rbd: use reference counts for image requests
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / block / rbd.c
1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG /* Activate rbd_assert() calls */
48
49 /*
50 * The basic unit of block I/O is a sector. It is interpreted in a
51 * number of contexts in Linux (blk, bio, genhd), but the default is
52 * universally 512 bytes. These symbols are just slightly more
53 * meaningful than the bare numbers they represent.
54 */
55 #define SECTOR_SHIFT 9
56 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
57
58 /*
59 * Increment the given counter and return its updated value.
60 * If the counter is already 0 it will not be incremented.
61 * If the counter is already at its maximum value returns
62 * -EINVAL without updating it.
63 */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66 unsigned int counter;
67
68 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69 if (counter <= (unsigned int)INT_MAX)
70 return (int)counter;
71
72 atomic_dec(v);
73
74 return -EINVAL;
75 }
76
77 /* Decrement the counter. Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80 int counter;
81
82 counter = atomic_dec_return(v);
83 if (counter >= 0)
84 return counter;
85
86 atomic_inc(v);
87
88 return -EINVAL;
89 }
90
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93
94 #define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */
95
96 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
97 #define RBD_MAX_SNAP_NAME_LEN \
98 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99
100 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
101
102 #define RBD_SNAP_HEAD_NAME "-"
103
104 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
105
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX 64
109
110 #define RBD_OBJ_PREFIX_LEN_MAX 64
111
112 /* Feature bits */
113
114 #define RBD_FEATURE_LAYERING (1<<0)
115 #define RBD_FEATURE_STRIPINGV2 (1<<1)
116 #define RBD_FEATURES_ALL \
117 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118
119 /* Features supported by this (client software) implementation. */
120
121 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
122
123 /*
124 * An RBD device name will be "rbd#", where the "rbd" comes from
125 * RBD_DRV_NAME above, and # is a unique integer identifier.
126 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127 * enough to hold all possible device names.
128 */
129 #define DEV_NAME_LEN 32
130 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
131
132 /*
133 * block device image metadata (in-memory version)
134 */
135 struct rbd_image_header {
136 /* These six fields never change for a given rbd image */
137 char *object_prefix;
138 __u8 obj_order;
139 __u8 crypt_type;
140 __u8 comp_type;
141 u64 stripe_unit;
142 u64 stripe_count;
143 u64 features; /* Might be changeable someday? */
144
145 /* The remaining fields need to be updated occasionally */
146 u64 image_size;
147 struct ceph_snap_context *snapc;
148 char *snap_names; /* format 1 only */
149 u64 *snap_sizes; /* format 1 only */
150 };
151
152 /*
153 * An rbd image specification.
154 *
155 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156 * identify an image. Each rbd_dev structure includes a pointer to
157 * an rbd_spec structure that encapsulates this identity.
158 *
159 * Each of the id's in an rbd_spec has an associated name. For a
160 * user-mapped image, the names are supplied and the id's associated
161 * with them are looked up. For a layered image, a parent image is
162 * defined by the tuple, and the names are looked up.
163 *
164 * An rbd_dev structure contains a parent_spec pointer which is
165 * non-null if the image it represents is a child in a layered
166 * image. This pointer will refer to the rbd_spec structure used
167 * by the parent rbd_dev for its own identity (i.e., the structure
168 * is shared between the parent and child).
169 *
170 * Since these structures are populated once, during the discovery
171 * phase of image construction, they are effectively immutable so
172 * we make no effort to synchronize access to them.
173 *
174 * Note that code herein does not assume the image name is known (it
175 * could be a null pointer).
176 */
177 struct rbd_spec {
178 u64 pool_id;
179 const char *pool_name;
180
181 const char *image_id;
182 const char *image_name;
183
184 u64 snap_id;
185 const char *snap_name;
186
187 struct kref kref;
188 };
189
190 /*
191 * an instance of the client. multiple devices may share an rbd client.
192 */
193 struct rbd_client {
194 struct ceph_client *client;
195 struct kref kref;
196 struct list_head node;
197 };
198
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201
202 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
203
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206
207 enum obj_request_type {
208 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210
211 enum obj_req_flags {
212 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
213 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
214 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
215 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
216 };
217
218 struct rbd_obj_request {
219 const char *object_name;
220 u64 offset; /* object start byte */
221 u64 length; /* bytes from offset */
222 unsigned long flags;
223
224 /*
225 * An object request associated with an image will have its
226 * img_data flag set; a standalone object request will not.
227 *
228 * A standalone object request will have which == BAD_WHICH
229 * and a null obj_request pointer.
230 *
231 * An object request initiated in support of a layered image
232 * object (to check for its existence before a write) will
233 * have which == BAD_WHICH and a non-null obj_request pointer.
234 *
235 * Finally, an object request for rbd image data will have
236 * which != BAD_WHICH, and will have a non-null img_request
237 * pointer. The value of which will be in the range
238 * 0..(img_request->obj_request_count-1).
239 */
240 union {
241 struct rbd_obj_request *obj_request; /* STAT op */
242 struct {
243 struct rbd_img_request *img_request;
244 u64 img_offset;
245 /* links for img_request->obj_requests list */
246 struct list_head links;
247 };
248 };
249 u32 which; /* posn image request list */
250
251 enum obj_request_type type;
252 union {
253 struct bio *bio_list;
254 struct {
255 struct page **pages;
256 u32 page_count;
257 };
258 };
259 struct page **copyup_pages;
260 u32 copyup_page_count;
261
262 struct ceph_osd_request *osd_req;
263
264 u64 xferred; /* bytes transferred */
265 int result;
266
267 rbd_obj_callback_t callback;
268 struct completion completion;
269
270 struct kref kref;
271 };
272
273 enum img_req_flags {
274 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
275 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
276 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
277 };
278
279 struct rbd_img_request {
280 struct rbd_device *rbd_dev;
281 u64 offset; /* starting image byte offset */
282 u64 length; /* byte count from offset */
283 unsigned long flags;
284 union {
285 u64 snap_id; /* for reads */
286 struct ceph_snap_context *snapc; /* for writes */
287 };
288 union {
289 struct request *rq; /* block request */
290 struct rbd_obj_request *obj_request; /* obj req initiator */
291 };
292 struct page **copyup_pages;
293 u32 copyup_page_count;
294 spinlock_t completion_lock;/* protects next_completion */
295 u32 next_completion;
296 rbd_img_callback_t callback;
297 u64 xferred;/* aggregate bytes transferred */
298 int result; /* first nonzero obj_request result */
299
300 u32 obj_request_count;
301 struct list_head obj_requests; /* rbd_obj_request structs */
302
303 struct kref kref;
304 };
305
306 #define for_each_obj_request(ireq, oreq) \
307 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312
313 struct rbd_mapping {
314 u64 size;
315 u64 features;
316 bool read_only;
317 };
318
319 /*
320 * a single device
321 */
322 struct rbd_device {
323 int dev_id; /* blkdev unique id */
324
325 int major; /* blkdev assigned major */
326 struct gendisk *disk; /* blkdev's gendisk and rq */
327
328 u32 image_format; /* Either 1 or 2 */
329 struct rbd_client *rbd_client;
330
331 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332
333 spinlock_t lock; /* queue, flags, open_count */
334
335 struct rbd_image_header header;
336 unsigned long flags; /* possibly lock protected */
337 struct rbd_spec *spec;
338
339 char *header_name;
340
341 struct ceph_file_layout layout;
342
343 struct ceph_osd_event *watch_event;
344 struct rbd_obj_request *watch_request;
345
346 struct rbd_spec *parent_spec;
347 u64 parent_overlap;
348 atomic_t parent_ref;
349 struct rbd_device *parent;
350
351 /* protects updating the header */
352 struct rw_semaphore header_rwsem;
353
354 struct rbd_mapping mapping;
355
356 struct list_head node;
357
358 /* sysfs related */
359 struct device dev;
360 unsigned long open_count; /* protected by lock */
361 };
362
363 /*
364 * Flag bits for rbd_dev->flags. If atomicity is required,
365 * rbd_dev->lock is used to protect access.
366 *
367 * Currently, only the "removing" flag (which is coupled with the
368 * "open_count" field) requires atomic access.
369 */
370 enum rbd_dev_flags {
371 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
372 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
373 };
374
375 static DEFINE_MUTEX(ctl_mutex); /* Serialize open/close/setup/teardown */
376
377 static LIST_HEAD(rbd_dev_list); /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379
380 static LIST_HEAD(rbd_client_list); /* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382
383 /* Slab caches for frequently-allocated structures */
384
385 static struct kmem_cache *rbd_img_request_cache;
386 static struct kmem_cache *rbd_obj_request_cache;
387 static struct kmem_cache *rbd_segment_name_cache;
388
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390
391 static void rbd_dev_device_release(struct device *dev);
392
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394 size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396 size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399
400 static struct bus_attribute rbd_bus_attrs[] = {
401 __ATTR(add, S_IWUSR, NULL, rbd_add),
402 __ATTR(remove, S_IWUSR, NULL, rbd_remove),
403 __ATTR_NULL
404 };
405
406 static struct bus_type rbd_bus_type = {
407 .name = "rbd",
408 .bus_attrs = rbd_bus_attrs,
409 };
410
411 static void rbd_root_dev_release(struct device *dev)
412 {
413 }
414
415 static struct device rbd_root_dev = {
416 .init_name = "rbd",
417 .release = rbd_root_dev_release,
418 };
419
420 static __printf(2, 3)
421 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
422 {
423 struct va_format vaf;
424 va_list args;
425
426 va_start(args, fmt);
427 vaf.fmt = fmt;
428 vaf.va = &args;
429
430 if (!rbd_dev)
431 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
432 else if (rbd_dev->disk)
433 printk(KERN_WARNING "%s: %s: %pV\n",
434 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
435 else if (rbd_dev->spec && rbd_dev->spec->image_name)
436 printk(KERN_WARNING "%s: image %s: %pV\n",
437 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
438 else if (rbd_dev->spec && rbd_dev->spec->image_id)
439 printk(KERN_WARNING "%s: id %s: %pV\n",
440 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
441 else /* punt */
442 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
443 RBD_DRV_NAME, rbd_dev, &vaf);
444 va_end(args);
445 }
446
447 #ifdef RBD_DEBUG
448 #define rbd_assert(expr) \
449 if (unlikely(!(expr))) { \
450 printk(KERN_ERR "\nAssertion failure in %s() " \
451 "at line %d:\n\n" \
452 "\trbd_assert(%s);\n\n", \
453 __func__, __LINE__, #expr); \
454 BUG(); \
455 }
456 #else /* !RBD_DEBUG */
457 # define rbd_assert(expr) ((void) 0)
458 #endif /* !RBD_DEBUG */
459
460 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
461 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
462 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
463
464 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
465 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
466 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
467 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
468 u64 snap_id);
469 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
470 u8 *order, u64 *snap_size);
471 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
472 u64 *snap_features);
473 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
474
475 static int rbd_open(struct block_device *bdev, fmode_t mode)
476 {
477 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
478 bool removing = false;
479
480 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
481 return -EROFS;
482
483 spin_lock_irq(&rbd_dev->lock);
484 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
485 removing = true;
486 else
487 rbd_dev->open_count++;
488 spin_unlock_irq(&rbd_dev->lock);
489 if (removing)
490 return -ENOENT;
491
492 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
493 (void) get_device(&rbd_dev->dev);
494 set_device_ro(bdev, rbd_dev->mapping.read_only);
495 mutex_unlock(&ctl_mutex);
496
497 return 0;
498 }
499
500 static void rbd_release(struct gendisk *disk, fmode_t mode)
501 {
502 struct rbd_device *rbd_dev = disk->private_data;
503 unsigned long open_count_before;
504
505 spin_lock_irq(&rbd_dev->lock);
506 open_count_before = rbd_dev->open_count--;
507 spin_unlock_irq(&rbd_dev->lock);
508 rbd_assert(open_count_before > 0);
509
510 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
511 put_device(&rbd_dev->dev);
512 mutex_unlock(&ctl_mutex);
513 }
514
515 static const struct block_device_operations rbd_bd_ops = {
516 .owner = THIS_MODULE,
517 .open = rbd_open,
518 .release = rbd_release,
519 };
520
521 /*
522 * Initialize an rbd client instance. Success or not, this function
523 * consumes ceph_opts.
524 */
525 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
526 {
527 struct rbd_client *rbdc;
528 int ret = -ENOMEM;
529
530 dout("%s:\n", __func__);
531 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
532 if (!rbdc)
533 goto out_opt;
534
535 kref_init(&rbdc->kref);
536 INIT_LIST_HEAD(&rbdc->node);
537
538 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
539
540 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
541 if (IS_ERR(rbdc->client))
542 goto out_mutex;
543 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
544
545 ret = ceph_open_session(rbdc->client);
546 if (ret < 0)
547 goto out_err;
548
549 spin_lock(&rbd_client_list_lock);
550 list_add_tail(&rbdc->node, &rbd_client_list);
551 spin_unlock(&rbd_client_list_lock);
552
553 mutex_unlock(&ctl_mutex);
554 dout("%s: rbdc %p\n", __func__, rbdc);
555
556 return rbdc;
557
558 out_err:
559 ceph_destroy_client(rbdc->client);
560 out_mutex:
561 mutex_unlock(&ctl_mutex);
562 kfree(rbdc);
563 out_opt:
564 if (ceph_opts)
565 ceph_destroy_options(ceph_opts);
566 dout("%s: error %d\n", __func__, ret);
567
568 return ERR_PTR(ret);
569 }
570
571 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
572 {
573 kref_get(&rbdc->kref);
574
575 return rbdc;
576 }
577
578 /*
579 * Find a ceph client with specific addr and configuration. If
580 * found, bump its reference count.
581 */
582 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
583 {
584 struct rbd_client *client_node;
585 bool found = false;
586
587 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
588 return NULL;
589
590 spin_lock(&rbd_client_list_lock);
591 list_for_each_entry(client_node, &rbd_client_list, node) {
592 if (!ceph_compare_options(ceph_opts, client_node->client)) {
593 __rbd_get_client(client_node);
594
595 found = true;
596 break;
597 }
598 }
599 spin_unlock(&rbd_client_list_lock);
600
601 return found ? client_node : NULL;
602 }
603
604 /*
605 * mount options
606 */
607 enum {
608 Opt_last_int,
609 /* int args above */
610 Opt_last_string,
611 /* string args above */
612 Opt_read_only,
613 Opt_read_write,
614 /* Boolean args above */
615 Opt_last_bool,
616 };
617
618 static match_table_t rbd_opts_tokens = {
619 /* int args above */
620 /* string args above */
621 {Opt_read_only, "read_only"},
622 {Opt_read_only, "ro"}, /* Alternate spelling */
623 {Opt_read_write, "read_write"},
624 {Opt_read_write, "rw"}, /* Alternate spelling */
625 /* Boolean args above */
626 {-1, NULL}
627 };
628
629 struct rbd_options {
630 bool read_only;
631 };
632
633 #define RBD_READ_ONLY_DEFAULT false
634
635 static int parse_rbd_opts_token(char *c, void *private)
636 {
637 struct rbd_options *rbd_opts = private;
638 substring_t argstr[MAX_OPT_ARGS];
639 int token, intval, ret;
640
641 token = match_token(c, rbd_opts_tokens, argstr);
642 if (token < 0)
643 return -EINVAL;
644
645 if (token < Opt_last_int) {
646 ret = match_int(&argstr[0], &intval);
647 if (ret < 0) {
648 pr_err("bad mount option arg (not int) "
649 "at '%s'\n", c);
650 return ret;
651 }
652 dout("got int token %d val %d\n", token, intval);
653 } else if (token > Opt_last_int && token < Opt_last_string) {
654 dout("got string token %d val %s\n", token,
655 argstr[0].from);
656 } else if (token > Opt_last_string && token < Opt_last_bool) {
657 dout("got Boolean token %d\n", token);
658 } else {
659 dout("got token %d\n", token);
660 }
661
662 switch (token) {
663 case Opt_read_only:
664 rbd_opts->read_only = true;
665 break;
666 case Opt_read_write:
667 rbd_opts->read_only = false;
668 break;
669 default:
670 rbd_assert(false);
671 break;
672 }
673 return 0;
674 }
675
676 /*
677 * Get a ceph client with specific addr and configuration, if one does
678 * not exist create it. Either way, ceph_opts is consumed by this
679 * function.
680 */
681 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
682 {
683 struct rbd_client *rbdc;
684
685 rbdc = rbd_client_find(ceph_opts);
686 if (rbdc) /* using an existing client */
687 ceph_destroy_options(ceph_opts);
688 else
689 rbdc = rbd_client_create(ceph_opts);
690
691 return rbdc;
692 }
693
694 /*
695 * Destroy ceph client
696 *
697 * Caller must hold rbd_client_list_lock.
698 */
699 static void rbd_client_release(struct kref *kref)
700 {
701 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
702
703 dout("%s: rbdc %p\n", __func__, rbdc);
704 spin_lock(&rbd_client_list_lock);
705 list_del(&rbdc->node);
706 spin_unlock(&rbd_client_list_lock);
707
708 ceph_destroy_client(rbdc->client);
709 kfree(rbdc);
710 }
711
712 /*
713 * Drop reference to ceph client node. If it's not referenced anymore, release
714 * it.
715 */
716 static void rbd_put_client(struct rbd_client *rbdc)
717 {
718 if (rbdc)
719 kref_put(&rbdc->kref, rbd_client_release);
720 }
721
722 static bool rbd_image_format_valid(u32 image_format)
723 {
724 return image_format == 1 || image_format == 2;
725 }
726
727 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
728 {
729 size_t size;
730 u32 snap_count;
731
732 /* The header has to start with the magic rbd header text */
733 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
734 return false;
735
736 /* The bio layer requires at least sector-sized I/O */
737
738 if (ondisk->options.order < SECTOR_SHIFT)
739 return false;
740
741 /* If we use u64 in a few spots we may be able to loosen this */
742
743 if (ondisk->options.order > 8 * sizeof (int) - 1)
744 return false;
745
746 /*
747 * The size of a snapshot header has to fit in a size_t, and
748 * that limits the number of snapshots.
749 */
750 snap_count = le32_to_cpu(ondisk->snap_count);
751 size = SIZE_MAX - sizeof (struct ceph_snap_context);
752 if (snap_count > size / sizeof (__le64))
753 return false;
754
755 /*
756 * Not only that, but the size of the entire the snapshot
757 * header must also be representable in a size_t.
758 */
759 size -= snap_count * sizeof (__le64);
760 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
761 return false;
762
763 return true;
764 }
765
766 /*
767 * Fill an rbd image header with information from the given format 1
768 * on-disk header.
769 */
770 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
771 struct rbd_image_header_ondisk *ondisk)
772 {
773 struct rbd_image_header *header = &rbd_dev->header;
774 bool first_time = header->object_prefix == NULL;
775 struct ceph_snap_context *snapc;
776 char *object_prefix = NULL;
777 char *snap_names = NULL;
778 u64 *snap_sizes = NULL;
779 u32 snap_count;
780 size_t size;
781 int ret = -ENOMEM;
782 u32 i;
783
784 /* Allocate this now to avoid having to handle failure below */
785
786 if (first_time) {
787 size_t len;
788
789 len = strnlen(ondisk->object_prefix,
790 sizeof (ondisk->object_prefix));
791 object_prefix = kmalloc(len + 1, GFP_KERNEL);
792 if (!object_prefix)
793 return -ENOMEM;
794 memcpy(object_prefix, ondisk->object_prefix, len);
795 object_prefix[len] = '\0';
796 }
797
798 /* Allocate the snapshot context and fill it in */
799
800 snap_count = le32_to_cpu(ondisk->snap_count);
801 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
802 if (!snapc)
803 goto out_err;
804 snapc->seq = le64_to_cpu(ondisk->snap_seq);
805 if (snap_count) {
806 struct rbd_image_snap_ondisk *snaps;
807 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
808
809 /* We'll keep a copy of the snapshot names... */
810
811 if (snap_names_len > (u64)SIZE_MAX)
812 goto out_2big;
813 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
814 if (!snap_names)
815 goto out_err;
816
817 /* ...as well as the array of their sizes. */
818
819 size = snap_count * sizeof (*header->snap_sizes);
820 snap_sizes = kmalloc(size, GFP_KERNEL);
821 if (!snap_sizes)
822 goto out_err;
823
824 /*
825 * Copy the names, and fill in each snapshot's id
826 * and size.
827 *
828 * Note that rbd_dev_v1_header_info() guarantees the
829 * ondisk buffer we're working with has
830 * snap_names_len bytes beyond the end of the
831 * snapshot id array, this memcpy() is safe.
832 */
833 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
834 snaps = ondisk->snaps;
835 for (i = 0; i < snap_count; i++) {
836 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
837 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
838 }
839 }
840
841 /* We won't fail any more, fill in the header */
842
843 down_write(&rbd_dev->header_rwsem);
844 if (first_time) {
845 header->object_prefix = object_prefix;
846 header->obj_order = ondisk->options.order;
847 header->crypt_type = ondisk->options.crypt_type;
848 header->comp_type = ondisk->options.comp_type;
849 /* The rest aren't used for format 1 images */
850 header->stripe_unit = 0;
851 header->stripe_count = 0;
852 header->features = 0;
853 } else {
854 ceph_put_snap_context(header->snapc);
855 kfree(header->snap_names);
856 kfree(header->snap_sizes);
857 }
858
859 /* The remaining fields always get updated (when we refresh) */
860
861 header->image_size = le64_to_cpu(ondisk->image_size);
862 header->snapc = snapc;
863 header->snap_names = snap_names;
864 header->snap_sizes = snap_sizes;
865
866 /* Make sure mapping size is consistent with header info */
867
868 if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
869 if (rbd_dev->mapping.size != header->image_size)
870 rbd_dev->mapping.size = header->image_size;
871
872 up_write(&rbd_dev->header_rwsem);
873
874 return 0;
875 out_2big:
876 ret = -EIO;
877 out_err:
878 kfree(snap_sizes);
879 kfree(snap_names);
880 ceph_put_snap_context(snapc);
881 kfree(object_prefix);
882
883 return ret;
884 }
885
886 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
887 {
888 const char *snap_name;
889
890 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
891
892 /* Skip over names until we find the one we are looking for */
893
894 snap_name = rbd_dev->header.snap_names;
895 while (which--)
896 snap_name += strlen(snap_name) + 1;
897
898 return kstrdup(snap_name, GFP_KERNEL);
899 }
900
901 /*
902 * Snapshot id comparison function for use with qsort()/bsearch().
903 * Note that result is for snapshots in *descending* order.
904 */
905 static int snapid_compare_reverse(const void *s1, const void *s2)
906 {
907 u64 snap_id1 = *(u64 *)s1;
908 u64 snap_id2 = *(u64 *)s2;
909
910 if (snap_id1 < snap_id2)
911 return 1;
912 return snap_id1 == snap_id2 ? 0 : -1;
913 }
914
915 /*
916 * Search a snapshot context to see if the given snapshot id is
917 * present.
918 *
919 * Returns the position of the snapshot id in the array if it's found,
920 * or BAD_SNAP_INDEX otherwise.
921 *
922 * Note: The snapshot array is in kept sorted (by the osd) in
923 * reverse order, highest snapshot id first.
924 */
925 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
926 {
927 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
928 u64 *found;
929
930 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
931 sizeof (snap_id), snapid_compare_reverse);
932
933 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
934 }
935
936 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
937 u64 snap_id)
938 {
939 u32 which;
940 const char *snap_name;
941
942 which = rbd_dev_snap_index(rbd_dev, snap_id);
943 if (which == BAD_SNAP_INDEX)
944 return ERR_PTR(-ENOENT);
945
946 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
947 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
948 }
949
950 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
951 {
952 if (snap_id == CEPH_NOSNAP)
953 return RBD_SNAP_HEAD_NAME;
954
955 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
956 if (rbd_dev->image_format == 1)
957 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
958
959 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
960 }
961
962 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
963 u64 *snap_size)
964 {
965 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
966 if (snap_id == CEPH_NOSNAP) {
967 *snap_size = rbd_dev->header.image_size;
968 } else if (rbd_dev->image_format == 1) {
969 u32 which;
970
971 which = rbd_dev_snap_index(rbd_dev, snap_id);
972 if (which == BAD_SNAP_INDEX)
973 return -ENOENT;
974
975 *snap_size = rbd_dev->header.snap_sizes[which];
976 } else {
977 u64 size = 0;
978 int ret;
979
980 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
981 if (ret)
982 return ret;
983
984 *snap_size = size;
985 }
986 return 0;
987 }
988
989 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
990 u64 *snap_features)
991 {
992 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
993 if (snap_id == CEPH_NOSNAP) {
994 *snap_features = rbd_dev->header.features;
995 } else if (rbd_dev->image_format == 1) {
996 *snap_features = 0; /* No features for format 1 */
997 } else {
998 u64 features = 0;
999 int ret;
1000
1001 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
1002 if (ret)
1003 return ret;
1004
1005 *snap_features = features;
1006 }
1007 return 0;
1008 }
1009
1010 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1011 {
1012 u64 snap_id = rbd_dev->spec->snap_id;
1013 u64 size = 0;
1014 u64 features = 0;
1015 int ret;
1016
1017 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1018 if (ret)
1019 return ret;
1020 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1021 if (ret)
1022 return ret;
1023
1024 rbd_dev->mapping.size = size;
1025 rbd_dev->mapping.features = features;
1026
1027 return 0;
1028 }
1029
1030 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1031 {
1032 rbd_dev->mapping.size = 0;
1033 rbd_dev->mapping.features = 0;
1034 }
1035
1036 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1037 {
1038 char *name;
1039 u64 segment;
1040 int ret;
1041 char *name_format;
1042
1043 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1044 if (!name)
1045 return NULL;
1046 segment = offset >> rbd_dev->header.obj_order;
1047 name_format = "%s.%012llx";
1048 if (rbd_dev->image_format == 2)
1049 name_format = "%s.%016llx";
1050 ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, name_format,
1051 rbd_dev->header.object_prefix, segment);
1052 if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1053 pr_err("error formatting segment name for #%llu (%d)\n",
1054 segment, ret);
1055 kfree(name);
1056 name = NULL;
1057 }
1058
1059 return name;
1060 }
1061
1062 static void rbd_segment_name_free(const char *name)
1063 {
1064 /* The explicit cast here is needed to drop the const qualifier */
1065
1066 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1067 }
1068
1069 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1070 {
1071 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1072
1073 return offset & (segment_size - 1);
1074 }
1075
1076 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1077 u64 offset, u64 length)
1078 {
1079 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1080
1081 offset &= segment_size - 1;
1082
1083 rbd_assert(length <= U64_MAX - offset);
1084 if (offset + length > segment_size)
1085 length = segment_size - offset;
1086
1087 return length;
1088 }
1089
1090 /*
1091 * returns the size of an object in the image
1092 */
1093 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1094 {
1095 return 1 << header->obj_order;
1096 }
1097
1098 /*
1099 * bio helpers
1100 */
1101
1102 static void bio_chain_put(struct bio *chain)
1103 {
1104 struct bio *tmp;
1105
1106 while (chain) {
1107 tmp = chain;
1108 chain = chain->bi_next;
1109 bio_put(tmp);
1110 }
1111 }
1112
1113 /*
1114 * zeros a bio chain, starting at specific offset
1115 */
1116 static void zero_bio_chain(struct bio *chain, int start_ofs)
1117 {
1118 struct bio_vec *bv;
1119 unsigned long flags;
1120 void *buf;
1121 int i;
1122 int pos = 0;
1123
1124 while (chain) {
1125 bio_for_each_segment(bv, chain, i) {
1126 if (pos + bv->bv_len > start_ofs) {
1127 int remainder = max(start_ofs - pos, 0);
1128 buf = bvec_kmap_irq(bv, &flags);
1129 memset(buf + remainder, 0,
1130 bv->bv_len - remainder);
1131 flush_dcache_page(bv->bv_page);
1132 bvec_kunmap_irq(buf, &flags);
1133 }
1134 pos += bv->bv_len;
1135 }
1136
1137 chain = chain->bi_next;
1138 }
1139 }
1140
1141 /*
1142 * similar to zero_bio_chain(), zeros data defined by a page array,
1143 * starting at the given byte offset from the start of the array and
1144 * continuing up to the given end offset. The pages array is
1145 * assumed to be big enough to hold all bytes up to the end.
1146 */
1147 static void zero_pages(struct page **pages, u64 offset, u64 end)
1148 {
1149 struct page **page = &pages[offset >> PAGE_SHIFT];
1150
1151 rbd_assert(end > offset);
1152 rbd_assert(end - offset <= (u64)SIZE_MAX);
1153 while (offset < end) {
1154 size_t page_offset;
1155 size_t length;
1156 unsigned long flags;
1157 void *kaddr;
1158
1159 page_offset = (size_t)(offset & ~PAGE_MASK);
1160 length = min(PAGE_SIZE - page_offset, (size_t)(end - offset));
1161 local_irq_save(flags);
1162 kaddr = kmap_atomic(*page);
1163 memset(kaddr + page_offset, 0, length);
1164 flush_dcache_page(*page);
1165 kunmap_atomic(kaddr);
1166 local_irq_restore(flags);
1167
1168 offset += length;
1169 page++;
1170 }
1171 }
1172
1173 /*
1174 * Clone a portion of a bio, starting at the given byte offset
1175 * and continuing for the number of bytes indicated.
1176 */
1177 static struct bio *bio_clone_range(struct bio *bio_src,
1178 unsigned int offset,
1179 unsigned int len,
1180 gfp_t gfpmask)
1181 {
1182 struct bio_vec *bv;
1183 unsigned int resid;
1184 unsigned short idx;
1185 unsigned int voff;
1186 unsigned short end_idx;
1187 unsigned short vcnt;
1188 struct bio *bio;
1189
1190 /* Handle the easy case for the caller */
1191
1192 if (!offset && len == bio_src->bi_size)
1193 return bio_clone(bio_src, gfpmask);
1194
1195 if (WARN_ON_ONCE(!len))
1196 return NULL;
1197 if (WARN_ON_ONCE(len > bio_src->bi_size))
1198 return NULL;
1199 if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1200 return NULL;
1201
1202 /* Find first affected segment... */
1203
1204 resid = offset;
1205 bio_for_each_segment(bv, bio_src, idx) {
1206 if (resid < bv->bv_len)
1207 break;
1208 resid -= bv->bv_len;
1209 }
1210 voff = resid;
1211
1212 /* ...and the last affected segment */
1213
1214 resid += len;
1215 __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1216 if (resid <= bv->bv_len)
1217 break;
1218 resid -= bv->bv_len;
1219 }
1220 vcnt = end_idx - idx + 1;
1221
1222 /* Build the clone */
1223
1224 bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1225 if (!bio)
1226 return NULL; /* ENOMEM */
1227
1228 bio->bi_bdev = bio_src->bi_bdev;
1229 bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1230 bio->bi_rw = bio_src->bi_rw;
1231 bio->bi_flags |= 1 << BIO_CLONED;
1232
1233 /*
1234 * Copy over our part of the bio_vec, then update the first
1235 * and last (or only) entries.
1236 */
1237 memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1238 vcnt * sizeof (struct bio_vec));
1239 bio->bi_io_vec[0].bv_offset += voff;
1240 if (vcnt > 1) {
1241 bio->bi_io_vec[0].bv_len -= voff;
1242 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1243 } else {
1244 bio->bi_io_vec[0].bv_len = len;
1245 }
1246
1247 bio->bi_vcnt = vcnt;
1248 bio->bi_size = len;
1249 bio->bi_idx = 0;
1250
1251 return bio;
1252 }
1253
1254 /*
1255 * Clone a portion of a bio chain, starting at the given byte offset
1256 * into the first bio in the source chain and continuing for the
1257 * number of bytes indicated. The result is another bio chain of
1258 * exactly the given length, or a null pointer on error.
1259 *
1260 * The bio_src and offset parameters are both in-out. On entry they
1261 * refer to the first source bio and the offset into that bio where
1262 * the start of data to be cloned is located.
1263 *
1264 * On return, bio_src is updated to refer to the bio in the source
1265 * chain that contains first un-cloned byte, and *offset will
1266 * contain the offset of that byte within that bio.
1267 */
1268 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1269 unsigned int *offset,
1270 unsigned int len,
1271 gfp_t gfpmask)
1272 {
1273 struct bio *bi = *bio_src;
1274 unsigned int off = *offset;
1275 struct bio *chain = NULL;
1276 struct bio **end;
1277
1278 /* Build up a chain of clone bios up to the limit */
1279
1280 if (!bi || off >= bi->bi_size || !len)
1281 return NULL; /* Nothing to clone */
1282
1283 end = &chain;
1284 while (len) {
1285 unsigned int bi_size;
1286 struct bio *bio;
1287
1288 if (!bi) {
1289 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1290 goto out_err; /* EINVAL; ran out of bio's */
1291 }
1292 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1293 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1294 if (!bio)
1295 goto out_err; /* ENOMEM */
1296
1297 *end = bio;
1298 end = &bio->bi_next;
1299
1300 off += bi_size;
1301 if (off == bi->bi_size) {
1302 bi = bi->bi_next;
1303 off = 0;
1304 }
1305 len -= bi_size;
1306 }
1307 *bio_src = bi;
1308 *offset = off;
1309
1310 return chain;
1311 out_err:
1312 bio_chain_put(chain);
1313
1314 return NULL;
1315 }
1316
1317 /*
1318 * The default/initial value for all object request flags is 0. For
1319 * each flag, once its value is set to 1 it is never reset to 0
1320 * again.
1321 */
1322 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1323 {
1324 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1325 struct rbd_device *rbd_dev;
1326
1327 rbd_dev = obj_request->img_request->rbd_dev;
1328 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1329 obj_request);
1330 }
1331 }
1332
1333 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1334 {
1335 smp_mb();
1336 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1337 }
1338
1339 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1340 {
1341 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1342 struct rbd_device *rbd_dev = NULL;
1343
1344 if (obj_request_img_data_test(obj_request))
1345 rbd_dev = obj_request->img_request->rbd_dev;
1346 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1347 obj_request);
1348 }
1349 }
1350
1351 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1352 {
1353 smp_mb();
1354 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1355 }
1356
1357 /*
1358 * This sets the KNOWN flag after (possibly) setting the EXISTS
1359 * flag. The latter is set based on the "exists" value provided.
1360 *
1361 * Note that for our purposes once an object exists it never goes
1362 * away again. It's possible that the response from two existence
1363 * checks are separated by the creation of the target object, and
1364 * the first ("doesn't exist") response arrives *after* the second
1365 * ("does exist"). In that case we ignore the second one.
1366 */
1367 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1368 bool exists)
1369 {
1370 if (exists)
1371 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1372 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1373 smp_mb();
1374 }
1375
1376 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1377 {
1378 smp_mb();
1379 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1380 }
1381
1382 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1383 {
1384 smp_mb();
1385 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1386 }
1387
1388 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1389 {
1390 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1391 atomic_read(&obj_request->kref.refcount));
1392 kref_get(&obj_request->kref);
1393 }
1394
1395 static void rbd_obj_request_destroy(struct kref *kref);
1396 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1397 {
1398 rbd_assert(obj_request != NULL);
1399 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1400 atomic_read(&obj_request->kref.refcount));
1401 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1402 }
1403
1404 static void rbd_img_request_get(struct rbd_img_request *img_request)
1405 {
1406 dout("%s: img %p (was %d)\n", __func__, img_request,
1407 atomic_read(&img_request->kref.refcount));
1408 kref_get(&img_request->kref);
1409 }
1410
1411 static bool img_request_child_test(struct rbd_img_request *img_request);
1412 static void rbd_parent_request_destroy(struct kref *kref);
1413 static void rbd_img_request_destroy(struct kref *kref);
1414 static void rbd_img_request_put(struct rbd_img_request *img_request)
1415 {
1416 rbd_assert(img_request != NULL);
1417 dout("%s: img %p (was %d)\n", __func__, img_request,
1418 atomic_read(&img_request->kref.refcount));
1419 if (img_request_child_test(img_request))
1420 kref_put(&img_request->kref, rbd_parent_request_destroy);
1421 else
1422 kref_put(&img_request->kref, rbd_img_request_destroy);
1423 }
1424
1425 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1426 struct rbd_obj_request *obj_request)
1427 {
1428 rbd_assert(obj_request->img_request == NULL);
1429
1430 /* Image request now owns object's original reference */
1431 obj_request->img_request = img_request;
1432 obj_request->which = img_request->obj_request_count;
1433 rbd_assert(!obj_request_img_data_test(obj_request));
1434 obj_request_img_data_set(obj_request);
1435 rbd_assert(obj_request->which != BAD_WHICH);
1436 img_request->obj_request_count++;
1437 list_add_tail(&obj_request->links, &img_request->obj_requests);
1438 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1439 obj_request->which);
1440 }
1441
1442 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1443 struct rbd_obj_request *obj_request)
1444 {
1445 rbd_assert(obj_request->which != BAD_WHICH);
1446
1447 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1448 obj_request->which);
1449 list_del(&obj_request->links);
1450 rbd_assert(img_request->obj_request_count > 0);
1451 img_request->obj_request_count--;
1452 rbd_assert(obj_request->which == img_request->obj_request_count);
1453 obj_request->which = BAD_WHICH;
1454 rbd_assert(obj_request_img_data_test(obj_request));
1455 rbd_assert(obj_request->img_request == img_request);
1456 obj_request->img_request = NULL;
1457 obj_request->callback = NULL;
1458 rbd_obj_request_put(obj_request);
1459 }
1460
1461 static bool obj_request_type_valid(enum obj_request_type type)
1462 {
1463 switch (type) {
1464 case OBJ_REQUEST_NODATA:
1465 case OBJ_REQUEST_BIO:
1466 case OBJ_REQUEST_PAGES:
1467 return true;
1468 default:
1469 return false;
1470 }
1471 }
1472
1473 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1474 struct rbd_obj_request *obj_request)
1475 {
1476 dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1477
1478 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1479 }
1480
1481 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1482 {
1483
1484 dout("%s: img %p\n", __func__, img_request);
1485
1486 /*
1487 * If no error occurred, compute the aggregate transfer
1488 * count for the image request. We could instead use
1489 * atomic64_cmpxchg() to update it as each object request
1490 * completes; not clear which way is better off hand.
1491 */
1492 if (!img_request->result) {
1493 struct rbd_obj_request *obj_request;
1494 u64 xferred = 0;
1495
1496 for_each_obj_request(img_request, obj_request)
1497 xferred += obj_request->xferred;
1498 img_request->xferred = xferred;
1499 }
1500
1501 if (img_request->callback)
1502 img_request->callback(img_request);
1503 else
1504 rbd_img_request_put(img_request);
1505 }
1506
1507 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1508
1509 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1510 {
1511 dout("%s: obj %p\n", __func__, obj_request);
1512
1513 return wait_for_completion_interruptible(&obj_request->completion);
1514 }
1515
1516 /*
1517 * The default/initial value for all image request flags is 0. Each
1518 * is conditionally set to 1 at image request initialization time
1519 * and currently never change thereafter.
1520 */
1521 static void img_request_write_set(struct rbd_img_request *img_request)
1522 {
1523 set_bit(IMG_REQ_WRITE, &img_request->flags);
1524 smp_mb();
1525 }
1526
1527 static bool img_request_write_test(struct rbd_img_request *img_request)
1528 {
1529 smp_mb();
1530 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1531 }
1532
1533 static void img_request_child_set(struct rbd_img_request *img_request)
1534 {
1535 set_bit(IMG_REQ_CHILD, &img_request->flags);
1536 smp_mb();
1537 }
1538
1539 static void img_request_child_clear(struct rbd_img_request *img_request)
1540 {
1541 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1542 smp_mb();
1543 }
1544
1545 static bool img_request_child_test(struct rbd_img_request *img_request)
1546 {
1547 smp_mb();
1548 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1549 }
1550
1551 static void img_request_layered_set(struct rbd_img_request *img_request)
1552 {
1553 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1554 smp_mb();
1555 }
1556
1557 static void img_request_layered_clear(struct rbd_img_request *img_request)
1558 {
1559 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1560 smp_mb();
1561 }
1562
1563 static bool img_request_layered_test(struct rbd_img_request *img_request)
1564 {
1565 smp_mb();
1566 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1567 }
1568
1569 static void
1570 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1571 {
1572 u64 xferred = obj_request->xferred;
1573 u64 length = obj_request->length;
1574
1575 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1576 obj_request, obj_request->img_request, obj_request->result,
1577 xferred, length);
1578 /*
1579 * ENOENT means a hole in the image. We zero-fill the entire
1580 * length of the request. A short read also implies zero-fill
1581 * to the end of the request. An error requires the whole
1582 * length of the request to be reported finished with an error
1583 * to the block layer. In each case we update the xferred
1584 * count to indicate the whole request was satisfied.
1585 */
1586 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1587 if (obj_request->result == -ENOENT) {
1588 if (obj_request->type == OBJ_REQUEST_BIO)
1589 zero_bio_chain(obj_request->bio_list, 0);
1590 else
1591 zero_pages(obj_request->pages, 0, length);
1592 obj_request->result = 0;
1593 } else if (xferred < length && !obj_request->result) {
1594 if (obj_request->type == OBJ_REQUEST_BIO)
1595 zero_bio_chain(obj_request->bio_list, xferred);
1596 else
1597 zero_pages(obj_request->pages, xferred, length);
1598 }
1599 obj_request->xferred = length;
1600 obj_request_done_set(obj_request);
1601 }
1602
1603 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1604 {
1605 dout("%s: obj %p cb %p\n", __func__, obj_request,
1606 obj_request->callback);
1607 if (obj_request->callback)
1608 obj_request->callback(obj_request);
1609 else
1610 complete_all(&obj_request->completion);
1611 }
1612
1613 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1614 {
1615 dout("%s: obj %p\n", __func__, obj_request);
1616 obj_request_done_set(obj_request);
1617 }
1618
1619 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1620 {
1621 struct rbd_img_request *img_request = NULL;
1622 struct rbd_device *rbd_dev = NULL;
1623 bool layered = false;
1624
1625 if (obj_request_img_data_test(obj_request)) {
1626 img_request = obj_request->img_request;
1627 layered = img_request && img_request_layered_test(img_request);
1628 rbd_dev = img_request->rbd_dev;
1629 }
1630
1631 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1632 obj_request, img_request, obj_request->result,
1633 obj_request->xferred, obj_request->length);
1634 if (layered && obj_request->result == -ENOENT &&
1635 obj_request->img_offset < rbd_dev->parent_overlap)
1636 rbd_img_parent_read(obj_request);
1637 else if (img_request)
1638 rbd_img_obj_request_read_callback(obj_request);
1639 else
1640 obj_request_done_set(obj_request);
1641 }
1642
1643 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1644 {
1645 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1646 obj_request->result, obj_request->length);
1647 /*
1648 * There is no such thing as a successful short write. Set
1649 * it to our originally-requested length.
1650 */
1651 obj_request->xferred = obj_request->length;
1652 obj_request_done_set(obj_request);
1653 }
1654
1655 /*
1656 * For a simple stat call there's nothing to do. We'll do more if
1657 * this is part of a write sequence for a layered image.
1658 */
1659 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1660 {
1661 dout("%s: obj %p\n", __func__, obj_request);
1662 obj_request_done_set(obj_request);
1663 }
1664
1665 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1666 struct ceph_msg *msg)
1667 {
1668 struct rbd_obj_request *obj_request = osd_req->r_priv;
1669 u16 opcode;
1670
1671 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1672 rbd_assert(osd_req == obj_request->osd_req);
1673 if (obj_request_img_data_test(obj_request)) {
1674 rbd_assert(obj_request->img_request);
1675 rbd_assert(obj_request->which != BAD_WHICH);
1676 } else {
1677 rbd_assert(obj_request->which == BAD_WHICH);
1678 }
1679
1680 if (osd_req->r_result < 0)
1681 obj_request->result = osd_req->r_result;
1682
1683 BUG_ON(osd_req->r_num_ops > 2);
1684
1685 /*
1686 * We support a 64-bit length, but ultimately it has to be
1687 * passed to blk_end_request(), which takes an unsigned int.
1688 */
1689 obj_request->xferred = osd_req->r_reply_op_len[0];
1690 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1691 opcode = osd_req->r_ops[0].op;
1692 switch (opcode) {
1693 case CEPH_OSD_OP_READ:
1694 rbd_osd_read_callback(obj_request);
1695 break;
1696 case CEPH_OSD_OP_WRITE:
1697 rbd_osd_write_callback(obj_request);
1698 break;
1699 case CEPH_OSD_OP_STAT:
1700 rbd_osd_stat_callback(obj_request);
1701 break;
1702 case CEPH_OSD_OP_CALL:
1703 case CEPH_OSD_OP_NOTIFY_ACK:
1704 case CEPH_OSD_OP_WATCH:
1705 rbd_osd_trivial_callback(obj_request);
1706 break;
1707 default:
1708 rbd_warn(NULL, "%s: unsupported op %hu\n",
1709 obj_request->object_name, (unsigned short) opcode);
1710 break;
1711 }
1712
1713 if (obj_request_done_test(obj_request))
1714 rbd_obj_request_complete(obj_request);
1715 }
1716
1717 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1718 {
1719 struct rbd_img_request *img_request = obj_request->img_request;
1720 struct ceph_osd_request *osd_req = obj_request->osd_req;
1721 u64 snap_id;
1722
1723 rbd_assert(osd_req != NULL);
1724
1725 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1726 ceph_osdc_build_request(osd_req, obj_request->offset,
1727 NULL, snap_id, NULL);
1728 }
1729
1730 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1731 {
1732 struct rbd_img_request *img_request = obj_request->img_request;
1733 struct ceph_osd_request *osd_req = obj_request->osd_req;
1734 struct ceph_snap_context *snapc;
1735 struct timespec mtime = CURRENT_TIME;
1736
1737 rbd_assert(osd_req != NULL);
1738
1739 snapc = img_request ? img_request->snapc : NULL;
1740 ceph_osdc_build_request(osd_req, obj_request->offset,
1741 snapc, CEPH_NOSNAP, &mtime);
1742 }
1743
1744 static struct ceph_osd_request *rbd_osd_req_create(
1745 struct rbd_device *rbd_dev,
1746 bool write_request,
1747 struct rbd_obj_request *obj_request)
1748 {
1749 struct ceph_snap_context *snapc = NULL;
1750 struct ceph_osd_client *osdc;
1751 struct ceph_osd_request *osd_req;
1752
1753 if (obj_request_img_data_test(obj_request)) {
1754 struct rbd_img_request *img_request = obj_request->img_request;
1755
1756 rbd_assert(write_request ==
1757 img_request_write_test(img_request));
1758 if (write_request)
1759 snapc = img_request->snapc;
1760 }
1761
1762 /* Allocate and initialize the request, for the single op */
1763
1764 osdc = &rbd_dev->rbd_client->client->osdc;
1765 osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1766 if (!osd_req)
1767 return NULL; /* ENOMEM */
1768
1769 if (write_request)
1770 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1771 else
1772 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1773
1774 osd_req->r_callback = rbd_osd_req_callback;
1775 osd_req->r_priv = obj_request;
1776
1777 osd_req->r_oid_len = strlen(obj_request->object_name);
1778 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1779 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1780
1781 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1782
1783 return osd_req;
1784 }
1785
1786 /*
1787 * Create a copyup osd request based on the information in the
1788 * object request supplied. A copyup request has two osd ops,
1789 * a copyup method call, and a "normal" write request.
1790 */
1791 static struct ceph_osd_request *
1792 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1793 {
1794 struct rbd_img_request *img_request;
1795 struct ceph_snap_context *snapc;
1796 struct rbd_device *rbd_dev;
1797 struct ceph_osd_client *osdc;
1798 struct ceph_osd_request *osd_req;
1799
1800 rbd_assert(obj_request_img_data_test(obj_request));
1801 img_request = obj_request->img_request;
1802 rbd_assert(img_request);
1803 rbd_assert(img_request_write_test(img_request));
1804
1805 /* Allocate and initialize the request, for the two ops */
1806
1807 snapc = img_request->snapc;
1808 rbd_dev = img_request->rbd_dev;
1809 osdc = &rbd_dev->rbd_client->client->osdc;
1810 osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1811 if (!osd_req)
1812 return NULL; /* ENOMEM */
1813
1814 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1815 osd_req->r_callback = rbd_osd_req_callback;
1816 osd_req->r_priv = obj_request;
1817
1818 osd_req->r_oid_len = strlen(obj_request->object_name);
1819 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1820 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1821
1822 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1823
1824 return osd_req;
1825 }
1826
1827
1828 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1829 {
1830 ceph_osdc_put_request(osd_req);
1831 }
1832
1833 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1834
1835 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1836 u64 offset, u64 length,
1837 enum obj_request_type type)
1838 {
1839 struct rbd_obj_request *obj_request;
1840 size_t size;
1841 char *name;
1842
1843 rbd_assert(obj_request_type_valid(type));
1844
1845 size = strlen(object_name) + 1;
1846 name = kmalloc(size, GFP_KERNEL);
1847 if (!name)
1848 return NULL;
1849
1850 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1851 if (!obj_request) {
1852 kfree(name);
1853 return NULL;
1854 }
1855
1856 obj_request->object_name = memcpy(name, object_name, size);
1857 obj_request->offset = offset;
1858 obj_request->length = length;
1859 obj_request->flags = 0;
1860 obj_request->which = BAD_WHICH;
1861 obj_request->type = type;
1862 INIT_LIST_HEAD(&obj_request->links);
1863 init_completion(&obj_request->completion);
1864 kref_init(&obj_request->kref);
1865
1866 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1867 offset, length, (int)type, obj_request);
1868
1869 return obj_request;
1870 }
1871
1872 static void rbd_obj_request_destroy(struct kref *kref)
1873 {
1874 struct rbd_obj_request *obj_request;
1875
1876 obj_request = container_of(kref, struct rbd_obj_request, kref);
1877
1878 dout("%s: obj %p\n", __func__, obj_request);
1879
1880 rbd_assert(obj_request->img_request == NULL);
1881 rbd_assert(obj_request->which == BAD_WHICH);
1882
1883 if (obj_request->osd_req)
1884 rbd_osd_req_destroy(obj_request->osd_req);
1885
1886 rbd_assert(obj_request_type_valid(obj_request->type));
1887 switch (obj_request->type) {
1888 case OBJ_REQUEST_NODATA:
1889 break; /* Nothing to do */
1890 case OBJ_REQUEST_BIO:
1891 if (obj_request->bio_list)
1892 bio_chain_put(obj_request->bio_list);
1893 break;
1894 case OBJ_REQUEST_PAGES:
1895 if (obj_request->pages)
1896 ceph_release_page_vector(obj_request->pages,
1897 obj_request->page_count);
1898 break;
1899 }
1900
1901 kfree(obj_request->object_name);
1902 obj_request->object_name = NULL;
1903 kmem_cache_free(rbd_obj_request_cache, obj_request);
1904 }
1905
1906 /* It's OK to call this for a device with no parent */
1907
1908 static void rbd_spec_put(struct rbd_spec *spec);
1909 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1910 {
1911 rbd_dev_remove_parent(rbd_dev);
1912 rbd_spec_put(rbd_dev->parent_spec);
1913 rbd_dev->parent_spec = NULL;
1914 rbd_dev->parent_overlap = 0;
1915 }
1916
1917 /*
1918 * Parent image reference counting is used to determine when an
1919 * image's parent fields can be safely torn down--after there are no
1920 * more in-flight requests to the parent image. When the last
1921 * reference is dropped, cleaning them up is safe.
1922 */
1923 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1924 {
1925 int counter;
1926
1927 if (!rbd_dev->parent_spec)
1928 return;
1929
1930 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1931 if (counter > 0)
1932 return;
1933
1934 /* Last reference; clean up parent data structures */
1935
1936 if (!counter)
1937 rbd_dev_unparent(rbd_dev);
1938 else
1939 rbd_warn(rbd_dev, "parent reference underflow\n");
1940 }
1941
1942 /*
1943 * If an image has a non-zero parent overlap, get a reference to its
1944 * parent.
1945 *
1946 * We must get the reference before checking for the overlap to
1947 * coordinate properly with zeroing the parent overlap in
1948 * rbd_dev_v2_parent_info() when an image gets flattened. We
1949 * drop it again if there is no overlap.
1950 *
1951 * Returns true if the rbd device has a parent with a non-zero
1952 * overlap and a reference for it was successfully taken, or
1953 * false otherwise.
1954 */
1955 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1956 {
1957 int counter;
1958
1959 if (!rbd_dev->parent_spec)
1960 return false;
1961
1962 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1963 if (counter > 0 && rbd_dev->parent_overlap)
1964 return true;
1965
1966 /* Image was flattened, but parent is not yet torn down */
1967
1968 if (counter < 0)
1969 rbd_warn(rbd_dev, "parent reference overflow\n");
1970
1971 return false;
1972 }
1973
1974 /*
1975 * Caller is responsible for filling in the list of object requests
1976 * that comprises the image request, and the Linux request pointer
1977 * (if there is one).
1978 */
1979 static struct rbd_img_request *rbd_img_request_create(
1980 struct rbd_device *rbd_dev,
1981 u64 offset, u64 length,
1982 bool write_request)
1983 {
1984 struct rbd_img_request *img_request;
1985
1986 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1987 if (!img_request)
1988 return NULL;
1989
1990 if (write_request) {
1991 down_read(&rbd_dev->header_rwsem);
1992 ceph_get_snap_context(rbd_dev->header.snapc);
1993 up_read(&rbd_dev->header_rwsem);
1994 }
1995
1996 img_request->rq = NULL;
1997 img_request->rbd_dev = rbd_dev;
1998 img_request->offset = offset;
1999 img_request->length = length;
2000 img_request->flags = 0;
2001 if (write_request) {
2002 img_request_write_set(img_request);
2003 img_request->snapc = rbd_dev->header.snapc;
2004 } else {
2005 img_request->snap_id = rbd_dev->spec->snap_id;
2006 }
2007 if (rbd_dev_parent_get(rbd_dev))
2008 img_request_layered_set(img_request);
2009 spin_lock_init(&img_request->completion_lock);
2010 img_request->next_completion = 0;
2011 img_request->callback = NULL;
2012 img_request->result = 0;
2013 img_request->obj_request_count = 0;
2014 INIT_LIST_HEAD(&img_request->obj_requests);
2015 kref_init(&img_request->kref);
2016
2017 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2018 write_request ? "write" : "read", offset, length,
2019 img_request);
2020
2021 return img_request;
2022 }
2023
2024 static void rbd_img_request_destroy(struct kref *kref)
2025 {
2026 struct rbd_img_request *img_request;
2027 struct rbd_obj_request *obj_request;
2028 struct rbd_obj_request *next_obj_request;
2029
2030 img_request = container_of(kref, struct rbd_img_request, kref);
2031
2032 dout("%s: img %p\n", __func__, img_request);
2033
2034 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2035 rbd_img_obj_request_del(img_request, obj_request);
2036 rbd_assert(img_request->obj_request_count == 0);
2037
2038 if (img_request_layered_test(img_request)) {
2039 img_request_layered_clear(img_request);
2040 rbd_dev_parent_put(img_request->rbd_dev);
2041 }
2042
2043 if (img_request_write_test(img_request))
2044 ceph_put_snap_context(img_request->snapc);
2045
2046 kmem_cache_free(rbd_img_request_cache, img_request);
2047 }
2048
2049 static struct rbd_img_request *rbd_parent_request_create(
2050 struct rbd_obj_request *obj_request,
2051 u64 img_offset, u64 length)
2052 {
2053 struct rbd_img_request *parent_request;
2054 struct rbd_device *rbd_dev;
2055
2056 rbd_assert(obj_request->img_request);
2057 rbd_dev = obj_request->img_request->rbd_dev;
2058
2059 parent_request = rbd_img_request_create(rbd_dev->parent,
2060 img_offset, length, false);
2061 if (!parent_request)
2062 return NULL;
2063
2064 img_request_child_set(parent_request);
2065 rbd_obj_request_get(obj_request);
2066 parent_request->obj_request = obj_request;
2067
2068 return parent_request;
2069 }
2070
2071 static void rbd_parent_request_destroy(struct kref *kref)
2072 {
2073 struct rbd_img_request *parent_request;
2074 struct rbd_obj_request *orig_request;
2075
2076 parent_request = container_of(kref, struct rbd_img_request, kref);
2077 orig_request = parent_request->obj_request;
2078
2079 parent_request->obj_request = NULL;
2080 rbd_obj_request_put(orig_request);
2081 img_request_child_clear(parent_request);
2082
2083 rbd_img_request_destroy(kref);
2084 }
2085
2086 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2087 {
2088 struct rbd_img_request *img_request;
2089 unsigned int xferred;
2090 int result;
2091 bool more;
2092
2093 rbd_assert(obj_request_img_data_test(obj_request));
2094 img_request = obj_request->img_request;
2095
2096 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2097 xferred = (unsigned int)obj_request->xferred;
2098 result = obj_request->result;
2099 if (result) {
2100 struct rbd_device *rbd_dev = img_request->rbd_dev;
2101
2102 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2103 img_request_write_test(img_request) ? "write" : "read",
2104 obj_request->length, obj_request->img_offset,
2105 obj_request->offset);
2106 rbd_warn(rbd_dev, " result %d xferred %x\n",
2107 result, xferred);
2108 if (!img_request->result)
2109 img_request->result = result;
2110 }
2111
2112 /* Image object requests don't own their page array */
2113
2114 if (obj_request->type == OBJ_REQUEST_PAGES) {
2115 obj_request->pages = NULL;
2116 obj_request->page_count = 0;
2117 }
2118
2119 if (img_request_child_test(img_request)) {
2120 rbd_assert(img_request->obj_request != NULL);
2121 more = obj_request->which < img_request->obj_request_count - 1;
2122 } else {
2123 rbd_assert(img_request->rq != NULL);
2124 more = blk_end_request(img_request->rq, result, xferred);
2125 }
2126
2127 return more;
2128 }
2129
2130 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2131 {
2132 struct rbd_img_request *img_request;
2133 u32 which = obj_request->which;
2134 bool more = true;
2135
2136 rbd_assert(obj_request_img_data_test(obj_request));
2137 img_request = obj_request->img_request;
2138
2139 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2140 rbd_assert(img_request != NULL);
2141 rbd_assert(img_request->obj_request_count > 0);
2142 rbd_assert(which != BAD_WHICH);
2143 rbd_assert(which < img_request->obj_request_count);
2144 rbd_assert(which >= img_request->next_completion);
2145
2146 spin_lock_irq(&img_request->completion_lock);
2147 if (which != img_request->next_completion)
2148 goto out;
2149
2150 for_each_obj_request_from(img_request, obj_request) {
2151 rbd_assert(more);
2152 rbd_assert(which < img_request->obj_request_count);
2153
2154 if (!obj_request_done_test(obj_request))
2155 break;
2156 more = rbd_img_obj_end_request(obj_request);
2157 which++;
2158 }
2159
2160 rbd_assert(more ^ (which == img_request->obj_request_count));
2161 img_request->next_completion = which;
2162 out:
2163 spin_unlock_irq(&img_request->completion_lock);
2164 rbd_img_request_put(img_request);
2165
2166 if (!more)
2167 rbd_img_request_complete(img_request);
2168 }
2169
2170 /*
2171 * Split up an image request into one or more object requests, each
2172 * to a different object. The "type" parameter indicates whether
2173 * "data_desc" is the pointer to the head of a list of bio
2174 * structures, or the base of a page array. In either case this
2175 * function assumes data_desc describes memory sufficient to hold
2176 * all data described by the image request.
2177 */
2178 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2179 enum obj_request_type type,
2180 void *data_desc)
2181 {
2182 struct rbd_device *rbd_dev = img_request->rbd_dev;
2183 struct rbd_obj_request *obj_request = NULL;
2184 struct rbd_obj_request *next_obj_request;
2185 bool write_request = img_request_write_test(img_request);
2186 struct bio *bio_list = 0;
2187 unsigned int bio_offset = 0;
2188 struct page **pages = 0;
2189 u64 img_offset;
2190 u64 resid;
2191 u16 opcode;
2192
2193 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2194 (int)type, data_desc);
2195
2196 opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2197 img_offset = img_request->offset;
2198 resid = img_request->length;
2199 rbd_assert(resid > 0);
2200
2201 if (type == OBJ_REQUEST_BIO) {
2202 bio_list = data_desc;
2203 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2204 } else {
2205 rbd_assert(type == OBJ_REQUEST_PAGES);
2206 pages = data_desc;
2207 }
2208
2209 while (resid) {
2210 struct ceph_osd_request *osd_req;
2211 const char *object_name;
2212 u64 offset;
2213 u64 length;
2214
2215 object_name = rbd_segment_name(rbd_dev, img_offset);
2216 if (!object_name)
2217 goto out_unwind;
2218 offset = rbd_segment_offset(rbd_dev, img_offset);
2219 length = rbd_segment_length(rbd_dev, img_offset, resid);
2220 obj_request = rbd_obj_request_create(object_name,
2221 offset, length, type);
2222 /* object request has its own copy of the object name */
2223 rbd_segment_name_free(object_name);
2224 if (!obj_request)
2225 goto out_unwind;
2226 /*
2227 * set obj_request->img_request before creating the
2228 * osd_request so that it gets the right snapc
2229 */
2230 rbd_img_obj_request_add(img_request, obj_request);
2231
2232 if (type == OBJ_REQUEST_BIO) {
2233 unsigned int clone_size;
2234
2235 rbd_assert(length <= (u64)UINT_MAX);
2236 clone_size = (unsigned int)length;
2237 obj_request->bio_list =
2238 bio_chain_clone_range(&bio_list,
2239 &bio_offset,
2240 clone_size,
2241 GFP_ATOMIC);
2242 if (!obj_request->bio_list)
2243 goto out_partial;
2244 } else {
2245 unsigned int page_count;
2246
2247 obj_request->pages = pages;
2248 page_count = (u32)calc_pages_for(offset, length);
2249 obj_request->page_count = page_count;
2250 if ((offset + length) & ~PAGE_MASK)
2251 page_count--; /* more on last page */
2252 pages += page_count;
2253 }
2254
2255 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2256 obj_request);
2257 if (!osd_req)
2258 goto out_partial;
2259 obj_request->osd_req = osd_req;
2260 obj_request->callback = rbd_img_obj_callback;
2261 rbd_img_request_get(img_request);
2262
2263 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2264 0, 0);
2265 if (type == OBJ_REQUEST_BIO)
2266 osd_req_op_extent_osd_data_bio(osd_req, 0,
2267 obj_request->bio_list, length);
2268 else
2269 osd_req_op_extent_osd_data_pages(osd_req, 0,
2270 obj_request->pages, length,
2271 offset & ~PAGE_MASK, false, false);
2272
2273 if (write_request)
2274 rbd_osd_req_format_write(obj_request);
2275 else
2276 rbd_osd_req_format_read(obj_request);
2277
2278 obj_request->img_offset = img_offset;
2279
2280 img_offset += length;
2281 resid -= length;
2282 }
2283
2284 return 0;
2285
2286 out_partial:
2287 rbd_obj_request_put(obj_request);
2288 out_unwind:
2289 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2290 rbd_img_obj_request_del(img_request, obj_request);
2291
2292 return -ENOMEM;
2293 }
2294
2295 static void
2296 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2297 {
2298 struct rbd_img_request *img_request;
2299 struct rbd_device *rbd_dev;
2300 struct page **pages;
2301 u32 page_count;
2302
2303 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2304 rbd_assert(obj_request_img_data_test(obj_request));
2305 img_request = obj_request->img_request;
2306 rbd_assert(img_request);
2307
2308 rbd_dev = img_request->rbd_dev;
2309 rbd_assert(rbd_dev);
2310
2311 pages = obj_request->copyup_pages;
2312 rbd_assert(pages != NULL);
2313 obj_request->copyup_pages = NULL;
2314 page_count = obj_request->copyup_page_count;
2315 rbd_assert(page_count);
2316 obj_request->copyup_page_count = 0;
2317 ceph_release_page_vector(pages, page_count);
2318
2319 /*
2320 * We want the transfer count to reflect the size of the
2321 * original write request. There is no such thing as a
2322 * successful short write, so if the request was successful
2323 * we can just set it to the originally-requested length.
2324 */
2325 if (!obj_request->result)
2326 obj_request->xferred = obj_request->length;
2327
2328 /* Finish up with the normal image object callback */
2329
2330 rbd_img_obj_callback(obj_request);
2331 }
2332
2333 static void
2334 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2335 {
2336 struct rbd_obj_request *orig_request;
2337 struct ceph_osd_request *osd_req;
2338 struct ceph_osd_client *osdc;
2339 struct rbd_device *rbd_dev;
2340 struct page **pages;
2341 u32 page_count;
2342 int img_result;
2343 u64 parent_length;
2344 u64 offset;
2345 u64 length;
2346
2347 rbd_assert(img_request_child_test(img_request));
2348
2349 /* First get what we need from the image request */
2350
2351 pages = img_request->copyup_pages;
2352 rbd_assert(pages != NULL);
2353 img_request->copyup_pages = NULL;
2354 page_count = img_request->copyup_page_count;
2355 rbd_assert(page_count);
2356 img_request->copyup_page_count = 0;
2357
2358 orig_request = img_request->obj_request;
2359 rbd_assert(orig_request != NULL);
2360 rbd_assert(obj_request_type_valid(orig_request->type));
2361 img_result = img_request->result;
2362 parent_length = img_request->length;
2363 rbd_assert(parent_length == img_request->xferred);
2364 rbd_img_request_put(img_request);
2365
2366 rbd_assert(orig_request->img_request);
2367 rbd_dev = orig_request->img_request->rbd_dev;
2368 rbd_assert(rbd_dev);
2369
2370 /*
2371 * If the overlap has become 0 (most likely because the
2372 * image has been flattened) we need to free the pages
2373 * and re-submit the original write request.
2374 */
2375 if (!rbd_dev->parent_overlap) {
2376 struct ceph_osd_client *osdc;
2377
2378 ceph_release_page_vector(pages, page_count);
2379 osdc = &rbd_dev->rbd_client->client->osdc;
2380 img_result = rbd_obj_request_submit(osdc, orig_request);
2381 if (!img_result)
2382 return;
2383 }
2384
2385 if (img_result)
2386 goto out_err;
2387
2388 /*
2389 * The original osd request is of no use to use any more.
2390 * We need a new one that can hold the two ops in a copyup
2391 * request. Allocate the new copyup osd request for the
2392 * original request, and release the old one.
2393 */
2394 img_result = -ENOMEM;
2395 osd_req = rbd_osd_req_create_copyup(orig_request);
2396 if (!osd_req)
2397 goto out_err;
2398 rbd_osd_req_destroy(orig_request->osd_req);
2399 orig_request->osd_req = osd_req;
2400 orig_request->copyup_pages = pages;
2401 orig_request->copyup_page_count = page_count;
2402
2403 /* Initialize the copyup op */
2404
2405 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2406 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2407 false, false);
2408
2409 /* Then the original write request op */
2410
2411 offset = orig_request->offset;
2412 length = orig_request->length;
2413 osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2414 offset, length, 0, 0);
2415 if (orig_request->type == OBJ_REQUEST_BIO)
2416 osd_req_op_extent_osd_data_bio(osd_req, 1,
2417 orig_request->bio_list, length);
2418 else
2419 osd_req_op_extent_osd_data_pages(osd_req, 1,
2420 orig_request->pages, length,
2421 offset & ~PAGE_MASK, false, false);
2422
2423 rbd_osd_req_format_write(orig_request);
2424
2425 /* All set, send it off. */
2426
2427 orig_request->callback = rbd_img_obj_copyup_callback;
2428 osdc = &rbd_dev->rbd_client->client->osdc;
2429 img_result = rbd_obj_request_submit(osdc, orig_request);
2430 if (!img_result)
2431 return;
2432 out_err:
2433 /* Record the error code and complete the request */
2434
2435 orig_request->result = img_result;
2436 orig_request->xferred = 0;
2437 obj_request_done_set(orig_request);
2438 rbd_obj_request_complete(orig_request);
2439 }
2440
2441 /*
2442 * Read from the parent image the range of data that covers the
2443 * entire target of the given object request. This is used for
2444 * satisfying a layered image write request when the target of an
2445 * object request from the image request does not exist.
2446 *
2447 * A page array big enough to hold the returned data is allocated
2448 * and supplied to rbd_img_request_fill() as the "data descriptor."
2449 * When the read completes, this page array will be transferred to
2450 * the original object request for the copyup operation.
2451 *
2452 * If an error occurs, record it as the result of the original
2453 * object request and mark it done so it gets completed.
2454 */
2455 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2456 {
2457 struct rbd_img_request *img_request = NULL;
2458 struct rbd_img_request *parent_request = NULL;
2459 struct rbd_device *rbd_dev;
2460 u64 img_offset;
2461 u64 length;
2462 struct page **pages = NULL;
2463 u32 page_count;
2464 int result;
2465
2466 rbd_assert(obj_request_img_data_test(obj_request));
2467 rbd_assert(obj_request_type_valid(obj_request->type));
2468
2469 img_request = obj_request->img_request;
2470 rbd_assert(img_request != NULL);
2471 rbd_dev = img_request->rbd_dev;
2472 rbd_assert(rbd_dev->parent != NULL);
2473
2474 /*
2475 * Determine the byte range covered by the object in the
2476 * child image to which the original request was to be sent.
2477 */
2478 img_offset = obj_request->img_offset - obj_request->offset;
2479 length = (u64)1 << rbd_dev->header.obj_order;
2480
2481 /*
2482 * There is no defined parent data beyond the parent
2483 * overlap, so limit what we read at that boundary if
2484 * necessary.
2485 */
2486 if (img_offset + length > rbd_dev->parent_overlap) {
2487 rbd_assert(img_offset < rbd_dev->parent_overlap);
2488 length = rbd_dev->parent_overlap - img_offset;
2489 }
2490
2491 /*
2492 * Allocate a page array big enough to receive the data read
2493 * from the parent.
2494 */
2495 page_count = (u32)calc_pages_for(0, length);
2496 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2497 if (IS_ERR(pages)) {
2498 result = PTR_ERR(pages);
2499 pages = NULL;
2500 goto out_err;
2501 }
2502
2503 result = -ENOMEM;
2504 parent_request = rbd_parent_request_create(obj_request,
2505 img_offset, length);
2506 if (!parent_request)
2507 goto out_err;
2508
2509 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2510 if (result)
2511 goto out_err;
2512 parent_request->copyup_pages = pages;
2513 parent_request->copyup_page_count = page_count;
2514
2515 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2516 result = rbd_img_request_submit(parent_request);
2517 if (!result)
2518 return 0;
2519
2520 parent_request->copyup_pages = NULL;
2521 parent_request->copyup_page_count = 0;
2522 parent_request->obj_request = NULL;
2523 rbd_obj_request_put(obj_request);
2524 out_err:
2525 if (pages)
2526 ceph_release_page_vector(pages, page_count);
2527 if (parent_request)
2528 rbd_img_request_put(parent_request);
2529 obj_request->result = result;
2530 obj_request->xferred = 0;
2531 obj_request_done_set(obj_request);
2532
2533 return result;
2534 }
2535
2536 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2537 {
2538 struct rbd_obj_request *orig_request;
2539 struct rbd_device *rbd_dev;
2540 int result;
2541
2542 rbd_assert(!obj_request_img_data_test(obj_request));
2543
2544 /*
2545 * All we need from the object request is the original
2546 * request and the result of the STAT op. Grab those, then
2547 * we're done with the request.
2548 */
2549 orig_request = obj_request->obj_request;
2550 obj_request->obj_request = NULL;
2551 rbd_assert(orig_request);
2552 rbd_assert(orig_request->img_request);
2553
2554 result = obj_request->result;
2555 obj_request->result = 0;
2556
2557 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2558 obj_request, orig_request, result,
2559 obj_request->xferred, obj_request->length);
2560 rbd_obj_request_put(obj_request);
2561
2562 /*
2563 * If the overlap has become 0 (most likely because the
2564 * image has been flattened) we need to free the pages
2565 * and re-submit the original write request.
2566 */
2567 rbd_dev = orig_request->img_request->rbd_dev;
2568 if (!rbd_dev->parent_overlap) {
2569 struct ceph_osd_client *osdc;
2570
2571 rbd_obj_request_put(orig_request);
2572 osdc = &rbd_dev->rbd_client->client->osdc;
2573 result = rbd_obj_request_submit(osdc, orig_request);
2574 if (!result)
2575 return;
2576 }
2577
2578 /*
2579 * Our only purpose here is to determine whether the object
2580 * exists, and we don't want to treat the non-existence as
2581 * an error. If something else comes back, transfer the
2582 * error to the original request and complete it now.
2583 */
2584 if (!result) {
2585 obj_request_existence_set(orig_request, true);
2586 } else if (result == -ENOENT) {
2587 obj_request_existence_set(orig_request, false);
2588 } else if (result) {
2589 orig_request->result = result;
2590 goto out;
2591 }
2592
2593 /*
2594 * Resubmit the original request now that we have recorded
2595 * whether the target object exists.
2596 */
2597 orig_request->result = rbd_img_obj_request_submit(orig_request);
2598 out:
2599 if (orig_request->result)
2600 rbd_obj_request_complete(orig_request);
2601 rbd_obj_request_put(orig_request);
2602 }
2603
2604 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2605 {
2606 struct rbd_obj_request *stat_request;
2607 struct rbd_device *rbd_dev;
2608 struct ceph_osd_client *osdc;
2609 struct page **pages = NULL;
2610 u32 page_count;
2611 size_t size;
2612 int ret;
2613
2614 /*
2615 * The response data for a STAT call consists of:
2616 * le64 length;
2617 * struct {
2618 * le32 tv_sec;
2619 * le32 tv_nsec;
2620 * } mtime;
2621 */
2622 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2623 page_count = (u32)calc_pages_for(0, size);
2624 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2625 if (IS_ERR(pages))
2626 return PTR_ERR(pages);
2627
2628 ret = -ENOMEM;
2629 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2630 OBJ_REQUEST_PAGES);
2631 if (!stat_request)
2632 goto out;
2633
2634 rbd_obj_request_get(obj_request);
2635 stat_request->obj_request = obj_request;
2636 stat_request->pages = pages;
2637 stat_request->page_count = page_count;
2638
2639 rbd_assert(obj_request->img_request);
2640 rbd_dev = obj_request->img_request->rbd_dev;
2641 stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2642 stat_request);
2643 if (!stat_request->osd_req)
2644 goto out;
2645 stat_request->callback = rbd_img_obj_exists_callback;
2646
2647 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2648 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2649 false, false);
2650 rbd_osd_req_format_read(stat_request);
2651
2652 osdc = &rbd_dev->rbd_client->client->osdc;
2653 ret = rbd_obj_request_submit(osdc, stat_request);
2654 out:
2655 if (ret)
2656 rbd_obj_request_put(obj_request);
2657
2658 return ret;
2659 }
2660
2661 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2662 {
2663 struct rbd_img_request *img_request;
2664 struct rbd_device *rbd_dev;
2665 bool known;
2666
2667 rbd_assert(obj_request_img_data_test(obj_request));
2668
2669 img_request = obj_request->img_request;
2670 rbd_assert(img_request);
2671 rbd_dev = img_request->rbd_dev;
2672
2673 /*
2674 * Only writes to layered images need special handling.
2675 * Reads and non-layered writes are simple object requests.
2676 * Layered writes that start beyond the end of the overlap
2677 * with the parent have no parent data, so they too are
2678 * simple object requests. Finally, if the target object is
2679 * known to already exist, its parent data has already been
2680 * copied, so a write to the object can also be handled as a
2681 * simple object request.
2682 */
2683 if (!img_request_write_test(img_request) ||
2684 !img_request_layered_test(img_request) ||
2685 rbd_dev->parent_overlap <= obj_request->img_offset ||
2686 ((known = obj_request_known_test(obj_request)) &&
2687 obj_request_exists_test(obj_request))) {
2688
2689 struct rbd_device *rbd_dev;
2690 struct ceph_osd_client *osdc;
2691
2692 rbd_dev = obj_request->img_request->rbd_dev;
2693 osdc = &rbd_dev->rbd_client->client->osdc;
2694
2695 return rbd_obj_request_submit(osdc, obj_request);
2696 }
2697
2698 /*
2699 * It's a layered write. The target object might exist but
2700 * we may not know that yet. If we know it doesn't exist,
2701 * start by reading the data for the full target object from
2702 * the parent so we can use it for a copyup to the target.
2703 */
2704 if (known)
2705 return rbd_img_obj_parent_read_full(obj_request);
2706
2707 /* We don't know whether the target exists. Go find out. */
2708
2709 return rbd_img_obj_exists_submit(obj_request);
2710 }
2711
2712 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2713 {
2714 struct rbd_obj_request *obj_request;
2715 struct rbd_obj_request *next_obj_request;
2716
2717 dout("%s: img %p\n", __func__, img_request);
2718 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2719 int ret;
2720
2721 ret = rbd_img_obj_request_submit(obj_request);
2722 if (ret)
2723 return ret;
2724 }
2725
2726 return 0;
2727 }
2728
2729 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2730 {
2731 struct rbd_obj_request *obj_request;
2732 struct rbd_device *rbd_dev;
2733 u64 obj_end;
2734 u64 img_xferred;
2735 int img_result;
2736
2737 rbd_assert(img_request_child_test(img_request));
2738
2739 /* First get what we need from the image request and release it */
2740
2741 obj_request = img_request->obj_request;
2742 img_xferred = img_request->xferred;
2743 img_result = img_request->result;
2744 rbd_img_request_put(img_request);
2745
2746 /*
2747 * If the overlap has become 0 (most likely because the
2748 * image has been flattened) we need to re-submit the
2749 * original request.
2750 */
2751 rbd_assert(obj_request);
2752 rbd_assert(obj_request->img_request);
2753 rbd_dev = obj_request->img_request->rbd_dev;
2754 if (!rbd_dev->parent_overlap) {
2755 struct ceph_osd_client *osdc;
2756
2757 osdc = &rbd_dev->rbd_client->client->osdc;
2758 img_result = rbd_obj_request_submit(osdc, obj_request);
2759 if (!img_result)
2760 return;
2761 }
2762
2763 obj_request->result = img_result;
2764 if (obj_request->result)
2765 goto out;
2766
2767 /*
2768 * We need to zero anything beyond the parent overlap
2769 * boundary. Since rbd_img_obj_request_read_callback()
2770 * will zero anything beyond the end of a short read, an
2771 * easy way to do this is to pretend the data from the
2772 * parent came up short--ending at the overlap boundary.
2773 */
2774 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2775 obj_end = obj_request->img_offset + obj_request->length;
2776 if (obj_end > rbd_dev->parent_overlap) {
2777 u64 xferred = 0;
2778
2779 if (obj_request->img_offset < rbd_dev->parent_overlap)
2780 xferred = rbd_dev->parent_overlap -
2781 obj_request->img_offset;
2782
2783 obj_request->xferred = min(img_xferred, xferred);
2784 } else {
2785 obj_request->xferred = img_xferred;
2786 }
2787 out:
2788 rbd_img_obj_request_read_callback(obj_request);
2789 rbd_obj_request_complete(obj_request);
2790 }
2791
2792 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2793 {
2794 struct rbd_img_request *img_request;
2795 int result;
2796
2797 rbd_assert(obj_request_img_data_test(obj_request));
2798 rbd_assert(obj_request->img_request != NULL);
2799 rbd_assert(obj_request->result == (s32) -ENOENT);
2800 rbd_assert(obj_request_type_valid(obj_request->type));
2801
2802 /* rbd_read_finish(obj_request, obj_request->length); */
2803 img_request = rbd_parent_request_create(obj_request,
2804 obj_request->img_offset,
2805 obj_request->length);
2806 result = -ENOMEM;
2807 if (!img_request)
2808 goto out_err;
2809
2810 if (obj_request->type == OBJ_REQUEST_BIO)
2811 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2812 obj_request->bio_list);
2813 else
2814 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2815 obj_request->pages);
2816 if (result)
2817 goto out_err;
2818
2819 img_request->callback = rbd_img_parent_read_callback;
2820 result = rbd_img_request_submit(img_request);
2821 if (result)
2822 goto out_err;
2823
2824 return;
2825 out_err:
2826 if (img_request)
2827 rbd_img_request_put(img_request);
2828 obj_request->result = result;
2829 obj_request->xferred = 0;
2830 obj_request_done_set(obj_request);
2831 }
2832
2833 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2834 {
2835 struct rbd_obj_request *obj_request;
2836 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2837 int ret;
2838
2839 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2840 OBJ_REQUEST_NODATA);
2841 if (!obj_request)
2842 return -ENOMEM;
2843
2844 ret = -ENOMEM;
2845 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2846 if (!obj_request->osd_req)
2847 goto out;
2848
2849 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2850 notify_id, 0, 0);
2851 rbd_osd_req_format_read(obj_request);
2852
2853 ret = rbd_obj_request_submit(osdc, obj_request);
2854 if (ret)
2855 goto out;
2856 ret = rbd_obj_request_wait(obj_request);
2857 out:
2858 rbd_obj_request_put(obj_request);
2859
2860 return ret;
2861 }
2862
2863 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2864 {
2865 struct rbd_device *rbd_dev = (struct rbd_device *)data;
2866 int ret;
2867
2868 if (!rbd_dev)
2869 return;
2870
2871 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2872 rbd_dev->header_name, (unsigned long long)notify_id,
2873 (unsigned int)opcode);
2874 ret = rbd_dev_refresh(rbd_dev);
2875 if (ret)
2876 rbd_warn(rbd_dev, ": header refresh error (%d)\n", ret);
2877
2878 rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2879 }
2880
2881 /*
2882 * Request sync osd watch/unwatch. The value of "start" determines
2883 * whether a watch request is being initiated or torn down.
2884 */
2885 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2886 {
2887 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2888 struct rbd_obj_request *obj_request;
2889 int ret;
2890
2891 rbd_assert(start ^ !!rbd_dev->watch_event);
2892 rbd_assert(start ^ !!rbd_dev->watch_request);
2893
2894 if (start) {
2895 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2896 &rbd_dev->watch_event);
2897 if (ret < 0)
2898 return ret;
2899 rbd_assert(rbd_dev->watch_event != NULL);
2900 }
2901
2902 ret = -ENOMEM;
2903 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2904 OBJ_REQUEST_NODATA);
2905 if (!obj_request)
2906 goto out_cancel;
2907
2908 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2909 if (!obj_request->osd_req)
2910 goto out_cancel;
2911
2912 if (start)
2913 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2914 else
2915 ceph_osdc_unregister_linger_request(osdc,
2916 rbd_dev->watch_request->osd_req);
2917
2918 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2919 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2920 rbd_osd_req_format_write(obj_request);
2921
2922 ret = rbd_obj_request_submit(osdc, obj_request);
2923 if (ret)
2924 goto out_cancel;
2925 ret = rbd_obj_request_wait(obj_request);
2926 if (ret)
2927 goto out_cancel;
2928 ret = obj_request->result;
2929 if (ret)
2930 goto out_cancel;
2931
2932 /*
2933 * A watch request is set to linger, so the underlying osd
2934 * request won't go away until we unregister it. We retain
2935 * a pointer to the object request during that time (in
2936 * rbd_dev->watch_request), so we'll keep a reference to
2937 * it. We'll drop that reference (below) after we've
2938 * unregistered it.
2939 */
2940 if (start) {
2941 rbd_dev->watch_request = obj_request;
2942
2943 return 0;
2944 }
2945
2946 /* We have successfully torn down the watch request */
2947
2948 rbd_obj_request_put(rbd_dev->watch_request);
2949 rbd_dev->watch_request = NULL;
2950 out_cancel:
2951 /* Cancel the event if we're tearing down, or on error */
2952 ceph_osdc_cancel_event(rbd_dev->watch_event);
2953 rbd_dev->watch_event = NULL;
2954 if (obj_request)
2955 rbd_obj_request_put(obj_request);
2956
2957 return ret;
2958 }
2959
2960 /*
2961 * Synchronous osd object method call. Returns the number of bytes
2962 * returned in the outbound buffer, or a negative error code.
2963 */
2964 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2965 const char *object_name,
2966 const char *class_name,
2967 const char *method_name,
2968 const void *outbound,
2969 size_t outbound_size,
2970 void *inbound,
2971 size_t inbound_size)
2972 {
2973 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2974 struct rbd_obj_request *obj_request;
2975 struct page **pages;
2976 u32 page_count;
2977 int ret;
2978
2979 /*
2980 * Method calls are ultimately read operations. The result
2981 * should placed into the inbound buffer provided. They
2982 * also supply outbound data--parameters for the object
2983 * method. Currently if this is present it will be a
2984 * snapshot id.
2985 */
2986 page_count = (u32)calc_pages_for(0, inbound_size);
2987 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2988 if (IS_ERR(pages))
2989 return PTR_ERR(pages);
2990
2991 ret = -ENOMEM;
2992 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2993 OBJ_REQUEST_PAGES);
2994 if (!obj_request)
2995 goto out;
2996
2997 obj_request->pages = pages;
2998 obj_request->page_count = page_count;
2999
3000 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3001 if (!obj_request->osd_req)
3002 goto out;
3003
3004 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
3005 class_name, method_name);
3006 if (outbound_size) {
3007 struct ceph_pagelist *pagelist;
3008
3009 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
3010 if (!pagelist)
3011 goto out;
3012
3013 ceph_pagelist_init(pagelist);
3014 ceph_pagelist_append(pagelist, outbound, outbound_size);
3015 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3016 pagelist);
3017 }
3018 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3019 obj_request->pages, inbound_size,
3020 0, false, false);
3021 rbd_osd_req_format_read(obj_request);
3022
3023 ret = rbd_obj_request_submit(osdc, obj_request);
3024 if (ret)
3025 goto out;
3026 ret = rbd_obj_request_wait(obj_request);
3027 if (ret)
3028 goto out;
3029
3030 ret = obj_request->result;
3031 if (ret < 0)
3032 goto out;
3033
3034 rbd_assert(obj_request->xferred < (u64)INT_MAX);
3035 ret = (int)obj_request->xferred;
3036 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3037 out:
3038 if (obj_request)
3039 rbd_obj_request_put(obj_request);
3040 else
3041 ceph_release_page_vector(pages, page_count);
3042
3043 return ret;
3044 }
3045
3046 static void rbd_request_fn(struct request_queue *q)
3047 __releases(q->queue_lock) __acquires(q->queue_lock)
3048 {
3049 struct rbd_device *rbd_dev = q->queuedata;
3050 bool read_only = rbd_dev->mapping.read_only;
3051 struct request *rq;
3052 int result;
3053
3054 while ((rq = blk_fetch_request(q))) {
3055 bool write_request = rq_data_dir(rq) == WRITE;
3056 struct rbd_img_request *img_request;
3057 u64 offset;
3058 u64 length;
3059
3060 /* Ignore any non-FS requests that filter through. */
3061
3062 if (rq->cmd_type != REQ_TYPE_FS) {
3063 dout("%s: non-fs request type %d\n", __func__,
3064 (int) rq->cmd_type);
3065 __blk_end_request_all(rq, 0);
3066 continue;
3067 }
3068
3069 /* Ignore/skip any zero-length requests */
3070
3071 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3072 length = (u64) blk_rq_bytes(rq);
3073
3074 if (!length) {
3075 dout("%s: zero-length request\n", __func__);
3076 __blk_end_request_all(rq, 0);
3077 continue;
3078 }
3079
3080 spin_unlock_irq(q->queue_lock);
3081
3082 /* Disallow writes to a read-only device */
3083
3084 if (write_request) {
3085 result = -EROFS;
3086 if (read_only)
3087 goto end_request;
3088 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3089 }
3090
3091 /*
3092 * Quit early if the mapped snapshot no longer
3093 * exists. It's still possible the snapshot will
3094 * have disappeared by the time our request arrives
3095 * at the osd, but there's no sense in sending it if
3096 * we already know.
3097 */
3098 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3099 dout("request for non-existent snapshot");
3100 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3101 result = -ENXIO;
3102 goto end_request;
3103 }
3104
3105 result = -EINVAL;
3106 if (offset && length > U64_MAX - offset + 1) {
3107 rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3108 offset, length);
3109 goto end_request; /* Shouldn't happen */
3110 }
3111
3112 result = -EIO;
3113 if (offset + length > rbd_dev->mapping.size) {
3114 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3115 offset, length, rbd_dev->mapping.size);
3116 goto end_request;
3117 }
3118
3119 result = -ENOMEM;
3120 img_request = rbd_img_request_create(rbd_dev, offset, length,
3121 write_request);
3122 if (!img_request)
3123 goto end_request;
3124
3125 img_request->rq = rq;
3126
3127 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3128 rq->bio);
3129 if (!result)
3130 result = rbd_img_request_submit(img_request);
3131 if (result)
3132 rbd_img_request_put(img_request);
3133 end_request:
3134 spin_lock_irq(q->queue_lock);
3135 if (result < 0) {
3136 rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3137 write_request ? "write" : "read",
3138 length, offset, result);
3139
3140 __blk_end_request_all(rq, result);
3141 }
3142 }
3143 }
3144
3145 /*
3146 * a queue callback. Makes sure that we don't create a bio that spans across
3147 * multiple osd objects. One exception would be with a single page bios,
3148 * which we handle later at bio_chain_clone_range()
3149 */
3150 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3151 struct bio_vec *bvec)
3152 {
3153 struct rbd_device *rbd_dev = q->queuedata;
3154 sector_t sector_offset;
3155 sector_t sectors_per_obj;
3156 sector_t obj_sector_offset;
3157 int ret;
3158
3159 /*
3160 * Find how far into its rbd object the partition-relative
3161 * bio start sector is to offset relative to the enclosing
3162 * device.
3163 */
3164 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3165 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3166 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3167
3168 /*
3169 * Compute the number of bytes from that offset to the end
3170 * of the object. Account for what's already used by the bio.
3171 */
3172 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3173 if (ret > bmd->bi_size)
3174 ret -= bmd->bi_size;
3175 else
3176 ret = 0;
3177
3178 /*
3179 * Don't send back more than was asked for. And if the bio
3180 * was empty, let the whole thing through because: "Note
3181 * that a block device *must* allow a single page to be
3182 * added to an empty bio."
3183 */
3184 rbd_assert(bvec->bv_len <= PAGE_SIZE);
3185 if (ret > (int) bvec->bv_len || !bmd->bi_size)
3186 ret = (int) bvec->bv_len;
3187
3188 return ret;
3189 }
3190
3191 static void rbd_free_disk(struct rbd_device *rbd_dev)
3192 {
3193 struct gendisk *disk = rbd_dev->disk;
3194
3195 if (!disk)
3196 return;
3197
3198 rbd_dev->disk = NULL;
3199 if (disk->flags & GENHD_FL_UP) {
3200 del_gendisk(disk);
3201 if (disk->queue)
3202 blk_cleanup_queue(disk->queue);
3203 }
3204 put_disk(disk);
3205 }
3206
3207 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3208 const char *object_name,
3209 u64 offset, u64 length, void *buf)
3210
3211 {
3212 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3213 struct rbd_obj_request *obj_request;
3214 struct page **pages = NULL;
3215 u32 page_count;
3216 size_t size;
3217 int ret;
3218
3219 page_count = (u32) calc_pages_for(offset, length);
3220 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3221 if (IS_ERR(pages))
3222 ret = PTR_ERR(pages);
3223
3224 ret = -ENOMEM;
3225 obj_request = rbd_obj_request_create(object_name, offset, length,
3226 OBJ_REQUEST_PAGES);
3227 if (!obj_request)
3228 goto out;
3229
3230 obj_request->pages = pages;
3231 obj_request->page_count = page_count;
3232
3233 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3234 if (!obj_request->osd_req)
3235 goto out;
3236
3237 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3238 offset, length, 0, 0);
3239 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3240 obj_request->pages,
3241 obj_request->length,
3242 obj_request->offset & ~PAGE_MASK,
3243 false, false);
3244 rbd_osd_req_format_read(obj_request);
3245
3246 ret = rbd_obj_request_submit(osdc, obj_request);
3247 if (ret)
3248 goto out;
3249 ret = rbd_obj_request_wait(obj_request);
3250 if (ret)
3251 goto out;
3252
3253 ret = obj_request->result;
3254 if (ret < 0)
3255 goto out;
3256
3257 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3258 size = (size_t) obj_request->xferred;
3259 ceph_copy_from_page_vector(pages, buf, 0, size);
3260 rbd_assert(size <= (size_t)INT_MAX);
3261 ret = (int)size;
3262 out:
3263 if (obj_request)
3264 rbd_obj_request_put(obj_request);
3265 else
3266 ceph_release_page_vector(pages, page_count);
3267
3268 return ret;
3269 }
3270
3271 /*
3272 * Read the complete header for the given rbd device. On successful
3273 * return, the rbd_dev->header field will contain up-to-date
3274 * information about the image.
3275 */
3276 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3277 {
3278 struct rbd_image_header_ondisk *ondisk = NULL;
3279 u32 snap_count = 0;
3280 u64 names_size = 0;
3281 u32 want_count;
3282 int ret;
3283
3284 /*
3285 * The complete header will include an array of its 64-bit
3286 * snapshot ids, followed by the names of those snapshots as
3287 * a contiguous block of NUL-terminated strings. Note that
3288 * the number of snapshots could change by the time we read
3289 * it in, in which case we re-read it.
3290 */
3291 do {
3292 size_t size;
3293
3294 kfree(ondisk);
3295
3296 size = sizeof (*ondisk);
3297 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3298 size += names_size;
3299 ondisk = kmalloc(size, GFP_KERNEL);
3300 if (!ondisk)
3301 return -ENOMEM;
3302
3303 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3304 0, size, ondisk);
3305 if (ret < 0)
3306 goto out;
3307 if ((size_t)ret < size) {
3308 ret = -ENXIO;
3309 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3310 size, ret);
3311 goto out;
3312 }
3313 if (!rbd_dev_ondisk_valid(ondisk)) {
3314 ret = -ENXIO;
3315 rbd_warn(rbd_dev, "invalid header");
3316 goto out;
3317 }
3318
3319 names_size = le64_to_cpu(ondisk->snap_names_len);
3320 want_count = snap_count;
3321 snap_count = le32_to_cpu(ondisk->snap_count);
3322 } while (snap_count != want_count);
3323
3324 ret = rbd_header_from_disk(rbd_dev, ondisk);
3325 out:
3326 kfree(ondisk);
3327
3328 return ret;
3329 }
3330
3331 /*
3332 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3333 * has disappeared from the (just updated) snapshot context.
3334 */
3335 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3336 {
3337 u64 snap_id;
3338
3339 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3340 return;
3341
3342 snap_id = rbd_dev->spec->snap_id;
3343 if (snap_id == CEPH_NOSNAP)
3344 return;
3345
3346 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3347 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3348 }
3349
3350 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3351 {
3352 sector_t size;
3353 bool removing;
3354
3355 /*
3356 * Don't hold the lock while doing disk operations,
3357 * or lock ordering will conflict with the bdev mutex via:
3358 * rbd_add() -> blkdev_get() -> rbd_open()
3359 */
3360 spin_lock_irq(&rbd_dev->lock);
3361 removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3362 spin_unlock_irq(&rbd_dev->lock);
3363 /*
3364 * If the device is being removed, rbd_dev->disk has
3365 * been destroyed, so don't try to update its size
3366 */
3367 if (!removing) {
3368 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3369 dout("setting size to %llu sectors", (unsigned long long)size);
3370 set_capacity(rbd_dev->disk, size);
3371 revalidate_disk(rbd_dev->disk);
3372 }
3373 }
3374
3375 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3376 {
3377 u64 mapping_size;
3378 int ret;
3379
3380 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3381 mapping_size = rbd_dev->mapping.size;
3382 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3383 if (rbd_dev->image_format == 1)
3384 ret = rbd_dev_v1_header_info(rbd_dev);
3385 else
3386 ret = rbd_dev_v2_header_info(rbd_dev);
3387
3388 /* If it's a mapped snapshot, validate its EXISTS flag */
3389
3390 rbd_exists_validate(rbd_dev);
3391 mutex_unlock(&ctl_mutex);
3392 if (mapping_size != rbd_dev->mapping.size) {
3393 rbd_dev_update_size(rbd_dev);
3394 }
3395
3396 return ret;
3397 }
3398
3399 static int rbd_init_disk(struct rbd_device *rbd_dev)
3400 {
3401 struct gendisk *disk;
3402 struct request_queue *q;
3403 u64 segment_size;
3404
3405 /* create gendisk info */
3406 disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3407 if (!disk)
3408 return -ENOMEM;
3409
3410 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3411 rbd_dev->dev_id);
3412 disk->major = rbd_dev->major;
3413 disk->first_minor = 0;
3414 disk->fops = &rbd_bd_ops;
3415 disk->private_data = rbd_dev;
3416
3417 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3418 if (!q)
3419 goto out_disk;
3420
3421 /* We use the default size, but let's be explicit about it. */
3422 blk_queue_physical_block_size(q, SECTOR_SIZE);
3423
3424 /* set io sizes to object size */
3425 segment_size = rbd_obj_bytes(&rbd_dev->header);
3426 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3427 blk_queue_max_segment_size(q, segment_size);
3428 blk_queue_io_min(q, segment_size);
3429 blk_queue_io_opt(q, segment_size);
3430
3431 blk_queue_merge_bvec(q, rbd_merge_bvec);
3432 disk->queue = q;
3433
3434 q->queuedata = rbd_dev;
3435
3436 rbd_dev->disk = disk;
3437
3438 return 0;
3439 out_disk:
3440 put_disk(disk);
3441
3442 return -ENOMEM;
3443 }
3444
3445 /*
3446 sysfs
3447 */
3448
3449 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3450 {
3451 return container_of(dev, struct rbd_device, dev);
3452 }
3453
3454 static ssize_t rbd_size_show(struct device *dev,
3455 struct device_attribute *attr, char *buf)
3456 {
3457 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3458
3459 return sprintf(buf, "%llu\n",
3460 (unsigned long long)rbd_dev->mapping.size);
3461 }
3462
3463 /*
3464 * Note this shows the features for whatever's mapped, which is not
3465 * necessarily the base image.
3466 */
3467 static ssize_t rbd_features_show(struct device *dev,
3468 struct device_attribute *attr, char *buf)
3469 {
3470 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3471
3472 return sprintf(buf, "0x%016llx\n",
3473 (unsigned long long)rbd_dev->mapping.features);
3474 }
3475
3476 static ssize_t rbd_major_show(struct device *dev,
3477 struct device_attribute *attr, char *buf)
3478 {
3479 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3480
3481 if (rbd_dev->major)
3482 return sprintf(buf, "%d\n", rbd_dev->major);
3483
3484 return sprintf(buf, "(none)\n");
3485
3486 }
3487
3488 static ssize_t rbd_client_id_show(struct device *dev,
3489 struct device_attribute *attr, char *buf)
3490 {
3491 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3492
3493 return sprintf(buf, "client%lld\n",
3494 ceph_client_id(rbd_dev->rbd_client->client));
3495 }
3496
3497 static ssize_t rbd_pool_show(struct device *dev,
3498 struct device_attribute *attr, char *buf)
3499 {
3500 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3501
3502 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3503 }
3504
3505 static ssize_t rbd_pool_id_show(struct device *dev,
3506 struct device_attribute *attr, char *buf)
3507 {
3508 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3509
3510 return sprintf(buf, "%llu\n",
3511 (unsigned long long) rbd_dev->spec->pool_id);
3512 }
3513
3514 static ssize_t rbd_name_show(struct device *dev,
3515 struct device_attribute *attr, char *buf)
3516 {
3517 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3518
3519 if (rbd_dev->spec->image_name)
3520 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3521
3522 return sprintf(buf, "(unknown)\n");
3523 }
3524
3525 static ssize_t rbd_image_id_show(struct device *dev,
3526 struct device_attribute *attr, char *buf)
3527 {
3528 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3529
3530 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3531 }
3532
3533 /*
3534 * Shows the name of the currently-mapped snapshot (or
3535 * RBD_SNAP_HEAD_NAME for the base image).
3536 */
3537 static ssize_t rbd_snap_show(struct device *dev,
3538 struct device_attribute *attr,
3539 char *buf)
3540 {
3541 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3542
3543 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3544 }
3545
3546 /*
3547 * For an rbd v2 image, shows the pool id, image id, and snapshot id
3548 * for the parent image. If there is no parent, simply shows
3549 * "(no parent image)".
3550 */
3551 static ssize_t rbd_parent_show(struct device *dev,
3552 struct device_attribute *attr,
3553 char *buf)
3554 {
3555 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3556 struct rbd_spec *spec = rbd_dev->parent_spec;
3557 int count;
3558 char *bufp = buf;
3559
3560 if (!spec)
3561 return sprintf(buf, "(no parent image)\n");
3562
3563 count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3564 (unsigned long long) spec->pool_id, spec->pool_name);
3565 if (count < 0)
3566 return count;
3567 bufp += count;
3568
3569 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3570 spec->image_name ? spec->image_name : "(unknown)");
3571 if (count < 0)
3572 return count;
3573 bufp += count;
3574
3575 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3576 (unsigned long long) spec->snap_id, spec->snap_name);
3577 if (count < 0)
3578 return count;
3579 bufp += count;
3580
3581 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3582 if (count < 0)
3583 return count;
3584 bufp += count;
3585
3586 return (ssize_t) (bufp - buf);
3587 }
3588
3589 static ssize_t rbd_image_refresh(struct device *dev,
3590 struct device_attribute *attr,
3591 const char *buf,
3592 size_t size)
3593 {
3594 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3595 int ret;
3596
3597 ret = rbd_dev_refresh(rbd_dev);
3598 if (ret)
3599 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3600
3601 return ret < 0 ? ret : size;
3602 }
3603
3604 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3605 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3606 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3607 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3608 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3609 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3610 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3611 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3612 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3613 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3614 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3615
3616 static struct attribute *rbd_attrs[] = {
3617 &dev_attr_size.attr,
3618 &dev_attr_features.attr,
3619 &dev_attr_major.attr,
3620 &dev_attr_client_id.attr,
3621 &dev_attr_pool.attr,
3622 &dev_attr_pool_id.attr,
3623 &dev_attr_name.attr,
3624 &dev_attr_image_id.attr,
3625 &dev_attr_current_snap.attr,
3626 &dev_attr_parent.attr,
3627 &dev_attr_refresh.attr,
3628 NULL
3629 };
3630
3631 static struct attribute_group rbd_attr_group = {
3632 .attrs = rbd_attrs,
3633 };
3634
3635 static const struct attribute_group *rbd_attr_groups[] = {
3636 &rbd_attr_group,
3637 NULL
3638 };
3639
3640 static void rbd_sysfs_dev_release(struct device *dev)
3641 {
3642 }
3643
3644 static struct device_type rbd_device_type = {
3645 .name = "rbd",
3646 .groups = rbd_attr_groups,
3647 .release = rbd_sysfs_dev_release,
3648 };
3649
3650 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3651 {
3652 kref_get(&spec->kref);
3653
3654 return spec;
3655 }
3656
3657 static void rbd_spec_free(struct kref *kref);
3658 static void rbd_spec_put(struct rbd_spec *spec)
3659 {
3660 if (spec)
3661 kref_put(&spec->kref, rbd_spec_free);
3662 }
3663
3664 static struct rbd_spec *rbd_spec_alloc(void)
3665 {
3666 struct rbd_spec *spec;
3667
3668 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3669 if (!spec)
3670 return NULL;
3671 kref_init(&spec->kref);
3672
3673 return spec;
3674 }
3675
3676 static void rbd_spec_free(struct kref *kref)
3677 {
3678 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3679
3680 kfree(spec->pool_name);
3681 kfree(spec->image_id);
3682 kfree(spec->image_name);
3683 kfree(spec->snap_name);
3684 kfree(spec);
3685 }
3686
3687 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3688 struct rbd_spec *spec)
3689 {
3690 struct rbd_device *rbd_dev;
3691
3692 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3693 if (!rbd_dev)
3694 return NULL;
3695
3696 spin_lock_init(&rbd_dev->lock);
3697 rbd_dev->flags = 0;
3698 atomic_set(&rbd_dev->parent_ref, 0);
3699 INIT_LIST_HEAD(&rbd_dev->node);
3700 init_rwsem(&rbd_dev->header_rwsem);
3701
3702 rbd_dev->spec = spec;
3703 rbd_dev->rbd_client = rbdc;
3704
3705 /* Initialize the layout used for all rbd requests */
3706
3707 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3708 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3709 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3710 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3711
3712 return rbd_dev;
3713 }
3714
3715 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3716 {
3717 rbd_put_client(rbd_dev->rbd_client);
3718 rbd_spec_put(rbd_dev->spec);
3719 kfree(rbd_dev);
3720 }
3721
3722 /*
3723 * Get the size and object order for an image snapshot, or if
3724 * snap_id is CEPH_NOSNAP, gets this information for the base
3725 * image.
3726 */
3727 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3728 u8 *order, u64 *snap_size)
3729 {
3730 __le64 snapid = cpu_to_le64(snap_id);
3731 int ret;
3732 struct {
3733 u8 order;
3734 __le64 size;
3735 } __attribute__ ((packed)) size_buf = { 0 };
3736
3737 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3738 "rbd", "get_size",
3739 &snapid, sizeof (snapid),
3740 &size_buf, sizeof (size_buf));
3741 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3742 if (ret < 0)
3743 return ret;
3744 if (ret < sizeof (size_buf))
3745 return -ERANGE;
3746
3747 if (order) {
3748 *order = size_buf.order;
3749 dout(" order %u", (unsigned int)*order);
3750 }
3751 *snap_size = le64_to_cpu(size_buf.size);
3752
3753 dout(" snap_id 0x%016llx snap_size = %llu\n",
3754 (unsigned long long)snap_id,
3755 (unsigned long long)*snap_size);
3756
3757 return 0;
3758 }
3759
3760 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3761 {
3762 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3763 &rbd_dev->header.obj_order,
3764 &rbd_dev->header.image_size);
3765 }
3766
3767 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3768 {
3769 void *reply_buf;
3770 int ret;
3771 void *p;
3772
3773 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3774 if (!reply_buf)
3775 return -ENOMEM;
3776
3777 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3778 "rbd", "get_object_prefix", NULL, 0,
3779 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3780 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3781 if (ret < 0)
3782 goto out;
3783
3784 p = reply_buf;
3785 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3786 p + ret, NULL, GFP_NOIO);
3787 ret = 0;
3788
3789 if (IS_ERR(rbd_dev->header.object_prefix)) {
3790 ret = PTR_ERR(rbd_dev->header.object_prefix);
3791 rbd_dev->header.object_prefix = NULL;
3792 } else {
3793 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
3794 }
3795 out:
3796 kfree(reply_buf);
3797
3798 return ret;
3799 }
3800
3801 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3802 u64 *snap_features)
3803 {
3804 __le64 snapid = cpu_to_le64(snap_id);
3805 struct {
3806 __le64 features;
3807 __le64 incompat;
3808 } __attribute__ ((packed)) features_buf = { 0 };
3809 u64 incompat;
3810 int ret;
3811
3812 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3813 "rbd", "get_features",
3814 &snapid, sizeof (snapid),
3815 &features_buf, sizeof (features_buf));
3816 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3817 if (ret < 0)
3818 return ret;
3819 if (ret < sizeof (features_buf))
3820 return -ERANGE;
3821
3822 incompat = le64_to_cpu(features_buf.incompat);
3823 if (incompat & ~RBD_FEATURES_SUPPORTED)
3824 return -ENXIO;
3825
3826 *snap_features = le64_to_cpu(features_buf.features);
3827
3828 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3829 (unsigned long long)snap_id,
3830 (unsigned long long)*snap_features,
3831 (unsigned long long)le64_to_cpu(features_buf.incompat));
3832
3833 return 0;
3834 }
3835
3836 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3837 {
3838 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3839 &rbd_dev->header.features);
3840 }
3841
3842 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3843 {
3844 struct rbd_spec *parent_spec;
3845 size_t size;
3846 void *reply_buf = NULL;
3847 __le64 snapid;
3848 void *p;
3849 void *end;
3850 u64 pool_id;
3851 char *image_id;
3852 u64 overlap;
3853 int ret;
3854
3855 parent_spec = rbd_spec_alloc();
3856 if (!parent_spec)
3857 return -ENOMEM;
3858
3859 size = sizeof (__le64) + /* pool_id */
3860 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
3861 sizeof (__le64) + /* snap_id */
3862 sizeof (__le64); /* overlap */
3863 reply_buf = kmalloc(size, GFP_KERNEL);
3864 if (!reply_buf) {
3865 ret = -ENOMEM;
3866 goto out_err;
3867 }
3868
3869 snapid = cpu_to_le64(CEPH_NOSNAP);
3870 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3871 "rbd", "get_parent",
3872 &snapid, sizeof (snapid),
3873 reply_buf, size);
3874 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3875 if (ret < 0)
3876 goto out_err;
3877
3878 p = reply_buf;
3879 end = reply_buf + ret;
3880 ret = -ERANGE;
3881 ceph_decode_64_safe(&p, end, pool_id, out_err);
3882 if (pool_id == CEPH_NOPOOL) {
3883 /*
3884 * Either the parent never existed, or we have
3885 * record of it but the image got flattened so it no
3886 * longer has a parent. When the parent of a
3887 * layered image disappears we immediately set the
3888 * overlap to 0. The effect of this is that all new
3889 * requests will be treated as if the image had no
3890 * parent.
3891 */
3892 if (rbd_dev->parent_overlap) {
3893 rbd_dev->parent_overlap = 0;
3894 smp_mb();
3895 rbd_dev_parent_put(rbd_dev);
3896 pr_info("%s: clone image has been flattened\n",
3897 rbd_dev->disk->disk_name);
3898 }
3899
3900 goto out; /* No parent? No problem. */
3901 }
3902
3903 /* The ceph file layout needs to fit pool id in 32 bits */
3904
3905 ret = -EIO;
3906 if (pool_id > (u64)U32_MAX) {
3907 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3908 (unsigned long long)pool_id, U32_MAX);
3909 goto out_err;
3910 }
3911 parent_spec->pool_id = pool_id;
3912
3913 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3914 if (IS_ERR(image_id)) {
3915 ret = PTR_ERR(image_id);
3916 goto out_err;
3917 }
3918 parent_spec->image_id = image_id;
3919 ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
3920 ceph_decode_64_safe(&p, end, overlap, out_err);
3921
3922 if (overlap) {
3923 rbd_spec_put(rbd_dev->parent_spec);
3924 rbd_dev->parent_spec = parent_spec;
3925 parent_spec = NULL; /* rbd_dev now owns this */
3926 rbd_dev->parent_overlap = overlap;
3927 } else {
3928 rbd_warn(rbd_dev, "ignoring parent of clone with overlap 0\n");
3929 }
3930 out:
3931 ret = 0;
3932 out_err:
3933 kfree(reply_buf);
3934 rbd_spec_put(parent_spec);
3935
3936 return ret;
3937 }
3938
3939 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3940 {
3941 struct {
3942 __le64 stripe_unit;
3943 __le64 stripe_count;
3944 } __attribute__ ((packed)) striping_info_buf = { 0 };
3945 size_t size = sizeof (striping_info_buf);
3946 void *p;
3947 u64 obj_size;
3948 u64 stripe_unit;
3949 u64 stripe_count;
3950 int ret;
3951
3952 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3953 "rbd", "get_stripe_unit_count", NULL, 0,
3954 (char *)&striping_info_buf, size);
3955 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3956 if (ret < 0)
3957 return ret;
3958 if (ret < size)
3959 return -ERANGE;
3960
3961 /*
3962 * We don't actually support the "fancy striping" feature
3963 * (STRIPINGV2) yet, but if the striping sizes are the
3964 * defaults the behavior is the same as before. So find
3965 * out, and only fail if the image has non-default values.
3966 */
3967 ret = -EINVAL;
3968 obj_size = (u64)1 << rbd_dev->header.obj_order;
3969 p = &striping_info_buf;
3970 stripe_unit = ceph_decode_64(&p);
3971 if (stripe_unit != obj_size) {
3972 rbd_warn(rbd_dev, "unsupported stripe unit "
3973 "(got %llu want %llu)",
3974 stripe_unit, obj_size);
3975 return -EINVAL;
3976 }
3977 stripe_count = ceph_decode_64(&p);
3978 if (stripe_count != 1) {
3979 rbd_warn(rbd_dev, "unsupported stripe count "
3980 "(got %llu want 1)", stripe_count);
3981 return -EINVAL;
3982 }
3983 rbd_dev->header.stripe_unit = stripe_unit;
3984 rbd_dev->header.stripe_count = stripe_count;
3985
3986 return 0;
3987 }
3988
3989 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3990 {
3991 size_t image_id_size;
3992 char *image_id;
3993 void *p;
3994 void *end;
3995 size_t size;
3996 void *reply_buf = NULL;
3997 size_t len = 0;
3998 char *image_name = NULL;
3999 int ret;
4000
4001 rbd_assert(!rbd_dev->spec->image_name);
4002
4003 len = strlen(rbd_dev->spec->image_id);
4004 image_id_size = sizeof (__le32) + len;
4005 image_id = kmalloc(image_id_size, GFP_KERNEL);
4006 if (!image_id)
4007 return NULL;
4008
4009 p = image_id;
4010 end = image_id + image_id_size;
4011 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4012
4013 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4014 reply_buf = kmalloc(size, GFP_KERNEL);
4015 if (!reply_buf)
4016 goto out;
4017
4018 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4019 "rbd", "dir_get_name",
4020 image_id, image_id_size,
4021 reply_buf, size);
4022 if (ret < 0)
4023 goto out;
4024 p = reply_buf;
4025 end = reply_buf + ret;
4026
4027 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4028 if (IS_ERR(image_name))
4029 image_name = NULL;
4030 else
4031 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4032 out:
4033 kfree(reply_buf);
4034 kfree(image_id);
4035
4036 return image_name;
4037 }
4038
4039 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4040 {
4041 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4042 const char *snap_name;
4043 u32 which = 0;
4044
4045 /* Skip over names until we find the one we are looking for */
4046
4047 snap_name = rbd_dev->header.snap_names;
4048 while (which < snapc->num_snaps) {
4049 if (!strcmp(name, snap_name))
4050 return snapc->snaps[which];
4051 snap_name += strlen(snap_name) + 1;
4052 which++;
4053 }
4054 return CEPH_NOSNAP;
4055 }
4056
4057 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4058 {
4059 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4060 u32 which;
4061 bool found = false;
4062 u64 snap_id;
4063
4064 for (which = 0; !found && which < snapc->num_snaps; which++) {
4065 const char *snap_name;
4066
4067 snap_id = snapc->snaps[which];
4068 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4069 if (IS_ERR(snap_name)) {
4070 /* ignore no-longer existing snapshots */
4071 if (PTR_ERR(snap_name) == -ENOENT)
4072 continue;
4073 else
4074 break;
4075 }
4076 found = !strcmp(name, snap_name);
4077 kfree(snap_name);
4078 }
4079 return found ? snap_id : CEPH_NOSNAP;
4080 }
4081
4082 /*
4083 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4084 * no snapshot by that name is found, or if an error occurs.
4085 */
4086 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4087 {
4088 if (rbd_dev->image_format == 1)
4089 return rbd_v1_snap_id_by_name(rbd_dev, name);
4090
4091 return rbd_v2_snap_id_by_name(rbd_dev, name);
4092 }
4093
4094 /*
4095 * When an rbd image has a parent image, it is identified by the
4096 * pool, image, and snapshot ids (not names). This function fills
4097 * in the names for those ids. (It's OK if we can't figure out the
4098 * name for an image id, but the pool and snapshot ids should always
4099 * exist and have names.) All names in an rbd spec are dynamically
4100 * allocated.
4101 *
4102 * When an image being mapped (not a parent) is probed, we have the
4103 * pool name and pool id, image name and image id, and the snapshot
4104 * name. The only thing we're missing is the snapshot id.
4105 */
4106 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4107 {
4108 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4109 struct rbd_spec *spec = rbd_dev->spec;
4110 const char *pool_name;
4111 const char *image_name;
4112 const char *snap_name;
4113 int ret;
4114
4115 /*
4116 * An image being mapped will have the pool name (etc.), but
4117 * we need to look up the snapshot id.
4118 */
4119 if (spec->pool_name) {
4120 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4121 u64 snap_id;
4122
4123 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4124 if (snap_id == CEPH_NOSNAP)
4125 return -ENOENT;
4126 spec->snap_id = snap_id;
4127 } else {
4128 spec->snap_id = CEPH_NOSNAP;
4129 }
4130
4131 return 0;
4132 }
4133
4134 /* Get the pool name; we have to make our own copy of this */
4135
4136 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4137 if (!pool_name) {
4138 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4139 return -EIO;
4140 }
4141 pool_name = kstrdup(pool_name, GFP_KERNEL);
4142 if (!pool_name)
4143 return -ENOMEM;
4144
4145 /* Fetch the image name; tolerate failure here */
4146
4147 image_name = rbd_dev_image_name(rbd_dev);
4148 if (!image_name)
4149 rbd_warn(rbd_dev, "unable to get image name");
4150
4151 /* Look up the snapshot name, and make a copy */
4152
4153 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4154 if (IS_ERR(snap_name)) {
4155 ret = PTR_ERR(snap_name);
4156 goto out_err;
4157 }
4158
4159 spec->pool_name = pool_name;
4160 spec->image_name = image_name;
4161 spec->snap_name = snap_name;
4162
4163 return 0;
4164 out_err:
4165 kfree(image_name);
4166 kfree(pool_name);
4167
4168 return ret;
4169 }
4170
4171 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4172 {
4173 size_t size;
4174 int ret;
4175 void *reply_buf;
4176 void *p;
4177 void *end;
4178 u64 seq;
4179 u32 snap_count;
4180 struct ceph_snap_context *snapc;
4181 u32 i;
4182
4183 /*
4184 * We'll need room for the seq value (maximum snapshot id),
4185 * snapshot count, and array of that many snapshot ids.
4186 * For now we have a fixed upper limit on the number we're
4187 * prepared to receive.
4188 */
4189 size = sizeof (__le64) + sizeof (__le32) +
4190 RBD_MAX_SNAP_COUNT * sizeof (__le64);
4191 reply_buf = kzalloc(size, GFP_KERNEL);
4192 if (!reply_buf)
4193 return -ENOMEM;
4194
4195 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4196 "rbd", "get_snapcontext", NULL, 0,
4197 reply_buf, size);
4198 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4199 if (ret < 0)
4200 goto out;
4201
4202 p = reply_buf;
4203 end = reply_buf + ret;
4204 ret = -ERANGE;
4205 ceph_decode_64_safe(&p, end, seq, out);
4206 ceph_decode_32_safe(&p, end, snap_count, out);
4207
4208 /*
4209 * Make sure the reported number of snapshot ids wouldn't go
4210 * beyond the end of our buffer. But before checking that,
4211 * make sure the computed size of the snapshot context we
4212 * allocate is representable in a size_t.
4213 */
4214 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4215 / sizeof (u64)) {
4216 ret = -EINVAL;
4217 goto out;
4218 }
4219 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4220 goto out;
4221 ret = 0;
4222
4223 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4224 if (!snapc) {
4225 ret = -ENOMEM;
4226 goto out;
4227 }
4228 snapc->seq = seq;
4229 for (i = 0; i < snap_count; i++)
4230 snapc->snaps[i] = ceph_decode_64(&p);
4231
4232 ceph_put_snap_context(rbd_dev->header.snapc);
4233 rbd_dev->header.snapc = snapc;
4234
4235 dout(" snap context seq = %llu, snap_count = %u\n",
4236 (unsigned long long)seq, (unsigned int)snap_count);
4237 out:
4238 kfree(reply_buf);
4239
4240 return ret;
4241 }
4242
4243 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4244 u64 snap_id)
4245 {
4246 size_t size;
4247 void *reply_buf;
4248 __le64 snapid;
4249 int ret;
4250 void *p;
4251 void *end;
4252 char *snap_name;
4253
4254 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4255 reply_buf = kmalloc(size, GFP_KERNEL);
4256 if (!reply_buf)
4257 return ERR_PTR(-ENOMEM);
4258
4259 snapid = cpu_to_le64(snap_id);
4260 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4261 "rbd", "get_snapshot_name",
4262 &snapid, sizeof (snapid),
4263 reply_buf, size);
4264 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4265 if (ret < 0) {
4266 snap_name = ERR_PTR(ret);
4267 goto out;
4268 }
4269
4270 p = reply_buf;
4271 end = reply_buf + ret;
4272 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4273 if (IS_ERR(snap_name))
4274 goto out;
4275
4276 dout(" snap_id 0x%016llx snap_name = %s\n",
4277 (unsigned long long)snap_id, snap_name);
4278 out:
4279 kfree(reply_buf);
4280
4281 return snap_name;
4282 }
4283
4284 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4285 {
4286 bool first_time = rbd_dev->header.object_prefix == NULL;
4287 int ret;
4288
4289 down_write(&rbd_dev->header_rwsem);
4290
4291 ret = rbd_dev_v2_image_size(rbd_dev);
4292 if (ret)
4293 goto out;
4294
4295 if (first_time) {
4296 ret = rbd_dev_v2_header_onetime(rbd_dev);
4297 if (ret)
4298 goto out;
4299 }
4300
4301 /*
4302 * If the image supports layering, get the parent info. We
4303 * need to probe the first time regardless. Thereafter we
4304 * only need to if there's a parent, to see if it has
4305 * disappeared due to the mapped image getting flattened.
4306 */
4307 if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4308 (first_time || rbd_dev->parent_spec)) {
4309 bool warn;
4310
4311 ret = rbd_dev_v2_parent_info(rbd_dev);
4312 if (ret)
4313 goto out;
4314
4315 /*
4316 * Print a warning if this is the initial probe and
4317 * the image has a parent. Don't print it if the
4318 * image now being probed is itself a parent. We
4319 * can tell at this point because we won't know its
4320 * pool name yet (just its pool id).
4321 */
4322 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4323 if (first_time && warn)
4324 rbd_warn(rbd_dev, "WARNING: kernel layering "
4325 "is EXPERIMENTAL!");
4326 }
4327
4328 if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4329 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4330 rbd_dev->mapping.size = rbd_dev->header.image_size;
4331
4332 ret = rbd_dev_v2_snap_context(rbd_dev);
4333 dout("rbd_dev_v2_snap_context returned %d\n", ret);
4334 out:
4335 up_write(&rbd_dev->header_rwsem);
4336
4337 return ret;
4338 }
4339
4340 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4341 {
4342 struct device *dev;
4343 int ret;
4344
4345 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4346
4347 dev = &rbd_dev->dev;
4348 dev->bus = &rbd_bus_type;
4349 dev->type = &rbd_device_type;
4350 dev->parent = &rbd_root_dev;
4351 dev->release = rbd_dev_device_release;
4352 dev_set_name(dev, "%d", rbd_dev->dev_id);
4353 ret = device_register(dev);
4354
4355 mutex_unlock(&ctl_mutex);
4356
4357 return ret;
4358 }
4359
4360 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4361 {
4362 device_unregister(&rbd_dev->dev);
4363 }
4364
4365 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4366
4367 /*
4368 * Get a unique rbd identifier for the given new rbd_dev, and add
4369 * the rbd_dev to the global list. The minimum rbd id is 1.
4370 */
4371 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4372 {
4373 rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4374
4375 spin_lock(&rbd_dev_list_lock);
4376 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4377 spin_unlock(&rbd_dev_list_lock);
4378 dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4379 (unsigned long long) rbd_dev->dev_id);
4380 }
4381
4382 /*
4383 * Remove an rbd_dev from the global list, and record that its
4384 * identifier is no longer in use.
4385 */
4386 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4387 {
4388 struct list_head *tmp;
4389 int rbd_id = rbd_dev->dev_id;
4390 int max_id;
4391
4392 rbd_assert(rbd_id > 0);
4393
4394 dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4395 (unsigned long long) rbd_dev->dev_id);
4396 spin_lock(&rbd_dev_list_lock);
4397 list_del_init(&rbd_dev->node);
4398
4399 /*
4400 * If the id being "put" is not the current maximum, there
4401 * is nothing special we need to do.
4402 */
4403 if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4404 spin_unlock(&rbd_dev_list_lock);
4405 return;
4406 }
4407
4408 /*
4409 * We need to update the current maximum id. Search the
4410 * list to find out what it is. We're more likely to find
4411 * the maximum at the end, so search the list backward.
4412 */
4413 max_id = 0;
4414 list_for_each_prev(tmp, &rbd_dev_list) {
4415 struct rbd_device *rbd_dev;
4416
4417 rbd_dev = list_entry(tmp, struct rbd_device, node);
4418 if (rbd_dev->dev_id > max_id)
4419 max_id = rbd_dev->dev_id;
4420 }
4421 spin_unlock(&rbd_dev_list_lock);
4422
4423 /*
4424 * The max id could have been updated by rbd_dev_id_get(), in
4425 * which case it now accurately reflects the new maximum.
4426 * Be careful not to overwrite the maximum value in that
4427 * case.
4428 */
4429 atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4430 dout(" max dev id has been reset\n");
4431 }
4432
4433 /*
4434 * Skips over white space at *buf, and updates *buf to point to the
4435 * first found non-space character (if any). Returns the length of
4436 * the token (string of non-white space characters) found. Note
4437 * that *buf must be terminated with '\0'.
4438 */
4439 static inline size_t next_token(const char **buf)
4440 {
4441 /*
4442 * These are the characters that produce nonzero for
4443 * isspace() in the "C" and "POSIX" locales.
4444 */
4445 const char *spaces = " \f\n\r\t\v";
4446
4447 *buf += strspn(*buf, spaces); /* Find start of token */
4448
4449 return strcspn(*buf, spaces); /* Return token length */
4450 }
4451
4452 /*
4453 * Finds the next token in *buf, and if the provided token buffer is
4454 * big enough, copies the found token into it. The result, if
4455 * copied, is guaranteed to be terminated with '\0'. Note that *buf
4456 * must be terminated with '\0' on entry.
4457 *
4458 * Returns the length of the token found (not including the '\0').
4459 * Return value will be 0 if no token is found, and it will be >=
4460 * token_size if the token would not fit.
4461 *
4462 * The *buf pointer will be updated to point beyond the end of the
4463 * found token. Note that this occurs even if the token buffer is
4464 * too small to hold it.
4465 */
4466 static inline size_t copy_token(const char **buf,
4467 char *token,
4468 size_t token_size)
4469 {
4470 size_t len;
4471
4472 len = next_token(buf);
4473 if (len < token_size) {
4474 memcpy(token, *buf, len);
4475 *(token + len) = '\0';
4476 }
4477 *buf += len;
4478
4479 return len;
4480 }
4481
4482 /*
4483 * Finds the next token in *buf, dynamically allocates a buffer big
4484 * enough to hold a copy of it, and copies the token into the new
4485 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4486 * that a duplicate buffer is created even for a zero-length token.
4487 *
4488 * Returns a pointer to the newly-allocated duplicate, or a null
4489 * pointer if memory for the duplicate was not available. If
4490 * the lenp argument is a non-null pointer, the length of the token
4491 * (not including the '\0') is returned in *lenp.
4492 *
4493 * If successful, the *buf pointer will be updated to point beyond
4494 * the end of the found token.
4495 *
4496 * Note: uses GFP_KERNEL for allocation.
4497 */
4498 static inline char *dup_token(const char **buf, size_t *lenp)
4499 {
4500 char *dup;
4501 size_t len;
4502
4503 len = next_token(buf);
4504 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4505 if (!dup)
4506 return NULL;
4507 *(dup + len) = '\0';
4508 *buf += len;
4509
4510 if (lenp)
4511 *lenp = len;
4512
4513 return dup;
4514 }
4515
4516 /*
4517 * Parse the options provided for an "rbd add" (i.e., rbd image
4518 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4519 * and the data written is passed here via a NUL-terminated buffer.
4520 * Returns 0 if successful or an error code otherwise.
4521 *
4522 * The information extracted from these options is recorded in
4523 * the other parameters which return dynamically-allocated
4524 * structures:
4525 * ceph_opts
4526 * The address of a pointer that will refer to a ceph options
4527 * structure. Caller must release the returned pointer using
4528 * ceph_destroy_options() when it is no longer needed.
4529 * rbd_opts
4530 * Address of an rbd options pointer. Fully initialized by
4531 * this function; caller must release with kfree().
4532 * spec
4533 * Address of an rbd image specification pointer. Fully
4534 * initialized by this function based on parsed options.
4535 * Caller must release with rbd_spec_put().
4536 *
4537 * The options passed take this form:
4538 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4539 * where:
4540 * <mon_addrs>
4541 * A comma-separated list of one or more monitor addresses.
4542 * A monitor address is an ip address, optionally followed
4543 * by a port number (separated by a colon).
4544 * I.e.: ip1[:port1][,ip2[:port2]...]
4545 * <options>
4546 * A comma-separated list of ceph and/or rbd options.
4547 * <pool_name>
4548 * The name of the rados pool containing the rbd image.
4549 * <image_name>
4550 * The name of the image in that pool to map.
4551 * <snap_id>
4552 * An optional snapshot id. If provided, the mapping will
4553 * present data from the image at the time that snapshot was
4554 * created. The image head is used if no snapshot id is
4555 * provided. Snapshot mappings are always read-only.
4556 */
4557 static int rbd_add_parse_args(const char *buf,
4558 struct ceph_options **ceph_opts,
4559 struct rbd_options **opts,
4560 struct rbd_spec **rbd_spec)
4561 {
4562 size_t len;
4563 char *options;
4564 const char *mon_addrs;
4565 char *snap_name;
4566 size_t mon_addrs_size;
4567 struct rbd_spec *spec = NULL;
4568 struct rbd_options *rbd_opts = NULL;
4569 struct ceph_options *copts;
4570 int ret;
4571
4572 /* The first four tokens are required */
4573
4574 len = next_token(&buf);
4575 if (!len) {
4576 rbd_warn(NULL, "no monitor address(es) provided");
4577 return -EINVAL;
4578 }
4579 mon_addrs = buf;
4580 mon_addrs_size = len + 1;
4581 buf += len;
4582
4583 ret = -EINVAL;
4584 options = dup_token(&buf, NULL);
4585 if (!options)
4586 return -ENOMEM;
4587 if (!*options) {
4588 rbd_warn(NULL, "no options provided");
4589 goto out_err;
4590 }
4591
4592 spec = rbd_spec_alloc();
4593 if (!spec)
4594 goto out_mem;
4595
4596 spec->pool_name = dup_token(&buf, NULL);
4597 if (!spec->pool_name)
4598 goto out_mem;
4599 if (!*spec->pool_name) {
4600 rbd_warn(NULL, "no pool name provided");
4601 goto out_err;
4602 }
4603
4604 spec->image_name = dup_token(&buf, NULL);
4605 if (!spec->image_name)
4606 goto out_mem;
4607 if (!*spec->image_name) {
4608 rbd_warn(NULL, "no image name provided");
4609 goto out_err;
4610 }
4611
4612 /*
4613 * Snapshot name is optional; default is to use "-"
4614 * (indicating the head/no snapshot).
4615 */
4616 len = next_token(&buf);
4617 if (!len) {
4618 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4619 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4620 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4621 ret = -ENAMETOOLONG;
4622 goto out_err;
4623 }
4624 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4625 if (!snap_name)
4626 goto out_mem;
4627 *(snap_name + len) = '\0';
4628 spec->snap_name = snap_name;
4629
4630 /* Initialize all rbd options to the defaults */
4631
4632 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4633 if (!rbd_opts)
4634 goto out_mem;
4635
4636 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4637
4638 copts = ceph_parse_options(options, mon_addrs,
4639 mon_addrs + mon_addrs_size - 1,
4640 parse_rbd_opts_token, rbd_opts);
4641 if (IS_ERR(copts)) {
4642 ret = PTR_ERR(copts);
4643 goto out_err;
4644 }
4645 kfree(options);
4646
4647 *ceph_opts = copts;
4648 *opts = rbd_opts;
4649 *rbd_spec = spec;
4650
4651 return 0;
4652 out_mem:
4653 ret = -ENOMEM;
4654 out_err:
4655 kfree(rbd_opts);
4656 rbd_spec_put(spec);
4657 kfree(options);
4658
4659 return ret;
4660 }
4661
4662 /*
4663 * An rbd format 2 image has a unique identifier, distinct from the
4664 * name given to it by the user. Internally, that identifier is
4665 * what's used to specify the names of objects related to the image.
4666 *
4667 * A special "rbd id" object is used to map an rbd image name to its
4668 * id. If that object doesn't exist, then there is no v2 rbd image
4669 * with the supplied name.
4670 *
4671 * This function will record the given rbd_dev's image_id field if
4672 * it can be determined, and in that case will return 0. If any
4673 * errors occur a negative errno will be returned and the rbd_dev's
4674 * image_id field will be unchanged (and should be NULL).
4675 */
4676 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4677 {
4678 int ret;
4679 size_t size;
4680 char *object_name;
4681 void *response;
4682 char *image_id;
4683
4684 /*
4685 * When probing a parent image, the image id is already
4686 * known (and the image name likely is not). There's no
4687 * need to fetch the image id again in this case. We
4688 * do still need to set the image format though.
4689 */
4690 if (rbd_dev->spec->image_id) {
4691 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4692
4693 return 0;
4694 }
4695
4696 /*
4697 * First, see if the format 2 image id file exists, and if
4698 * so, get the image's persistent id from it.
4699 */
4700 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4701 object_name = kmalloc(size, GFP_NOIO);
4702 if (!object_name)
4703 return -ENOMEM;
4704 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4705 dout("rbd id object name is %s\n", object_name);
4706
4707 /* Response will be an encoded string, which includes a length */
4708
4709 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4710 response = kzalloc(size, GFP_NOIO);
4711 if (!response) {
4712 ret = -ENOMEM;
4713 goto out;
4714 }
4715
4716 /* If it doesn't exist we'll assume it's a format 1 image */
4717
4718 ret = rbd_obj_method_sync(rbd_dev, object_name,
4719 "rbd", "get_id", NULL, 0,
4720 response, RBD_IMAGE_ID_LEN_MAX);
4721 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4722 if (ret == -ENOENT) {
4723 image_id = kstrdup("", GFP_KERNEL);
4724 ret = image_id ? 0 : -ENOMEM;
4725 if (!ret)
4726 rbd_dev->image_format = 1;
4727 } else if (ret > sizeof (__le32)) {
4728 void *p = response;
4729
4730 image_id = ceph_extract_encoded_string(&p, p + ret,
4731 NULL, GFP_NOIO);
4732 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4733 if (!ret)
4734 rbd_dev->image_format = 2;
4735 } else {
4736 ret = -EINVAL;
4737 }
4738
4739 if (!ret) {
4740 rbd_dev->spec->image_id = image_id;
4741 dout("image_id is %s\n", image_id);
4742 }
4743 out:
4744 kfree(response);
4745 kfree(object_name);
4746
4747 return ret;
4748 }
4749
4750 /*
4751 * Undo whatever state changes are made by v1 or v2 header info
4752 * call.
4753 */
4754 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4755 {
4756 struct rbd_image_header *header;
4757
4758 /* Drop parent reference unless it's already been done (or none) */
4759
4760 if (rbd_dev->parent_overlap)
4761 rbd_dev_parent_put(rbd_dev);
4762
4763 /* Free dynamic fields from the header, then zero it out */
4764
4765 header = &rbd_dev->header;
4766 ceph_put_snap_context(header->snapc);
4767 kfree(header->snap_sizes);
4768 kfree(header->snap_names);
4769 kfree(header->object_prefix);
4770 memset(header, 0, sizeof (*header));
4771 }
4772
4773 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4774 {
4775 int ret;
4776
4777 ret = rbd_dev_v2_object_prefix(rbd_dev);
4778 if (ret)
4779 goto out_err;
4780
4781 /*
4782 * Get the and check features for the image. Currently the
4783 * features are assumed to never change.
4784 */
4785 ret = rbd_dev_v2_features(rbd_dev);
4786 if (ret)
4787 goto out_err;
4788
4789 /* If the image supports fancy striping, get its parameters */
4790
4791 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4792 ret = rbd_dev_v2_striping_info(rbd_dev);
4793 if (ret < 0)
4794 goto out_err;
4795 }
4796 /* No support for crypto and compression type format 2 images */
4797
4798 return 0;
4799 out_err:
4800 rbd_dev->header.features = 0;
4801 kfree(rbd_dev->header.object_prefix);
4802 rbd_dev->header.object_prefix = NULL;
4803
4804 return ret;
4805 }
4806
4807 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4808 {
4809 struct rbd_device *parent = NULL;
4810 struct rbd_spec *parent_spec;
4811 struct rbd_client *rbdc;
4812 int ret;
4813
4814 if (!rbd_dev->parent_spec)
4815 return 0;
4816 /*
4817 * We need to pass a reference to the client and the parent
4818 * spec when creating the parent rbd_dev. Images related by
4819 * parent/child relationships always share both.
4820 */
4821 parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4822 rbdc = __rbd_get_client(rbd_dev->rbd_client);
4823
4824 ret = -ENOMEM;
4825 parent = rbd_dev_create(rbdc, parent_spec);
4826 if (!parent)
4827 goto out_err;
4828
4829 ret = rbd_dev_image_probe(parent, false);
4830 if (ret < 0)
4831 goto out_err;
4832 rbd_dev->parent = parent;
4833 atomic_set(&rbd_dev->parent_ref, 1);
4834
4835 return 0;
4836 out_err:
4837 if (parent) {
4838 rbd_dev_unparent(rbd_dev);
4839 kfree(rbd_dev->header_name);
4840 rbd_dev_destroy(parent);
4841 } else {
4842 rbd_put_client(rbdc);
4843 rbd_spec_put(parent_spec);
4844 }
4845
4846 return ret;
4847 }
4848
4849 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4850 {
4851 int ret;
4852
4853 /* generate unique id: find highest unique id, add one */
4854 rbd_dev_id_get(rbd_dev);
4855
4856 /* Fill in the device name, now that we have its id. */
4857 BUILD_BUG_ON(DEV_NAME_LEN
4858 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4859 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4860
4861 /* Get our block major device number. */
4862
4863 ret = register_blkdev(0, rbd_dev->name);
4864 if (ret < 0)
4865 goto err_out_id;
4866 rbd_dev->major = ret;
4867
4868 /* Set up the blkdev mapping. */
4869
4870 ret = rbd_init_disk(rbd_dev);
4871 if (ret)
4872 goto err_out_blkdev;
4873
4874 ret = rbd_dev_mapping_set(rbd_dev);
4875 if (ret)
4876 goto err_out_disk;
4877 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4878
4879 ret = rbd_bus_add_dev(rbd_dev);
4880 if (ret)
4881 goto err_out_mapping;
4882
4883 /* Everything's ready. Announce the disk to the world. */
4884
4885 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4886 add_disk(rbd_dev->disk);
4887
4888 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4889 (unsigned long long) rbd_dev->mapping.size);
4890
4891 return ret;
4892
4893 err_out_mapping:
4894 rbd_dev_mapping_clear(rbd_dev);
4895 err_out_disk:
4896 rbd_free_disk(rbd_dev);
4897 err_out_blkdev:
4898 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4899 err_out_id:
4900 rbd_dev_id_put(rbd_dev);
4901 rbd_dev_mapping_clear(rbd_dev);
4902
4903 return ret;
4904 }
4905
4906 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4907 {
4908 struct rbd_spec *spec = rbd_dev->spec;
4909 size_t size;
4910
4911 /* Record the header object name for this rbd image. */
4912
4913 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4914
4915 if (rbd_dev->image_format == 1)
4916 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4917 else
4918 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4919
4920 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4921 if (!rbd_dev->header_name)
4922 return -ENOMEM;
4923
4924 if (rbd_dev->image_format == 1)
4925 sprintf(rbd_dev->header_name, "%s%s",
4926 spec->image_name, RBD_SUFFIX);
4927 else
4928 sprintf(rbd_dev->header_name, "%s%s",
4929 RBD_HEADER_PREFIX, spec->image_id);
4930 return 0;
4931 }
4932
4933 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4934 {
4935 rbd_dev_unprobe(rbd_dev);
4936 kfree(rbd_dev->header_name);
4937 rbd_dev->header_name = NULL;
4938 rbd_dev->image_format = 0;
4939 kfree(rbd_dev->spec->image_id);
4940 rbd_dev->spec->image_id = NULL;
4941
4942 rbd_dev_destroy(rbd_dev);
4943 }
4944
4945 /*
4946 * Probe for the existence of the header object for the given rbd
4947 * device. If this image is the one being mapped (i.e., not a
4948 * parent), initiate a watch on its header object before using that
4949 * object to get detailed information about the rbd image.
4950 */
4951 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4952 {
4953 int ret;
4954 int tmp;
4955
4956 /*
4957 * Get the id from the image id object. Unless there's an
4958 * error, rbd_dev->spec->image_id will be filled in with
4959 * a dynamically-allocated string, and rbd_dev->image_format
4960 * will be set to either 1 or 2.
4961 */
4962 ret = rbd_dev_image_id(rbd_dev);
4963 if (ret)
4964 return ret;
4965 rbd_assert(rbd_dev->spec->image_id);
4966 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4967
4968 ret = rbd_dev_header_name(rbd_dev);
4969 if (ret)
4970 goto err_out_format;
4971
4972 if (mapping) {
4973 ret = rbd_dev_header_watch_sync(rbd_dev, true);
4974 if (ret)
4975 goto out_header_name;
4976 }
4977
4978 if (rbd_dev->image_format == 1)
4979 ret = rbd_dev_v1_header_info(rbd_dev);
4980 else
4981 ret = rbd_dev_v2_header_info(rbd_dev);
4982 if (ret)
4983 goto err_out_watch;
4984
4985 ret = rbd_dev_spec_update(rbd_dev);
4986 if (ret)
4987 goto err_out_probe;
4988
4989 ret = rbd_dev_probe_parent(rbd_dev);
4990 if (ret)
4991 goto err_out_probe;
4992
4993 dout("discovered format %u image, header name is %s\n",
4994 rbd_dev->image_format, rbd_dev->header_name);
4995
4996 return 0;
4997 err_out_probe:
4998 rbd_dev_unprobe(rbd_dev);
4999 err_out_watch:
5000 if (mapping) {
5001 tmp = rbd_dev_header_watch_sync(rbd_dev, false);
5002 if (tmp)
5003 rbd_warn(rbd_dev, "unable to tear down "
5004 "watch request (%d)\n", tmp);
5005 }
5006 out_header_name:
5007 kfree(rbd_dev->header_name);
5008 rbd_dev->header_name = NULL;
5009 err_out_format:
5010 rbd_dev->image_format = 0;
5011 kfree(rbd_dev->spec->image_id);
5012 rbd_dev->spec->image_id = NULL;
5013
5014 dout("probe failed, returning %d\n", ret);
5015
5016 return ret;
5017 }
5018
5019 static ssize_t rbd_add(struct bus_type *bus,
5020 const char *buf,
5021 size_t count)
5022 {
5023 struct rbd_device *rbd_dev = NULL;
5024 struct ceph_options *ceph_opts = NULL;
5025 struct rbd_options *rbd_opts = NULL;
5026 struct rbd_spec *spec = NULL;
5027 struct rbd_client *rbdc;
5028 struct ceph_osd_client *osdc;
5029 bool read_only;
5030 int rc = -ENOMEM;
5031
5032 if (!try_module_get(THIS_MODULE))
5033 return -ENODEV;
5034
5035 /* parse add command */
5036 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5037 if (rc < 0)
5038 goto err_out_module;
5039 read_only = rbd_opts->read_only;
5040 kfree(rbd_opts);
5041 rbd_opts = NULL; /* done with this */
5042
5043 rbdc = rbd_get_client(ceph_opts);
5044 if (IS_ERR(rbdc)) {
5045 rc = PTR_ERR(rbdc);
5046 goto err_out_args;
5047 }
5048
5049 /* pick the pool */
5050 osdc = &rbdc->client->osdc;
5051 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5052 if (rc < 0)
5053 goto err_out_client;
5054 spec->pool_id = (u64)rc;
5055
5056 /* The ceph file layout needs to fit pool id in 32 bits */
5057
5058 if (spec->pool_id > (u64)U32_MAX) {
5059 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5060 (unsigned long long)spec->pool_id, U32_MAX);
5061 rc = -EIO;
5062 goto err_out_client;
5063 }
5064
5065 rbd_dev = rbd_dev_create(rbdc, spec);
5066 if (!rbd_dev)
5067 goto err_out_client;
5068 rbdc = NULL; /* rbd_dev now owns this */
5069 spec = NULL; /* rbd_dev now owns this */
5070
5071 rc = rbd_dev_image_probe(rbd_dev, true);
5072 if (rc < 0)
5073 goto err_out_rbd_dev;
5074
5075 /* If we are mapping a snapshot it must be marked read-only */
5076
5077 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5078 read_only = true;
5079 rbd_dev->mapping.read_only = read_only;
5080
5081 rc = rbd_dev_device_setup(rbd_dev);
5082 if (rc) {
5083 rbd_dev_image_release(rbd_dev);
5084 goto err_out_module;
5085 }
5086
5087 return count;
5088
5089 err_out_rbd_dev:
5090 rbd_dev_destroy(rbd_dev);
5091 err_out_client:
5092 rbd_put_client(rbdc);
5093 err_out_args:
5094 rbd_spec_put(spec);
5095 err_out_module:
5096 module_put(THIS_MODULE);
5097
5098 dout("Error adding device %s\n", buf);
5099
5100 return (ssize_t)rc;
5101 }
5102
5103 static void rbd_dev_device_release(struct device *dev)
5104 {
5105 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5106
5107 rbd_free_disk(rbd_dev);
5108 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5109 rbd_dev_mapping_clear(rbd_dev);
5110 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5111 rbd_dev->major = 0;
5112 rbd_dev_id_put(rbd_dev);
5113 rbd_dev_mapping_clear(rbd_dev);
5114 }
5115
5116 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5117 {
5118 while (rbd_dev->parent) {
5119 struct rbd_device *first = rbd_dev;
5120 struct rbd_device *second = first->parent;
5121 struct rbd_device *third;
5122
5123 /*
5124 * Follow to the parent with no grandparent and
5125 * remove it.
5126 */
5127 while (second && (third = second->parent)) {
5128 first = second;
5129 second = third;
5130 }
5131 rbd_assert(second);
5132 rbd_dev_image_release(second);
5133 first->parent = NULL;
5134 first->parent_overlap = 0;
5135
5136 rbd_assert(first->parent_spec);
5137 rbd_spec_put(first->parent_spec);
5138 first->parent_spec = NULL;
5139 }
5140 }
5141
5142 static ssize_t rbd_remove(struct bus_type *bus,
5143 const char *buf,
5144 size_t count)
5145 {
5146 struct rbd_device *rbd_dev = NULL;
5147 struct list_head *tmp;
5148 int dev_id;
5149 unsigned long ul;
5150 bool already = false;
5151 int ret;
5152
5153 ret = strict_strtoul(buf, 10, &ul);
5154 if (ret)
5155 return ret;
5156
5157 /* convert to int; abort if we lost anything in the conversion */
5158 dev_id = (int)ul;
5159 if (dev_id != ul)
5160 return -EINVAL;
5161
5162 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
5163
5164 ret = -ENOENT;
5165 spin_lock(&rbd_dev_list_lock);
5166 list_for_each(tmp, &rbd_dev_list) {
5167 rbd_dev = list_entry(tmp, struct rbd_device, node);
5168 if (rbd_dev->dev_id == dev_id) {
5169 ret = 0;
5170 break;
5171 }
5172 }
5173 if (!ret) {
5174 spin_lock_irq(&rbd_dev->lock);
5175 if (rbd_dev->open_count)
5176 ret = -EBUSY;
5177 else
5178 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5179 &rbd_dev->flags);
5180 spin_unlock_irq(&rbd_dev->lock);
5181 }
5182 spin_unlock(&rbd_dev_list_lock);
5183 if (ret < 0 || already)
5184 goto done;
5185
5186 ret = rbd_dev_header_watch_sync(rbd_dev, false);
5187 if (ret)
5188 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5189
5190 /*
5191 * flush remaining watch callbacks - these must be complete
5192 * before the osd_client is shutdown
5193 */
5194 dout("%s: flushing notifies", __func__);
5195 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5196 /*
5197 * Don't free anything from rbd_dev->disk until after all
5198 * notifies are completely processed. Otherwise
5199 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5200 * in a potential use after free of rbd_dev->disk or rbd_dev.
5201 */
5202 rbd_bus_del_dev(rbd_dev);
5203 rbd_dev_image_release(rbd_dev);
5204 module_put(THIS_MODULE);
5205 ret = count;
5206 done:
5207 mutex_unlock(&ctl_mutex);
5208
5209 return ret;
5210 }
5211
5212 /*
5213 * create control files in sysfs
5214 * /sys/bus/rbd/...
5215 */
5216 static int rbd_sysfs_init(void)
5217 {
5218 int ret;
5219
5220 ret = device_register(&rbd_root_dev);
5221 if (ret < 0)
5222 return ret;
5223
5224 ret = bus_register(&rbd_bus_type);
5225 if (ret < 0)
5226 device_unregister(&rbd_root_dev);
5227
5228 return ret;
5229 }
5230
5231 static void rbd_sysfs_cleanup(void)
5232 {
5233 bus_unregister(&rbd_bus_type);
5234 device_unregister(&rbd_root_dev);
5235 }
5236
5237 static int rbd_slab_init(void)
5238 {
5239 rbd_assert(!rbd_img_request_cache);
5240 rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5241 sizeof (struct rbd_img_request),
5242 __alignof__(struct rbd_img_request),
5243 0, NULL);
5244 if (!rbd_img_request_cache)
5245 return -ENOMEM;
5246
5247 rbd_assert(!rbd_obj_request_cache);
5248 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5249 sizeof (struct rbd_obj_request),
5250 __alignof__(struct rbd_obj_request),
5251 0, NULL);
5252 if (!rbd_obj_request_cache)
5253 goto out_err;
5254
5255 rbd_assert(!rbd_segment_name_cache);
5256 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5257 MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5258 if (rbd_segment_name_cache)
5259 return 0;
5260 out_err:
5261 if (rbd_obj_request_cache) {
5262 kmem_cache_destroy(rbd_obj_request_cache);
5263 rbd_obj_request_cache = NULL;
5264 }
5265
5266 kmem_cache_destroy(rbd_img_request_cache);
5267 rbd_img_request_cache = NULL;
5268
5269 return -ENOMEM;
5270 }
5271
5272 static void rbd_slab_exit(void)
5273 {
5274 rbd_assert(rbd_segment_name_cache);
5275 kmem_cache_destroy(rbd_segment_name_cache);
5276 rbd_segment_name_cache = NULL;
5277
5278 rbd_assert(rbd_obj_request_cache);
5279 kmem_cache_destroy(rbd_obj_request_cache);
5280 rbd_obj_request_cache = NULL;
5281
5282 rbd_assert(rbd_img_request_cache);
5283 kmem_cache_destroy(rbd_img_request_cache);
5284 rbd_img_request_cache = NULL;
5285 }
5286
5287 static int __init rbd_init(void)
5288 {
5289 int rc;
5290
5291 if (!libceph_compatible(NULL)) {
5292 rbd_warn(NULL, "libceph incompatibility (quitting)");
5293
5294 return -EINVAL;
5295 }
5296 rc = rbd_slab_init();
5297 if (rc)
5298 return rc;
5299 rc = rbd_sysfs_init();
5300 if (rc)
5301 rbd_slab_exit();
5302 else
5303 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5304
5305 return rc;
5306 }
5307
5308 static void __exit rbd_exit(void)
5309 {
5310 rbd_sysfs_cleanup();
5311 rbd_slab_exit();
5312 }
5313
5314 module_init(rbd_init);
5315 module_exit(rbd_exit);
5316
5317 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5318 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5319 MODULE_DESCRIPTION("rados block device");
5320
5321 /* following authorship retained from original osdblk.c */
5322 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5323
5324 MODULE_LICENSE("GPL");