 static void sModemReset(CONTROLLER_T * CtlP, int chan, int on)
3228 {
3229 ByteIO_t addr;
3230 Byte_t val;
3231
3232 addr = CtlP->AiopIO[0] + 0x400;
3233 val = sInB(CtlP->MReg3IO);
3234 /* if AIOP[1] is not enabled, enable it */
3235 if ((val & 2) == 0) {
3236 val = sInB(CtlP->MReg2IO);
3237 sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03));
3238 sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6));
3239 }
3240
3241 sEnAiop(CtlP, 1);
3242 if (!on)
3243 addr += 8;
3244 sOutB(addr + chan, 0); /* apply or remove reset */
3245 sDisAiop(CtlP, 1);
3246 }
3247
3248 /*
3249 * Not an official SSCI function, but how to reset RocketModems.
3250 * PCI bus version
3251 */
3252 static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on)
3253 {
3254 ByteIO_t addr;
3255
3256 addr = CtlP->AiopIO[0] + 0x40; /* 2nd AIOP */
3257 if (!on)
3258 addr += 8;
3259 sOutB(addr + chan, 0); /* apply or remove reset */
3260 }
3261
3262 /* Resets the speaker controller on RocketModem II and III devices */
3263 static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model)
3264 {
3265 ByteIO_t addr;
3266
3267 /* RocketModem II speaker control is at the 8th port location of offset 0x40 */
3268 if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) {
3269 addr = CtlP->AiopIO[0] + 0x4F;
3270 sOutB(addr, 0);
3271 }
3272
3273 /* RocketModem III speaker control is at the 1st port location of offset 0x80 */
3274 if ((model == MODEL_UPCI_RM3_8PORT)
3275 || (model == MODEL_UPCI_RM3_4PORT)) {
3276 addr = CtlP->AiopIO[0] + 0x88;
3277 sOutB(addr, 0);
3278 }
3279 }
3280
3281 /* Returns the line number given the controller (board), aiop and channel number */
3282 static unsigned char GetLineNumber(int ctrl, int aiop, int ch)
3283 {
3284 return lineNumbers[(ctrl << 5) | (aiop << 3) | ch];
3285 }
3286
3287 /*
3288 * Stores the line number associated with a given controller (board), aiop
3289 * and channel number.
3290 * Returns: The line number assigned
3291 */
3292 static unsigned char SetLineNumber(int ctrl, int aiop, int ch)
3293 {
3294 lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++;
3295 return (nextLineNumber - 1);
3296 }