rocket: don't let random users reset the controller
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / char / rocket.c
1 /*
2 * RocketPort device driver for Linux
3 *
4 * Written by Theodore Ts'o, 1995, 1996, 1997, 1998, 1999, 2000.
5 *
6 * Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2003 by Comtrol, Inc.
7 *
8 * This program is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU General Public License as
10 * published by the Free Software Foundation; either version 2 of the
11 * License, or (at your option) any later version.
12 *
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 /*
24 * Kernel Synchronization:
25 *
26 * This driver has 2 kernel control paths - exception handlers (calls into the driver
27 * from user mode) and the timer bottom half (tasklet). This is a polled driver, interrupts
28 * are not used.
29 *
30 * Critical data:
31 * - rp_table[], accessed through passed "info" pointers, is a global (static) array of
32 * serial port state information and the xmit_buf circular buffer. Protected by
33 * a per port spinlock.
34 * - xmit_flags[], an array of ints indexed by line (port) number, indicating that there
35 * is data to be transmitted. Protected by atomic bit operations.
36 * - rp_num_ports, int indicating number of open ports, protected by atomic operations.
37 *
38 * rp_write() and rp_write_char() functions use a per port semaphore to protect against
39 * simultaneous access to the same port by more than one process.
40 */
41
42 /****** Defines ******/
43 #define ROCKET_PARANOIA_CHECK
44 #define ROCKET_DISABLE_SIMUSAGE
45
46 #undef ROCKET_SOFT_FLOW
47 #undef ROCKET_DEBUG_OPEN
48 #undef ROCKET_DEBUG_INTR
49 #undef ROCKET_DEBUG_WRITE
50 #undef ROCKET_DEBUG_FLOW
51 #undef ROCKET_DEBUG_THROTTLE
52 #undef ROCKET_DEBUG_WAIT_UNTIL_SENT
53 #undef ROCKET_DEBUG_RECEIVE
54 #undef ROCKET_DEBUG_HANGUP
55 #undef REV_PCI_ORDER
56 #undef ROCKET_DEBUG_IO
57
58 #define POLL_PERIOD HZ/100 /* Polling period .01 seconds (10ms) */
59
60 /****** Kernel includes ******/
61
62 #include <linux/module.h>
63 #include <linux/errno.h>
64 #include <linux/major.h>
65 #include <linux/kernel.h>
66 #include <linux/signal.h>
67 #include <linux/slab.h>
68 #include <linux/mm.h>
69 #include <linux/sched.h>
70 #include <linux/timer.h>
71 #include <linux/interrupt.h>
72 #include <linux/tty.h>
73 #include <linux/tty_driver.h>
74 #include <linux/tty_flip.h>
75 #include <linux/string.h>
76 #include <linux/fcntl.h>
77 #include <linux/ptrace.h>
78 #include <linux/mutex.h>
79 #include <linux/ioport.h>
80 #include <linux/delay.h>
81 #include <linux/completion.h>
82 #include <linux/wait.h>
83 #include <linux/pci.h>
84 #include <asm/uaccess.h>
85 #include <asm/atomic.h>
86 #include <linux/bitops.h>
87 #include <linux/spinlock.h>
88 #include <linux/init.h>
89
90 /****** RocketPort includes ******/
91
92 #include "rocket_int.h"
93 #include "rocket.h"
94
95 #define ROCKET_VERSION "2.09"
96 #define ROCKET_DATE "12-June-2003"
97
98 /****** RocketPort Local Variables ******/
99
100 static void rp_do_poll(unsigned long dummy);
101
102 static struct tty_driver *rocket_driver;
103
104 static struct rocket_version driver_version = {
105 ROCKET_VERSION, ROCKET_DATE
106 };
107
108 static struct r_port *rp_table[MAX_RP_PORTS]; /* The main repository of serial port state information. */
109 static unsigned int xmit_flags[NUM_BOARDS]; /* Bit significant, indicates port had data to transmit. */
110 /* eg. Bit 0 indicates port 0 has xmit data, ... */
111 static atomic_t rp_num_ports_open; /* Number of serial ports open */
112 static DEFINE_TIMER(rocket_timer, rp_do_poll, 0, 0);
113
114 static unsigned long board1; /* ISA addresses, retrieved from rocketport.conf */
115 static unsigned long board2;
116 static unsigned long board3;
117 static unsigned long board4;
118 static unsigned long controller;
119 static int support_low_speed;
120 static unsigned long modem1;
121 static unsigned long modem2;
122 static unsigned long modem3;
123 static unsigned long modem4;
124 static unsigned long pc104_1[8];
125 static unsigned long pc104_2[8];
126 static unsigned long pc104_3[8];
127 static unsigned long pc104_4[8];
128 static unsigned long *pc104[4] = { pc104_1, pc104_2, pc104_3, pc104_4 };
129
130 static int rp_baud_base[NUM_BOARDS]; /* Board config info (Someday make a per-board structure) */
131 static unsigned long rcktpt_io_addr[NUM_BOARDS];
132 static int rcktpt_type[NUM_BOARDS];
133 static int is_PCI[NUM_BOARDS];
134 static rocketModel_t rocketModel[NUM_BOARDS];
135 static int max_board;
136
137 /*
138 * The following arrays define the interrupt bits corresponding to each AIOP.
139 * These bits are different between the ISA and regular PCI boards and the
140 * Universal PCI boards.
141 */
142
143 static Word_t aiop_intr_bits[AIOP_CTL_SIZE] = {
144 AIOP_INTR_BIT_0,
145 AIOP_INTR_BIT_1,
146 AIOP_INTR_BIT_2,
147 AIOP_INTR_BIT_3
148 };
149
150 static Word_t upci_aiop_intr_bits[AIOP_CTL_SIZE] = {
151 UPCI_AIOP_INTR_BIT_0,
152 UPCI_AIOP_INTR_BIT_1,
153 UPCI_AIOP_INTR_BIT_2,
154 UPCI_AIOP_INTR_BIT_3
155 };
156
157 static Byte_t RData[RDATASIZE] = {
158 0x00, 0x09, 0xf6, 0x82,
159 0x02, 0x09, 0x86, 0xfb,
160 0x04, 0x09, 0x00, 0x0a,
161 0x06, 0x09, 0x01, 0x0a,
162 0x08, 0x09, 0x8a, 0x13,
163 0x0a, 0x09, 0xc5, 0x11,
164 0x0c, 0x09, 0x86, 0x85,
165 0x0e, 0x09, 0x20, 0x0a,
166 0x10, 0x09, 0x21, 0x0a,
167 0x12, 0x09, 0x41, 0xff,
168 0x14, 0x09, 0x82, 0x00,
169 0x16, 0x09, 0x82, 0x7b,
170 0x18, 0x09, 0x8a, 0x7d,
171 0x1a, 0x09, 0x88, 0x81,
172 0x1c, 0x09, 0x86, 0x7a,
173 0x1e, 0x09, 0x84, 0x81,
174 0x20, 0x09, 0x82, 0x7c,
175 0x22, 0x09, 0x0a, 0x0a
176 };
177
178 static Byte_t RRegData[RREGDATASIZE] = {
179 0x00, 0x09, 0xf6, 0x82, /* 00: Stop Rx processor */
180 0x08, 0x09, 0x8a, 0x13, /* 04: Tx software flow control */
181 0x0a, 0x09, 0xc5, 0x11, /* 08: XON char */
182 0x0c, 0x09, 0x86, 0x85, /* 0c: XANY */
183 0x12, 0x09, 0x41, 0xff, /* 10: Rx mask char */
184 0x14, 0x09, 0x82, 0x00, /* 14: Compare/Ignore #0 */
185 0x16, 0x09, 0x82, 0x7b, /* 18: Compare #1 */
186 0x18, 0x09, 0x8a, 0x7d, /* 1c: Compare #2 */
187 0x1a, 0x09, 0x88, 0x81, /* 20: Interrupt #1 */
188 0x1c, 0x09, 0x86, 0x7a, /* 24: Ignore/Replace #1 */
189 0x1e, 0x09, 0x84, 0x81, /* 28: Interrupt #2 */
190 0x20, 0x09, 0x82, 0x7c, /* 2c: Ignore/Replace #2 */
191 0x22, 0x09, 0x0a, 0x0a /* 30: Rx FIFO Enable */
192 };
193
194 static CONTROLLER_T sController[CTL_SIZE] = {
195 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
196 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
197 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
198 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
199 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
200 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}},
201 {-1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, {0, 0, 0, 0},
202 {0, 0, 0, 0}, {-1, -1, -1, -1}, {0, 0, 0, 0}}
203 };
204
205 static Byte_t sBitMapClrTbl[8] = {
206 0xfe, 0xfd, 0xfb, 0xf7, 0xef, 0xdf, 0xbf, 0x7f
207 };
208
209 static Byte_t sBitMapSetTbl[8] = {
210 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80
211 };
212
213 static int sClockPrescale = 0x14;
214
215 /*
216 * Line number is the ttySIx number (x), the Minor number. We
217 * assign them sequentially, starting at zero. The following
218 * array keeps track of the line number assigned to a given board/aiop/channel.
219 */
220 static unsigned char lineNumbers[MAX_RP_PORTS];
221 static unsigned long nextLineNumber;
222
223 /***** RocketPort Static Prototypes *********/
224 static int __init init_ISA(int i);
225 static void rp_wait_until_sent(struct tty_struct *tty, int timeout);
226 static void rp_flush_buffer(struct tty_struct *tty);
227 static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model);
228 static unsigned char GetLineNumber(int ctrl, int aiop, int ch);
229 static unsigned char SetLineNumber(int ctrl, int aiop, int ch);
230 static void rp_start(struct tty_struct *tty);
231 static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
232 int ChanNum);
233 static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode);
234 static void sFlushRxFIFO(CHANNEL_T * ChP);
235 static void sFlushTxFIFO(CHANNEL_T * ChP);
236 static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags);
237 static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags);
238 static void sModemReset(CONTROLLER_T * CtlP, int chan, int on);
239 static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on);
240 static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data);
241 static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
242 ByteIO_t * AiopIOList, int AiopIOListSize,
243 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
244 int PeriodicOnly, int altChanRingIndicator,
245 int UPCIRingInd);
246 static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
247 ByteIO_t * AiopIOList, int AiopIOListSize,
248 int IRQNum, Byte_t Frequency, int PeriodicOnly);
249 static int sReadAiopID(ByteIO_t io);
250 static int sReadAiopNumChan(WordIO_t io);
251
252 MODULE_AUTHOR("Theodore Ts'o");
253 MODULE_DESCRIPTION("Comtrol RocketPort driver");
254 module_param(board1, ulong, 0);
255 MODULE_PARM_DESC(board1, "I/O port for (ISA) board #1");
256 module_param(board2, ulong, 0);
257 MODULE_PARM_DESC(board2, "I/O port for (ISA) board #2");
258 module_param(board3, ulong, 0);
259 MODULE_PARM_DESC(board3, "I/O port for (ISA) board #3");
260 module_param(board4, ulong, 0);
261 MODULE_PARM_DESC(board4, "I/O port for (ISA) board #4");
262 module_param(controller, ulong, 0);
263 MODULE_PARM_DESC(controller, "I/O port for (ISA) rocketport controller");
264 module_param(support_low_speed, bool, 0);
265 MODULE_PARM_DESC(support_low_speed, "1 means support 50 baud, 0 means support 460400 baud");
266 module_param(modem1, ulong, 0);
267 MODULE_PARM_DESC(modem1, "1 means (ISA) board #1 is a RocketModem");
268 module_param(modem2, ulong, 0);
269 MODULE_PARM_DESC(modem2, "1 means (ISA) board #2 is a RocketModem");
270 module_param(modem3, ulong, 0);
271 MODULE_PARM_DESC(modem3, "1 means (ISA) board #3 is a RocketModem");
272 module_param(modem4, ulong, 0);
273 MODULE_PARM_DESC(modem4, "1 means (ISA) board #4 is a RocketModem");
274 module_param_array(pc104_1, ulong, NULL, 0);
275 MODULE_PARM_DESC(pc104_1, "set interface types for ISA(PC104) board #1 (e.g. pc104_1=232,232,485,485,...");
276 module_param_array(pc104_2, ulong, NULL, 0);
277 MODULE_PARM_DESC(pc104_2, "set interface types for ISA(PC104) board #2 (e.g. pc104_2=232,232,485,485,...");
278 module_param_array(pc104_3, ulong, NULL, 0);
279 MODULE_PARM_DESC(pc104_3, "set interface types for ISA(PC104) board #3 (e.g. pc104_3=232,232,485,485,...");
280 module_param_array(pc104_4, ulong, NULL, 0);
281 MODULE_PARM_DESC(pc104_4, "set interface types for ISA(PC104) board #4 (e.g. pc104_4=232,232,485,485,...");
282
283 static int rp_init(void);
284 static void rp_cleanup_module(void);
285
286 module_init(rp_init);
287 module_exit(rp_cleanup_module);
288
289
290 MODULE_LICENSE("Dual BSD/GPL");
291
292 /*************************************************************************/
293 /* Module code starts here */
294
295 static inline int rocket_paranoia_check(struct r_port *info,
296 const char *routine)
297 {
298 #ifdef ROCKET_PARANOIA_CHECK
299 if (!info)
300 return 1;
301 if (info->magic != RPORT_MAGIC) {
302 printk(KERN_WARNING "Warning: bad magic number for rocketport "
303 "struct in %s\n", routine);
304 return 1;
305 }
306 #endif
307 return 0;
308 }
309
310
311 /* Serial port receive data function. Called (from timer poll) when an AIOPIC signals
312 * that receive data is present on a serial port. Pulls data from FIFO, moves it into the
313 * tty layer.
314 */
315 static void rp_do_receive(struct r_port *info,
316 struct tty_struct *tty,
317 CHANNEL_t * cp, unsigned int ChanStatus)
318 {
319 unsigned int CharNStat;
320 int ToRecv, wRecv, space;
321 unsigned char *cbuf;
322
323 ToRecv = sGetRxCnt(cp);
324 #ifdef ROCKET_DEBUG_INTR
325 printk(KERN_INFO "rp_do_receive(%d)...\n", ToRecv);
326 #endif
327 if (ToRecv == 0)
328 return;
329
330 /*
331 * if status indicates there are errored characters in the
332 * FIFO, then enter status mode (a word in FIFO holds
333 * character and status).
334 */
335 if (ChanStatus & (RXFOVERFL | RXBREAK | RXFRAME | RXPARITY)) {
336 if (!(ChanStatus & STATMODE)) {
337 #ifdef ROCKET_DEBUG_RECEIVE
338 printk(KERN_INFO "Entering STATMODE...\n");
339 #endif
340 ChanStatus |= STATMODE;
341 sEnRxStatusMode(cp);
342 }
343 }
344
345 /*
346 * if we previously entered status mode, then read down the
347 * FIFO one word at a time, pulling apart the character and
348 * the status. Update error counters depending on status
349 */
350 if (ChanStatus & STATMODE) {
351 #ifdef ROCKET_DEBUG_RECEIVE
352 printk(KERN_INFO "Ignore %x, read %x...\n",
353 info->ignore_status_mask, info->read_status_mask);
354 #endif
355 while (ToRecv) {
356 char flag;
357
358 CharNStat = sInW(sGetTxRxDataIO(cp));
359 #ifdef ROCKET_DEBUG_RECEIVE
360 printk(KERN_INFO "%x...\n", CharNStat);
361 #endif
362 if (CharNStat & STMBREAKH)
363 CharNStat &= ~(STMFRAMEH | STMPARITYH);
364 if (CharNStat & info->ignore_status_mask) {
365 ToRecv--;
366 continue;
367 }
368 CharNStat &= info->read_status_mask;
369 if (CharNStat & STMBREAKH)
370 flag = TTY_BREAK;
371 else if (CharNStat & STMPARITYH)
372 flag = TTY_PARITY;
373 else if (CharNStat & STMFRAMEH)
374 flag = TTY_FRAME;
375 else if (CharNStat & STMRCVROVRH)
376 flag = TTY_OVERRUN;
377 else
378 flag = TTY_NORMAL;
379 tty_insert_flip_char(tty, CharNStat & 0xff, flag);
380 ToRecv--;
381 }
382
383 /*
384 * after we've emptied the FIFO in status mode, turn
385 * status mode back off
386 */
387 if (sGetRxCnt(cp) == 0) {
388 #ifdef ROCKET_DEBUG_RECEIVE
389 printk(KERN_INFO "Status mode off.\n");
390 #endif
391 sDisRxStatusMode(cp);
392 }
393 } else {
394 /*
395 * we aren't in status mode, so read down the FIFO two
396 * characters at time by doing repeated word IO
397 * transfer.
398 */
399 space = tty_prepare_flip_string(tty, &cbuf, ToRecv);
400 if (space < ToRecv) {
401 #ifdef ROCKET_DEBUG_RECEIVE
402 printk(KERN_INFO "rp_do_receive:insufficient space ToRecv=%d space=%d\n", ToRecv, space);
403 #endif
404 if (space <= 0)
405 return;
406 ToRecv = space;
407 }
408 wRecv = ToRecv >> 1;
409 if (wRecv)
410 sInStrW(sGetTxRxDataIO(cp), (unsigned short *) cbuf, wRecv);
411 if (ToRecv & 1)
412 cbuf[ToRecv - 1] = sInB(sGetTxRxDataIO(cp));
413 }
414 /* Push the data up to the tty layer */
415 tty_flip_buffer_push(tty);
416 }
417
418 /*
419 * Serial port transmit data function. Called from the timer polling loop as a
420 * result of a bit set in xmit_flags[], indicating data (from the tty layer) is ready
421 * to be sent out the serial port. Data is buffered in rp_table[line].xmit_buf, it is
422 * moved to the port's xmit FIFO. *info is critical data, protected by spinlocks.
423 */
424 static void rp_do_transmit(struct r_port *info)
425 {
426 int c;
427 CHANNEL_t *cp = &info->channel;
428 struct tty_struct *tty;
429 unsigned long flags;
430
431 #ifdef ROCKET_DEBUG_INTR
432 printk(KERN_DEBUG "%s\n", __func__);
433 #endif
434 if (!info)
435 return;
436 if (!info->tty) {
437 printk(KERN_WARNING "rp: WARNING %s called with "
438 "info->tty==NULL\n", __func__);
439 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
440 return;
441 }
442
443 spin_lock_irqsave(&info->slock, flags);
444 tty = info->tty;
445 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
446
447 /* Loop sending data to FIFO until done or FIFO full */
448 while (1) {
449 if (tty->stopped || tty->hw_stopped)
450 break;
451 c = min(info->xmit_fifo_room, min(info->xmit_cnt, XMIT_BUF_SIZE - info->xmit_tail));
452 if (c <= 0 || info->xmit_fifo_room <= 0)
453 break;
454 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) (info->xmit_buf + info->xmit_tail), c / 2);
455 if (c & 1)
456 sOutB(sGetTxRxDataIO(cp), info->xmit_buf[info->xmit_tail + c - 1]);
457 info->xmit_tail += c;
458 info->xmit_tail &= XMIT_BUF_SIZE - 1;
459 info->xmit_cnt -= c;
460 info->xmit_fifo_room -= c;
461 #ifdef ROCKET_DEBUG_INTR
462 printk(KERN_INFO "tx %d chars...\n", c);
463 #endif
464 }
465
466 if (info->xmit_cnt == 0)
467 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
468
469 if (info->xmit_cnt < WAKEUP_CHARS) {
470 tty_wakeup(tty);
471 #ifdef ROCKETPORT_HAVE_POLL_WAIT
472 wake_up_interruptible(&tty->poll_wait);
473 #endif
474 }
475
476 spin_unlock_irqrestore(&info->slock, flags);
477
478 #ifdef ROCKET_DEBUG_INTR
479 printk(KERN_DEBUG "(%d,%d,%d,%d)...\n", info->xmit_cnt, info->xmit_head,
480 info->xmit_tail, info->xmit_fifo_room);
481 #endif
482 }
483
484 /*
485 * Called when a serial port signals it has read data in it's RX FIFO.
486 * It checks what interrupts are pending and services them, including
487 * receiving serial data.
488 */
489 static void rp_handle_port(struct r_port *info)
490 {
491 CHANNEL_t *cp;
492 struct tty_struct *tty;
493 unsigned int IntMask, ChanStatus;
494
495 if (!info)
496 return;
497
498 if ((info->flags & ROCKET_INITIALIZED) == 0) {
499 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
500 "info->flags & NOT_INIT\n");
501 return;
502 }
503 if (!info->tty) {
504 printk(KERN_WARNING "rp: WARNING: rp_handle_port called with "
505 "info->tty==NULL\n");
506 return;
507 }
508 cp = &info->channel;
509 tty = info->tty;
510
511 IntMask = sGetChanIntID(cp) & info->intmask;
512 #ifdef ROCKET_DEBUG_INTR
513 printk(KERN_INFO "rp_interrupt %02x...\n", IntMask);
514 #endif
515 ChanStatus = sGetChanStatus(cp);
516 if (IntMask & RXF_TRIG) { /* Rx FIFO trigger level */
517 rp_do_receive(info, tty, cp, ChanStatus);
518 }
519 if (IntMask & DELTA_CD) { /* CD change */
520 #if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_INTR) || defined(ROCKET_DEBUG_HANGUP))
521 printk(KERN_INFO "ttyR%d CD now %s...\n", info->line,
522 (ChanStatus & CD_ACT) ? "on" : "off");
523 #endif
524 if (!(ChanStatus & CD_ACT) && info->cd_status) {
525 #ifdef ROCKET_DEBUG_HANGUP
526 printk(KERN_INFO "CD drop, calling hangup.\n");
527 #endif
528 tty_hangup(tty);
529 }
530 info->cd_status = (ChanStatus & CD_ACT) ? 1 : 0;
531 wake_up_interruptible(&info->open_wait);
532 }
533 #ifdef ROCKET_DEBUG_INTR
534 if (IntMask & DELTA_CTS) { /* CTS change */
535 printk(KERN_INFO "CTS change...\n");
536 }
537 if (IntMask & DELTA_DSR) { /* DSR change */
538 printk(KERN_INFO "DSR change...\n");
539 }
540 #endif
541 }
542
543 /*
544 * The top level polling routine. Repeats every 1/100 HZ (10ms).
545 */
546 static void rp_do_poll(unsigned long dummy)
547 {
548 CONTROLLER_t *ctlp;
549 int ctrl, aiop, ch, line;
550 unsigned int xmitmask, i;
551 unsigned int CtlMask;
552 unsigned char AiopMask;
553 Word_t bit;
554
555 /* Walk through all the boards (ctrl's) */
556 for (ctrl = 0; ctrl < max_board; ctrl++) {
557 if (rcktpt_io_addr[ctrl] <= 0)
558 continue;
559
560 /* Get a ptr to the board's control struct */
561 ctlp = sCtlNumToCtlPtr(ctrl);
562
563 /* Get the interrupt status from the board */
564 #ifdef CONFIG_PCI
565 if (ctlp->BusType == isPCI)
566 CtlMask = sPCIGetControllerIntStatus(ctlp);
567 else
568 #endif
569 CtlMask = sGetControllerIntStatus(ctlp);
570
571 /* Check if any AIOP read bits are set */
572 for (aiop = 0; CtlMask; aiop++) {
573 bit = ctlp->AiopIntrBits[aiop];
574 if (CtlMask & bit) {
575 CtlMask &= ~bit;
576 AiopMask = sGetAiopIntStatus(ctlp, aiop);
577
578 /* Check if any port read bits are set */
579 for (ch = 0; AiopMask; AiopMask >>= 1, ch++) {
580 if (AiopMask & 1) {
581
582 /* Get the line number (/dev/ttyRx number). */
583 /* Read the data from the port. */
584 line = GetLineNumber(ctrl, aiop, ch);
585 rp_handle_port(rp_table[line]);
586 }
587 }
588 }
589 }
590
591 xmitmask = xmit_flags[ctrl];
592
593 /*
594 * xmit_flags contains bit-significant flags, indicating there is data
595 * to xmit on the port. Bit 0 is port 0 on this board, bit 1 is port
596 * 1, ... (32 total possible). The variable i has the aiop and ch
597 * numbers encoded in it (port 0-7 are aiop0, 8-15 are aiop1, etc).
598 */
599 if (xmitmask) {
600 for (i = 0; i < rocketModel[ctrl].numPorts; i++) {
601 if (xmitmask & (1 << i)) {
602 aiop = (i & 0x18) >> 3;
603 ch = i & 0x07;
604 line = GetLineNumber(ctrl, aiop, ch);
605 rp_do_transmit(rp_table[line]);
606 }
607 }
608 }
609 }
610
611 /*
612 * Reset the timer so we get called at the next clock tick (10ms).
613 */
614 if (atomic_read(&rp_num_ports_open))
615 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
616 }
617
618 /*
619 * Initializes the r_port structure for a port, as well as enabling the port on
620 * the board.
621 * Inputs: board, aiop, chan numbers
622 */
623 static void init_r_port(int board, int aiop, int chan, struct pci_dev *pci_dev)
624 {
625 unsigned rocketMode;
626 struct r_port *info;
627 int line;
628 CONTROLLER_T *ctlp;
629
630 /* Get the next available line number */
631 line = SetLineNumber(board, aiop, chan);
632
633 ctlp = sCtlNumToCtlPtr(board);
634
635 /* Get a r_port struct for the port, fill it in and save it globally, indexed by line number */
636 info = kzalloc(sizeof (struct r_port), GFP_KERNEL);
637 if (!info) {
638 printk(KERN_ERR "Couldn't allocate info struct for line #%d\n",
639 line);
640 return;
641 }
642
643 info->magic = RPORT_MAGIC;
644 info->line = line;
645 info->ctlp = ctlp;
646 info->board = board;
647 info->aiop = aiop;
648 info->chan = chan;
649 info->closing_wait = 3000;
650 info->close_delay = 50;
651 init_waitqueue_head(&info->open_wait);
652 init_completion(&info->close_wait);
653 info->flags &= ~ROCKET_MODE_MASK;
654 switch (pc104[board][line]) {
655 case 422:
656 info->flags |= ROCKET_MODE_RS422;
657 break;
658 case 485:
659 info->flags |= ROCKET_MODE_RS485;
660 break;
661 case 232:
662 default:
663 info->flags |= ROCKET_MODE_RS232;
664 break;
665 }
666
667 info->intmask = RXF_TRIG | TXFIFO_MT | SRC_INT | DELTA_CD | DELTA_CTS | DELTA_DSR;
668 if (sInitChan(ctlp, &info->channel, aiop, chan) == 0) {
669 printk(KERN_ERR "RocketPort sInitChan(%d, %d, %d) failed!\n",
670 board, aiop, chan);
671 kfree(info);
672 return;
673 }
674
675 rocketMode = info->flags & ROCKET_MODE_MASK;
676
677 if ((info->flags & ROCKET_RTS_TOGGLE) || (rocketMode == ROCKET_MODE_RS485))
678 sEnRTSToggle(&info->channel);
679 else
680 sDisRTSToggle(&info->channel);
681
682 if (ctlp->boardType == ROCKET_TYPE_PC104) {
683 switch (rocketMode) {
684 case ROCKET_MODE_RS485:
685 sSetInterfaceMode(&info->channel, InterfaceModeRS485);
686 break;
687 case ROCKET_MODE_RS422:
688 sSetInterfaceMode(&info->channel, InterfaceModeRS422);
689 break;
690 case ROCKET_MODE_RS232:
691 default:
692 if (info->flags & ROCKET_RTS_TOGGLE)
693 sSetInterfaceMode(&info->channel, InterfaceModeRS232T);
694 else
695 sSetInterfaceMode(&info->channel, InterfaceModeRS232);
696 break;
697 }
698 }
699 spin_lock_init(&info->slock);
700 mutex_init(&info->write_mtx);
701 rp_table[line] = info;
702 tty_register_device(rocket_driver, line, pci_dev ? &pci_dev->dev :
703 NULL);
704 }
705
706 /*
707 * Configures a rocketport port according to its termio settings. Called from
708 * user mode into the driver (exception handler). *info CD manipulation is spinlock protected.
709 */
710 static void configure_r_port(struct r_port *info,
711 struct ktermios *old_termios)
712 {
713 unsigned cflag;
714 unsigned long flags;
715 unsigned rocketMode;
716 int bits, baud, divisor;
717 CHANNEL_t *cp;
718 struct ktermios *t = info->tty->termios;
719
720 cp = &info->channel;
721 cflag = t->c_cflag;
722
723 /* Byte size and parity */
724 if ((cflag & CSIZE) == CS8) {
725 sSetData8(cp);
726 bits = 10;
727 } else {
728 sSetData7(cp);
729 bits = 9;
730 }
731 if (cflag & CSTOPB) {
732 sSetStop2(cp);
733 bits++;
734 } else {
735 sSetStop1(cp);
736 }
737
738 if (cflag & PARENB) {
739 sEnParity(cp);
740 bits++;
741 if (cflag & PARODD) {
742 sSetOddParity(cp);
743 } else {
744 sSetEvenParity(cp);
745 }
746 } else {
747 sDisParity(cp);
748 }
749
750 /* baud rate */
751 baud = tty_get_baud_rate(info->tty);
752 if (!baud)
753 baud = 9600;
754 divisor = ((rp_baud_base[info->board] + (baud >> 1)) / baud) - 1;
755 if ((divisor >= 8192 || divisor < 0) && old_termios) {
756 baud = tty_termios_baud_rate(old_termios);
757 if (!baud)
758 baud = 9600;
759 divisor = (rp_baud_base[info->board] / baud) - 1;
760 }
761 if (divisor >= 8192 || divisor < 0) {
762 baud = 9600;
763 divisor = (rp_baud_base[info->board] / baud) - 1;
764 }
765 info->cps = baud / bits;
766 sSetBaud(cp, divisor);
767
768 /* FIXME: Should really back compute a baud rate from the divisor */
769 tty_encode_baud_rate(info->tty, baud, baud);
770
771 if (cflag & CRTSCTS) {
772 info->intmask |= DELTA_CTS;
773 sEnCTSFlowCtl(cp);
774 } else {
775 info->intmask &= ~DELTA_CTS;
776 sDisCTSFlowCtl(cp);
777 }
778 if (cflag & CLOCAL) {
779 info->intmask &= ~DELTA_CD;
780 } else {
781 spin_lock_irqsave(&info->slock, flags);
782 if (sGetChanStatus(cp) & CD_ACT)
783 info->cd_status = 1;
784 else
785 info->cd_status = 0;
786 info->intmask |= DELTA_CD;
787 spin_unlock_irqrestore(&info->slock, flags);
788 }
789
790 /*
791 * Handle software flow control in the board
792 */
793 #ifdef ROCKET_SOFT_FLOW
794 if (I_IXON(info->tty)) {
795 sEnTxSoftFlowCtl(cp);
796 if (I_IXANY(info->tty)) {
797 sEnIXANY(cp);
798 } else {
799 sDisIXANY(cp);
800 }
801 sSetTxXONChar(cp, START_CHAR(info->tty));
802 sSetTxXOFFChar(cp, STOP_CHAR(info->tty));
803 } else {
804 sDisTxSoftFlowCtl(cp);
805 sDisIXANY(cp);
806 sClrTxXOFF(cp);
807 }
808 #endif
809
810 /*
811 * Set up ignore/read mask words
812 */
813 info->read_status_mask = STMRCVROVRH | 0xFF;
814 if (I_INPCK(info->tty))
815 info->read_status_mask |= STMFRAMEH | STMPARITYH;
816 if (I_BRKINT(info->tty) || I_PARMRK(info->tty))
817 info->read_status_mask |= STMBREAKH;
818
819 /*
820 * Characters to ignore
821 */
822 info->ignore_status_mask = 0;
823 if (I_IGNPAR(info->tty))
824 info->ignore_status_mask |= STMFRAMEH | STMPARITYH;
825 if (I_IGNBRK(info->tty)) {
826 info->ignore_status_mask |= STMBREAKH;
827 /*
828 * If we're ignoring parity and break indicators,
829 * ignore overruns too. (For real raw support).
830 */
831 if (I_IGNPAR(info->tty))
832 info->ignore_status_mask |= STMRCVROVRH;
833 }
834
835 rocketMode = info->flags & ROCKET_MODE_MASK;
836
837 if ((info->flags & ROCKET_RTS_TOGGLE)
838 || (rocketMode == ROCKET_MODE_RS485))
839 sEnRTSToggle(cp);
840 else
841 sDisRTSToggle(cp);
842
843 sSetRTS(&info->channel);
844
845 if (cp->CtlP->boardType == ROCKET_TYPE_PC104) {
846 switch (rocketMode) {
847 case ROCKET_MODE_RS485:
848 sSetInterfaceMode(cp, InterfaceModeRS485);
849 break;
850 case ROCKET_MODE_RS422:
851 sSetInterfaceMode(cp, InterfaceModeRS422);
852 break;
853 case ROCKET_MODE_RS232:
854 default:
855 if (info->flags & ROCKET_RTS_TOGGLE)
856 sSetInterfaceMode(cp, InterfaceModeRS232T);
857 else
858 sSetInterfaceMode(cp, InterfaceModeRS232);
859 break;
860 }
861 }
862 }
863
864 /* info->count is considered critical, protected by spinlocks. */
865 static int block_til_ready(struct tty_struct *tty, struct file *filp,
866 struct r_port *info)
867 {
868 DECLARE_WAITQUEUE(wait, current);
869 int retval;
870 int do_clocal = 0, extra_count = 0;
871 unsigned long flags;
872
873 /*
874 * If the device is in the middle of being closed, then block
875 * until it's done, and then try again.
876 */
877 if (tty_hung_up_p(filp))
878 return ((info->flags & ROCKET_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS);
879 if (info->flags & ROCKET_CLOSING) {
880 if (wait_for_completion_interruptible(&info->close_wait))
881 return -ERESTARTSYS;
882 return ((info->flags & ROCKET_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS);
883 }
884
885 /*
886 * If non-blocking mode is set, or the port is not enabled,
887 * then make the check up front and then exit.
888 */
889 if ((filp->f_flags & O_NONBLOCK) || (tty->flags & (1 << TTY_IO_ERROR))) {
890 info->flags |= ROCKET_NORMAL_ACTIVE;
891 return 0;
892 }
893 if (tty->termios->c_cflag & CLOCAL)
894 do_clocal = 1;
895
896 /*
897 * Block waiting for the carrier detect and the line to become free. While we are in
898 * this loop, info->count is dropped by one, so that rp_close() knows when to free things.
899 * We restore it upon exit, either normal or abnormal.
900 */
901 retval = 0;
902 add_wait_queue(&info->open_wait, &wait);
903 #ifdef ROCKET_DEBUG_OPEN
904 printk(KERN_INFO "block_til_ready before block: ttyR%d, count = %d\n", info->line, info->count);
905 #endif
906 spin_lock_irqsave(&info->slock, flags);
907
908 #ifdef ROCKET_DISABLE_SIMUSAGE
909 info->flags |= ROCKET_NORMAL_ACTIVE;
910 #else
911 if (!tty_hung_up_p(filp)) {
912 extra_count = 1;
913 info->count--;
914 }
915 #endif
916 info->blocked_open++;
917
918 spin_unlock_irqrestore(&info->slock, flags);
919
920 while (1) {
921 if (tty->termios->c_cflag & CBAUD) {
922 sSetDTR(&info->channel);
923 sSetRTS(&info->channel);
924 }
925 set_current_state(TASK_INTERRUPTIBLE);
926 if (tty_hung_up_p(filp) || !(info->flags & ROCKET_INITIALIZED)) {
927 if (info->flags & ROCKET_HUP_NOTIFY)
928 retval = -EAGAIN;
929 else
930 retval = -ERESTARTSYS;
931 break;
932 }
933 if (!(info->flags & ROCKET_CLOSING) && (do_clocal || (sGetChanStatusLo(&info->channel) & CD_ACT)))
934 break;
935 if (signal_pending(current)) {
936 retval = -ERESTARTSYS;
937 break;
938 }
939 #ifdef ROCKET_DEBUG_OPEN
940 printk(KERN_INFO "block_til_ready blocking: ttyR%d, count = %d, flags=0x%0x\n",
941 info->line, info->count, info->flags);
942 #endif
943 schedule(); /* Don't hold spinlock here, will hang PC */
944 }
945 __set_current_state(TASK_RUNNING);
946 remove_wait_queue(&info->open_wait, &wait);
947
948 spin_lock_irqsave(&info->slock, flags);
949
950 if (extra_count)
951 info->count++;
952 info->blocked_open--;
953
954 spin_unlock_irqrestore(&info->slock, flags);
955
956 #ifdef ROCKET_DEBUG_OPEN
957 printk(KERN_INFO "block_til_ready after blocking: ttyR%d, count = %d\n",
958 info->line, info->count);
959 #endif
960 if (retval)
961 return retval;
962 info->flags |= ROCKET_NORMAL_ACTIVE;
963 return 0;
964 }
965
966 /*
967 * Exception handler that opens a serial port. Creates xmit_buf storage, fills in
968 * port's r_port struct. Initializes the port hardware.
969 */
970 static int rp_open(struct tty_struct *tty, struct file *filp)
971 {
972 struct r_port *info;
973 int line = 0, retval;
974 CHANNEL_t *cp;
975 unsigned long page;
976
977 line = tty->index;
978 if ((line < 0) || (line >= MAX_RP_PORTS) || ((info = rp_table[line]) == NULL))
979 return -ENXIO;
980
981 page = __get_free_page(GFP_KERNEL);
982 if (!page)
983 return -ENOMEM;
984
985 if (info->flags & ROCKET_CLOSING) {
986 retval = wait_for_completion_interruptible(&info->close_wait);
987 free_page(page);
988 if (retval)
989 return retval;
990 return ((info->flags & ROCKET_HUP_NOTIFY) ? -EAGAIN : -ERESTARTSYS);
991 }
992
993 /*
994 * We must not sleep from here until the port is marked fully in use.
995 */
996 if (info->xmit_buf)
997 free_page(page);
998 else
999 info->xmit_buf = (unsigned char *) page;
1000
1001 tty->driver_data = info;
1002 info->tty = tty;
1003
1004 if (info->count++ == 0) {
1005 atomic_inc(&rp_num_ports_open);
1006
1007 #ifdef ROCKET_DEBUG_OPEN
1008 printk(KERN_INFO "rocket mod++ = %d...\n",
1009 atomic_read(&rp_num_ports_open));
1010 #endif
1011 }
1012 #ifdef ROCKET_DEBUG_OPEN
1013 printk(KERN_INFO "rp_open ttyR%d, count=%d\n", info->line, info->count);
1014 #endif
1015
1016 /*
1017 * Info->count is now 1; so it's safe to sleep now.
1018 */
1019 if ((info->flags & ROCKET_INITIALIZED) == 0) {
1020 cp = &info->channel;
1021 sSetRxTrigger(cp, TRIG_1);
1022 if (sGetChanStatus(cp) & CD_ACT)
1023 info->cd_status = 1;
1024 else
1025 info->cd_status = 0;
1026 sDisRxStatusMode(cp);
1027 sFlushRxFIFO(cp);
1028 sFlushTxFIFO(cp);
1029
1030 sEnInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1031 sSetRxTrigger(cp, TRIG_1);
1032
1033 sGetChanStatus(cp);
1034 sDisRxStatusMode(cp);
1035 sClrTxXOFF(cp);
1036
1037 sDisCTSFlowCtl(cp);
1038 sDisTxSoftFlowCtl(cp);
1039
1040 sEnRxFIFO(cp);
1041 sEnTransmit(cp);
1042
1043 info->flags |= ROCKET_INITIALIZED;
1044
1045 /*
1046 * Set up the tty->alt_speed kludge
1047 */
1048 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
1049 info->tty->alt_speed = 57600;
1050 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
1051 info->tty->alt_speed = 115200;
1052 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
1053 info->tty->alt_speed = 230400;
1054 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
1055 info->tty->alt_speed = 460800;
1056
1057 configure_r_port(info, NULL);
1058 if (tty->termios->c_cflag & CBAUD) {
1059 sSetDTR(cp);
1060 sSetRTS(cp);
1061 }
1062 }
1063 /* Starts (or resets) the maint polling loop */
1064 mod_timer(&rocket_timer, jiffies + POLL_PERIOD);
1065
1066 retval = block_til_ready(tty, filp, info);
1067 if (retval) {
1068 #ifdef ROCKET_DEBUG_OPEN
1069 printk(KERN_INFO "rp_open returning after block_til_ready with %d\n", retval);
1070 #endif
1071 return retval;
1072 }
1073 return 0;
1074 }
1075
1076 /*
1077 * Exception handler that closes a serial port. info->count is considered critical.
1078 */
1079 static void rp_close(struct tty_struct *tty, struct file *filp)
1080 {
1081 struct r_port *info = (struct r_port *) tty->driver_data;
1082 unsigned long flags;
1083 int timeout;
1084 CHANNEL_t *cp;
1085
1086 if (rocket_paranoia_check(info, "rp_close"))
1087 return;
1088
1089 #ifdef ROCKET_DEBUG_OPEN
1090 printk(KERN_INFO "rp_close ttyR%d, count = %d\n", info->line, info->count);
1091 #endif
1092
1093 if (tty_hung_up_p(filp))
1094 return;
1095 spin_lock_irqsave(&info->slock, flags);
1096
1097 if ((tty->count == 1) && (info->count != 1)) {
1098 /*
1099 * Uh, oh. tty->count is 1, which means that the tty
1100 * structure will be freed. Info->count should always
1101 * be one in these conditions. If it's greater than
1102 * one, we've got real problems, since it means the
1103 * serial port won't be shutdown.
1104 */
1105 printk(KERN_WARNING "rp_close: bad serial port count; "
1106 "tty->count is 1, info->count is %d\n", info->count);
1107 info->count = 1;
1108 }
1109 if (--info->count < 0) {
1110 printk(KERN_WARNING "rp_close: bad serial port count for "
1111 "ttyR%d: %d\n", info->line, info->count);
1112 info->count = 0;
1113 }
1114 if (info->count) {
1115 spin_unlock_irqrestore(&info->slock, flags);
1116 return;
1117 }
1118 info->flags |= ROCKET_CLOSING;
1119 spin_unlock_irqrestore(&info->slock, flags);
1120
1121 cp = &info->channel;
1122
1123 /*
1124 * Notify the line discpline to only process XON/XOFF characters
1125 */
1126 tty->closing = 1;
1127
1128 /*
1129 * If transmission was throttled by the application request,
1130 * just flush the xmit buffer.
1131 */
1132 if (tty->flow_stopped)
1133 rp_flush_buffer(tty);
1134
1135 /*
1136 * Wait for the transmit buffer to clear
1137 */
1138 if (info->closing_wait != ROCKET_CLOSING_WAIT_NONE)
1139 tty_wait_until_sent(tty, info->closing_wait);
1140 /*
1141 * Before we drop DTR, make sure the UART transmitter
1142 * has completely drained; this is especially
1143 * important if there is a transmit FIFO!
1144 */
1145 timeout = (sGetTxCnt(cp) + 1) * HZ / info->cps;
1146 if (timeout == 0)
1147 timeout = 1;
1148 rp_wait_until_sent(tty, timeout);
1149 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1150
1151 sDisTransmit(cp);
1152 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1153 sDisCTSFlowCtl(cp);
1154 sDisTxSoftFlowCtl(cp);
1155 sClrTxXOFF(cp);
1156 sFlushRxFIFO(cp);
1157 sFlushTxFIFO(cp);
1158 sClrRTS(cp);
1159 if (C_HUPCL(tty))
1160 sClrDTR(cp);
1161
1162 rp_flush_buffer(tty);
1163
1164 tty_ldisc_flush(tty);
1165
1166 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1167
1168 if (info->blocked_open) {
1169 if (info->close_delay) {
1170 msleep_interruptible(jiffies_to_msecs(info->close_delay));
1171 }
1172 wake_up_interruptible(&info->open_wait);
1173 } else {
1174 if (info->xmit_buf) {
1175 free_page((unsigned long) info->xmit_buf);
1176 info->xmit_buf = NULL;
1177 }
1178 }
1179 info->flags &= ~(ROCKET_INITIALIZED | ROCKET_CLOSING | ROCKET_NORMAL_ACTIVE);
1180 tty->closing = 0;
1181 complete_all(&info->close_wait);
1182 atomic_dec(&rp_num_ports_open);
1183
1184 #ifdef ROCKET_DEBUG_OPEN
1185 printk(KERN_INFO "rocket mod-- = %d...\n",
1186 atomic_read(&rp_num_ports_open));
1187 printk(KERN_INFO "rp_close ttyR%d complete shutdown\n", info->line);
1188 #endif
1189
1190 }
1191
1192 static void rp_set_termios(struct tty_struct *tty,
1193 struct ktermios *old_termios)
1194 {
1195 struct r_port *info = (struct r_port *) tty->driver_data;
1196 CHANNEL_t *cp;
1197 unsigned cflag;
1198
1199 if (rocket_paranoia_check(info, "rp_set_termios"))
1200 return;
1201
1202 cflag = tty->termios->c_cflag;
1203
1204 /*
1205 * This driver doesn't support CS5 or CS6
1206 */
1207 if (((cflag & CSIZE) == CS5) || ((cflag & CSIZE) == CS6))
1208 tty->termios->c_cflag =
1209 ((cflag & ~CSIZE) | (old_termios->c_cflag & CSIZE));
1210 /* Or CMSPAR */
1211 tty->termios->c_cflag &= ~CMSPAR;
1212
1213 configure_r_port(info, old_termios);
1214
1215 cp = &info->channel;
1216
1217 /* Handle transition to B0 status */
1218 if ((old_termios->c_cflag & CBAUD) && !(tty->termios->c_cflag & CBAUD)) {
1219 sClrDTR(cp);
1220 sClrRTS(cp);
1221 }
1222
1223 /* Handle transition away from B0 status */
1224 if (!(old_termios->c_cflag & CBAUD) && (tty->termios->c_cflag & CBAUD)) {
1225 if (!tty->hw_stopped || !(tty->termios->c_cflag & CRTSCTS))
1226 sSetRTS(cp);
1227 sSetDTR(cp);
1228 }
1229
1230 if ((old_termios->c_cflag & CRTSCTS) && !(tty->termios->c_cflag & CRTSCTS)) {
1231 tty->hw_stopped = 0;
1232 rp_start(tty);
1233 }
1234 }
1235
1236 static void rp_break(struct tty_struct *tty, int break_state)
1237 {
1238 struct r_port *info = (struct r_port *) tty->driver_data;
1239 unsigned long flags;
1240
1241 if (rocket_paranoia_check(info, "rp_break"))
1242 return;
1243
1244 spin_lock_irqsave(&info->slock, flags);
1245 if (break_state == -1)
1246 sSendBreak(&info->channel);
1247 else
1248 sClrBreak(&info->channel);
1249 spin_unlock_irqrestore(&info->slock, flags);
1250 }
1251
1252 /*
1253 * sGetChanRI used to be a macro in rocket_int.h. When the functionality for
1254 * the UPCI boards was added, it was decided to make this a function because
1255 * the macro was getting too complicated. All cases except the first one
1256 * (UPCIRingInd) are taken directly from the original macro.
1257 */
1258 static int sGetChanRI(CHANNEL_T * ChP)
1259 {
1260 CONTROLLER_t *CtlP = ChP->CtlP;
1261 int ChanNum = ChP->ChanNum;
1262 int RingInd = 0;
1263
1264 if (CtlP->UPCIRingInd)
1265 RingInd = !(sInB(CtlP->UPCIRingInd) & sBitMapSetTbl[ChanNum]);
1266 else if (CtlP->AltChanRingIndicator)
1267 RingInd = sInB((ByteIO_t) (ChP->ChanStat + 8)) & DSR_ACT;
1268 else if (CtlP->boardType == ROCKET_TYPE_PC104)
1269 RingInd = !(sInB(CtlP->AiopIO[3]) & sBitMapSetTbl[ChanNum]);
1270
1271 return RingInd;
1272 }
1273
1274 /********************************************************************************************/
1275 /* Here are the routines used by rp_ioctl. These are all called from exception handlers. */
1276
1277 /*
1278 * Returns the state of the serial modem control lines. These next 2 functions
1279 * are the way kernel versions > 2.5 handle modem control lines rather than IOCTLs.
1280 */
1281 static int rp_tiocmget(struct tty_struct *tty, struct file *file)
1282 {
1283 struct r_port *info = (struct r_port *)tty->driver_data;
1284 unsigned int control, result, ChanStatus;
1285
1286 ChanStatus = sGetChanStatusLo(&info->channel);
1287 control = info->channel.TxControl[3];
1288 result = ((control & SET_RTS) ? TIOCM_RTS : 0) |
1289 ((control & SET_DTR) ? TIOCM_DTR : 0) |
1290 ((ChanStatus & CD_ACT) ? TIOCM_CAR : 0) |
1291 (sGetChanRI(&info->channel) ? TIOCM_RNG : 0) |
1292 ((ChanStatus & DSR_ACT) ? TIOCM_DSR : 0) |
1293 ((ChanStatus & CTS_ACT) ? TIOCM_CTS : 0);
1294
1295 return result;
1296 }
1297
1298 /*
1299 * Sets the modem control lines
1300 */
1301 static int rp_tiocmset(struct tty_struct *tty, struct file *file,
1302 unsigned int set, unsigned int clear)
1303 {
1304 struct r_port *info = (struct r_port *)tty->driver_data;
1305
1306 if (set & TIOCM_RTS)
1307 info->channel.TxControl[3] |= SET_RTS;
1308 if (set & TIOCM_DTR)
1309 info->channel.TxControl[3] |= SET_DTR;
1310 if (clear & TIOCM_RTS)
1311 info->channel.TxControl[3] &= ~SET_RTS;
1312 if (clear & TIOCM_DTR)
1313 info->channel.TxControl[3] &= ~SET_DTR;
1314
1315 sOutDW(info->channel.IndexAddr, *(DWord_t *) & (info->channel.TxControl[0]));
1316 return 0;
1317 }
1318
1319 static int get_config(struct r_port *info, struct rocket_config __user *retinfo)
1320 {
1321 struct rocket_config tmp;
1322
1323 if (!retinfo)
1324 return -EFAULT;
1325 memset(&tmp, 0, sizeof (tmp));
1326 tmp.line = info->line;
1327 tmp.flags = info->flags;
1328 tmp.close_delay = info->close_delay;
1329 tmp.closing_wait = info->closing_wait;
1330 tmp.port = rcktpt_io_addr[(info->line >> 5) & 3];
1331
1332 if (copy_to_user(retinfo, &tmp, sizeof (*retinfo)))
1333 return -EFAULT;
1334 return 0;
1335 }
1336
1337 static int set_config(struct r_port *info, struct rocket_config __user *new_info)
1338 {
1339 struct rocket_config new_serial;
1340
1341 if (copy_from_user(&new_serial, new_info, sizeof (new_serial)))
1342 return -EFAULT;
1343
1344 if (!capable(CAP_SYS_ADMIN))
1345 {
1346 if ((new_serial.flags & ~ROCKET_USR_MASK) != (info->flags & ~ROCKET_USR_MASK))
1347 return -EPERM;
1348 info->flags = ((info->flags & ~ROCKET_USR_MASK) | (new_serial.flags & ROCKET_USR_MASK));
1349 configure_r_port(info, NULL);
1350 return 0;
1351 }
1352
1353 info->flags = ((info->flags & ~ROCKET_FLAGS) | (new_serial.flags & ROCKET_FLAGS));
1354 info->close_delay = new_serial.close_delay;
1355 info->closing_wait = new_serial.closing_wait;
1356
1357 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_HI)
1358 info->tty->alt_speed = 57600;
1359 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_VHI)
1360 info->tty->alt_speed = 115200;
1361 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_SHI)
1362 info->tty->alt_speed = 230400;
1363 if ((info->flags & ROCKET_SPD_MASK) == ROCKET_SPD_WARP)
1364 info->tty->alt_speed = 460800;
1365
1366 configure_r_port(info, NULL);
1367 return 0;
1368 }
1369
1370 /*
1371 * This function fills in a rocket_ports struct with information
1372 * about what boards/ports are in the system. This info is passed
1373 * to user space. See setrocket.c where the info is used to create
1374 * the /dev/ttyRx ports.
1375 */
1376 static int get_ports(struct r_port *info, struct rocket_ports __user *retports)
1377 {
1378 struct rocket_ports tmp;
1379 int board;
1380
1381 if (!retports)
1382 return -EFAULT;
1383 memset(&tmp, 0, sizeof (tmp));
1384 tmp.tty_major = rocket_driver->major;
1385
1386 for (board = 0; board < 4; board++) {
1387 tmp.rocketModel[board].model = rocketModel[board].model;
1388 strcpy(tmp.rocketModel[board].modelString, rocketModel[board].modelString);
1389 tmp.rocketModel[board].numPorts = rocketModel[board].numPorts;
1390 tmp.rocketModel[board].loadrm2 = rocketModel[board].loadrm2;
1391 tmp.rocketModel[board].startingPortNumber = rocketModel[board].startingPortNumber;
1392 }
1393 if (copy_to_user(retports, &tmp, sizeof (*retports)))
1394 return -EFAULT;
1395 return 0;
1396 }
1397
1398 static int reset_rm2(struct r_port *info, void __user *arg)
1399 {
1400 int reset;
1401
1402 if (!capable(CAP_SYS_ADMIN))
1403 return -EPERM;
1404
1405 if (copy_from_user(&reset, arg, sizeof (int)))
1406 return -EFAULT;
1407 if (reset)
1408 reset = 1;
1409
1410 if (rcktpt_type[info->board] != ROCKET_TYPE_MODEMII &&
1411 rcktpt_type[info->board] != ROCKET_TYPE_MODEMIII)
1412 return -EINVAL;
1413
1414 if (info->ctlp->BusType == isISA)
1415 sModemReset(info->ctlp, info->chan, reset);
1416 else
1417 sPCIModemReset(info->ctlp, info->chan, reset);
1418
1419 return 0;
1420 }
1421
1422 static int get_version(struct r_port *info, struct rocket_version __user *retvers)
1423 {
1424 if (copy_to_user(retvers, &driver_version, sizeof (*retvers)))
1425 return -EFAULT;
1426 return 0;
1427 }
1428
1429 /* IOCTL call handler into the driver */
1430 static int rp_ioctl(struct tty_struct *tty, struct file *file,
1431 unsigned int cmd, unsigned long arg)
1432 {
1433 struct r_port *info = (struct r_port *) tty->driver_data;
1434 void __user *argp = (void __user *)arg;
1435
1436 if (cmd != RCKP_GET_PORTS && rocket_paranoia_check(info, "rp_ioctl"))
1437 return -ENXIO;
1438
1439 switch (cmd) {
1440 case RCKP_GET_STRUCT:
1441 if (copy_to_user(argp, info, sizeof (struct r_port)))
1442 return -EFAULT;
1443 return 0;
1444 case RCKP_GET_CONFIG:
1445 return get_config(info, argp);
1446 case RCKP_SET_CONFIG:
1447 return set_config(info, argp);
1448 case RCKP_GET_PORTS:
1449 return get_ports(info, argp);
1450 case RCKP_RESET_RM2:
1451 return reset_rm2(info, argp);
1452 case RCKP_GET_VERSION:
1453 return get_version(info, argp);
1454 default:
1455 return -ENOIOCTLCMD;
1456 }
1457 return 0;
1458 }
1459
1460 static void rp_send_xchar(struct tty_struct *tty, char ch)
1461 {
1462 struct r_port *info = (struct r_port *) tty->driver_data;
1463 CHANNEL_t *cp;
1464
1465 if (rocket_paranoia_check(info, "rp_send_xchar"))
1466 return;
1467
1468 cp = &info->channel;
1469 if (sGetTxCnt(cp))
1470 sWriteTxPrioByte(cp, ch);
1471 else
1472 sWriteTxByte(sGetTxRxDataIO(cp), ch);
1473 }
1474
1475 static void rp_throttle(struct tty_struct *tty)
1476 {
1477 struct r_port *info = (struct r_port *) tty->driver_data;
1478 CHANNEL_t *cp;
1479
1480 #ifdef ROCKET_DEBUG_THROTTLE
1481 printk(KERN_INFO "throttle %s: %d....\n", tty->name,
1482 tty->ldisc.chars_in_buffer(tty));
1483 #endif
1484
1485 if (rocket_paranoia_check(info, "rp_throttle"))
1486 return;
1487
1488 cp = &info->channel;
1489 if (I_IXOFF(tty))
1490 rp_send_xchar(tty, STOP_CHAR(tty));
1491
1492 sClrRTS(&info->channel);
1493 }
1494
1495 static void rp_unthrottle(struct tty_struct *tty)
1496 {
1497 struct r_port *info = (struct r_port *) tty->driver_data;
1498 CHANNEL_t *cp;
1499 #ifdef ROCKET_DEBUG_THROTTLE
1500 printk(KERN_INFO "unthrottle %s: %d....\n", tty->name,
1501 tty->ldisc.chars_in_buffer(tty));
1502 #endif
1503
1504 if (rocket_paranoia_check(info, "rp_throttle"))
1505 return;
1506
1507 cp = &info->channel;
1508 if (I_IXOFF(tty))
1509 rp_send_xchar(tty, START_CHAR(tty));
1510
1511 sSetRTS(&info->channel);
1512 }
1513
1514 /*
1515 * ------------------------------------------------------------
1516 * rp_stop() and rp_start()
1517 *
1518 * This routines are called before setting or resetting tty->stopped.
1519 * They enable or disable transmitter interrupts, as necessary.
1520 * ------------------------------------------------------------
1521 */
1522 static void rp_stop(struct tty_struct *tty)
1523 {
1524 struct r_port *info = (struct r_port *) tty->driver_data;
1525
1526 #ifdef ROCKET_DEBUG_FLOW
1527 printk(KERN_INFO "stop %s: %d %d....\n", tty->name,
1528 info->xmit_cnt, info->xmit_fifo_room);
1529 #endif
1530
1531 if (rocket_paranoia_check(info, "rp_stop"))
1532 return;
1533
1534 if (sGetTxCnt(&info->channel))
1535 sDisTransmit(&info->channel);
1536 }
1537
1538 static void rp_start(struct tty_struct *tty)
1539 {
1540 struct r_port *info = (struct r_port *) tty->driver_data;
1541
1542 #ifdef ROCKET_DEBUG_FLOW
1543 printk(KERN_INFO "start %s: %d %d....\n", tty->name,
1544 info->xmit_cnt, info->xmit_fifo_room);
1545 #endif
1546
1547 if (rocket_paranoia_check(info, "rp_stop"))
1548 return;
1549
1550 sEnTransmit(&info->channel);
1551 set_bit((info->aiop * 8) + info->chan,
1552 (void *) &xmit_flags[info->board]);
1553 }
1554
1555 /*
1556 * rp_wait_until_sent() --- wait until the transmitter is empty
1557 */
1558 static void rp_wait_until_sent(struct tty_struct *tty, int timeout)
1559 {
1560 struct r_port *info = (struct r_port *) tty->driver_data;
1561 CHANNEL_t *cp;
1562 unsigned long orig_jiffies;
1563 int check_time, exit_time;
1564 int txcnt;
1565
1566 if (rocket_paranoia_check(info, "rp_wait_until_sent"))
1567 return;
1568
1569 cp = &info->channel;
1570
1571 orig_jiffies = jiffies;
1572 #ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1573 printk(KERN_INFO "In RP_wait_until_sent(%d) (jiff=%lu)...\n", timeout,
1574 jiffies);
1575 printk(KERN_INFO "cps=%d...\n", info->cps);
1576 #endif
1577 while (1) {
1578 txcnt = sGetTxCnt(cp);
1579 if (!txcnt) {
1580 if (sGetChanStatusLo(cp) & TXSHRMT)
1581 break;
1582 check_time = (HZ / info->cps) / 5;
1583 } else {
1584 check_time = HZ * txcnt / info->cps;
1585 }
1586 if (timeout) {
1587 exit_time = orig_jiffies + timeout - jiffies;
1588 if (exit_time <= 0)
1589 break;
1590 if (exit_time < check_time)
1591 check_time = exit_time;
1592 }
1593 if (check_time == 0)
1594 check_time = 1;
1595 #ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1596 printk(KERN_INFO "txcnt = %d (jiff=%lu,check=%d)...\n", txcnt,
1597 jiffies, check_time);
1598 #endif
1599 msleep_interruptible(jiffies_to_msecs(check_time));
1600 if (signal_pending(current))
1601 break;
1602 }
1603 __set_current_state(TASK_RUNNING);
1604 #ifdef ROCKET_DEBUG_WAIT_UNTIL_SENT
1605 printk(KERN_INFO "txcnt = %d (jiff=%lu)...done\n", txcnt, jiffies);
1606 #endif
1607 }
1608
1609 /*
1610 * rp_hangup() --- called by tty_hangup() when a hangup is signaled.
1611 */
1612 static void rp_hangup(struct tty_struct *tty)
1613 {
1614 CHANNEL_t *cp;
1615 struct r_port *info = (struct r_port *) tty->driver_data;
1616
1617 if (rocket_paranoia_check(info, "rp_hangup"))
1618 return;
1619
1620 #if (defined(ROCKET_DEBUG_OPEN) || defined(ROCKET_DEBUG_HANGUP))
1621 printk(KERN_INFO "rp_hangup of ttyR%d...\n", info->line);
1622 #endif
1623 rp_flush_buffer(tty);
1624 if (info->flags & ROCKET_CLOSING)
1625 return;
1626 if (info->count)
1627 atomic_dec(&rp_num_ports_open);
1628 clear_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1629
1630 info->count = 0;
1631 info->flags &= ~ROCKET_NORMAL_ACTIVE;
1632 info->tty = NULL;
1633
1634 cp = &info->channel;
1635 sDisRxFIFO(cp);
1636 sDisTransmit(cp);
1637 sDisInterrupts(cp, (TXINT_EN | MCINT_EN | RXINT_EN | SRCINT_EN | CHANINT_EN));
1638 sDisCTSFlowCtl(cp);
1639 sDisTxSoftFlowCtl(cp);
1640 sClrTxXOFF(cp);
1641 info->flags &= ~ROCKET_INITIALIZED;
1642
1643 wake_up_interruptible(&info->open_wait);
1644 }
1645
1646 /*
1647 * Exception handler - write char routine. The RocketPort driver uses a
1648 * double-buffering strategy, with the twist that if the in-memory CPU
1649 * buffer is empty, and there's space in the transmit FIFO, the
1650 * writing routines will write directly to transmit FIFO.
1651 * Write buffer and counters protected by spinlocks
1652 */
1653 static void rp_put_char(struct tty_struct *tty, unsigned char ch)
1654 {
1655 struct r_port *info = (struct r_port *) tty->driver_data;
1656 CHANNEL_t *cp;
1657 unsigned long flags;
1658
1659 if (rocket_paranoia_check(info, "rp_put_char"))
1660 return;
1661
1662 /*
1663 * Grab the port write mutex, locking out other processes that try to
1664 * write to this port
1665 */
1666 mutex_lock(&info->write_mtx);
1667
1668 #ifdef ROCKET_DEBUG_WRITE
1669 printk(KERN_INFO "rp_put_char %c...\n", ch);
1670 #endif
1671
1672 spin_lock_irqsave(&info->slock, flags);
1673 cp = &info->channel;
1674
1675 if (!tty->stopped && !tty->hw_stopped && info->xmit_fifo_room == 0)
1676 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1677
1678 if (tty->stopped || tty->hw_stopped || info->xmit_fifo_room == 0 || info->xmit_cnt != 0) {
1679 info->xmit_buf[info->xmit_head++] = ch;
1680 info->xmit_head &= XMIT_BUF_SIZE - 1;
1681 info->xmit_cnt++;
1682 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1683 } else {
1684 sOutB(sGetTxRxDataIO(cp), ch);
1685 info->xmit_fifo_room--;
1686 }
1687 spin_unlock_irqrestore(&info->slock, flags);
1688 mutex_unlock(&info->write_mtx);
1689 }
1690
1691 /*
1692 * Exception handler - write routine, called when user app writes to the device.
1693 * A per port write mutex is used to protect from another process writing to
1694 * this port at the same time. This other process could be running on the other CPU
1695 * or get control of the CPU if the copy_from_user() blocks due to a page fault (swapped out).
1696 * Spinlocks protect the info xmit members.
1697 */
1698 static int rp_write(struct tty_struct *tty,
1699 const unsigned char *buf, int count)
1700 {
1701 struct r_port *info = (struct r_port *) tty->driver_data;
1702 CHANNEL_t *cp;
1703 const unsigned char *b;
1704 int c, retval = 0;
1705 unsigned long flags;
1706
1707 if (count <= 0 || rocket_paranoia_check(info, "rp_write"))
1708 return 0;
1709
1710 if (mutex_lock_interruptible(&info->write_mtx))
1711 return -ERESTARTSYS;
1712
1713 #ifdef ROCKET_DEBUG_WRITE
1714 printk(KERN_INFO "rp_write %d chars...\n", count);
1715 #endif
1716 cp = &info->channel;
1717
1718 if (!tty->stopped && !tty->hw_stopped && info->xmit_fifo_room < count)
1719 info->xmit_fifo_room = TXFIFO_SIZE - sGetTxCnt(cp);
1720
1721 /*
1722 * If the write queue for the port is empty, and there is FIFO space, stuff bytes
1723 * into FIFO. Use the write queue for temp storage.
1724 */
1725 if (!tty->stopped && !tty->hw_stopped && info->xmit_cnt == 0 && info->xmit_fifo_room > 0) {
1726 c = min(count, info->xmit_fifo_room);
1727 b = buf;
1728
1729 /* Push data into FIFO, 2 bytes at a time */
1730 sOutStrW(sGetTxRxDataIO(cp), (unsigned short *) b, c / 2);
1731
1732 /* If there is a byte remaining, write it */
1733 if (c & 1)
1734 sOutB(sGetTxRxDataIO(cp), b[c - 1]);
1735
1736 retval += c;
1737 buf += c;
1738 count -= c;
1739
1740 spin_lock_irqsave(&info->slock, flags);
1741 info->xmit_fifo_room -= c;
1742 spin_unlock_irqrestore(&info->slock, flags);
1743 }
1744
1745 /* If count is zero, we wrote it all and are done */
1746 if (!count)
1747 goto end;
1748
1749 /* Write remaining data into the port's xmit_buf */
1750 while (1) {
1751 if (info->tty == 0) /* Seemingly obligatory check... */
1752 goto end;
1753
1754 c = min(count, min(XMIT_BUF_SIZE - info->xmit_cnt - 1, XMIT_BUF_SIZE - info->xmit_head));
1755 if (c <= 0)
1756 break;
1757
1758 b = buf;
1759 memcpy(info->xmit_buf + info->xmit_head, b, c);
1760
1761 spin_lock_irqsave(&info->slock, flags);
1762 info->xmit_head =
1763 (info->xmit_head + c) & (XMIT_BUF_SIZE - 1);
1764 info->xmit_cnt += c;
1765 spin_unlock_irqrestore(&info->slock, flags);
1766
1767 buf += c;
1768 count -= c;
1769 retval += c;
1770 }
1771
1772 if ((retval > 0) && !tty->stopped && !tty->hw_stopped)
1773 set_bit((info->aiop * 8) + info->chan, (void *) &xmit_flags[info->board]);
1774
1775 end:
1776 if (info->xmit_cnt < WAKEUP_CHARS) {
1777 tty_wakeup(tty);
1778 #ifdef ROCKETPORT_HAVE_POLL_WAIT
1779 wake_up_interruptible(&tty->poll_wait);
1780 #endif
1781 }
1782 mutex_unlock(&info->write_mtx);
1783 return retval;
1784 }
1785
1786 /*
1787 * Return the number of characters that can be sent. We estimate
1788 * only using the in-memory transmit buffer only, and ignore the
1789 * potential space in the transmit FIFO.
1790 */
1791 static int rp_write_room(struct tty_struct *tty)
1792 {
1793 struct r_port *info = (struct r_port *) tty->driver_data;
1794 int ret;
1795
1796 if (rocket_paranoia_check(info, "rp_write_room"))
1797 return 0;
1798
1799 ret = XMIT_BUF_SIZE - info->xmit_cnt - 1;
1800 if (ret < 0)
1801 ret = 0;
1802 #ifdef ROCKET_DEBUG_WRITE
1803 printk(KERN_INFO "rp_write_room returns %d...\n", ret);
1804 #endif
1805 return ret;
1806 }
1807
1808 /*
1809 * Return the number of characters in the buffer. Again, this only
1810 * counts those characters in the in-memory transmit buffer.
1811 */
1812 static int rp_chars_in_buffer(struct tty_struct *tty)
1813 {
1814 struct r_port *info = (struct r_port *) tty->driver_data;
1815 CHANNEL_t *cp;
1816
1817 if (rocket_paranoia_check(info, "rp_chars_in_buffer"))
1818 return 0;
1819
1820 cp = &info->channel;
1821
1822 #ifdef ROCKET_DEBUG_WRITE
1823 printk(KERN_INFO "rp_chars_in_buffer returns %d...\n", info->xmit_cnt);
1824 #endif
1825 return info->xmit_cnt;
1826 }
1827
1828 /*
1829 * Flushes the TX fifo for a port, deletes data in the xmit_buf stored in the
1830 * r_port struct for the port. Note that spinlock are used to protect info members,
1831 * do not call this function if the spinlock is already held.
1832 */
1833 static void rp_flush_buffer(struct tty_struct *tty)
1834 {
1835 struct r_port *info = (struct r_port *) tty->driver_data;
1836 CHANNEL_t *cp;
1837 unsigned long flags;
1838
1839 if (rocket_paranoia_check(info, "rp_flush_buffer"))
1840 return;
1841
1842 spin_lock_irqsave(&info->slock, flags);
1843 info->xmit_cnt = info->xmit_head = info->xmit_tail = 0;
1844 spin_unlock_irqrestore(&info->slock, flags);
1845
1846 #ifdef ROCKETPORT_HAVE_POLL_WAIT
1847 wake_up_interruptible(&tty->poll_wait);
1848 #endif
1849 tty_wakeup(tty);
1850
1851 cp = &info->channel;
1852 sFlushTxFIFO(cp);
1853 }
1854
1855 #ifdef CONFIG_PCI
1856
1857 static struct pci_device_id __devinitdata rocket_pci_ids[] = {
1858 { PCI_DEVICE(PCI_VENDOR_ID_RP, PCI_ANY_ID) },
1859 { }
1860 };
1861 MODULE_DEVICE_TABLE(pci, rocket_pci_ids);
1862
1863 /*
1864 * Called when a PCI card is found. Retrieves and stores model information,
1865 * init's aiopic and serial port hardware.
1866 * Inputs: i is the board number (0-n)
1867 */
1868 static __init int register_PCI(int i, struct pci_dev *dev)
1869 {
1870 int num_aiops, aiop, max_num_aiops, num_chan, chan;
1871 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
1872 char *str, *board_type;
1873 CONTROLLER_t *ctlp;
1874
1875 int fast_clock = 0;
1876 int altChanRingIndicator = 0;
1877 int ports_per_aiop = 8;
1878 WordIO_t ConfigIO = 0;
1879 ByteIO_t UPCIRingInd = 0;
1880
1881 if (!dev || pci_enable_device(dev))
1882 return 0;
1883
1884 rcktpt_io_addr[i] = pci_resource_start(dev, 0);
1885
1886 rcktpt_type[i] = ROCKET_TYPE_NORMAL;
1887 rocketModel[i].loadrm2 = 0;
1888 rocketModel[i].startingPortNumber = nextLineNumber;
1889
1890 /* Depending on the model, set up some config variables */
1891 switch (dev->device) {
1892 case PCI_DEVICE_ID_RP4QUAD:
1893 str = "Quadcable";
1894 max_num_aiops = 1;
1895 ports_per_aiop = 4;
1896 rocketModel[i].model = MODEL_RP4QUAD;
1897 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/quad cable");
1898 rocketModel[i].numPorts = 4;
1899 break;
1900 case PCI_DEVICE_ID_RP8OCTA:
1901 str = "Octacable";
1902 max_num_aiops = 1;
1903 rocketModel[i].model = MODEL_RP8OCTA;
1904 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/octa cable");
1905 rocketModel[i].numPorts = 8;
1906 break;
1907 case PCI_DEVICE_ID_URP8OCTA:
1908 str = "Octacable";
1909 max_num_aiops = 1;
1910 rocketModel[i].model = MODEL_UPCI_RP8OCTA;
1911 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/octa cable");
1912 rocketModel[i].numPorts = 8;
1913 break;
1914 case PCI_DEVICE_ID_RP8INTF:
1915 str = "8";
1916 max_num_aiops = 1;
1917 rocketModel[i].model = MODEL_RP8INTF;
1918 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/external I/F");
1919 rocketModel[i].numPorts = 8;
1920 break;
1921 case PCI_DEVICE_ID_URP8INTF:
1922 str = "8";
1923 max_num_aiops = 1;
1924 rocketModel[i].model = MODEL_UPCI_RP8INTF;
1925 strcpy(rocketModel[i].modelString, "RocketPort UPCI 8 port w/external I/F");
1926 rocketModel[i].numPorts = 8;
1927 break;
1928 case PCI_DEVICE_ID_RP8J:
1929 str = "8J";
1930 max_num_aiops = 1;
1931 rocketModel[i].model = MODEL_RP8J;
1932 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/RJ11 connectors");
1933 rocketModel[i].numPorts = 8;
1934 break;
1935 case PCI_DEVICE_ID_RP4J:
1936 str = "4J";
1937 max_num_aiops = 1;
1938 ports_per_aiop = 4;
1939 rocketModel[i].model = MODEL_RP4J;
1940 strcpy(rocketModel[i].modelString, "RocketPort 4 port w/RJ45 connectors");
1941 rocketModel[i].numPorts = 4;
1942 break;
1943 case PCI_DEVICE_ID_RP8SNI:
1944 str = "8 (DB78 Custom)";
1945 max_num_aiops = 1;
1946 rocketModel[i].model = MODEL_RP8SNI;
1947 strcpy(rocketModel[i].modelString, "RocketPort 8 port w/ custom DB78");
1948 rocketModel[i].numPorts = 8;
1949 break;
1950 case PCI_DEVICE_ID_RP16SNI:
1951 str = "16 (DB78 Custom)";
1952 max_num_aiops = 2;
1953 rocketModel[i].model = MODEL_RP16SNI;
1954 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/ custom DB78");
1955 rocketModel[i].numPorts = 16;
1956 break;
1957 case PCI_DEVICE_ID_RP16INTF:
1958 str = "16";
1959 max_num_aiops = 2;
1960 rocketModel[i].model = MODEL_RP16INTF;
1961 strcpy(rocketModel[i].modelString, "RocketPort 16 port w/external I/F");
1962 rocketModel[i].numPorts = 16;
1963 break;
1964 case PCI_DEVICE_ID_URP16INTF:
1965 str = "16";
1966 max_num_aiops = 2;
1967 rocketModel[i].model = MODEL_UPCI_RP16INTF;
1968 strcpy(rocketModel[i].modelString, "RocketPort UPCI 16 port w/external I/F");
1969 rocketModel[i].numPorts = 16;
1970 break;
1971 case PCI_DEVICE_ID_CRP16INTF:
1972 str = "16";
1973 max_num_aiops = 2;
1974 rocketModel[i].model = MODEL_CPCI_RP16INTF;
1975 strcpy(rocketModel[i].modelString, "RocketPort Compact PCI 16 port w/external I/F");
1976 rocketModel[i].numPorts = 16;
1977 break;
1978 case PCI_DEVICE_ID_RP32INTF:
1979 str = "32";
1980 max_num_aiops = 4;
1981 rocketModel[i].model = MODEL_RP32INTF;
1982 strcpy(rocketModel[i].modelString, "RocketPort 32 port w/external I/F");
1983 rocketModel[i].numPorts = 32;
1984 break;
1985 case PCI_DEVICE_ID_URP32INTF:
1986 str = "32";
1987 max_num_aiops = 4;
1988 rocketModel[i].model = MODEL_UPCI_RP32INTF;
1989 strcpy(rocketModel[i].modelString, "RocketPort UPCI 32 port w/external I/F");
1990 rocketModel[i].numPorts = 32;
1991 break;
1992 case PCI_DEVICE_ID_RPP4:
1993 str = "Plus Quadcable";
1994 max_num_aiops = 1;
1995 ports_per_aiop = 4;
1996 altChanRingIndicator++;
1997 fast_clock++;
1998 rocketModel[i].model = MODEL_RPP4;
1999 strcpy(rocketModel[i].modelString, "RocketPort Plus 4 port");
2000 rocketModel[i].numPorts = 4;
2001 break;
2002 case PCI_DEVICE_ID_RPP8:
2003 str = "Plus Octacable";
2004 max_num_aiops = 2;
2005 ports_per_aiop = 4;
2006 altChanRingIndicator++;
2007 fast_clock++;
2008 rocketModel[i].model = MODEL_RPP8;
2009 strcpy(rocketModel[i].modelString, "RocketPort Plus 8 port");
2010 rocketModel[i].numPorts = 8;
2011 break;
2012 case PCI_DEVICE_ID_RP2_232:
2013 str = "Plus 2 (RS-232)";
2014 max_num_aiops = 1;
2015 ports_per_aiop = 2;
2016 altChanRingIndicator++;
2017 fast_clock++;
2018 rocketModel[i].model = MODEL_RP2_232;
2019 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS232");
2020 rocketModel[i].numPorts = 2;
2021 break;
2022 case PCI_DEVICE_ID_RP2_422:
2023 str = "Plus 2 (RS-422)";
2024 max_num_aiops = 1;
2025 ports_per_aiop = 2;
2026 altChanRingIndicator++;
2027 fast_clock++;
2028 rocketModel[i].model = MODEL_RP2_422;
2029 strcpy(rocketModel[i].modelString, "RocketPort Plus 2 port RS422");
2030 rocketModel[i].numPorts = 2;
2031 break;
2032 case PCI_DEVICE_ID_RP6M:
2033
2034 max_num_aiops = 1;
2035 ports_per_aiop = 6;
2036 str = "6-port";
2037
2038 /* If revision is 1, the rocketmodem flash must be loaded.
2039 * If it is 2 it is a "socketed" version. */
2040 if (dev->revision == 1) {
2041 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2042 rocketModel[i].loadrm2 = 1;
2043 } else {
2044 rcktpt_type[i] = ROCKET_TYPE_MODEM;
2045 }
2046
2047 rocketModel[i].model = MODEL_RP6M;
2048 strcpy(rocketModel[i].modelString, "RocketModem 6 port");
2049 rocketModel[i].numPorts = 6;
2050 break;
2051 case PCI_DEVICE_ID_RP4M:
2052 max_num_aiops = 1;
2053 ports_per_aiop = 4;
2054 str = "4-port";
2055 if (dev->revision == 1) {
2056 rcktpt_type[i] = ROCKET_TYPE_MODEMII;
2057 rocketModel[i].loadrm2 = 1;
2058 } else {
2059 rcktpt_type[i] = ROCKET_TYPE_MODEM;
2060 }
2061
2062 rocketModel[i].model = MODEL_RP4M;
2063 strcpy(rocketModel[i].modelString, "RocketModem 4 port");
2064 rocketModel[i].numPorts = 4;
2065 break;
2066 default:
2067 str = "(unknown/unsupported)";
2068 max_num_aiops = 0;
2069 break;
2070 }
2071
2072 /*
2073 * Check for UPCI boards.
2074 */
2075
2076 switch (dev->device) {
2077 case PCI_DEVICE_ID_URP32INTF:
2078 case PCI_DEVICE_ID_URP8INTF:
2079 case PCI_DEVICE_ID_URP16INTF:
2080 case PCI_DEVICE_ID_CRP16INTF:
2081 case PCI_DEVICE_ID_URP8OCTA:
2082 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2083 ConfigIO = pci_resource_start(dev, 1);
2084 if (dev->device == PCI_DEVICE_ID_URP8OCTA) {
2085 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2086
2087 /*
2088 * Check for octa or quad cable.
2089 */
2090 if (!
2091 (sInW(ConfigIO + _PCI_9030_GPIO_CTRL) &
2092 PCI_GPIO_CTRL_8PORT)) {
2093 str = "Quadcable";
2094 ports_per_aiop = 4;
2095 rocketModel[i].numPorts = 4;
2096 }
2097 }
2098 break;
2099 case PCI_DEVICE_ID_UPCI_RM3_8PORT:
2100 str = "8 ports";
2101 max_num_aiops = 1;
2102 rocketModel[i].model = MODEL_UPCI_RM3_8PORT;
2103 strcpy(rocketModel[i].modelString, "RocketModem III 8 port");
2104 rocketModel[i].numPorts = 8;
2105 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2106 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2107 ConfigIO = pci_resource_start(dev, 1);
2108 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2109 break;
2110 case PCI_DEVICE_ID_UPCI_RM3_4PORT:
2111 str = "4 ports";
2112 max_num_aiops = 1;
2113 rocketModel[i].model = MODEL_UPCI_RM3_4PORT;
2114 strcpy(rocketModel[i].modelString, "RocketModem III 4 port");
2115 rocketModel[i].numPorts = 4;
2116 rcktpt_io_addr[i] = pci_resource_start(dev, 2);
2117 UPCIRingInd = rcktpt_io_addr[i] + _PCI_9030_RING_IND;
2118 ConfigIO = pci_resource_start(dev, 1);
2119 rcktpt_type[i] = ROCKET_TYPE_MODEMIII;
2120 break;
2121 default:
2122 break;
2123 }
2124
2125 switch (rcktpt_type[i]) {
2126 case ROCKET_TYPE_MODEM:
2127 board_type = "RocketModem";
2128 break;
2129 case ROCKET_TYPE_MODEMII:
2130 board_type = "RocketModem II";
2131 break;
2132 case ROCKET_TYPE_MODEMIII:
2133 board_type = "RocketModem III";
2134 break;
2135 default:
2136 board_type = "RocketPort";
2137 break;
2138 }
2139
2140 if (fast_clock) {
2141 sClockPrescale = 0x12; /* mod 2 (divide by 3) */
2142 rp_baud_base[i] = 921600;
2143 } else {
2144 /*
2145 * If support_low_speed is set, use the slow clock
2146 * prescale, which supports 50 bps
2147 */
2148 if (support_low_speed) {
2149 /* mod 9 (divide by 10) prescale */
2150 sClockPrescale = 0x19;
2151 rp_baud_base[i] = 230400;
2152 } else {
2153 /* mod 4 (devide by 5) prescale */
2154 sClockPrescale = 0x14;
2155 rp_baud_base[i] = 460800;
2156 }
2157 }
2158
2159 for (aiop = 0; aiop < max_num_aiops; aiop++)
2160 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x40);
2161 ctlp = sCtlNumToCtlPtr(i);
2162 num_aiops = sPCIInitController(ctlp, i, aiopio, max_num_aiops, ConfigIO, 0, FREQ_DIS, 0, altChanRingIndicator, UPCIRingInd);
2163 for (aiop = 0; aiop < max_num_aiops; aiop++)
2164 ctlp->AiopNumChan[aiop] = ports_per_aiop;
2165
2166 dev_info(&dev->dev, "comtrol PCI controller #%d found at "
2167 "address %04lx, %d AIOP(s) (%s), creating ttyR%d - %ld\n",
2168 i, rcktpt_io_addr[i], num_aiops, rocketModel[i].modelString,
2169 rocketModel[i].startingPortNumber,
2170 rocketModel[i].startingPortNumber + rocketModel[i].numPorts-1);
2171
2172 if (num_aiops <= 0) {
2173 rcktpt_io_addr[i] = 0;
2174 return (0);
2175 }
2176 is_PCI[i] = 1;
2177
2178 /* Reset the AIOPIC, init the serial ports */
2179 for (aiop = 0; aiop < num_aiops; aiop++) {
2180 sResetAiopByNum(ctlp, aiop);
2181 num_chan = ports_per_aiop;
2182 for (chan = 0; chan < num_chan; chan++)
2183 init_r_port(i, aiop, chan, dev);
2184 }
2185
2186 /* Rocket modems must be reset */
2187 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) ||
2188 (rcktpt_type[i] == ROCKET_TYPE_MODEMII) ||
2189 (rcktpt_type[i] == ROCKET_TYPE_MODEMIII)) {
2190 num_chan = ports_per_aiop;
2191 for (chan = 0; chan < num_chan; chan++)
2192 sPCIModemReset(ctlp, chan, 1);
2193 msleep(500);
2194 for (chan = 0; chan < num_chan; chan++)
2195 sPCIModemReset(ctlp, chan, 0);
2196 msleep(500);
2197 rmSpeakerReset(ctlp, rocketModel[i].model);
2198 }
2199 return (1);
2200 }
2201
2202 /*
2203 * Probes for PCI cards, inits them if found
2204 * Input: board_found = number of ISA boards already found, or the
2205 * starting board number
2206 * Returns: Number of PCI boards found
2207 */
2208 static int __init init_PCI(int boards_found)
2209 {
2210 struct pci_dev *dev = NULL;
2211 int count = 0;
2212
2213 /* Work through the PCI device list, pulling out ours */
2214 while ((dev = pci_get_device(PCI_VENDOR_ID_RP, PCI_ANY_ID, dev))) {
2215 if (register_PCI(count + boards_found, dev))
2216 count++;
2217 }
2218 return (count);
2219 }
2220
2221 #endif /* CONFIG_PCI */
2222
2223 /*
2224 * Probes for ISA cards
2225 * Input: i = the board number to look for
2226 * Returns: 1 if board found, 0 else
2227 */
2228 static int __init init_ISA(int i)
2229 {
2230 int num_aiops, num_chan = 0, total_num_chan = 0;
2231 int aiop, chan;
2232 unsigned int aiopio[MAX_AIOPS_PER_BOARD];
2233 CONTROLLER_t *ctlp;
2234 char *type_string;
2235
2236 /* If io_addr is zero, no board configured */
2237 if (rcktpt_io_addr[i] == 0)
2238 return (0);
2239
2240 /* Reserve the IO region */
2241 if (!request_region(rcktpt_io_addr[i], 64, "Comtrol RocketPort")) {
2242 printk(KERN_ERR "Unable to reserve IO region for configured "
2243 "ISA RocketPort at address 0x%lx, board not "
2244 "installed...\n", rcktpt_io_addr[i]);
2245 rcktpt_io_addr[i] = 0;
2246 return (0);
2247 }
2248
2249 ctlp = sCtlNumToCtlPtr(i);
2250
2251 ctlp->boardType = rcktpt_type[i];
2252
2253 switch (rcktpt_type[i]) {
2254 case ROCKET_TYPE_PC104:
2255 type_string = "(PC104)";
2256 break;
2257 case ROCKET_TYPE_MODEM:
2258 type_string = "(RocketModem)";
2259 break;
2260 case ROCKET_TYPE_MODEMII:
2261 type_string = "(RocketModem II)";
2262 break;
2263 default:
2264 type_string = "";
2265 break;
2266 }
2267
2268 /*
2269 * If support_low_speed is set, use the slow clock prescale,
2270 * which supports 50 bps
2271 */
2272 if (support_low_speed) {
2273 sClockPrescale = 0x19; /* mod 9 (divide by 10) prescale */
2274 rp_baud_base[i] = 230400;
2275 } else {
2276 sClockPrescale = 0x14; /* mod 4 (devide by 5) prescale */
2277 rp_baud_base[i] = 460800;
2278 }
2279
2280 for (aiop = 0; aiop < MAX_AIOPS_PER_BOARD; aiop++)
2281 aiopio[aiop] = rcktpt_io_addr[i] + (aiop * 0x400);
2282
2283 num_aiops = sInitController(ctlp, i, controller + (i * 0x400), aiopio, MAX_AIOPS_PER_BOARD, 0, FREQ_DIS, 0);
2284
2285 if (ctlp->boardType == ROCKET_TYPE_PC104) {
2286 sEnAiop(ctlp, 2); /* only one AIOPIC, but these */
2287 sEnAiop(ctlp, 3); /* CSels used for other stuff */
2288 }
2289
2290 /* If something went wrong initing the AIOP's release the ISA IO memory */
2291 if (num_aiops <= 0) {
2292 release_region(rcktpt_io_addr[i], 64);
2293 rcktpt_io_addr[i] = 0;
2294 return (0);
2295 }
2296
2297 rocketModel[i].startingPortNumber = nextLineNumber;
2298
2299 for (aiop = 0; aiop < num_aiops; aiop++) {
2300 sResetAiopByNum(ctlp, aiop);
2301 sEnAiop(ctlp, aiop);
2302 num_chan = sGetAiopNumChan(ctlp, aiop);
2303 total_num_chan += num_chan;
2304 for (chan = 0; chan < num_chan; chan++)
2305 init_r_port(i, aiop, chan, NULL);
2306 }
2307 is_PCI[i] = 0;
2308 if ((rcktpt_type[i] == ROCKET_TYPE_MODEM) || (rcktpt_type[i] == ROCKET_TYPE_MODEMII)) {
2309 num_chan = sGetAiopNumChan(ctlp, 0);
2310 total_num_chan = num_chan;
2311 for (chan = 0; chan < num_chan; chan++)
2312 sModemReset(ctlp, chan, 1);
2313 msleep(500);
2314 for (chan = 0; chan < num_chan; chan++)
2315 sModemReset(ctlp, chan, 0);
2316 msleep(500);
2317 strcpy(rocketModel[i].modelString, "RocketModem ISA");
2318 } else {
2319 strcpy(rocketModel[i].modelString, "RocketPort ISA");
2320 }
2321 rocketModel[i].numPorts = total_num_chan;
2322 rocketModel[i].model = MODEL_ISA;
2323
2324 printk(KERN_INFO "RocketPort ISA card #%d found at 0x%lx - %d AIOPs %s\n",
2325 i, rcktpt_io_addr[i], num_aiops, type_string);
2326
2327 printk(KERN_INFO "Installing %s, creating /dev/ttyR%d - %ld\n",
2328 rocketModel[i].modelString,
2329 rocketModel[i].startingPortNumber,
2330 rocketModel[i].startingPortNumber +
2331 rocketModel[i].numPorts - 1);
2332
2333 return (1);
2334 }
2335
2336 static const struct tty_operations rocket_ops = {
2337 .open = rp_open,
2338 .close = rp_close,
2339 .write = rp_write,
2340 .put_char = rp_put_char,
2341 .write_room = rp_write_room,
2342 .chars_in_buffer = rp_chars_in_buffer,
2343 .flush_buffer = rp_flush_buffer,
2344 .ioctl = rp_ioctl,
2345 .throttle = rp_throttle,
2346 .unthrottle = rp_unthrottle,
2347 .set_termios = rp_set_termios,
2348 .stop = rp_stop,
2349 .start = rp_start,
2350 .hangup = rp_hangup,
2351 .break_ctl = rp_break,
2352 .send_xchar = rp_send_xchar,
2353 .wait_until_sent = rp_wait_until_sent,
2354 .tiocmget = rp_tiocmget,
2355 .tiocmset = rp_tiocmset,
2356 };
2357
2358 /*
2359 * The module "startup" routine; it's run when the module is loaded.
2360 */
2361 static int __init rp_init(void)
2362 {
2363 int ret = -ENOMEM, pci_boards_found, isa_boards_found, i;
2364
2365 printk(KERN_INFO "RocketPort device driver module, version %s, %s\n",
2366 ROCKET_VERSION, ROCKET_DATE);
2367
2368 rocket_driver = alloc_tty_driver(MAX_RP_PORTS);
2369 if (!rocket_driver)
2370 goto err;
2371
2372 /*
2373 * If board 1 is non-zero, there is at least one ISA configured. If controller is
2374 * zero, use the default controller IO address of board1 + 0x40.
2375 */
2376 if (board1) {
2377 if (controller == 0)
2378 controller = board1 + 0x40;
2379 } else {
2380 controller = 0; /* Used as a flag, meaning no ISA boards */
2381 }
2382
2383 /* If an ISA card is configured, reserve the 4 byte IO space for the Mudbac controller */
2384 if (controller && (!request_region(controller, 4, "Comtrol RocketPort"))) {
2385 printk(KERN_ERR "Unable to reserve IO region for first "
2386 "configured ISA RocketPort controller 0x%lx. "
2387 "Driver exiting\n", controller);
2388 ret = -EBUSY;
2389 goto err_tty;
2390 }
2391
2392 /* Store ISA variable retrieved from command line or .conf file. */
2393 rcktpt_io_addr[0] = board1;
2394 rcktpt_io_addr[1] = board2;
2395 rcktpt_io_addr[2] = board3;
2396 rcktpt_io_addr[3] = board4;
2397
2398 rcktpt_type[0] = modem1 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2399 rcktpt_type[0] = pc104_1[0] ? ROCKET_TYPE_PC104 : rcktpt_type[0];
2400 rcktpt_type[1] = modem2 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2401 rcktpt_type[1] = pc104_2[0] ? ROCKET_TYPE_PC104 : rcktpt_type[1];
2402 rcktpt_type[2] = modem3 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2403 rcktpt_type[2] = pc104_3[0] ? ROCKET_TYPE_PC104 : rcktpt_type[2];
2404 rcktpt_type[3] = modem4 ? ROCKET_TYPE_MODEM : ROCKET_TYPE_NORMAL;
2405 rcktpt_type[3] = pc104_4[0] ? ROCKET_TYPE_PC104 : rcktpt_type[3];
2406
2407 /*
2408 * Set up the tty driver structure and then register this
2409 * driver with the tty layer.
2410 */
2411
2412 rocket_driver->owner = THIS_MODULE;
2413 rocket_driver->flags = TTY_DRIVER_DYNAMIC_DEV;
2414 rocket_driver->name = "ttyR";
2415 rocket_driver->driver_name = "Comtrol RocketPort";
2416 rocket_driver->major = TTY_ROCKET_MAJOR;
2417 rocket_driver->minor_start = 0;
2418 rocket_driver->type = TTY_DRIVER_TYPE_SERIAL;
2419 rocket_driver->subtype = SERIAL_TYPE_NORMAL;
2420 rocket_driver->init_termios = tty_std_termios;
2421 rocket_driver->init_termios.c_cflag =
2422 B9600 | CS8 | CREAD | HUPCL | CLOCAL;
2423 rocket_driver->init_termios.c_ispeed = 9600;
2424 rocket_driver->init_termios.c_ospeed = 9600;
2425 #ifdef ROCKET_SOFT_FLOW
2426 rocket_driver->flags |= TTY_DRIVER_REAL_RAW;
2427 #endif
2428 tty_set_operations(rocket_driver, &rocket_ops);
2429
2430 ret = tty_register_driver(rocket_driver);
2431 if (ret < 0) {
2432 printk(KERN_ERR "Couldn't install tty RocketPort driver\n");
2433 goto err_tty;
2434 }
2435
2436 #ifdef ROCKET_DEBUG_OPEN
2437 printk(KERN_INFO "RocketPort driver is major %d\n", rocket_driver.major);
2438 #endif
2439
2440 /*
2441 * OK, let's probe each of the controllers looking for boards. Any boards found
2442 * will be initialized here.
2443 */
2444 isa_boards_found = 0;
2445 pci_boards_found = 0;
2446
2447 for (i = 0; i < NUM_BOARDS; i++) {
2448 if (init_ISA(i))
2449 isa_boards_found++;
2450 }
2451
2452 #ifdef CONFIG_PCI
2453 if (isa_boards_found < NUM_BOARDS)
2454 pci_boards_found = init_PCI(isa_boards_found);
2455 #endif
2456
2457 max_board = pci_boards_found + isa_boards_found;
2458
2459 if (max_board == 0) {
2460 printk(KERN_ERR "No rocketport ports found; unloading driver\n");
2461 ret = -ENXIO;
2462 goto err_ttyu;
2463 }
2464
2465 return 0;
2466 err_ttyu:
2467 tty_unregister_driver(rocket_driver);
2468 err_tty:
2469 put_tty_driver(rocket_driver);
2470 err:
2471 return ret;
2472 }
2473
2474
2475 static void rp_cleanup_module(void)
2476 {
2477 int retval;
2478 int i;
2479
2480 del_timer_sync(&rocket_timer);
2481
2482 retval = tty_unregister_driver(rocket_driver);
2483 if (retval)
2484 printk(KERN_ERR "Error %d while trying to unregister "
2485 "rocketport driver\n", -retval);
2486
2487 for (i = 0; i < MAX_RP_PORTS; i++)
2488 if (rp_table[i]) {
2489 tty_unregister_device(rocket_driver, i);
2490 kfree(rp_table[i]);
2491 }
2492
2493 put_tty_driver(rocket_driver);
2494
2495 for (i = 0; i < NUM_BOARDS; i++) {
2496 if (rcktpt_io_addr[i] <= 0 || is_PCI[i])
2497 continue;
2498 release_region(rcktpt_io_addr[i], 64);
2499 }
2500 if (controller)
2501 release_region(controller, 4);
2502 }
2503
2504 /***************************************************************************
2505 Function: sInitController
2506 Purpose: Initialization of controller global registers and controller
2507 structure.
2508 Call: sInitController(CtlP,CtlNum,MudbacIO,AiopIOList,AiopIOListSize,
2509 IRQNum,Frequency,PeriodicOnly)
2510 CONTROLLER_T *CtlP; Ptr to controller structure
2511 int CtlNum; Controller number
2512 ByteIO_t MudbacIO; Mudbac base I/O address.
2513 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2514 This list must be in the order the AIOPs will be found on the
2515 controller. Once an AIOP in the list is not found, it is
2516 assumed that there are no more AIOPs on the controller.
2517 int AiopIOListSize; Number of addresses in AiopIOList
2518 int IRQNum; Interrupt Request number. Can be any of the following:
2519 0: Disable global interrupts
2520 3: IRQ 3
2521 4: IRQ 4
2522 5: IRQ 5
2523 9: IRQ 9
2524 10: IRQ 10
2525 11: IRQ 11
2526 12: IRQ 12
2527 15: IRQ 15
2528 Byte_t Frequency: A flag identifying the frequency
2529 of the periodic interrupt, can be any one of the following:
2530 FREQ_DIS - periodic interrupt disabled
2531 FREQ_137HZ - 137 Hertz
2532 FREQ_69HZ - 69 Hertz
2533 FREQ_34HZ - 34 Hertz
2534 FREQ_17HZ - 17 Hertz
2535 FREQ_9HZ - 9 Hertz
2536 FREQ_4HZ - 4 Hertz
2537 If IRQNum is set to 0 the Frequency parameter is
2538 overidden, it is forced to a value of FREQ_DIS.
2539 int PeriodicOnly: 1 if all interrupts except the periodic
2540 interrupt are to be blocked.
2541 0 is both the periodic interrupt and
2542 other channel interrupts are allowed.
2543 If IRQNum is set to 0 the PeriodicOnly parameter is
2544 overidden, it is forced to a value of 0.
2545 Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
2546 initialization failed.
2547
2548 Comments:
2549 If periodic interrupts are to be disabled but AIOP interrupts
2550 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2551
2552 If interrupts are to be completely disabled set IRQNum to 0.
2553
2554 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2555 invalid combination.
2556
2557 This function performs initialization of global interrupt modes,
2558 but it does not actually enable global interrupts. To enable
2559 and disable global interrupts use functions sEnGlobalInt() and
2560 sDisGlobalInt(). Enabling of global interrupts is normally not
2561 done until all other initializations are complete.
2562
2563 Even if interrupts are globally enabled, they must also be
2564 individually enabled for each channel that is to generate
2565 interrupts.
2566
2567 Warnings: No range checking on any of the parameters is done.
2568
2569 No context switches are allowed while executing this function.
2570
2571 After this function all AIOPs on the controller are disabled,
2572 they can be enabled with sEnAiop().
2573 */
2574 static int sInitController(CONTROLLER_T * CtlP, int CtlNum, ByteIO_t MudbacIO,
2575 ByteIO_t * AiopIOList, int AiopIOListSize,
2576 int IRQNum, Byte_t Frequency, int PeriodicOnly)
2577 {
2578 int i;
2579 ByteIO_t io;
2580 int done;
2581
2582 CtlP->AiopIntrBits = aiop_intr_bits;
2583 CtlP->AltChanRingIndicator = 0;
2584 CtlP->CtlNum = CtlNum;
2585 CtlP->CtlID = CTLID_0001; /* controller release 1 */
2586 CtlP->BusType = isISA;
2587 CtlP->MBaseIO = MudbacIO;
2588 CtlP->MReg1IO = MudbacIO + 1;
2589 CtlP->MReg2IO = MudbacIO + 2;
2590 CtlP->MReg3IO = MudbacIO + 3;
2591 #if 1
2592 CtlP->MReg2 = 0; /* interrupt disable */
2593 CtlP->MReg3 = 0; /* no periodic interrupts */
2594 #else
2595 if (sIRQMap[IRQNum] == 0) { /* interrupts globally disabled */
2596 CtlP->MReg2 = 0; /* interrupt disable */
2597 CtlP->MReg3 = 0; /* no periodic interrupts */
2598 } else {
2599 CtlP->MReg2 = sIRQMap[IRQNum]; /* set IRQ number */
2600 CtlP->MReg3 = Frequency; /* set frequency */
2601 if (PeriodicOnly) { /* periodic interrupt only */
2602 CtlP->MReg3 |= PERIODIC_ONLY;
2603 }
2604 }
2605 #endif
2606 sOutB(CtlP->MReg2IO, CtlP->MReg2);
2607 sOutB(CtlP->MReg3IO, CtlP->MReg3);
2608 sControllerEOI(CtlP); /* clear EOI if warm init */
2609 /* Init AIOPs */
2610 CtlP->NumAiop = 0;
2611 for (i = done = 0; i < AiopIOListSize; i++) {
2612 io = AiopIOList[i];
2613 CtlP->AiopIO[i] = (WordIO_t) io;
2614 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2615 sOutB(CtlP->MReg2IO, CtlP->MReg2 | (i & 0x03)); /* AIOP index */
2616 sOutB(MudbacIO, (Byte_t) (io >> 6)); /* set up AIOP I/O in MUDBAC */
2617 if (done)
2618 continue;
2619 sEnAiop(CtlP, i); /* enable the AIOP */
2620 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
2621 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
2622 done = 1; /* done looking for AIOPs */
2623 else {
2624 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
2625 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
2626 sOutB(io + _INDX_DATA, sClockPrescale);
2627 CtlP->NumAiop++; /* bump count of AIOPs */
2628 }
2629 sDisAiop(CtlP, i); /* disable AIOP */
2630 }
2631
2632 if (CtlP->NumAiop == 0)
2633 return (-1);
2634 else
2635 return (CtlP->NumAiop);
2636 }
2637
2638 /***************************************************************************
2639 Function: sPCIInitController
2640 Purpose: Initialization of controller global registers and controller
2641 structure.
2642 Call: sPCIInitController(CtlP,CtlNum,AiopIOList,AiopIOListSize,
2643 IRQNum,Frequency,PeriodicOnly)
2644 CONTROLLER_T *CtlP; Ptr to controller structure
2645 int CtlNum; Controller number
2646 ByteIO_t *AiopIOList; List of I/O addresses for each AIOP.
2647 This list must be in the order the AIOPs will be found on the
2648 controller. Once an AIOP in the list is not found, it is
2649 assumed that there are no more AIOPs on the controller.
2650 int AiopIOListSize; Number of addresses in AiopIOList
2651 int IRQNum; Interrupt Request number. Can be any of the following:
2652 0: Disable global interrupts
2653 3: IRQ 3
2654 4: IRQ 4
2655 5: IRQ 5
2656 9: IRQ 9
2657 10: IRQ 10
2658 11: IRQ 11
2659 12: IRQ 12
2660 15: IRQ 15
2661 Byte_t Frequency: A flag identifying the frequency
2662 of the periodic interrupt, can be any one of the following:
2663 FREQ_DIS - periodic interrupt disabled
2664 FREQ_137HZ - 137 Hertz
2665 FREQ_69HZ - 69 Hertz
2666 FREQ_34HZ - 34 Hertz
2667 FREQ_17HZ - 17 Hertz
2668 FREQ_9HZ - 9 Hertz
2669 FREQ_4HZ - 4 Hertz
2670 If IRQNum is set to 0 the Frequency parameter is
2671 overidden, it is forced to a value of FREQ_DIS.
2672 int PeriodicOnly: 1 if all interrupts except the periodic
2673 interrupt are to be blocked.
2674 0 is both the periodic interrupt and
2675 other channel interrupts are allowed.
2676 If IRQNum is set to 0 the PeriodicOnly parameter is
2677 overidden, it is forced to a value of 0.
2678 Return: int: Number of AIOPs on the controller, or CTLID_NULL if controller
2679 initialization failed.
2680
2681 Comments:
2682 If periodic interrupts are to be disabled but AIOP interrupts
2683 are allowed, set Frequency to FREQ_DIS and PeriodicOnly to 0.
2684
2685 If interrupts are to be completely disabled set IRQNum to 0.
2686
2687 Setting Frequency to FREQ_DIS and PeriodicOnly to 1 is an
2688 invalid combination.
2689
2690 This function performs initialization of global interrupt modes,
2691 but it does not actually enable global interrupts. To enable
2692 and disable global interrupts use functions sEnGlobalInt() and
2693 sDisGlobalInt(). Enabling of global interrupts is normally not
2694 done until all other initializations are complete.
2695
2696 Even if interrupts are globally enabled, they must also be
2697 individually enabled for each channel that is to generate
2698 interrupts.
2699
2700 Warnings: No range checking on any of the parameters is done.
2701
2702 No context switches are allowed while executing this function.
2703
2704 After this function all AIOPs on the controller are disabled,
2705 they can be enabled with sEnAiop().
2706 */
2707 static int sPCIInitController(CONTROLLER_T * CtlP, int CtlNum,
2708 ByteIO_t * AiopIOList, int AiopIOListSize,
2709 WordIO_t ConfigIO, int IRQNum, Byte_t Frequency,
2710 int PeriodicOnly, int altChanRingIndicator,
2711 int UPCIRingInd)
2712 {
2713 int i;
2714 ByteIO_t io;
2715
2716 CtlP->AltChanRingIndicator = altChanRingIndicator;
2717 CtlP->UPCIRingInd = UPCIRingInd;
2718 CtlP->CtlNum = CtlNum;
2719 CtlP->CtlID = CTLID_0001; /* controller release 1 */
2720 CtlP->BusType = isPCI; /* controller release 1 */
2721
2722 if (ConfigIO) {
2723 CtlP->isUPCI = 1;
2724 CtlP->PCIIO = ConfigIO + _PCI_9030_INT_CTRL;
2725 CtlP->PCIIO2 = ConfigIO + _PCI_9030_GPIO_CTRL;
2726 CtlP->AiopIntrBits = upci_aiop_intr_bits;
2727 } else {
2728 CtlP->isUPCI = 0;
2729 CtlP->PCIIO =
2730 (WordIO_t) ((ByteIO_t) AiopIOList[0] + _PCI_INT_FUNC);
2731 CtlP->AiopIntrBits = aiop_intr_bits;
2732 }
2733
2734 sPCIControllerEOI(CtlP); /* clear EOI if warm init */
2735 /* Init AIOPs */
2736 CtlP->NumAiop = 0;
2737 for (i = 0; i < AiopIOListSize; i++) {
2738 io = AiopIOList[i];
2739 CtlP->AiopIO[i] = (WordIO_t) io;
2740 CtlP->AiopIntChanIO[i] = io + _INT_CHAN;
2741
2742 CtlP->AiopID[i] = sReadAiopID(io); /* read AIOP ID */
2743 if (CtlP->AiopID[i] == AIOPID_NULL) /* if AIOP does not exist */
2744 break; /* done looking for AIOPs */
2745
2746 CtlP->AiopNumChan[i] = sReadAiopNumChan((WordIO_t) io); /* num channels in AIOP */
2747 sOutW((WordIO_t) io + _INDX_ADDR, _CLK_PRE); /* clock prescaler */
2748 sOutB(io + _INDX_DATA, sClockPrescale);
2749 CtlP->NumAiop++; /* bump count of AIOPs */
2750 }
2751
2752 if (CtlP->NumAiop == 0)
2753 return (-1);
2754 else
2755 return (CtlP->NumAiop);
2756 }
2757
2758 /***************************************************************************
2759 Function: sReadAiopID
2760 Purpose: Read the AIOP idenfication number directly from an AIOP.
2761 Call: sReadAiopID(io)
2762 ByteIO_t io: AIOP base I/O address
2763 Return: int: Flag AIOPID_XXXX if a valid AIOP is found, where X
2764 is replace by an identifying number.
2765 Flag AIOPID_NULL if no valid AIOP is found
2766 Warnings: No context switches are allowed while executing this function.
2767
2768 */
2769 static int sReadAiopID(ByteIO_t io)
2770 {
2771 Byte_t AiopID; /* ID byte from AIOP */
2772
2773 sOutB(io + _CMD_REG, RESET_ALL); /* reset AIOP */
2774 sOutB(io + _CMD_REG, 0x0);
2775 AiopID = sInW(io + _CHN_STAT0) & 0x07;
2776 if (AiopID == 0x06)
2777 return (1);
2778 else /* AIOP does not exist */
2779 return (-1);
2780 }
2781
2782 /***************************************************************************
2783 Function: sReadAiopNumChan
2784 Purpose: Read the number of channels available in an AIOP directly from
2785 an AIOP.
2786 Call: sReadAiopNumChan(io)
2787 WordIO_t io: AIOP base I/O address
2788 Return: int: The number of channels available
2789 Comments: The number of channels is determined by write/reads from identical
2790 offsets within the SRAM address spaces for channels 0 and 4.
2791 If the channel 4 space is mirrored to channel 0 it is a 4 channel
2792 AIOP, otherwise it is an 8 channel.
2793 Warnings: No context switches are allowed while executing this function.
2794 */
2795 static int sReadAiopNumChan(WordIO_t io)
2796 {
2797 Word_t x;
2798 static Byte_t R[4] = { 0x00, 0x00, 0x34, 0x12 };
2799
2800 /* write to chan 0 SRAM */
2801 sOutDW((DWordIO_t) io + _INDX_ADDR, *((DWord_t *) & R[0]));
2802 sOutW(io + _INDX_ADDR, 0); /* read from SRAM, chan 0 */
2803 x = sInW(io + _INDX_DATA);
2804 sOutW(io + _INDX_ADDR, 0x4000); /* read from SRAM, chan 4 */
2805 if (x != sInW(io + _INDX_DATA)) /* if different must be 8 chan */
2806 return (8);
2807 else
2808 return (4);
2809 }
2810
2811 /***************************************************************************
2812 Function: sInitChan
2813 Purpose: Initialization of a channel and channel structure
2814 Call: sInitChan(CtlP,ChP,AiopNum,ChanNum)
2815 CONTROLLER_T *CtlP; Ptr to controller structure
2816 CHANNEL_T *ChP; Ptr to channel structure
2817 int AiopNum; AIOP number within controller
2818 int ChanNum; Channel number within AIOP
2819 Return: int: 1 if initialization succeeded, 0 if it fails because channel
2820 number exceeds number of channels available in AIOP.
2821 Comments: This function must be called before a channel can be used.
2822 Warnings: No range checking on any of the parameters is done.
2823
2824 No context switches are allowed while executing this function.
2825 */
2826 static int sInitChan(CONTROLLER_T * CtlP, CHANNEL_T * ChP, int AiopNum,
2827 int ChanNum)
2828 {
2829 int i;
2830 WordIO_t AiopIO;
2831 WordIO_t ChIOOff;
2832 Byte_t *ChR;
2833 Word_t ChOff;
2834 static Byte_t R[4];
2835 int brd9600;
2836
2837 if (ChanNum >= CtlP->AiopNumChan[AiopNum])
2838 return 0; /* exceeds num chans in AIOP */
2839
2840 /* Channel, AIOP, and controller identifiers */
2841 ChP->CtlP = CtlP;
2842 ChP->ChanID = CtlP->AiopID[AiopNum];
2843 ChP->AiopNum = AiopNum;
2844 ChP->ChanNum = ChanNum;
2845
2846 /* Global direct addresses */
2847 AiopIO = CtlP->AiopIO[AiopNum];
2848 ChP->Cmd = (ByteIO_t) AiopIO + _CMD_REG;
2849 ChP->IntChan = (ByteIO_t) AiopIO + _INT_CHAN;
2850 ChP->IntMask = (ByteIO_t) AiopIO + _INT_MASK;
2851 ChP->IndexAddr = (DWordIO_t) AiopIO + _INDX_ADDR;
2852 ChP->IndexData = AiopIO + _INDX_DATA;
2853
2854 /* Channel direct addresses */
2855 ChIOOff = AiopIO + ChP->ChanNum * 2;
2856 ChP->TxRxData = ChIOOff + _TD0;
2857 ChP->ChanStat = ChIOOff + _CHN_STAT0;
2858 ChP->TxRxCount = ChIOOff + _FIFO_CNT0;
2859 ChP->IntID = (ByteIO_t) AiopIO + ChP->ChanNum + _INT_ID0;
2860
2861 /* Initialize the channel from the RData array */
2862 for (i = 0; i < RDATASIZE; i += 4) {
2863 R[0] = RData[i];
2864 R[1] = RData[i + 1] + 0x10 * ChanNum;
2865 R[2] = RData[i + 2];
2866 R[3] = RData[i + 3];
2867 sOutDW(ChP->IndexAddr, *((DWord_t *) & R[0]));
2868 }
2869
2870 ChR = ChP->R;
2871 for (i = 0; i < RREGDATASIZE; i += 4) {
2872 ChR[i] = RRegData[i];
2873 ChR[i + 1] = RRegData[i + 1] + 0x10 * ChanNum;
2874 ChR[i + 2] = RRegData[i + 2];
2875 ChR[i + 3] = RRegData[i + 3];
2876 }
2877
2878 /* Indexed registers */
2879 ChOff = (Word_t) ChanNum *0x1000;
2880
2881 if (sClockPrescale == 0x14)
2882 brd9600 = 47;
2883 else
2884 brd9600 = 23;
2885
2886 ChP->BaudDiv[0] = (Byte_t) (ChOff + _BAUD);
2887 ChP->BaudDiv[1] = (Byte_t) ((ChOff + _BAUD) >> 8);
2888 ChP->BaudDiv[2] = (Byte_t) brd9600;
2889 ChP->BaudDiv[3] = (Byte_t) (brd9600 >> 8);
2890 sOutDW(ChP->IndexAddr, *(DWord_t *) & ChP->BaudDiv[0]);
2891
2892 ChP->TxControl[0] = (Byte_t) (ChOff + _TX_CTRL);
2893 ChP->TxControl[1] = (Byte_t) ((ChOff + _TX_CTRL) >> 8);
2894 ChP->TxControl[2] = 0;
2895 ChP->TxControl[3] = 0;
2896 sOutDW(ChP->IndexAddr, *(DWord_t *) & ChP->TxControl[0]);
2897
2898 ChP->RxControl[0] = (Byte_t) (ChOff + _RX_CTRL);
2899 ChP->RxControl[1] = (Byte_t) ((ChOff + _RX_CTRL) >> 8);
2900 ChP->RxControl[2] = 0;
2901 ChP->RxControl[3] = 0;
2902 sOutDW(ChP->IndexAddr, *(DWord_t *) & ChP->RxControl[0]);
2903
2904 ChP->TxEnables[0] = (Byte_t) (ChOff + _TX_ENBLS);
2905 ChP->TxEnables[1] = (Byte_t) ((ChOff + _TX_ENBLS) >> 8);
2906 ChP->TxEnables[2] = 0;
2907 ChP->TxEnables[3] = 0;
2908 sOutDW(ChP->IndexAddr, *(DWord_t *) & ChP->TxEnables[0]);
2909
2910 ChP->TxCompare[0] = (Byte_t) (ChOff + _TXCMP1);
2911 ChP->TxCompare[1] = (Byte_t) ((ChOff + _TXCMP1) >> 8);
2912 ChP->TxCompare[2] = 0;
2913 ChP->TxCompare[3] = 0;
2914 sOutDW(ChP->IndexAddr, *(DWord_t *) & ChP->TxCompare[0]);
2915
2916 ChP->TxReplace1[0] = (Byte_t) (ChOff + _TXREP1B1);
2917 ChP->TxReplace1[1] = (Byte_t) ((ChOff + _TXREP1B1) >> 8);
2918 ChP->TxReplace1[2] = 0;
2919 ChP->TxReplace1[3] = 0;
2920 sOutDW(ChP->IndexAddr, *(DWord_t *) & ChP->TxReplace1[0]);
2921
2922 ChP->TxReplace2[0] = (Byte_t) (ChOff + _TXREP2);
2923 ChP->TxReplace2[1] = (Byte_t) ((ChOff + _TXREP2) >> 8);
2924 ChP->TxReplace2[2] = 0;
2925 ChP->TxReplace2[3] = 0;
2926 sOutDW(ChP->IndexAddr, *(DWord_t *) & ChP->TxReplace2[0]);
2927
2928 ChP->TxFIFOPtrs = ChOff + _TXF_OUTP;
2929 ChP->TxFIFO = ChOff + _TX_FIFO;
2930
2931 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESTXFCNT); /* apply reset Tx FIFO count */
2932 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Tx FIFO count */
2933 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
2934 sOutW(ChP->IndexData, 0);
2935 ChP->RxFIFOPtrs = ChOff + _RXF_OUTP;
2936 ChP->RxFIFO = ChOff + _RX_FIFO;
2937
2938 sOutB(ChP->Cmd, (Byte_t) ChanNum | RESRXFCNT); /* apply reset Rx FIFO count */
2939 sOutB(ChP->Cmd, (Byte_t) ChanNum); /* remove reset Rx FIFO count */
2940 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
2941 sOutW(ChP->IndexData, 0);
2942 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
2943 sOutW(ChP->IndexData, 0);
2944 ChP->TxPrioCnt = ChOff + _TXP_CNT;
2945 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioCnt);
2946 sOutB(ChP->IndexData, 0);
2947 ChP->TxPrioPtr = ChOff + _TXP_PNTR;
2948 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxPrioPtr);
2949 sOutB(ChP->IndexData, 0);
2950 ChP->TxPrioBuf = ChOff + _TXP_BUF;
2951 sEnRxProcessor(ChP); /* start the Rx processor */
2952
2953 return 1;
2954 }
2955
2956 /***************************************************************************
2957 Function: sStopRxProcessor
2958 Purpose: Stop the receive processor from processing a channel.
2959 Call: sStopRxProcessor(ChP)
2960 CHANNEL_T *ChP; Ptr to channel structure
2961
2962 Comments: The receive processor can be started again with sStartRxProcessor().
2963 This function causes the receive processor to skip over the
2964 stopped channel. It does not stop it from processing other channels.
2965
2966 Warnings: No context switches are allowed while executing this function.
2967
2968 Do not leave the receive processor stopped for more than one
2969 character time.
2970
2971 After calling this function a delay of 4 uS is required to ensure
2972 that the receive processor is no longer processing this channel.
2973 */
2974 static void sStopRxProcessor(CHANNEL_T * ChP)
2975 {
2976 Byte_t R[4];
2977
2978 R[0] = ChP->R[0];
2979 R[1] = ChP->R[1];
2980 R[2] = 0x0a;
2981 R[3] = ChP->R[3];
2982 sOutDW(ChP->IndexAddr, *(DWord_t *) & R[0]);
2983 }
2984
2985 /***************************************************************************
2986 Function: sFlushRxFIFO
2987 Purpose: Flush the Rx FIFO
2988 Call: sFlushRxFIFO(ChP)
2989 CHANNEL_T *ChP; Ptr to channel structure
2990 Return: void
2991 Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
2992 while it is being flushed the receive processor is stopped
2993 and the transmitter is disabled. After these operations a
2994 4 uS delay is done before clearing the pointers to allow
2995 the receive processor to stop. These items are handled inside
2996 this function.
2997 Warnings: No context switches are allowed while executing this function.
2998 */
2999 static void sFlushRxFIFO(CHANNEL_T * ChP)
3000 {
3001 int i;
3002 Byte_t Ch; /* channel number within AIOP */
3003 int RxFIFOEnabled; /* 1 if Rx FIFO enabled */
3004
3005 if (sGetRxCnt(ChP) == 0) /* Rx FIFO empty */
3006 return; /* don't need to flush */
3007
3008 RxFIFOEnabled = 0;
3009 if (ChP->R[0x32] == 0x08) { /* Rx FIFO is enabled */
3010 RxFIFOEnabled = 1;
3011 sDisRxFIFO(ChP); /* disable it */
3012 for (i = 0; i < 2000 / 200; i++) /* delay 2 uS to allow proc to disable FIFO */
3013 sInB(ChP->IntChan); /* depends on bus i/o timing */
3014 }
3015 sGetChanStatus(ChP); /* clear any pending Rx errors in chan stat */
3016 Ch = (Byte_t) sGetChanNum(ChP);
3017 sOutB(ChP->Cmd, Ch | RESRXFCNT); /* apply reset Rx FIFO count */
3018 sOutB(ChP->Cmd, Ch); /* remove reset Rx FIFO count */
3019 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs); /* clear Rx out ptr */
3020 sOutW(ChP->IndexData, 0);
3021 sOutW((WordIO_t) ChP->IndexAddr, ChP->RxFIFOPtrs + 2); /* clear Rx in ptr */
3022 sOutW(ChP->IndexData, 0);
3023 if (RxFIFOEnabled)
3024 sEnRxFIFO(ChP); /* enable Rx FIFO */
3025 }
3026
3027 /***************************************************************************
3028 Function: sFlushTxFIFO
3029 Purpose: Flush the Tx FIFO
3030 Call: sFlushTxFIFO(ChP)
3031 CHANNEL_T *ChP; Ptr to channel structure
3032 Return: void
3033 Comments: To prevent data from being enqueued or dequeued in the Tx FIFO
3034 while it is being flushed the receive processor is stopped
3035 and the transmitter is disabled. After these operations a
3036 4 uS delay is done before clearing the pointers to allow
3037 the receive processor to stop. These items are handled inside
3038 this function.
3039 Warnings: No context switches are allowed while executing this function.
3040 */
3041 static void sFlushTxFIFO(CHANNEL_T * ChP)
3042 {
3043 int i;
3044 Byte_t Ch; /* channel number within AIOP */
3045 int TxEnabled; /* 1 if transmitter enabled */
3046
3047 if (sGetTxCnt(ChP) == 0) /* Tx FIFO empty */
3048 return; /* don't need to flush */
3049
3050 TxEnabled = 0;
3051 if (ChP->TxControl[3] & TX_ENABLE) {
3052 TxEnabled = 1;
3053 sDisTransmit(ChP); /* disable transmitter */
3054 }
3055 sStopRxProcessor(ChP); /* stop Rx processor */
3056 for (i = 0; i < 4000 / 200; i++) /* delay 4 uS to allow proc to stop */
3057 sInB(ChP->IntChan); /* depends on bus i/o timing */
3058 Ch = (Byte_t) sGetChanNum(ChP);
3059 sOutB(ChP->Cmd, Ch | RESTXFCNT); /* apply reset Tx FIFO count */
3060 sOutB(ChP->Cmd, Ch); /* remove reset Tx FIFO count */
3061 sOutW((WordIO_t) ChP->IndexAddr, ChP->TxFIFOPtrs); /* clear Tx in/out ptrs */
3062 sOutW(ChP->IndexData, 0);
3063 if (TxEnabled)
3064 sEnTransmit(ChP); /* enable transmitter */
3065 sStartRxProcessor(ChP); /* restart Rx processor */
3066 }
3067
3068 /***************************************************************************
3069 Function: sWriteTxPrioByte
3070 Purpose: Write a byte of priority transmit data to a channel
3071 Call: sWriteTxPrioByte(ChP,Data)
3072 CHANNEL_T *ChP; Ptr to channel structure
3073 Byte_t Data; The transmit data byte
3074
3075 Return: int: 1 if the bytes is successfully written, otherwise 0.
3076
3077 Comments: The priority byte is transmitted before any data in the Tx FIFO.
3078
3079 Warnings: No context switches are allowed while executing this function.
3080 */
3081 static int sWriteTxPrioByte(CHANNEL_T * ChP, Byte_t Data)
3082 {
3083 Byte_t DWBuf[4]; /* buffer for double word writes */
3084 Word_t *WordPtr; /* must be far because Win SS != DS */
3085 register DWordIO_t IndexAddr;
3086
3087 if (sGetTxCnt(ChP) > 1) { /* write it to Tx priority buffer */
3088 IndexAddr = ChP->IndexAddr;
3089 sOutW((WordIO_t) IndexAddr, ChP->TxPrioCnt); /* get priority buffer status */
3090 if (sInB((ByteIO_t) ChP->IndexData) & PRI_PEND) /* priority buffer busy */
3091 return (0); /* nothing sent */
3092
3093 WordPtr = (Word_t *) (&DWBuf[0]);
3094 *WordPtr = ChP->TxPrioBuf; /* data byte address */
3095
3096 DWBuf[2] = Data; /* data byte value */
3097 sOutDW(IndexAddr, *((DWord_t *) (&DWBuf[0]))); /* write it out */
3098
3099 *WordPtr = ChP->TxPrioCnt; /* Tx priority count address */
3100
3101 DWBuf[2] = PRI_PEND + 1; /* indicate 1 byte pending */
3102 DWBuf[3] = 0; /* priority buffer pointer */
3103 sOutDW(IndexAddr, *((DWord_t *) (&DWBuf[0]))); /* write it out */
3104 } else { /* write it to Tx FIFO */
3105
3106 sWriteTxByte(sGetTxRxDataIO(ChP), Data);
3107 }
3108 return (1); /* 1 byte sent */
3109 }
3110
3111 /***************************************************************************
3112 Function: sEnInterrupts
3113 Purpose: Enable one or more interrupts for a channel
3114 Call: sEnInterrupts(ChP,Flags)
3115 CHANNEL_T *ChP; Ptr to channel structure
3116 Word_t Flags: Interrupt enable flags, can be any combination
3117 of the following flags:
3118 TXINT_EN: Interrupt on Tx FIFO empty
3119 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
3120 sSetRxTrigger())
3121 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
3122 MCINT_EN: Interrupt on modem input change
3123 CHANINT_EN: Allow channel interrupt signal to the AIOP's
3124 Interrupt Channel Register.
3125 Return: void
3126 Comments: If an interrupt enable flag is set in Flags, that interrupt will be
3127 enabled. If an interrupt enable flag is not set in Flags, that
3128 interrupt will not be changed. Interrupts can be disabled with
3129 function sDisInterrupts().
3130
3131 This function sets the appropriate bit for the channel in the AIOP's
3132 Interrupt Mask Register if the CHANINT_EN flag is set. This allows
3133 this channel's bit to be set in the AIOP's Interrupt Channel Register.
3134
3135 Interrupts must also be globally enabled before channel interrupts
3136 will be passed on to the host. This is done with function
3137 sEnGlobalInt().
3138
3139 In some cases it may be desirable to disable interrupts globally but
3140 enable channel interrupts. This would allow the global interrupt
3141 status register to be used to determine which AIOPs need service.
3142 */
3143 static void sEnInterrupts(CHANNEL_T * ChP, Word_t Flags)
3144 {
3145 Byte_t Mask; /* Interrupt Mask Register */
3146
3147 ChP->RxControl[2] |=
3148 ((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3149
3150 sOutDW(ChP->IndexAddr, *(DWord_t *) & ChP->RxControl[0]);
3151
3152 ChP->TxControl[2] |= ((Byte_t) Flags & TXINT_EN);
3153
3154 sOutDW(ChP->IndexAddr, *(DWord_t *) & ChP->TxControl[0]);
3155
3156 if (Flags & CHANINT_EN) {
3157 Mask = sInB(ChP->IntMask) | sBitMapSetTbl[ChP->ChanNum];
3158 sOutB(ChP->IntMask, Mask);
3159 }
3160 }
3161
3162 /***************************************************************************
3163 Function: sDisInterrupts
3164 Purpose: Disable one or more interrupts for a channel
3165 Call: sDisInterrupts(ChP,Flags)
3166 CHANNEL_T *ChP; Ptr to channel structure
3167 Word_t Flags: Interrupt flags, can be any combination
3168 of the following flags:
3169 TXINT_EN: Interrupt on Tx FIFO empty
3170 RXINT_EN: Interrupt on Rx FIFO at trigger level (see
3171 sSetRxTrigger())
3172 SRCINT_EN: Interrupt on SRC (Special Rx Condition)
3173 MCINT_EN: Interrupt on modem input change
3174 CHANINT_EN: Disable channel interrupt signal to the
3175 AIOP's Interrupt Channel Register.
3176 Return: void
3177 Comments: If an interrupt flag is set in Flags, that interrupt will be
3178 disabled. If an interrupt flag is not set in Flags, that
3179 interrupt will not be changed. Interrupts can be enabled with
3180 function sEnInterrupts().
3181
3182 This function clears the appropriate bit for the channel in the AIOP's
3183 Interrupt Mask Register if the CHANINT_EN flag is set. This blocks
3184 this channel's bit from being set in the AIOP's Interrupt Channel
3185 Register.
3186 */
3187 static void sDisInterrupts(CHANNEL_T * ChP, Word_t Flags)
3188 {
3189 Byte_t Mask; /* Interrupt Mask Register */
3190
3191 ChP->RxControl[2] &=
3192 ~((Byte_t) Flags & (RXINT_EN | SRCINT_EN | MCINT_EN));
3193 sOutDW(ChP->IndexAddr, *(DWord_t *) & ChP->RxControl[0]);
3194 ChP->TxControl[2] &= ~((Byte_t) Flags & TXINT_EN);
3195 sOutDW(ChP->IndexAddr, *(DWord_t *) & ChP->TxControl[0]);
3196
3197 if (Flags & CHANINT_EN) {
3198 Mask = sInB(ChP->IntMask) & sBitMapClrTbl[ChP->ChanNum];
3199 sOutB(ChP->IntMask, Mask);
3200 }
3201 }
3202
3203 static void sSetInterfaceMode(CHANNEL_T * ChP, Byte_t mode)
3204 {
3205 sOutB(ChP->CtlP->AiopIO[2], (mode & 0x18) | ChP->ChanNum);
3206 }
3207
3208 /*
3209 * Not an official SSCI function, but how to reset RocketModems.
3210 * ISA bus version
3211 */
3212 static void sModemReset(CONTROLLER_T * CtlP, int chan, int on)
3213 {
3214 ByteIO_t addr;
3215 Byte_t val;
3216
3217 addr = CtlP->AiopIO[0] + 0x400;
3218 val = sInB(CtlP->MReg3IO);
3219 /* if AIOP[1] is not enabled, enable it */
3220 if ((val & 2) == 0) {
3221 val = sInB(CtlP->MReg2IO);
3222 sOutB(CtlP->MReg2IO, (val & 0xfc) | (1 & 0x03));
3223 sOutB(CtlP->MBaseIO, (unsigned char) (addr >> 6));
3224 }
3225
3226 sEnAiop(CtlP, 1);
3227 if (!on)
3228 addr += 8;
3229 sOutB(addr + chan, 0); /* apply or remove reset */
3230 sDisAiop(CtlP, 1);
3231 }
3232
3233 /*
3234 * Not an official SSCI function, but how to reset RocketModems.
3235 * PCI bus version
3236 */
3237 static void sPCIModemReset(CONTROLLER_T * CtlP, int chan, int on)
3238 {
3239 ByteIO_t addr;
3240
3241 addr = CtlP->AiopIO[0] + 0x40; /* 2nd AIOP */
3242 if (!on)
3243 addr += 8;
3244 sOutB(addr + chan, 0); /* apply or remove reset */
3245 }
3246
3247 /* Resets the speaker controller on RocketModem II and III devices */
3248 static void rmSpeakerReset(CONTROLLER_T * CtlP, unsigned long model)
3249 {
3250 ByteIO_t addr;
3251
3252 /* RocketModem II speaker control is at the 8th port location of offset 0x40 */
3253 if ((model == MODEL_RP4M) || (model == MODEL_RP6M)) {
3254 addr = CtlP->AiopIO[0] + 0x4F;
3255 sOutB(addr, 0);
3256 }
3257
3258 /* RocketModem III speaker control is at the 1st port location of offset 0x80 */
3259 if ((model == MODEL_UPCI_RM3_8PORT)
3260 || (model == MODEL_UPCI_RM3_4PORT)) {
3261 addr = CtlP->AiopIO[0] + 0x88;
3262 sOutB(addr, 0);
3263 }
3264 }
3265
3266 /* Returns the line number given the controller (board), aiop and channel number */
3267 static unsigned char GetLineNumber(int ctrl, int aiop, int ch)
3268 {
3269 return lineNumbers[(ctrl << 5) | (aiop << 3) | ch];
3270 }
3271
3272 /*
3273 * Stores the line number associated with a given controller (board), aiop
3274 * and channel number.
3275 * Returns: The line number assigned
3276 */
3277 static unsigned char SetLineNumber(int ctrl, int aiop, int ch)
3278 {
3279 lineNumbers[(ctrl << 5) | (aiop << 3) | ch] = nextLineNumber++;
3280 return (nextLineNumber - 1);
3281 }