e6d75627c6c815a794b54924e5f03c96feb7625e
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / char / mmtimer.c
1 /*
2 * Timer device implementation for SGI SN platforms.
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * Copyright (c) 2001-2006 Silicon Graphics, Inc. All rights reserved.
9 *
10 * This driver exports an API that should be supportable by any HPET or IA-PC
11 * multimedia timer. The code below is currently specific to the SGI Altix
12 * SHub RTC, however.
13 *
14 * 11/01/01 - jbarnes - initial revision
15 * 9/10/04 - Christoph Lameter - remove interrupt support for kernel inclusion
16 * 10/1/04 - Christoph Lameter - provide posix clock CLOCK_SGI_CYCLE
17 * 10/13/04 - Christoph Lameter, Dimitri Sivanich - provide timer interrupt
18 * support via the posix timer interface
19 */
20
21 #include <linux/types.h>
22 #include <linux/kernel.h>
23 #include <linux/ioctl.h>
24 #include <linux/module.h>
25 #include <linux/init.h>
26 #include <linux/errno.h>
27 #include <linux/mm.h>
28 #include <linux/fs.h>
29 #include <linux/mmtimer.h>
30 #include <linux/miscdevice.h>
31 #include <linux/posix-timers.h>
32 #include <linux/interrupt.h>
33 #include <linux/time.h>
34 #include <linux/math64.h>
35 #include <linux/mutex.h>
36 #include <linux/slab.h>
37
38 #include <asm/uaccess.h>
39 #include <asm/sn/addrs.h>
40 #include <asm/sn/intr.h>
41 #include <asm/sn/shub_mmr.h>
42 #include <asm/sn/nodepda.h>
43 #include <asm/sn/shubio.h>
44
45 MODULE_AUTHOR("Jesse Barnes <jbarnes@sgi.com>");
46 MODULE_DESCRIPTION("SGI Altix RTC Timer");
47 MODULE_LICENSE("GPL");
48
49 /* name of the device, usually in /dev */
50 #define MMTIMER_NAME "mmtimer"
51 #define MMTIMER_DESC "SGI Altix RTC Timer"
52 #define MMTIMER_VERSION "2.1"
53
54 #define RTC_BITS 55 /* 55 bits for this implementation */
55
56 extern unsigned long sn_rtc_cycles_per_second;
57
58 #define RTC_COUNTER_ADDR ((long *)LOCAL_MMR_ADDR(SH_RTC))
59
60 #define rtc_time() (*RTC_COUNTER_ADDR)
61
62 static DEFINE_MUTEX(mmtimer_mutex);
63 static long mmtimer_ioctl(struct file *file, unsigned int cmd,
64 unsigned long arg);
65 static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma);
66
67 /*
68 * Period in femtoseconds (10^-15 s)
69 */
70 static unsigned long mmtimer_femtoperiod = 0;
71
72 static const struct file_operations mmtimer_fops = {
73 .owner = THIS_MODULE,
74 .mmap = mmtimer_mmap,
75 .unlocked_ioctl = mmtimer_ioctl,
76 .llseek = noop_llseek,
77 };
78
79 /*
80 * We only have comparison registers RTC1-4 currently available per
81 * node. RTC0 is used by SAL.
82 */
83 /* Check for an RTC interrupt pending */
84 static int mmtimer_int_pending(int comparator)
85 {
86 if (HUB_L((unsigned long *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED)) &
87 SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator)
88 return 1;
89 else
90 return 0;
91 }
92
93 /* Clear the RTC interrupt pending bit */
94 static void mmtimer_clr_int_pending(int comparator)
95 {
96 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_EVENT_OCCURRED_ALIAS),
97 SH_EVENT_OCCURRED_RTC1_INT_MASK << comparator);
98 }
99
100 /* Setup timer on comparator RTC1 */
101 static void mmtimer_setup_int_0(int cpu, u64 expires)
102 {
103 u64 val;
104
105 /* Disable interrupt */
106 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 0UL);
107
108 /* Initialize comparator value */
109 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), -1L);
110
111 /* Clear pending bit */
112 mmtimer_clr_int_pending(0);
113
114 val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC1_INT_CONFIG_IDX_SHFT) |
115 ((u64)cpu_physical_id(cpu) <<
116 SH_RTC1_INT_CONFIG_PID_SHFT);
117
118 /* Set configuration */
119 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_CONFIG), val);
120
121 /* Enable RTC interrupts */
122 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE), 1UL);
123
124 /* Initialize comparator value */
125 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPB), expires);
126
127
128 }
129
130 /* Setup timer on comparator RTC2 */
131 static void mmtimer_setup_int_1(int cpu, u64 expires)
132 {
133 u64 val;
134
135 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 0UL);
136
137 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), -1L);
138
139 mmtimer_clr_int_pending(1);
140
141 val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC2_INT_CONFIG_IDX_SHFT) |
142 ((u64)cpu_physical_id(cpu) <<
143 SH_RTC2_INT_CONFIG_PID_SHFT);
144
145 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_CONFIG), val);
146
147 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE), 1UL);
148
149 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPC), expires);
150 }
151
152 /* Setup timer on comparator RTC3 */
153 static void mmtimer_setup_int_2(int cpu, u64 expires)
154 {
155 u64 val;
156
157 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 0UL);
158
159 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), -1L);
160
161 mmtimer_clr_int_pending(2);
162
163 val = ((u64)SGI_MMTIMER_VECTOR << SH_RTC3_INT_CONFIG_IDX_SHFT) |
164 ((u64)cpu_physical_id(cpu) <<
165 SH_RTC3_INT_CONFIG_PID_SHFT);
166
167 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_CONFIG), val);
168
169 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE), 1UL);
170
171 HUB_S((u64 *)LOCAL_MMR_ADDR(SH_INT_CMPD), expires);
172 }
173
174 /*
175 * This function must be called with interrupts disabled and preemption off
176 * in order to insure that the setup succeeds in a deterministic time frame.
177 * It will check if the interrupt setup succeeded.
178 */
179 static int mmtimer_setup(int cpu, int comparator, unsigned long expires,
180 u64 *set_completion_time)
181 {
182 switch (comparator) {
183 case 0:
184 mmtimer_setup_int_0(cpu, expires);
185 break;
186 case 1:
187 mmtimer_setup_int_1(cpu, expires);
188 break;
189 case 2:
190 mmtimer_setup_int_2(cpu, expires);
191 break;
192 }
193 /* We might've missed our expiration time */
194 *set_completion_time = rtc_time();
195 if (*set_completion_time <= expires)
196 return 1;
197
198 /*
199 * If an interrupt is already pending then its okay
200 * if not then we failed
201 */
202 return mmtimer_int_pending(comparator);
203 }
204
205 static int mmtimer_disable_int(long nasid, int comparator)
206 {
207 switch (comparator) {
208 case 0:
209 nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC1_INT_ENABLE),
210 0UL) : REMOTE_HUB_S(nasid, SH_RTC1_INT_ENABLE, 0UL);
211 break;
212 case 1:
213 nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC2_INT_ENABLE),
214 0UL) : REMOTE_HUB_S(nasid, SH_RTC2_INT_ENABLE, 0UL);
215 break;
216 case 2:
217 nasid == -1 ? HUB_S((u64 *)LOCAL_MMR_ADDR(SH_RTC3_INT_ENABLE),
218 0UL) : REMOTE_HUB_S(nasid, SH_RTC3_INT_ENABLE, 0UL);
219 break;
220 default:
221 return -EFAULT;
222 }
223 return 0;
224 }
225
226 #define COMPARATOR 1 /* The comparator to use */
227
228 #define TIMER_OFF 0xbadcabLL /* Timer is not setup */
229 #define TIMER_SET 0 /* Comparator is set for this timer */
230
231 #define MMTIMER_INTERVAL_RETRY_INCREMENT_DEFAULT 40
232
233 /* There is one of these for each timer */
234 struct mmtimer {
235 struct rb_node list;
236 struct k_itimer *timer;
237 int cpu;
238 };
239
240 struct mmtimer_node {
241 spinlock_t lock ____cacheline_aligned;
242 struct rb_root timer_head;
243 struct rb_node *next;
244 struct tasklet_struct tasklet;
245 };
246 static struct mmtimer_node *timers;
247
248 static unsigned mmtimer_interval_retry_increment =
249 MMTIMER_INTERVAL_RETRY_INCREMENT_DEFAULT;
250 module_param(mmtimer_interval_retry_increment, uint, 0644);
251 MODULE_PARM_DESC(mmtimer_interval_retry_increment,
252 "RTC ticks to add to expiration on interval retry (default 40)");
253
254 /*
255 * Add a new mmtimer struct to the node's mmtimer list.
256 * This function assumes the struct mmtimer_node is locked.
257 */
258 static void mmtimer_add_list(struct mmtimer *n)
259 {
260 int nodeid = n->timer->it.mmtimer.node;
261 unsigned long expires = n->timer->it.mmtimer.expires;
262 struct rb_node **link = &timers[nodeid].timer_head.rb_node;
263 struct rb_node *parent = NULL;
264 struct mmtimer *x;
265
266 /*
267 * Find the right place in the rbtree:
268 */
269 while (*link) {
270 parent = *link;
271 x = rb_entry(parent, struct mmtimer, list);
272
273 if (expires < x->timer->it.mmtimer.expires)
274 link = &(*link)->rb_left;
275 else
276 link = &(*link)->rb_right;
277 }
278
279 /*
280 * Insert the timer to the rbtree and check whether it
281 * replaces the first pending timer
282 */
283 rb_link_node(&n->list, parent, link);
284 rb_insert_color(&n->list, &timers[nodeid].timer_head);
285
286 if (!timers[nodeid].next || expires < rb_entry(timers[nodeid].next,
287 struct mmtimer, list)->timer->it.mmtimer.expires)
288 timers[nodeid].next = &n->list;
289 }
290
291 /*
292 * Set the comparator for the next timer.
293 * This function assumes the struct mmtimer_node is locked.
294 */
295 static void mmtimer_set_next_timer(int nodeid)
296 {
297 struct mmtimer_node *n = &timers[nodeid];
298 struct mmtimer *x;
299 struct k_itimer *t;
300 u64 expires, exp, set_completion_time;
301 int i;
302
303 restart:
304 if (n->next == NULL)
305 return;
306
307 x = rb_entry(n->next, struct mmtimer, list);
308 t = x->timer;
309 if (!t->it.mmtimer.incr) {
310 /* Not an interval timer */
311 if (!mmtimer_setup(x->cpu, COMPARATOR,
312 t->it.mmtimer.expires,
313 &set_completion_time)) {
314 /* Late setup, fire now */
315 tasklet_schedule(&n->tasklet);
316 }
317 return;
318 }
319
320 /* Interval timer */
321 i = 0;
322 expires = exp = t->it.mmtimer.expires;
323 while (!mmtimer_setup(x->cpu, COMPARATOR, expires,
324 &set_completion_time)) {
325 int to;
326
327 i++;
328 expires = set_completion_time +
329 mmtimer_interval_retry_increment + (1 << i);
330 /* Calculate overruns as we go. */
331 to = ((u64)(expires - exp) / t->it.mmtimer.incr);
332 if (to) {
333 t->it_overrun += to;
334 t->it.mmtimer.expires += t->it.mmtimer.incr * to;
335 exp = t->it.mmtimer.expires;
336 }
337 if (i > 20) {
338 printk(KERN_ALERT "mmtimer: cannot reschedule timer\n");
339 t->it.mmtimer.clock = TIMER_OFF;
340 n->next = rb_next(&x->list);
341 rb_erase(&x->list, &n->timer_head);
342 kfree(x);
343 goto restart;
344 }
345 }
346 }
347
348 /**
349 * mmtimer_ioctl - ioctl interface for /dev/mmtimer
350 * @file: file structure for the device
351 * @cmd: command to execute
352 * @arg: optional argument to command
353 *
354 * Executes the command specified by @cmd. Returns 0 for success, < 0 for
355 * failure.
356 *
357 * Valid commands:
358 *
359 * %MMTIMER_GETOFFSET - Should return the offset (relative to the start
360 * of the page where the registers are mapped) for the counter in question.
361 *
362 * %MMTIMER_GETRES - Returns the resolution of the clock in femto (10^-15)
363 * seconds
364 *
365 * %MMTIMER_GETFREQ - Copies the frequency of the clock in Hz to the address
366 * specified by @arg
367 *
368 * %MMTIMER_GETBITS - Returns the number of bits in the clock's counter
369 *
370 * %MMTIMER_MMAPAVAIL - Returns 1 if the registers can be mmap'd into userspace
371 *
372 * %MMTIMER_GETCOUNTER - Gets the current value in the counter and places it
373 * in the address specified by @arg.
374 */
375 static long mmtimer_ioctl(struct file *file, unsigned int cmd,
376 unsigned long arg)
377 {
378 int ret = 0;
379
380 mutex_lock(&mmtimer_mutex);
381
382 switch (cmd) {
383 case MMTIMER_GETOFFSET: /* offset of the counter */
384 /*
385 * SN RTC registers are on their own 64k page
386 */
387 if(PAGE_SIZE <= (1 << 16))
388 ret = (((long)RTC_COUNTER_ADDR) & (PAGE_SIZE-1)) / 8;
389 else
390 ret = -ENOSYS;
391 break;
392
393 case MMTIMER_GETRES: /* resolution of the clock in 10^-15 s */
394 if(copy_to_user((unsigned long __user *)arg,
395 &mmtimer_femtoperiod, sizeof(unsigned long)))
396 ret = -EFAULT;
397 break;
398
399 case MMTIMER_GETFREQ: /* frequency in Hz */
400 if(copy_to_user((unsigned long __user *)arg,
401 &sn_rtc_cycles_per_second,
402 sizeof(unsigned long)))
403 ret = -EFAULT;
404 break;
405
406 case MMTIMER_GETBITS: /* number of bits in the clock */
407 ret = RTC_BITS;
408 break;
409
410 case MMTIMER_MMAPAVAIL: /* can we mmap the clock into userspace? */
411 ret = (PAGE_SIZE <= (1 << 16)) ? 1 : 0;
412 break;
413
414 case MMTIMER_GETCOUNTER:
415 if(copy_to_user((unsigned long __user *)arg,
416 RTC_COUNTER_ADDR, sizeof(unsigned long)))
417 ret = -EFAULT;
418 break;
419 default:
420 ret = -ENOTTY;
421 break;
422 }
423 mutex_unlock(&mmtimer_mutex);
424 return ret;
425 }
426
427 /**
428 * mmtimer_mmap - maps the clock's registers into userspace
429 * @file: file structure for the device
430 * @vma: VMA to map the registers into
431 *
432 * Calls remap_pfn_range() to map the clock's registers into
433 * the calling process' address space.
434 */
435 static int mmtimer_mmap(struct file *file, struct vm_area_struct *vma)
436 {
437 unsigned long mmtimer_addr;
438
439 if (vma->vm_end - vma->vm_start != PAGE_SIZE)
440 return -EINVAL;
441
442 if (vma->vm_flags & VM_WRITE)
443 return -EPERM;
444
445 if (PAGE_SIZE > (1 << 16))
446 return -ENOSYS;
447
448 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
449
450 mmtimer_addr = __pa(RTC_COUNTER_ADDR);
451 mmtimer_addr &= ~(PAGE_SIZE - 1);
452 mmtimer_addr &= 0xfffffffffffffffUL;
453
454 if (remap_pfn_range(vma, vma->vm_start, mmtimer_addr >> PAGE_SHIFT,
455 PAGE_SIZE, vma->vm_page_prot)) {
456 printk(KERN_ERR "remap_pfn_range failed in mmtimer.c\n");
457 return -EAGAIN;
458 }
459
460 return 0;
461 }
462
463 static struct miscdevice mmtimer_miscdev = {
464 SGI_MMTIMER,
465 MMTIMER_NAME,
466 &mmtimer_fops
467 };
468
469 static struct timespec sgi_clock_offset;
470 static int sgi_clock_period;
471
472 /*
473 * Posix Timer Interface
474 */
475
476 static struct timespec sgi_clock_offset;
477 static int sgi_clock_period;
478
479 static int sgi_clock_get(clockid_t clockid, struct timespec *tp)
480 {
481 u64 nsec;
482
483 nsec = rtc_time() * sgi_clock_period
484 + sgi_clock_offset.tv_nsec;
485 *tp = ns_to_timespec(nsec);
486 tp->tv_sec += sgi_clock_offset.tv_sec;
487 return 0;
488 };
489
490 static int sgi_clock_set(clockid_t clockid, struct timespec *tp)
491 {
492
493 u64 nsec;
494 u32 rem;
495
496 nsec = rtc_time() * sgi_clock_period;
497
498 sgi_clock_offset.tv_sec = tp->tv_sec - div_u64_rem(nsec, NSEC_PER_SEC, &rem);
499
500 if (rem <= tp->tv_nsec)
501 sgi_clock_offset.tv_nsec = tp->tv_sec - rem;
502 else {
503 sgi_clock_offset.tv_nsec = tp->tv_sec + NSEC_PER_SEC - rem;
504 sgi_clock_offset.tv_sec--;
505 }
506 return 0;
507 }
508
509 /**
510 * mmtimer_interrupt - timer interrupt handler
511 * @irq: irq received
512 * @dev_id: device the irq came from
513 *
514 * Called when one of the comarators matches the counter, This
515 * routine will send signals to processes that have requested
516 * them.
517 *
518 * This interrupt is run in an interrupt context
519 * by the SHUB. It is therefore safe to locally access SHub
520 * registers.
521 */
522 static irqreturn_t
523 mmtimer_interrupt(int irq, void *dev_id)
524 {
525 unsigned long expires = 0;
526 int result = IRQ_NONE;
527 unsigned indx = cpu_to_node(smp_processor_id());
528 struct mmtimer *base;
529
530 spin_lock(&timers[indx].lock);
531 base = rb_entry(timers[indx].next, struct mmtimer, list);
532 if (base == NULL) {
533 spin_unlock(&timers[indx].lock);
534 return result;
535 }
536
537 if (base->cpu == smp_processor_id()) {
538 if (base->timer)
539 expires = base->timer->it.mmtimer.expires;
540 /* expires test won't work with shared irqs */
541 if ((mmtimer_int_pending(COMPARATOR) > 0) ||
542 (expires && (expires <= rtc_time()))) {
543 mmtimer_clr_int_pending(COMPARATOR);
544 tasklet_schedule(&timers[indx].tasklet);
545 result = IRQ_HANDLED;
546 }
547 }
548 spin_unlock(&timers[indx].lock);
549 return result;
550 }
551
552 static void mmtimer_tasklet(unsigned long data)
553 {
554 int nodeid = data;
555 struct mmtimer_node *mn = &timers[nodeid];
556 struct mmtimer *x;
557 struct k_itimer *t;
558 unsigned long flags;
559
560 /* Send signal and deal with periodic signals */
561 spin_lock_irqsave(&mn->lock, flags);
562 if (!mn->next)
563 goto out;
564
565 x = rb_entry(mn->next, struct mmtimer, list);
566 t = x->timer;
567
568 if (t->it.mmtimer.clock == TIMER_OFF)
569 goto out;
570
571 t->it_overrun = 0;
572
573 mn->next = rb_next(&x->list);
574 rb_erase(&x->list, &mn->timer_head);
575
576 if (posix_timer_event(t, 0) != 0)
577 t->it_overrun++;
578
579 if(t->it.mmtimer.incr) {
580 t->it.mmtimer.expires += t->it.mmtimer.incr;
581 mmtimer_add_list(x);
582 } else {
583 /* Ensure we don't false trigger in mmtimer_interrupt */
584 t->it.mmtimer.clock = TIMER_OFF;
585 t->it.mmtimer.expires = 0;
586 kfree(x);
587 }
588 /* Set comparator for next timer, if there is one */
589 mmtimer_set_next_timer(nodeid);
590
591 t->it_overrun_last = t->it_overrun;
592 out:
593 spin_unlock_irqrestore(&mn->lock, flags);
594 }
595
596 static int sgi_timer_create(struct k_itimer *timer)
597 {
598 /* Insure that a newly created timer is off */
599 timer->it.mmtimer.clock = TIMER_OFF;
600 return 0;
601 }
602
603 /* This does not really delete a timer. It just insures
604 * that the timer is not active
605 *
606 * Assumption: it_lock is already held with irq's disabled
607 */
608 static int sgi_timer_del(struct k_itimer *timr)
609 {
610 cnodeid_t nodeid = timr->it.mmtimer.node;
611 unsigned long irqflags;
612
613 spin_lock_irqsave(&timers[nodeid].lock, irqflags);
614 if (timr->it.mmtimer.clock != TIMER_OFF) {
615 unsigned long expires = timr->it.mmtimer.expires;
616 struct rb_node *n = timers[nodeid].timer_head.rb_node;
617 struct mmtimer *uninitialized_var(t);
618 int r = 0;
619
620 timr->it.mmtimer.clock = TIMER_OFF;
621 timr->it.mmtimer.expires = 0;
622
623 while (n) {
624 t = rb_entry(n, struct mmtimer, list);
625 if (t->timer == timr)
626 break;
627
628 if (expires < t->timer->it.mmtimer.expires)
629 n = n->rb_left;
630 else
631 n = n->rb_right;
632 }
633
634 if (!n) {
635 spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
636 return 0;
637 }
638
639 if (timers[nodeid].next == n) {
640 timers[nodeid].next = rb_next(n);
641 r = 1;
642 }
643
644 rb_erase(n, &timers[nodeid].timer_head);
645 kfree(t);
646
647 if (r) {
648 mmtimer_disable_int(cnodeid_to_nasid(nodeid),
649 COMPARATOR);
650 mmtimer_set_next_timer(nodeid);
651 }
652 }
653 spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
654 return 0;
655 }
656
657 /* Assumption: it_lock is already held with irq's disabled */
658 static void sgi_timer_get(struct k_itimer *timr, struct itimerspec *cur_setting)
659 {
660
661 if (timr->it.mmtimer.clock == TIMER_OFF) {
662 cur_setting->it_interval.tv_nsec = 0;
663 cur_setting->it_interval.tv_sec = 0;
664 cur_setting->it_value.tv_nsec = 0;
665 cur_setting->it_value.tv_sec =0;
666 return;
667 }
668
669 cur_setting->it_interval = ns_to_timespec(timr->it.mmtimer.incr * sgi_clock_period);
670 cur_setting->it_value = ns_to_timespec((timr->it.mmtimer.expires - rtc_time()) * sgi_clock_period);
671 }
672
673
674 static int sgi_timer_set(struct k_itimer *timr, int flags,
675 struct itimerspec * new_setting,
676 struct itimerspec * old_setting)
677 {
678 unsigned long when, period, irqflags;
679 int err = 0;
680 cnodeid_t nodeid;
681 struct mmtimer *base;
682 struct rb_node *n;
683
684 if (old_setting)
685 sgi_timer_get(timr, old_setting);
686
687 sgi_timer_del(timr);
688 when = timespec_to_ns(&new_setting->it_value);
689 period = timespec_to_ns(&new_setting->it_interval);
690
691 if (when == 0)
692 /* Clear timer */
693 return 0;
694
695 base = kmalloc(sizeof(struct mmtimer), GFP_KERNEL);
696 if (base == NULL)
697 return -ENOMEM;
698
699 if (flags & TIMER_ABSTIME) {
700 struct timespec n;
701 unsigned long now;
702
703 getnstimeofday(&n);
704 now = timespec_to_ns(&n);
705 if (when > now)
706 when -= now;
707 else
708 /* Fire the timer immediately */
709 when = 0;
710 }
711
712 /*
713 * Convert to sgi clock period. Need to keep rtc_time() as near as possible
714 * to getnstimeofday() in order to be as faithful as possible to the time
715 * specified.
716 */
717 when = (when + sgi_clock_period - 1) / sgi_clock_period + rtc_time();
718 period = (period + sgi_clock_period - 1) / sgi_clock_period;
719
720 /*
721 * We are allocating a local SHub comparator. If we would be moved to another
722 * cpu then another SHub may be local to us. Prohibit that by switching off
723 * preemption.
724 */
725 preempt_disable();
726
727 nodeid = cpu_to_node(smp_processor_id());
728
729 /* Lock the node timer structure */
730 spin_lock_irqsave(&timers[nodeid].lock, irqflags);
731
732 base->timer = timr;
733 base->cpu = smp_processor_id();
734
735 timr->it.mmtimer.clock = TIMER_SET;
736 timr->it.mmtimer.node = nodeid;
737 timr->it.mmtimer.incr = period;
738 timr->it.mmtimer.expires = when;
739
740 n = timers[nodeid].next;
741
742 /* Add the new struct mmtimer to node's timer list */
743 mmtimer_add_list(base);
744
745 if (timers[nodeid].next == n) {
746 /* No need to reprogram comparator for now */
747 spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
748 preempt_enable();
749 return err;
750 }
751
752 /* We need to reprogram the comparator */
753 if (n)
754 mmtimer_disable_int(cnodeid_to_nasid(nodeid), COMPARATOR);
755
756 mmtimer_set_next_timer(nodeid);
757
758 /* Unlock the node timer structure */
759 spin_unlock_irqrestore(&timers[nodeid].lock, irqflags);
760
761 preempt_enable();
762
763 return err;
764 }
765
766 static struct k_clock sgi_clock = {
767 .res = 0,
768 .clock_set = sgi_clock_set,
769 .clock_get = sgi_clock_get,
770 .timer_create = sgi_timer_create,
771 .nsleep = do_posix_clock_nonanosleep,
772 .timer_set = sgi_timer_set,
773 .timer_del = sgi_timer_del,
774 .timer_get = sgi_timer_get
775 };
776
777 /**
778 * mmtimer_init - device initialization routine
779 *
780 * Does initial setup for the mmtimer device.
781 */
782 static int __init mmtimer_init(void)
783 {
784 cnodeid_t node, maxn = -1;
785
786 if (!ia64_platform_is("sn2"))
787 return 0;
788
789 /*
790 * Sanity check the cycles/sec variable
791 */
792 if (sn_rtc_cycles_per_second < 100000) {
793 printk(KERN_ERR "%s: unable to determine clock frequency\n",
794 MMTIMER_NAME);
795 goto out1;
796 }
797
798 mmtimer_femtoperiod = ((unsigned long)1E15 + sn_rtc_cycles_per_second /
799 2) / sn_rtc_cycles_per_second;
800
801 if (request_irq(SGI_MMTIMER_VECTOR, mmtimer_interrupt, IRQF_PERCPU, MMTIMER_NAME, NULL)) {
802 printk(KERN_WARNING "%s: unable to allocate interrupt.",
803 MMTIMER_NAME);
804 goto out1;
805 }
806
807 if (misc_register(&mmtimer_miscdev)) {
808 printk(KERN_ERR "%s: failed to register device\n",
809 MMTIMER_NAME);
810 goto out2;
811 }
812
813 /* Get max numbered node, calculate slots needed */
814 for_each_online_node(node) {
815 maxn = node;
816 }
817 maxn++;
818
819 /* Allocate list of node ptrs to mmtimer_t's */
820 timers = kzalloc(sizeof(struct mmtimer_node)*maxn, GFP_KERNEL);
821 if (timers == NULL) {
822 printk(KERN_ERR "%s: failed to allocate memory for device\n",
823 MMTIMER_NAME);
824 goto out3;
825 }
826
827 /* Initialize struct mmtimer's for each online node */
828 for_each_online_node(node) {
829 spin_lock_init(&timers[node].lock);
830 tasklet_init(&timers[node].tasklet, mmtimer_tasklet,
831 (unsigned long) node);
832 }
833
834 sgi_clock_period = sgi_clock.res = NSEC_PER_SEC / sn_rtc_cycles_per_second;
835 register_posix_clock(CLOCK_SGI_CYCLE, &sgi_clock);
836
837 printk(KERN_INFO "%s: v%s, %ld MHz\n", MMTIMER_DESC, MMTIMER_VERSION,
838 sn_rtc_cycles_per_second/(unsigned long)1E6);
839
840 return 0;
841
842 out3:
843 kfree(timers);
844 misc_deregister(&mmtimer_miscdev);
845 out2:
846 free_irq(SGI_MMTIMER_VECTOR, NULL);
847 out1:
848 return -1;
849 }
850
851 module_init(mmtimer_init);