5fee05661823766a0ed5651724d81fad0ee951b8
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / char / random.c
1 /*
2 * random.c -- A strong random number generator
3 *
4 * Copyright Matt Mackall <mpm@selenic.com>, 2003, 2004, 2005
5 *
6 * Copyright Theodore Ts'o, 1994, 1995, 1996, 1997, 1998, 1999. All
7 * rights reserved.
8 *
9 * Redistribution and use in source and binary forms, with or without
10 * modification, are permitted provided that the following conditions
11 * are met:
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, and the entire permission notice in its entirety,
14 * including the disclaimer of warranties.
15 * 2. Redistributions in binary form must reproduce the above copyright
16 * notice, this list of conditions and the following disclaimer in the
17 * documentation and/or other materials provided with the distribution.
18 * 3. The name of the author may not be used to endorse or promote
19 * products derived from this software without specific prior
20 * written permission.
21 *
22 * ALTERNATIVELY, this product may be distributed under the terms of
23 * the GNU General Public License, in which case the provisions of the GPL are
24 * required INSTEAD OF the above restrictions. (This clause is
25 * necessary due to a potential bad interaction between the GPL and
26 * the restrictions contained in a BSD-style copyright.)
27 *
28 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
29 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
30 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, ALL OF
31 * WHICH ARE HEREBY DISCLAIMED. IN NO EVENT SHALL THE AUTHOR BE
32 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
33 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
34 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
35 * BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
36 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
37 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
38 * USE OF THIS SOFTWARE, EVEN IF NOT ADVISED OF THE POSSIBILITY OF SUCH
39 * DAMAGE.
40 */
41
42 /*
43 * (now, with legal B.S. out of the way.....)
44 *
45 * This routine gathers environmental noise from device drivers, etc.,
46 * and returns good random numbers, suitable for cryptographic use.
47 * Besides the obvious cryptographic uses, these numbers are also good
48 * for seeding TCP sequence numbers, and other places where it is
49 * desirable to have numbers which are not only random, but hard to
50 * predict by an attacker.
51 *
52 * Theory of operation
53 * ===================
54 *
55 * Computers are very predictable devices. Hence it is extremely hard
56 * to produce truly random numbers on a computer --- as opposed to
57 * pseudo-random numbers, which can easily generated by using a
58 * algorithm. Unfortunately, it is very easy for attackers to guess
59 * the sequence of pseudo-random number generators, and for some
60 * applications this is not acceptable. So instead, we must try to
61 * gather "environmental noise" from the computer's environment, which
62 * must be hard for outside attackers to observe, and use that to
63 * generate random numbers. In a Unix environment, this is best done
64 * from inside the kernel.
65 *
66 * Sources of randomness from the environment include inter-keyboard
67 * timings, inter-interrupt timings from some interrupts, and other
68 * events which are both (a) non-deterministic and (b) hard for an
69 * outside observer to measure. Randomness from these sources are
70 * added to an "entropy pool", which is mixed using a CRC-like function.
71 * This is not cryptographically strong, but it is adequate assuming
72 * the randomness is not chosen maliciously, and it is fast enough that
73 * the overhead of doing it on every interrupt is very reasonable.
74 * As random bytes are mixed into the entropy pool, the routines keep
75 * an *estimate* of how many bits of randomness have been stored into
76 * the random number generator's internal state.
77 *
78 * When random bytes are desired, they are obtained by taking the SHA
79 * hash of the contents of the "entropy pool". The SHA hash avoids
80 * exposing the internal state of the entropy pool. It is believed to
81 * be computationally infeasible to derive any useful information
82 * about the input of SHA from its output. Even if it is possible to
83 * analyze SHA in some clever way, as long as the amount of data
84 * returned from the generator is less than the inherent entropy in
85 * the pool, the output data is totally unpredictable. For this
86 * reason, the routine decreases its internal estimate of how many
87 * bits of "true randomness" are contained in the entropy pool as it
88 * outputs random numbers.
89 *
90 * If this estimate goes to zero, the routine can still generate
91 * random numbers; however, an attacker may (at least in theory) be
92 * able to infer the future output of the generator from prior
93 * outputs. This requires successful cryptanalysis of SHA, which is
94 * not believed to be feasible, but there is a remote possibility.
95 * Nonetheless, these numbers should be useful for the vast majority
96 * of purposes.
97 *
98 * Exported interfaces ---- output
99 * ===============================
100 *
101 * There are three exported interfaces; the first is one designed to
102 * be used from within the kernel:
103 *
104 * void get_random_bytes(void *buf, int nbytes);
105 *
106 * This interface will return the requested number of random bytes,
107 * and place it in the requested buffer.
108 *
109 * The two other interfaces are two character devices /dev/random and
110 * /dev/urandom. /dev/random is suitable for use when very high
111 * quality randomness is desired (for example, for key generation or
112 * one-time pads), as it will only return a maximum of the number of
113 * bits of randomness (as estimated by the random number generator)
114 * contained in the entropy pool.
115 *
116 * The /dev/urandom device does not have this limit, and will return
117 * as many bytes as are requested. As more and more random bytes are
118 * requested without giving time for the entropy pool to recharge,
119 * this will result in random numbers that are merely cryptographically
120 * strong. For many applications, however, this is acceptable.
121 *
122 * Exported interfaces ---- input
123 * ==============================
124 *
125 * The current exported interfaces for gathering environmental noise
126 * from the devices are:
127 *
128 * void add_input_randomness(unsigned int type, unsigned int code,
129 * unsigned int value);
130 * void add_interrupt_randomness(int irq);
131 *
132 * add_input_randomness() uses the input layer interrupt timing, as well as
133 * the event type information from the hardware.
134 *
135 * add_interrupt_randomness() uses the inter-interrupt timing as random
136 * inputs to the entropy pool. Note that not all interrupts are good
137 * sources of randomness! For example, the timer interrupts is not a
138 * good choice, because the periodicity of the interrupts is too
139 * regular, and hence predictable to an attacker. Disk interrupts are
140 * a better measure, since the timing of the disk interrupts are more
141 * unpredictable.
142 *
143 * All of these routines try to estimate how many bits of randomness a
144 * particular randomness source. They do this by keeping track of the
145 * first and second order deltas of the event timings.
146 *
147 * Ensuring unpredictability at system startup
148 * ============================================
149 *
150 * When any operating system starts up, it will go through a sequence
151 * of actions that are fairly predictable by an adversary, especially
152 * if the start-up does not involve interaction with a human operator.
153 * This reduces the actual number of bits of unpredictability in the
154 * entropy pool below the value in entropy_count. In order to
155 * counteract this effect, it helps to carry information in the
156 * entropy pool across shut-downs and start-ups. To do this, put the
157 * following lines an appropriate script which is run during the boot
158 * sequence:
159 *
160 * echo "Initializing random number generator..."
161 * random_seed=/var/run/random-seed
162 * # Carry a random seed from start-up to start-up
163 * # Load and then save the whole entropy pool
164 * if [ -f $random_seed ]; then
165 * cat $random_seed >/dev/urandom
166 * else
167 * touch $random_seed
168 * fi
169 * chmod 600 $random_seed
170 * dd if=/dev/urandom of=$random_seed count=1 bs=512
171 *
172 * and the following lines in an appropriate script which is run as
173 * the system is shutdown:
174 *
175 * # Carry a random seed from shut-down to start-up
176 * # Save the whole entropy pool
177 * echo "Saving random seed..."
178 * random_seed=/var/run/random-seed
179 * touch $random_seed
180 * chmod 600 $random_seed
181 * dd if=/dev/urandom of=$random_seed count=1 bs=512
182 *
183 * For example, on most modern systems using the System V init
184 * scripts, such code fragments would be found in
185 * /etc/rc.d/init.d/random. On older Linux systems, the correct script
186 * location might be in /etc/rcb.d/rc.local or /etc/rc.d/rc.0.
187 *
188 * Effectively, these commands cause the contents of the entropy pool
189 * to be saved at shut-down time and reloaded into the entropy pool at
190 * start-up. (The 'dd' in the addition to the bootup script is to
191 * make sure that /etc/random-seed is different for every start-up,
192 * even if the system crashes without executing rc.0.) Even with
193 * complete knowledge of the start-up activities, predicting the state
194 * of the entropy pool requires knowledge of the previous history of
195 * the system.
196 *
197 * Configuring the /dev/random driver under Linux
198 * ==============================================
199 *
200 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
201 * the /dev/mem major number (#1). So if your system does not have
202 * /dev/random and /dev/urandom created already, they can be created
203 * by using the commands:
204 *
205 * mknod /dev/random c 1 8
206 * mknod /dev/urandom c 1 9
207 *
208 * Acknowledgements:
209 * =================
210 *
211 * Ideas for constructing this random number generator were derived
212 * from Pretty Good Privacy's random number generator, and from private
213 * discussions with Phil Karn. Colin Plumb provided a faster random
214 * number generator, which speed up the mixing function of the entropy
215 * pool, taken from PGPfone. Dale Worley has also contributed many
216 * useful ideas and suggestions to improve this driver.
217 *
218 * Any flaws in the design are solely my responsibility, and should
219 * not be attributed to the Phil, Colin, or any of authors of PGP.
220 *
221 * Further background information on this topic may be obtained from
222 * RFC 1750, "Randomness Recommendations for Security", by Donald
223 * Eastlake, Steve Crocker, and Jeff Schiller.
224 */
225
226 #include <linux/utsname.h>
227 #include <linux/module.h>
228 #include <linux/kernel.h>
229 #include <linux/major.h>
230 #include <linux/string.h>
231 #include <linux/fcntl.h>
232 #include <linux/slab.h>
233 #include <linux/random.h>
234 #include <linux/poll.h>
235 #include <linux/init.h>
236 #include <linux/fs.h>
237 #include <linux/genhd.h>
238 #include <linux/interrupt.h>
239 #include <linux/spinlock.h>
240 #include <linux/percpu.h>
241 #include <linux/cryptohash.h>
242
243 #include <asm/processor.h>
244 #include <asm/uaccess.h>
245 #include <asm/irq.h>
246 #include <asm/io.h>
247
248 /*
249 * Configuration information
250 */
251 #define INPUT_POOL_WORDS 128
252 #define OUTPUT_POOL_WORDS 32
253 #define SEC_XFER_SIZE 512
254
255 /*
256 * The minimum number of bits of entropy before we wake up a read on
257 * /dev/random. Should be enough to do a significant reseed.
258 */
259 static int random_read_wakeup_thresh = 64;
260
261 /*
262 * If the entropy count falls under this number of bits, then we
263 * should wake up processes which are selecting or polling on write
264 * access to /dev/random.
265 */
266 static int random_write_wakeup_thresh = 128;
267
268 /*
269 * When the input pool goes over trickle_thresh, start dropping most
270 * samples to avoid wasting CPU time and reduce lock contention.
271 */
272
273 static int trickle_thresh __read_mostly = INPUT_POOL_WORDS * 28;
274
275 static DEFINE_PER_CPU(int, trickle_count) = 0;
276
277 /*
278 * A pool of size .poolwords is stirred with a primitive polynomial
279 * of degree .poolwords over GF(2). The taps for various sizes are
280 * defined below. They are chosen to be evenly spaced (minimum RMS
281 * distance from evenly spaced; the numbers in the comments are a
282 * scaled squared error sum) except for the last tap, which is 1 to
283 * get the twisting happening as fast as possible.
284 */
285 static struct poolinfo {
286 int poolwords;
287 int tap1, tap2, tap3, tap4, tap5;
288 } poolinfo_table[] = {
289 /* x^128 + x^103 + x^76 + x^51 +x^25 + x + 1 -- 105 */
290 { 128, 103, 76, 51, 25, 1 },
291 /* x^32 + x^26 + x^20 + x^14 + x^7 + x + 1 -- 15 */
292 { 32, 26, 20, 14, 7, 1 },
293 #if 0
294 /* x^2048 + x^1638 + x^1231 + x^819 + x^411 + x + 1 -- 115 */
295 { 2048, 1638, 1231, 819, 411, 1 },
296
297 /* x^1024 + x^817 + x^615 + x^412 + x^204 + x + 1 -- 290 */
298 { 1024, 817, 615, 412, 204, 1 },
299
300 /* x^1024 + x^819 + x^616 + x^410 + x^207 + x^2 + 1 -- 115 */
301 { 1024, 819, 616, 410, 207, 2 },
302
303 /* x^512 + x^411 + x^308 + x^208 + x^104 + x + 1 -- 225 */
304 { 512, 411, 308, 208, 104, 1 },
305
306 /* x^512 + x^409 + x^307 + x^206 + x^102 + x^2 + 1 -- 95 */
307 { 512, 409, 307, 206, 102, 2 },
308 /* x^512 + x^409 + x^309 + x^205 + x^103 + x^2 + 1 -- 95 */
309 { 512, 409, 309, 205, 103, 2 },
310
311 /* x^256 + x^205 + x^155 + x^101 + x^52 + x + 1 -- 125 */
312 { 256, 205, 155, 101, 52, 1 },
313
314 /* x^128 + x^103 + x^78 + x^51 + x^27 + x^2 + 1 -- 70 */
315 { 128, 103, 78, 51, 27, 2 },
316
317 /* x^64 + x^52 + x^39 + x^26 + x^14 + x + 1 -- 15 */
318 { 64, 52, 39, 26, 14, 1 },
319 #endif
320 };
321
322 #define POOLBITS poolwords*32
323 #define POOLBYTES poolwords*4
324
325 /*
326 * For the purposes of better mixing, we use the CRC-32 polynomial as
327 * well to make a twisted Generalized Feedback Shift Reigster
328 *
329 * (See M. Matsumoto & Y. Kurita, 1992. Twisted GFSR generators. ACM
330 * Transactions on Modeling and Computer Simulation 2(3):179-194.
331 * Also see M. Matsumoto & Y. Kurita, 1994. Twisted GFSR generators
332 * II. ACM Transactions on Mdeling and Computer Simulation 4:254-266)
333 *
334 * Thanks to Colin Plumb for suggesting this.
335 *
336 * We have not analyzed the resultant polynomial to prove it primitive;
337 * in fact it almost certainly isn't. Nonetheless, the irreducible factors
338 * of a random large-degree polynomial over GF(2) are more than large enough
339 * that periodicity is not a concern.
340 *
341 * The input hash is much less sensitive than the output hash. All
342 * that we want of it is that it be a good non-cryptographic hash;
343 * i.e. it not produce collisions when fed "random" data of the sort
344 * we expect to see. As long as the pool state differs for different
345 * inputs, we have preserved the input entropy and done a good job.
346 * The fact that an intelligent attacker can construct inputs that
347 * will produce controlled alterations to the pool's state is not
348 * important because we don't consider such inputs to contribute any
349 * randomness. The only property we need with respect to them is that
350 * the attacker can't increase his/her knowledge of the pool's state.
351 * Since all additions are reversible (knowing the final state and the
352 * input, you can reconstruct the initial state), if an attacker has
353 * any uncertainty about the initial state, he/she can only shuffle
354 * that uncertainty about, but never cause any collisions (which would
355 * decrease the uncertainty).
356 *
357 * The chosen system lets the state of the pool be (essentially) the input
358 * modulo the generator polymnomial. Now, for random primitive polynomials,
359 * this is a universal class of hash functions, meaning that the chance
360 * of a collision is limited by the attacker's knowledge of the generator
361 * polynomail, so if it is chosen at random, an attacker can never force
362 * a collision. Here, we use a fixed polynomial, but we *can* assume that
363 * ###--> it is unknown to the processes generating the input entropy. <-###
364 * Because of this important property, this is a good, collision-resistant
365 * hash; hash collisions will occur no more often than chance.
366 */
367
368 /*
369 * Static global variables
370 */
371 static DECLARE_WAIT_QUEUE_HEAD(random_read_wait);
372 static DECLARE_WAIT_QUEUE_HEAD(random_write_wait);
373
374 #if 0
375 static int debug = 0;
376 module_param(debug, bool, 0644);
377 #define DEBUG_ENT(fmt, arg...) do { if (debug) \
378 printk(KERN_DEBUG "random %04d %04d %04d: " \
379 fmt,\
380 input_pool.entropy_count,\
381 blocking_pool.entropy_count,\
382 nonblocking_pool.entropy_count,\
383 ## arg); } while (0)
384 #else
385 #define DEBUG_ENT(fmt, arg...) do {} while (0)
386 #endif
387
388 /**********************************************************************
389 *
390 * OS independent entropy store. Here are the functions which handle
391 * storing entropy in an entropy pool.
392 *
393 **********************************************************************/
394
395 struct entropy_store;
396 struct entropy_store {
397 /* mostly-read data: */
398 struct poolinfo *poolinfo;
399 __u32 *pool;
400 const char *name;
401 int limit;
402 struct entropy_store *pull;
403
404 /* read-write data: */
405 spinlock_t lock ____cacheline_aligned_in_smp;
406 unsigned add_ptr;
407 int entropy_count;
408 int input_rotate;
409 };
410
411 static __u32 input_pool_data[INPUT_POOL_WORDS];
412 static __u32 blocking_pool_data[OUTPUT_POOL_WORDS];
413 static __u32 nonblocking_pool_data[OUTPUT_POOL_WORDS];
414
415 static struct entropy_store input_pool = {
416 .poolinfo = &poolinfo_table[0],
417 .name = "input",
418 .limit = 1,
419 .lock = __SPIN_LOCK_UNLOCKED(&input_pool.lock),
420 .pool = input_pool_data
421 };
422
423 static struct entropy_store blocking_pool = {
424 .poolinfo = &poolinfo_table[1],
425 .name = "blocking",
426 .limit = 1,
427 .pull = &input_pool,
428 .lock = __SPIN_LOCK_UNLOCKED(&blocking_pool.lock),
429 .pool = blocking_pool_data
430 };
431
432 static struct entropy_store nonblocking_pool = {
433 .poolinfo = &poolinfo_table[1],
434 .name = "nonblocking",
435 .pull = &input_pool,
436 .lock = __SPIN_LOCK_UNLOCKED(&nonblocking_pool.lock),
437 .pool = nonblocking_pool_data
438 };
439
440 /*
441 * This function adds a byte into the entropy "pool". It does not
442 * update the entropy estimate. The caller should call
443 * credit_entropy_store if this is appropriate.
444 *
445 * The pool is stirred with a primitive polynomial of the appropriate
446 * degree, and then twisted. We twist by three bits at a time because
447 * it's cheap to do so and helps slightly in the expected case where
448 * the entropy is concentrated in the low-order bits.
449 */
450 static void __add_entropy_words(struct entropy_store *r, const __u32 *in,
451 int nwords, __u32 out[16])
452 {
453 static __u32 const twist_table[8] = {
454 0x00000000, 0x3b6e20c8, 0x76dc4190, 0x4db26158,
455 0xedb88320, 0xd6d6a3e8, 0x9b64c2b0, 0xa00ae278 };
456 unsigned long i, add_ptr, tap1, tap2, tap3, tap4, tap5;
457 int new_rotate, input_rotate;
458 int wordmask = r->poolinfo->poolwords - 1;
459 __u32 w, next_w;
460 unsigned long flags;
461
462 /* Taps are constant, so we can load them without holding r->lock. */
463 tap1 = r->poolinfo->tap1;
464 tap2 = r->poolinfo->tap2;
465 tap3 = r->poolinfo->tap3;
466 tap4 = r->poolinfo->tap4;
467 tap5 = r->poolinfo->tap5;
468 next_w = *in++;
469
470 spin_lock_irqsave(&r->lock, flags);
471 prefetch_range(r->pool, wordmask);
472 input_rotate = r->input_rotate;
473 add_ptr = r->add_ptr;
474
475 while (nwords--) {
476 w = rol32(next_w, input_rotate);
477 if (nwords > 0)
478 next_w = *in++;
479 i = add_ptr = (add_ptr - 1) & wordmask;
480 /*
481 * Normally, we add 7 bits of rotation to the pool.
482 * At the beginning of the pool, add an extra 7 bits
483 * rotation, so that successive passes spread the
484 * input bits across the pool evenly.
485 */
486 new_rotate = input_rotate + 14;
487 if (i)
488 new_rotate = input_rotate + 7;
489 input_rotate = new_rotate & 31;
490
491 /* XOR in the various taps */
492 w ^= r->pool[(i + tap1) & wordmask];
493 w ^= r->pool[(i + tap2) & wordmask];
494 w ^= r->pool[(i + tap3) & wordmask];
495 w ^= r->pool[(i + tap4) & wordmask];
496 w ^= r->pool[(i + tap5) & wordmask];
497 w ^= r->pool[i];
498 r->pool[i] = (w >> 3) ^ twist_table[w & 7];
499 }
500
501 r->input_rotate = input_rotate;
502 r->add_ptr = add_ptr;
503
504 if (out) {
505 for (i = 0; i < 16; i++) {
506 out[i] = r->pool[add_ptr];
507 add_ptr = (add_ptr - 1) & wordmask;
508 }
509 }
510
511 spin_unlock_irqrestore(&r->lock, flags);
512 }
513
514 static inline void add_entropy_words(struct entropy_store *r, const __u32 *in,
515 int nwords)
516 {
517 __add_entropy_words(r, in, nwords, NULL);
518 }
519
520 /*
521 * Credit (or debit) the entropy store with n bits of entropy
522 */
523 static void credit_entropy_store(struct entropy_store *r, int nbits)
524 {
525 unsigned long flags;
526
527 spin_lock_irqsave(&r->lock, flags);
528
529 if (r->entropy_count + nbits < 0) {
530 DEBUG_ENT("negative entropy/overflow (%d+%d)\n",
531 r->entropy_count, nbits);
532 r->entropy_count = 0;
533 } else if (r->entropy_count + nbits > r->poolinfo->POOLBITS) {
534 r->entropy_count = r->poolinfo->POOLBITS;
535 } else {
536 r->entropy_count += nbits;
537 if (nbits)
538 DEBUG_ENT("added %d entropy credits to %s\n",
539 nbits, r->name);
540 }
541
542 spin_unlock_irqrestore(&r->lock, flags);
543 }
544
545 /*********************************************************************
546 *
547 * Entropy input management
548 *
549 *********************************************************************/
550
551 /* There is one of these per entropy source */
552 struct timer_rand_state {
553 cycles_t last_time;
554 long last_delta,last_delta2;
555 unsigned dont_count_entropy:1;
556 };
557
558 static struct timer_rand_state input_timer_state;
559 static struct timer_rand_state *irq_timer_state[NR_IRQS];
560
561 /*
562 * This function adds entropy to the entropy "pool" by using timing
563 * delays. It uses the timer_rand_state structure to make an estimate
564 * of how many bits of entropy this call has added to the pool.
565 *
566 * The number "num" is also added to the pool - it should somehow describe
567 * the type of event which just happened. This is currently 0-255 for
568 * keyboard scan codes, and 256 upwards for interrupts.
569 *
570 */
571 static void add_timer_randomness(struct timer_rand_state *state, unsigned num)
572 {
573 struct {
574 cycles_t cycles;
575 long jiffies;
576 unsigned num;
577 } sample;
578 long delta, delta2, delta3;
579
580 preempt_disable();
581 /* if over the trickle threshold, use only 1 in 4096 samples */
582 if (input_pool.entropy_count > trickle_thresh &&
583 (__get_cpu_var(trickle_count)++ & 0xfff))
584 goto out;
585
586 sample.jiffies = jiffies;
587 sample.cycles = get_cycles();
588 sample.num = num;
589 add_entropy_words(&input_pool, (u32 *)&sample, sizeof(sample)/4);
590
591 /*
592 * Calculate number of bits of randomness we probably added.
593 * We take into account the first, second and third-order deltas
594 * in order to make our estimate.
595 */
596
597 if (!state->dont_count_entropy) {
598 delta = sample.jiffies - state->last_time;
599 state->last_time = sample.jiffies;
600
601 delta2 = delta - state->last_delta;
602 state->last_delta = delta;
603
604 delta3 = delta2 - state->last_delta2;
605 state->last_delta2 = delta2;
606
607 if (delta < 0)
608 delta = -delta;
609 if (delta2 < 0)
610 delta2 = -delta2;
611 if (delta3 < 0)
612 delta3 = -delta3;
613 if (delta > delta2)
614 delta = delta2;
615 if (delta > delta3)
616 delta = delta3;
617
618 /*
619 * delta is now minimum absolute delta.
620 * Round down by 1 bit on general principles,
621 * and limit entropy entimate to 12 bits.
622 */
623 credit_entropy_store(&input_pool,
624 min_t(int, fls(delta>>1), 11));
625 }
626
627 if(input_pool.entropy_count >= random_read_wakeup_thresh)
628 wake_up_interruptible(&random_read_wait);
629
630 out:
631 preempt_enable();
632 }
633
634 void add_input_randomness(unsigned int type, unsigned int code,
635 unsigned int value)
636 {
637 static unsigned char last_value;
638
639 /* ignore autorepeat and the like */
640 if (value == last_value)
641 return;
642
643 DEBUG_ENT("input event\n");
644 last_value = value;
645 add_timer_randomness(&input_timer_state,
646 (type << 4) ^ code ^ (code >> 4) ^ value);
647 }
648 EXPORT_SYMBOL_GPL(add_input_randomness);
649
650 void add_interrupt_randomness(int irq)
651 {
652 if (irq >= NR_IRQS || irq_timer_state[irq] == NULL)
653 return;
654
655 DEBUG_ENT("irq event %d\n", irq);
656 add_timer_randomness(irq_timer_state[irq], 0x100 + irq);
657 }
658
659 #ifdef CONFIG_BLOCK
660 void add_disk_randomness(struct gendisk *disk)
661 {
662 if (!disk || !disk->random)
663 return;
664 /* first major is 1, so we get >= 0x200 here */
665 DEBUG_ENT("disk event %d:%d\n", disk->major, disk->first_minor);
666
667 add_timer_randomness(disk->random,
668 0x100 + MKDEV(disk->major, disk->first_minor));
669 }
670
671 EXPORT_SYMBOL(add_disk_randomness);
672 #endif
673
674 #define EXTRACT_SIZE 10
675
676 /*********************************************************************
677 *
678 * Entropy extraction routines
679 *
680 *********************************************************************/
681
682 static ssize_t extract_entropy(struct entropy_store *r, void * buf,
683 size_t nbytes, int min, int rsvd);
684
685 /*
686 * This utility inline function is responsible for transfering entropy
687 * from the primary pool to the secondary extraction pool. We make
688 * sure we pull enough for a 'catastrophic reseed'.
689 */
690 static void xfer_secondary_pool(struct entropy_store *r, size_t nbytes)
691 {
692 __u32 tmp[OUTPUT_POOL_WORDS];
693
694 if (r->pull && r->entropy_count < nbytes * 8 &&
695 r->entropy_count < r->poolinfo->POOLBITS) {
696 /* If we're limited, always leave two wakeup worth's BITS */
697 int rsvd = r->limit ? 0 : random_read_wakeup_thresh/4;
698 int bytes = nbytes;
699
700 /* pull at least as many as BYTES as wakeup BITS */
701 bytes = max_t(int, bytes, random_read_wakeup_thresh / 8);
702 /* but never more than the buffer size */
703 bytes = min_t(int, bytes, sizeof(tmp));
704
705 DEBUG_ENT("going to reseed %s with %d bits "
706 "(%d of %d requested)\n",
707 r->name, bytes * 8, nbytes * 8, r->entropy_count);
708
709 bytes=extract_entropy(r->pull, tmp, bytes,
710 random_read_wakeup_thresh / 8, rsvd);
711 add_entropy_words(r, tmp, (bytes + 3) / 4);
712 credit_entropy_store(r, bytes*8);
713 }
714 }
715
716 /*
717 * These functions extracts randomness from the "entropy pool", and
718 * returns it in a buffer.
719 *
720 * The min parameter specifies the minimum amount we can pull before
721 * failing to avoid races that defeat catastrophic reseeding while the
722 * reserved parameter indicates how much entropy we must leave in the
723 * pool after each pull to avoid starving other readers.
724 *
725 * Note: extract_entropy() assumes that .poolwords is a multiple of 16 words.
726 */
727
728 static size_t account(struct entropy_store *r, size_t nbytes, int min,
729 int reserved)
730 {
731 unsigned long flags;
732
733 BUG_ON(r->entropy_count > r->poolinfo->POOLBITS);
734
735 /* Hold lock while accounting */
736 spin_lock_irqsave(&r->lock, flags);
737
738 DEBUG_ENT("trying to extract %d bits from %s\n",
739 nbytes * 8, r->name);
740
741 /* Can we pull enough? */
742 if (r->entropy_count / 8 < min + reserved) {
743 nbytes = 0;
744 } else {
745 /* If limited, never pull more than available */
746 if (r->limit && nbytes + reserved >= r->entropy_count / 8)
747 nbytes = r->entropy_count/8 - reserved;
748
749 if(r->entropy_count / 8 >= nbytes + reserved)
750 r->entropy_count -= nbytes*8;
751 else
752 r->entropy_count = reserved;
753
754 if (r->entropy_count < random_write_wakeup_thresh)
755 wake_up_interruptible(&random_write_wait);
756 }
757
758 DEBUG_ENT("debiting %d entropy credits from %s%s\n",
759 nbytes * 8, r->name, r->limit ? "" : " (unlimited)");
760
761 spin_unlock_irqrestore(&r->lock, flags);
762
763 return nbytes;
764 }
765
766 static void extract_buf(struct entropy_store *r, __u8 *out)
767 {
768 int i;
769 __u32 data[16], buf[5 + SHA_WORKSPACE_WORDS];
770
771 sha_init(buf);
772 /*
773 * As we hash the pool, we mix intermediate values of
774 * the hash back into the pool. This eliminates
775 * backtracking attacks (where the attacker knows
776 * the state of the pool plus the current outputs, and
777 * attempts to find previous ouputs), unless the hash
778 * function can be inverted.
779 */
780 for (i = 0; i < r->poolinfo->poolwords; i += 16) {
781 /* hash blocks of 16 words = 512 bits */
782 sha_transform(buf, (__u8 *)(r->pool + i), buf + 5);
783 /* feed back portion of the resulting hash */
784 add_entropy_words(r, &buf[i % 5], 1);
785 }
786
787 /*
788 * To avoid duplicates, we atomically extract a
789 * portion of the pool while mixing, and hash one
790 * final time.
791 */
792 __add_entropy_words(r, &buf[i % 5], 1, data);
793 sha_transform(buf, (__u8 *)data, buf + 5);
794
795 /*
796 * In case the hash function has some recognizable
797 * output pattern, we fold it in half.
798 */
799
800 buf[0] ^= buf[3];
801 buf[1] ^= buf[4];
802 buf[2] ^= rol32(buf[2], 16);
803 memcpy(out, buf, EXTRACT_SIZE);
804 memset(buf, 0, sizeof(buf));
805 }
806
807 static ssize_t extract_entropy(struct entropy_store *r, void * buf,
808 size_t nbytes, int min, int reserved)
809 {
810 ssize_t ret = 0, i;
811 __u8 tmp[EXTRACT_SIZE];
812
813 xfer_secondary_pool(r, nbytes);
814 nbytes = account(r, nbytes, min, reserved);
815
816 while (nbytes) {
817 extract_buf(r, tmp);
818 i = min_t(int, nbytes, EXTRACT_SIZE);
819 memcpy(buf, tmp, i);
820 nbytes -= i;
821 buf += i;
822 ret += i;
823 }
824
825 /* Wipe data just returned from memory */
826 memset(tmp, 0, sizeof(tmp));
827
828 return ret;
829 }
830
831 static ssize_t extract_entropy_user(struct entropy_store *r, void __user *buf,
832 size_t nbytes)
833 {
834 ssize_t ret = 0, i;
835 __u8 tmp[EXTRACT_SIZE];
836
837 xfer_secondary_pool(r, nbytes);
838 nbytes = account(r, nbytes, 0, 0);
839
840 while (nbytes) {
841 if (need_resched()) {
842 if (signal_pending(current)) {
843 if (ret == 0)
844 ret = -ERESTARTSYS;
845 break;
846 }
847 schedule();
848 }
849
850 extract_buf(r, tmp);
851 i = min_t(int, nbytes, EXTRACT_SIZE);
852 if (copy_to_user(buf, tmp, i)) {
853 ret = -EFAULT;
854 break;
855 }
856
857 nbytes -= i;
858 buf += i;
859 ret += i;
860 }
861
862 /* Wipe data just returned from memory */
863 memset(tmp, 0, sizeof(tmp));
864
865 return ret;
866 }
867
868 /*
869 * This function is the exported kernel interface. It returns some
870 * number of good random numbers, suitable for seeding TCP sequence
871 * numbers, etc.
872 */
873 void get_random_bytes(void *buf, int nbytes)
874 {
875 extract_entropy(&nonblocking_pool, buf, nbytes, 0, 0);
876 }
877
878 EXPORT_SYMBOL(get_random_bytes);
879
880 /*
881 * init_std_data - initialize pool with system data
882 *
883 * @r: pool to initialize
884 *
885 * This function clears the pool's entropy count and mixes some system
886 * data into the pool to prepare it for use. The pool is not cleared
887 * as that can only decrease the entropy in the pool.
888 */
889 static void init_std_data(struct entropy_store *r)
890 {
891 ktime_t now;
892 unsigned long flags;
893
894 spin_lock_irqsave(&r->lock, flags);
895 r->entropy_count = 0;
896 spin_unlock_irqrestore(&r->lock, flags);
897
898 now = ktime_get_real();
899 add_entropy_words(r, (__u32 *)&now, sizeof(now)/4);
900 add_entropy_words(r, (__u32 *)utsname(),
901 sizeof(*(utsname()))/4);
902 }
903
904 static int __init rand_initialize(void)
905 {
906 init_std_data(&input_pool);
907 init_std_data(&blocking_pool);
908 init_std_data(&nonblocking_pool);
909 return 0;
910 }
911 module_init(rand_initialize);
912
913 void rand_initialize_irq(int irq)
914 {
915 struct timer_rand_state *state;
916
917 if (irq >= NR_IRQS || irq_timer_state[irq])
918 return;
919
920 /*
921 * If kzalloc returns null, we just won't use that entropy
922 * source.
923 */
924 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
925 if (state)
926 irq_timer_state[irq] = state;
927 }
928
929 #ifdef CONFIG_BLOCK
930 void rand_initialize_disk(struct gendisk *disk)
931 {
932 struct timer_rand_state *state;
933
934 /*
935 * If kzalloc returns null, we just won't use that entropy
936 * source.
937 */
938 state = kzalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
939 if (state)
940 disk->random = state;
941 }
942 #endif
943
944 static ssize_t
945 random_read(struct file * file, char __user * buf, size_t nbytes, loff_t *ppos)
946 {
947 ssize_t n, retval = 0, count = 0;
948
949 if (nbytes == 0)
950 return 0;
951
952 while (nbytes > 0) {
953 n = nbytes;
954 if (n > SEC_XFER_SIZE)
955 n = SEC_XFER_SIZE;
956
957 DEBUG_ENT("reading %d bits\n", n*8);
958
959 n = extract_entropy_user(&blocking_pool, buf, n);
960
961 DEBUG_ENT("read got %d bits (%d still needed)\n",
962 n*8, (nbytes-n)*8);
963
964 if (n == 0) {
965 if (file->f_flags & O_NONBLOCK) {
966 retval = -EAGAIN;
967 break;
968 }
969
970 DEBUG_ENT("sleeping?\n");
971
972 wait_event_interruptible(random_read_wait,
973 input_pool.entropy_count >=
974 random_read_wakeup_thresh);
975
976 DEBUG_ENT("awake\n");
977
978 if (signal_pending(current)) {
979 retval = -ERESTARTSYS;
980 break;
981 }
982
983 continue;
984 }
985
986 if (n < 0) {
987 retval = n;
988 break;
989 }
990 count += n;
991 buf += n;
992 nbytes -= n;
993 break; /* This break makes the device work */
994 /* like a named pipe */
995 }
996
997 /*
998 * If we gave the user some bytes, update the access time.
999 */
1000 if (count)
1001 file_accessed(file);
1002
1003 return (count ? count : retval);
1004 }
1005
1006 static ssize_t
1007 urandom_read(struct file * file, char __user * buf,
1008 size_t nbytes, loff_t *ppos)
1009 {
1010 return extract_entropy_user(&nonblocking_pool, buf, nbytes);
1011 }
1012
1013 static unsigned int
1014 random_poll(struct file *file, poll_table * wait)
1015 {
1016 unsigned int mask;
1017
1018 poll_wait(file, &random_read_wait, wait);
1019 poll_wait(file, &random_write_wait, wait);
1020 mask = 0;
1021 if (input_pool.entropy_count >= random_read_wakeup_thresh)
1022 mask |= POLLIN | POLLRDNORM;
1023 if (input_pool.entropy_count < random_write_wakeup_thresh)
1024 mask |= POLLOUT | POLLWRNORM;
1025 return mask;
1026 }
1027
1028 static int
1029 write_pool(struct entropy_store *r, const char __user *buffer, size_t count)
1030 {
1031 size_t bytes;
1032 __u32 buf[16];
1033 const char __user *p = buffer;
1034
1035 while (count > 0) {
1036 bytes = min(count, sizeof(buf));
1037 if (copy_from_user(&buf, p, bytes))
1038 return -EFAULT;
1039
1040 count -= bytes;
1041 p += bytes;
1042
1043 add_entropy_words(r, buf, (bytes + 3) / 4);
1044 }
1045
1046 return 0;
1047 }
1048
1049 static ssize_t
1050 random_write(struct file * file, const char __user * buffer,
1051 size_t count, loff_t *ppos)
1052 {
1053 size_t ret;
1054 struct inode *inode = file->f_path.dentry->d_inode;
1055
1056 ret = write_pool(&blocking_pool, buffer, count);
1057 if (ret)
1058 return ret;
1059 ret = write_pool(&nonblocking_pool, buffer, count);
1060 if (ret)
1061 return ret;
1062
1063 inode->i_mtime = current_fs_time(inode->i_sb);
1064 mark_inode_dirty(inode);
1065 return (ssize_t)count;
1066 }
1067
1068 static int
1069 random_ioctl(struct inode * inode, struct file * file,
1070 unsigned int cmd, unsigned long arg)
1071 {
1072 int size, ent_count;
1073 int __user *p = (int __user *)arg;
1074 int retval;
1075
1076 switch (cmd) {
1077 case RNDGETENTCNT:
1078 ent_count = input_pool.entropy_count;
1079 if (put_user(ent_count, p))
1080 return -EFAULT;
1081 return 0;
1082 case RNDADDTOENTCNT:
1083 if (!capable(CAP_SYS_ADMIN))
1084 return -EPERM;
1085 if (get_user(ent_count, p))
1086 return -EFAULT;
1087 credit_entropy_store(&input_pool, ent_count);
1088 /*
1089 * Wake up waiting processes if we have enough
1090 * entropy.
1091 */
1092 if (input_pool.entropy_count >= random_read_wakeup_thresh)
1093 wake_up_interruptible(&random_read_wait);
1094 return 0;
1095 case RNDADDENTROPY:
1096 if (!capable(CAP_SYS_ADMIN))
1097 return -EPERM;
1098 if (get_user(ent_count, p++))
1099 return -EFAULT;
1100 if (ent_count < 0)
1101 return -EINVAL;
1102 if (get_user(size, p++))
1103 return -EFAULT;
1104 retval = write_pool(&input_pool, (const char __user *)p,
1105 size);
1106 if (retval < 0)
1107 return retval;
1108 credit_entropy_store(&input_pool, ent_count);
1109 /*
1110 * Wake up waiting processes if we have enough
1111 * entropy.
1112 */
1113 if (input_pool.entropy_count >= random_read_wakeup_thresh)
1114 wake_up_interruptible(&random_read_wait);
1115 return 0;
1116 case RNDZAPENTCNT:
1117 case RNDCLEARPOOL:
1118 /* Clear the entropy pool counters. */
1119 if (!capable(CAP_SYS_ADMIN))
1120 return -EPERM;
1121 init_std_data(&input_pool);
1122 init_std_data(&blocking_pool);
1123 init_std_data(&nonblocking_pool);
1124 return 0;
1125 default:
1126 return -EINVAL;
1127 }
1128 }
1129
1130 const struct file_operations random_fops = {
1131 .read = random_read,
1132 .write = random_write,
1133 .poll = random_poll,
1134 .ioctl = random_ioctl,
1135 };
1136
1137 const struct file_operations urandom_fops = {
1138 .read = urandom_read,
1139 .write = random_write,
1140 .ioctl = random_ioctl,
1141 };
1142
1143 /***************************************************************
1144 * Random UUID interface
1145 *
1146 * Used here for a Boot ID, but can be useful for other kernel
1147 * drivers.
1148 ***************************************************************/
1149
1150 /*
1151 * Generate random UUID
1152 */
1153 void generate_random_uuid(unsigned char uuid_out[16])
1154 {
1155 get_random_bytes(uuid_out, 16);
1156 /* Set UUID version to 4 --- truely random generation */
1157 uuid_out[6] = (uuid_out[6] & 0x0F) | 0x40;
1158 /* Set the UUID variant to DCE */
1159 uuid_out[8] = (uuid_out[8] & 0x3F) | 0x80;
1160 }
1161
1162 EXPORT_SYMBOL(generate_random_uuid);
1163
1164 /********************************************************************
1165 *
1166 * Sysctl interface
1167 *
1168 ********************************************************************/
1169
1170 #ifdef CONFIG_SYSCTL
1171
1172 #include <linux/sysctl.h>
1173
1174 static int min_read_thresh = 8, min_write_thresh;
1175 static int max_read_thresh = INPUT_POOL_WORDS * 32;
1176 static int max_write_thresh = INPUT_POOL_WORDS * 32;
1177 static char sysctl_bootid[16];
1178
1179 /*
1180 * These functions is used to return both the bootid UUID, and random
1181 * UUID. The difference is in whether table->data is NULL; if it is,
1182 * then a new UUID is generated and returned to the user.
1183 *
1184 * If the user accesses this via the proc interface, it will be returned
1185 * as an ASCII string in the standard UUID format. If accesses via the
1186 * sysctl system call, it is returned as 16 bytes of binary data.
1187 */
1188 static int proc_do_uuid(ctl_table *table, int write, struct file *filp,
1189 void __user *buffer, size_t *lenp, loff_t *ppos)
1190 {
1191 ctl_table fake_table;
1192 unsigned char buf[64], tmp_uuid[16], *uuid;
1193
1194 uuid = table->data;
1195 if (!uuid) {
1196 uuid = tmp_uuid;
1197 uuid[8] = 0;
1198 }
1199 if (uuid[8] == 0)
1200 generate_random_uuid(uuid);
1201
1202 sprintf(buf, "%02x%02x%02x%02x-%02x%02x-%02x%02x-%02x%02x-"
1203 "%02x%02x%02x%02x%02x%02x",
1204 uuid[0], uuid[1], uuid[2], uuid[3],
1205 uuid[4], uuid[5], uuid[6], uuid[7],
1206 uuid[8], uuid[9], uuid[10], uuid[11],
1207 uuid[12], uuid[13], uuid[14], uuid[15]);
1208 fake_table.data = buf;
1209 fake_table.maxlen = sizeof(buf);
1210
1211 return proc_dostring(&fake_table, write, filp, buffer, lenp, ppos);
1212 }
1213
1214 static int uuid_strategy(ctl_table *table, int __user *name, int nlen,
1215 void __user *oldval, size_t __user *oldlenp,
1216 void __user *newval, size_t newlen)
1217 {
1218 unsigned char tmp_uuid[16], *uuid;
1219 unsigned int len;
1220
1221 if (!oldval || !oldlenp)
1222 return 1;
1223
1224 uuid = table->data;
1225 if (!uuid) {
1226 uuid = tmp_uuid;
1227 uuid[8] = 0;
1228 }
1229 if (uuid[8] == 0)
1230 generate_random_uuid(uuid);
1231
1232 if (get_user(len, oldlenp))
1233 return -EFAULT;
1234 if (len) {
1235 if (len > 16)
1236 len = 16;
1237 if (copy_to_user(oldval, uuid, len) ||
1238 put_user(len, oldlenp))
1239 return -EFAULT;
1240 }
1241 return 1;
1242 }
1243
1244 static int sysctl_poolsize = INPUT_POOL_WORDS * 32;
1245 ctl_table random_table[] = {
1246 {
1247 .ctl_name = RANDOM_POOLSIZE,
1248 .procname = "poolsize",
1249 .data = &sysctl_poolsize,
1250 .maxlen = sizeof(int),
1251 .mode = 0444,
1252 .proc_handler = &proc_dointvec,
1253 },
1254 {
1255 .ctl_name = RANDOM_ENTROPY_COUNT,
1256 .procname = "entropy_avail",
1257 .maxlen = sizeof(int),
1258 .mode = 0444,
1259 .proc_handler = &proc_dointvec,
1260 .data = &input_pool.entropy_count,
1261 },
1262 {
1263 .ctl_name = RANDOM_READ_THRESH,
1264 .procname = "read_wakeup_threshold",
1265 .data = &random_read_wakeup_thresh,
1266 .maxlen = sizeof(int),
1267 .mode = 0644,
1268 .proc_handler = &proc_dointvec_minmax,
1269 .strategy = &sysctl_intvec,
1270 .extra1 = &min_read_thresh,
1271 .extra2 = &max_read_thresh,
1272 },
1273 {
1274 .ctl_name = RANDOM_WRITE_THRESH,
1275 .procname = "write_wakeup_threshold",
1276 .data = &random_write_wakeup_thresh,
1277 .maxlen = sizeof(int),
1278 .mode = 0644,
1279 .proc_handler = &proc_dointvec_minmax,
1280 .strategy = &sysctl_intvec,
1281 .extra1 = &min_write_thresh,
1282 .extra2 = &max_write_thresh,
1283 },
1284 {
1285 .ctl_name = RANDOM_BOOT_ID,
1286 .procname = "boot_id",
1287 .data = &sysctl_bootid,
1288 .maxlen = 16,
1289 .mode = 0444,
1290 .proc_handler = &proc_do_uuid,
1291 .strategy = &uuid_strategy,
1292 },
1293 {
1294 .ctl_name = RANDOM_UUID,
1295 .procname = "uuid",
1296 .maxlen = 16,
1297 .mode = 0444,
1298 .proc_handler = &proc_do_uuid,
1299 .strategy = &uuid_strategy,
1300 },
1301 { .ctl_name = 0 }
1302 };
1303 #endif /* CONFIG_SYSCTL */
1304
1305 /********************************************************************
1306 *
1307 * Random funtions for networking
1308 *
1309 ********************************************************************/
1310
1311 /*
1312 * TCP initial sequence number picking. This uses the random number
1313 * generator to pick an initial secret value. This value is hashed
1314 * along with the TCP endpoint information to provide a unique
1315 * starting point for each pair of TCP endpoints. This defeats
1316 * attacks which rely on guessing the initial TCP sequence number.
1317 * This algorithm was suggested by Steve Bellovin.
1318 *
1319 * Using a very strong hash was taking an appreciable amount of the total
1320 * TCP connection establishment time, so this is a weaker hash,
1321 * compensated for by changing the secret periodically.
1322 */
1323
1324 /* F, G and H are basic MD4 functions: selection, majority, parity */
1325 #define F(x, y, z) ((z) ^ ((x) & ((y) ^ (z))))
1326 #define G(x, y, z) (((x) & (y)) + (((x) ^ (y)) & (z)))
1327 #define H(x, y, z) ((x) ^ (y) ^ (z))
1328
1329 /*
1330 * The generic round function. The application is so specific that
1331 * we don't bother protecting all the arguments with parens, as is generally
1332 * good macro practice, in favor of extra legibility.
1333 * Rotation is separate from addition to prevent recomputation
1334 */
1335 #define ROUND(f, a, b, c, d, x, s) \
1336 (a += f(b, c, d) + x, a = (a << s) | (a >> (32 - s)))
1337 #define K1 0
1338 #define K2 013240474631UL
1339 #define K3 015666365641UL
1340
1341 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1342
1343 static __u32 twothirdsMD4Transform (__u32 const buf[4], __u32 const in[12])
1344 {
1345 __u32 a = buf[0], b = buf[1], c = buf[2], d = buf[3];
1346
1347 /* Round 1 */
1348 ROUND(F, a, b, c, d, in[ 0] + K1, 3);
1349 ROUND(F, d, a, b, c, in[ 1] + K1, 7);
1350 ROUND(F, c, d, a, b, in[ 2] + K1, 11);
1351 ROUND(F, b, c, d, a, in[ 3] + K1, 19);
1352 ROUND(F, a, b, c, d, in[ 4] + K1, 3);
1353 ROUND(F, d, a, b, c, in[ 5] + K1, 7);
1354 ROUND(F, c, d, a, b, in[ 6] + K1, 11);
1355 ROUND(F, b, c, d, a, in[ 7] + K1, 19);
1356 ROUND(F, a, b, c, d, in[ 8] + K1, 3);
1357 ROUND(F, d, a, b, c, in[ 9] + K1, 7);
1358 ROUND(F, c, d, a, b, in[10] + K1, 11);
1359 ROUND(F, b, c, d, a, in[11] + K1, 19);
1360
1361 /* Round 2 */
1362 ROUND(G, a, b, c, d, in[ 1] + K2, 3);
1363 ROUND(G, d, a, b, c, in[ 3] + K2, 5);
1364 ROUND(G, c, d, a, b, in[ 5] + K2, 9);
1365 ROUND(G, b, c, d, a, in[ 7] + K2, 13);
1366 ROUND(G, a, b, c, d, in[ 9] + K2, 3);
1367 ROUND(G, d, a, b, c, in[11] + K2, 5);
1368 ROUND(G, c, d, a, b, in[ 0] + K2, 9);
1369 ROUND(G, b, c, d, a, in[ 2] + K2, 13);
1370 ROUND(G, a, b, c, d, in[ 4] + K2, 3);
1371 ROUND(G, d, a, b, c, in[ 6] + K2, 5);
1372 ROUND(G, c, d, a, b, in[ 8] + K2, 9);
1373 ROUND(G, b, c, d, a, in[10] + K2, 13);
1374
1375 /* Round 3 */
1376 ROUND(H, a, b, c, d, in[ 3] + K3, 3);
1377 ROUND(H, d, a, b, c, in[ 7] + K3, 9);
1378 ROUND(H, c, d, a, b, in[11] + K3, 11);
1379 ROUND(H, b, c, d, a, in[ 2] + K3, 15);
1380 ROUND(H, a, b, c, d, in[ 6] + K3, 3);
1381 ROUND(H, d, a, b, c, in[10] + K3, 9);
1382 ROUND(H, c, d, a, b, in[ 1] + K3, 11);
1383 ROUND(H, b, c, d, a, in[ 5] + K3, 15);
1384 ROUND(H, a, b, c, d, in[ 9] + K3, 3);
1385 ROUND(H, d, a, b, c, in[ 0] + K3, 9);
1386 ROUND(H, c, d, a, b, in[ 4] + K3, 11);
1387 ROUND(H, b, c, d, a, in[ 8] + K3, 15);
1388
1389 return buf[1] + b; /* "most hashed" word */
1390 /* Alternative: return sum of all words? */
1391 }
1392 #endif
1393
1394 #undef ROUND
1395 #undef F
1396 #undef G
1397 #undef H
1398 #undef K1
1399 #undef K2
1400 #undef K3
1401
1402 /* This should not be decreased so low that ISNs wrap too fast. */
1403 #define REKEY_INTERVAL (300 * HZ)
1404 /*
1405 * Bit layout of the tcp sequence numbers (before adding current time):
1406 * bit 24-31: increased after every key exchange
1407 * bit 0-23: hash(source,dest)
1408 *
1409 * The implementation is similar to the algorithm described
1410 * in the Appendix of RFC 1185, except that
1411 * - it uses a 1 MHz clock instead of a 250 kHz clock
1412 * - it performs a rekey every 5 minutes, which is equivalent
1413 * to a (source,dest) tulple dependent forward jump of the
1414 * clock by 0..2^(HASH_BITS+1)
1415 *
1416 * Thus the average ISN wraparound time is 68 minutes instead of
1417 * 4.55 hours.
1418 *
1419 * SMP cleanup and lock avoidance with poor man's RCU.
1420 * Manfred Spraul <manfred@colorfullife.com>
1421 *
1422 */
1423 #define COUNT_BITS 8
1424 #define COUNT_MASK ((1 << COUNT_BITS) - 1)
1425 #define HASH_BITS 24
1426 #define HASH_MASK ((1 << HASH_BITS) - 1)
1427
1428 static struct keydata {
1429 __u32 count; /* already shifted to the final position */
1430 __u32 secret[12];
1431 } ____cacheline_aligned ip_keydata[2];
1432
1433 static unsigned int ip_cnt;
1434
1435 static void rekey_seq_generator(struct work_struct *work);
1436
1437 static DECLARE_DELAYED_WORK(rekey_work, rekey_seq_generator);
1438
1439 /*
1440 * Lock avoidance:
1441 * The ISN generation runs lockless - it's just a hash over random data.
1442 * State changes happen every 5 minutes when the random key is replaced.
1443 * Synchronization is performed by having two copies of the hash function
1444 * state and rekey_seq_generator always updates the inactive copy.
1445 * The copy is then activated by updating ip_cnt.
1446 * The implementation breaks down if someone blocks the thread
1447 * that processes SYN requests for more than 5 minutes. Should never
1448 * happen, and even if that happens only a not perfectly compliant
1449 * ISN is generated, nothing fatal.
1450 */
1451 static void rekey_seq_generator(struct work_struct *work)
1452 {
1453 struct keydata *keyptr = &ip_keydata[1 ^ (ip_cnt & 1)];
1454
1455 get_random_bytes(keyptr->secret, sizeof(keyptr->secret));
1456 keyptr->count = (ip_cnt & COUNT_MASK) << HASH_BITS;
1457 smp_wmb();
1458 ip_cnt++;
1459 schedule_delayed_work(&rekey_work, REKEY_INTERVAL);
1460 }
1461
1462 static inline struct keydata *get_keyptr(void)
1463 {
1464 struct keydata *keyptr = &ip_keydata[ip_cnt & 1];
1465
1466 smp_rmb();
1467
1468 return keyptr;
1469 }
1470
1471 static __init int seqgen_init(void)
1472 {
1473 rekey_seq_generator(NULL);
1474 return 0;
1475 }
1476 late_initcall(seqgen_init);
1477
1478 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1479 __u32 secure_tcpv6_sequence_number(__be32 *saddr, __be32 *daddr,
1480 __be16 sport, __be16 dport)
1481 {
1482 __u32 seq;
1483 __u32 hash[12];
1484 struct keydata *keyptr = get_keyptr();
1485
1486 /* The procedure is the same as for IPv4, but addresses are longer.
1487 * Thus we must use twothirdsMD4Transform.
1488 */
1489
1490 memcpy(hash, saddr, 16);
1491 hash[4]=((__force u16)sport << 16) + (__force u16)dport;
1492 memcpy(&hash[5],keyptr->secret,sizeof(__u32) * 7);
1493
1494 seq = twothirdsMD4Transform((const __u32 *)daddr, hash) & HASH_MASK;
1495 seq += keyptr->count;
1496
1497 seq += ktime_to_ns(ktime_get_real());
1498
1499 return seq;
1500 }
1501 EXPORT_SYMBOL(secure_tcpv6_sequence_number);
1502 #endif
1503
1504 /* The code below is shamelessly stolen from secure_tcp_sequence_number().
1505 * All blames to Andrey V. Savochkin <saw@msu.ru>.
1506 */
1507 __u32 secure_ip_id(__be32 daddr)
1508 {
1509 struct keydata *keyptr;
1510 __u32 hash[4];
1511
1512 keyptr = get_keyptr();
1513
1514 /*
1515 * Pick a unique starting offset for each IP destination.
1516 * The dest ip address is placed in the starting vector,
1517 * which is then hashed with random data.
1518 */
1519 hash[0] = (__force __u32)daddr;
1520 hash[1] = keyptr->secret[9];
1521 hash[2] = keyptr->secret[10];
1522 hash[3] = keyptr->secret[11];
1523
1524 return half_md4_transform(hash, keyptr->secret);
1525 }
1526
1527 #ifdef CONFIG_INET
1528
1529 __u32 secure_tcp_sequence_number(__be32 saddr, __be32 daddr,
1530 __be16 sport, __be16 dport)
1531 {
1532 __u32 seq;
1533 __u32 hash[4];
1534 struct keydata *keyptr = get_keyptr();
1535
1536 /*
1537 * Pick a unique starting offset for each TCP connection endpoints
1538 * (saddr, daddr, sport, dport).
1539 * Note that the words are placed into the starting vector, which is
1540 * then mixed with a partial MD4 over random data.
1541 */
1542 hash[0]=(__force u32)saddr;
1543 hash[1]=(__force u32)daddr;
1544 hash[2]=((__force u16)sport << 16) + (__force u16)dport;
1545 hash[3]=keyptr->secret[11];
1546
1547 seq = half_md4_transform(hash, keyptr->secret) & HASH_MASK;
1548 seq += keyptr->count;
1549 /*
1550 * As close as possible to RFC 793, which
1551 * suggests using a 250 kHz clock.
1552 * Further reading shows this assumes 2 Mb/s networks.
1553 * For 10 Mb/s Ethernet, a 1 MHz clock is appropriate.
1554 * For 10 Gb/s Ethernet, a 1 GHz clock should be ok, but
1555 * we also need to limit the resolution so that the u32 seq
1556 * overlaps less than one time per MSL (2 minutes).
1557 * Choosing a clock of 64 ns period is OK. (period of 274 s)
1558 */
1559 seq += ktime_to_ns(ktime_get_real()) >> 6;
1560 #if 0
1561 printk("init_seq(%lx, %lx, %d, %d) = %d\n",
1562 saddr, daddr, sport, dport, seq);
1563 #endif
1564 return seq;
1565 }
1566
1567 /* Generate secure starting point for ephemeral IPV4 transport port search */
1568 u32 secure_ipv4_port_ephemeral(__be32 saddr, __be32 daddr, __be16 dport)
1569 {
1570 struct keydata *keyptr = get_keyptr();
1571 u32 hash[4];
1572
1573 /*
1574 * Pick a unique starting offset for each ephemeral port search
1575 * (saddr, daddr, dport) and 48bits of random data.
1576 */
1577 hash[0] = (__force u32)saddr;
1578 hash[1] = (__force u32)daddr;
1579 hash[2] = (__force u32)dport ^ keyptr->secret[10];
1580 hash[3] = keyptr->secret[11];
1581
1582 return half_md4_transform(hash, keyptr->secret);
1583 }
1584
1585 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
1586 u32 secure_ipv6_port_ephemeral(const __be32 *saddr, const __be32 *daddr, __be16 dport)
1587 {
1588 struct keydata *keyptr = get_keyptr();
1589 u32 hash[12];
1590
1591 memcpy(hash, saddr, 16);
1592 hash[4] = (__force u32)dport;
1593 memcpy(&hash[5],keyptr->secret,sizeof(__u32) * 7);
1594
1595 return twothirdsMD4Transform((const __u32 *)daddr, hash);
1596 }
1597 #endif
1598
1599 #if defined(CONFIG_IP_DCCP) || defined(CONFIG_IP_DCCP_MODULE)
1600 /* Similar to secure_tcp_sequence_number but generate a 48 bit value
1601 * bit's 32-47 increase every key exchange
1602 * 0-31 hash(source, dest)
1603 */
1604 u64 secure_dccp_sequence_number(__be32 saddr, __be32 daddr,
1605 __be16 sport, __be16 dport)
1606 {
1607 u64 seq;
1608 __u32 hash[4];
1609 struct keydata *keyptr = get_keyptr();
1610
1611 hash[0] = (__force u32)saddr;
1612 hash[1] = (__force u32)daddr;
1613 hash[2] = ((__force u16)sport << 16) + (__force u16)dport;
1614 hash[3] = keyptr->secret[11];
1615
1616 seq = half_md4_transform(hash, keyptr->secret);
1617 seq |= ((u64)keyptr->count) << (32 - HASH_BITS);
1618
1619 seq += ktime_to_ns(ktime_get_real());
1620 seq &= (1ull << 48) - 1;
1621 #if 0
1622 printk("dccp init_seq(%lx, %lx, %d, %d) = %d\n",
1623 saddr, daddr, sport, dport, seq);
1624 #endif
1625 return seq;
1626 }
1627
1628 EXPORT_SYMBOL(secure_dccp_sequence_number);
1629 #endif
1630
1631 #endif /* CONFIG_INET */
1632
1633
1634 /*
1635 * Get a random word for internal kernel use only. Similar to urandom but
1636 * with the goal of minimal entropy pool depletion. As a result, the random
1637 * value is not cryptographically secure but for several uses the cost of
1638 * depleting entropy is too high
1639 */
1640 unsigned int get_random_int(void)
1641 {
1642 /*
1643 * Use IP's RNG. It suits our purpose perfectly: it re-keys itself
1644 * every second, from the entropy pool (and thus creates a limited
1645 * drain on it), and uses halfMD4Transform within the second. We
1646 * also mix it with jiffies and the PID:
1647 */
1648 return secure_ip_id((__force __be32)(current->pid + jiffies));
1649 }
1650
1651 /*
1652 * randomize_range() returns a start address such that
1653 *
1654 * [...... <range> .....]
1655 * start end
1656 *
1657 * a <range> with size "len" starting at the return value is inside in the
1658 * area defined by [start, end], but is otherwise randomized.
1659 */
1660 unsigned long
1661 randomize_range(unsigned long start, unsigned long end, unsigned long len)
1662 {
1663 unsigned long range = end - len - start;
1664
1665 if (end <= start + len)
1666 return 0;
1667 return PAGE_ALIGN(get_random_int() % range + start);
1668 }