Merge git://git.kernel.org/pub/scm/virt/kvm/kvm
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / block / rbd.c
1 /*
2 rbd.c -- Export ceph rados objects as a Linux block device
3
4
5 based on drivers/block/osdblk.c:
6
7 Copyright 2009 Red Hat, Inc.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; see the file COPYING. If not, write to
20 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
21
22
23
24 For usage instructions, please refer to:
25
26 Documentation/ABI/testing/sysfs-bus-rbd
27
28 */
29
30 #include <linux/ceph/libceph.h>
31 #include <linux/ceph/osd_client.h>
32 #include <linux/ceph/mon_client.h>
33 #include <linux/ceph/decode.h>
34 #include <linux/parser.h>
35
36 #include <linux/kernel.h>
37 #include <linux/device.h>
38 #include <linux/module.h>
39 #include <linux/fs.h>
40 #include <linux/blkdev.h>
41
42 #include "rbd_types.h"
43
44 #define RBD_DEBUG /* Activate rbd_assert() calls */
45
46 /*
47 * The basic unit of block I/O is a sector. It is interpreted in a
48 * number of contexts in Linux (blk, bio, genhd), but the default is
49 * universally 512 bytes. These symbols are just slightly more
50 * meaningful than the bare numbers they represent.
51 */
52 #define SECTOR_SHIFT 9
53 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
54
55 /* It might be useful to have these defined elsewhere */
56
57 #define U8_MAX ((u8) (~0U))
58 #define U16_MAX ((u16) (~0U))
59 #define U32_MAX ((u32) (~0U))
60 #define U64_MAX ((u64) (~0ULL))
61
62 #define RBD_DRV_NAME "rbd"
63 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
64
65 #define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */
66
67 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
68 #define RBD_MAX_SNAP_NAME_LEN \
69 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
70
71 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
72
73 #define RBD_SNAP_HEAD_NAME "-"
74
75 /* This allows a single page to hold an image name sent by OSD */
76 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
77 #define RBD_IMAGE_ID_LEN_MAX 64
78
79 #define RBD_OBJ_PREFIX_LEN_MAX 64
80
81 /* Feature bits */
82
83 #define RBD_FEATURE_LAYERING 1
84
85 /* Features supported by this (client software) implementation. */
86
87 #define RBD_FEATURES_ALL (0)
88
89 /*
90 * An RBD device name will be "rbd#", where the "rbd" comes from
91 * RBD_DRV_NAME above, and # is a unique integer identifier.
92 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
93 * enough to hold all possible device names.
94 */
95 #define DEV_NAME_LEN 32
96 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
97
98 /*
99 * block device image metadata (in-memory version)
100 */
101 struct rbd_image_header {
102 /* These four fields never change for a given rbd image */
103 char *object_prefix;
104 u64 features;
105 __u8 obj_order;
106 __u8 crypt_type;
107 __u8 comp_type;
108
109 /* The remaining fields need to be updated occasionally */
110 u64 image_size;
111 struct ceph_snap_context *snapc;
112 char *snap_names;
113 u64 *snap_sizes;
114
115 u64 obj_version;
116 };
117
118 /*
119 * An rbd image specification.
120 *
121 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
122 * identify an image. Each rbd_dev structure includes a pointer to
123 * an rbd_spec structure that encapsulates this identity.
124 *
125 * Each of the id's in an rbd_spec has an associated name. For a
126 * user-mapped image, the names are supplied and the id's associated
127 * with them are looked up. For a layered image, a parent image is
128 * defined by the tuple, and the names are looked up.
129 *
130 * An rbd_dev structure contains a parent_spec pointer which is
131 * non-null if the image it represents is a child in a layered
132 * image. This pointer will refer to the rbd_spec structure used
133 * by the parent rbd_dev for its own identity (i.e., the structure
134 * is shared between the parent and child).
135 *
136 * Since these structures are populated once, during the discovery
137 * phase of image construction, they are effectively immutable so
138 * we make no effort to synchronize access to them.
139 *
140 * Note that code herein does not assume the image name is known (it
141 * could be a null pointer).
142 */
143 struct rbd_spec {
144 u64 pool_id;
145 char *pool_name;
146
147 char *image_id;
148 char *image_name;
149
150 u64 snap_id;
151 char *snap_name;
152
153 struct kref kref;
154 };
155
156 /*
157 * an instance of the client. multiple devices may share an rbd client.
158 */
159 struct rbd_client {
160 struct ceph_client *client;
161 struct kref kref;
162 struct list_head node;
163 };
164
165 struct rbd_img_request;
166 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
167
168 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
169
170 struct rbd_obj_request;
171 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
172
173 enum obj_request_type {
174 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
175 };
176
177 struct rbd_obj_request {
178 const char *object_name;
179 u64 offset; /* object start byte */
180 u64 length; /* bytes from offset */
181
182 struct rbd_img_request *img_request;
183 struct list_head links; /* img_request->obj_requests */
184 u32 which; /* posn image request list */
185
186 enum obj_request_type type;
187 union {
188 struct bio *bio_list;
189 struct {
190 struct page **pages;
191 u32 page_count;
192 };
193 };
194
195 struct ceph_osd_request *osd_req;
196
197 u64 xferred; /* bytes transferred */
198 u64 version;
199 int result;
200 atomic_t done;
201
202 rbd_obj_callback_t callback;
203 struct completion completion;
204
205 struct kref kref;
206 };
207
208 struct rbd_img_request {
209 struct request *rq;
210 struct rbd_device *rbd_dev;
211 u64 offset; /* starting image byte offset */
212 u64 length; /* byte count from offset */
213 bool write_request; /* false for read */
214 union {
215 struct ceph_snap_context *snapc; /* for writes */
216 u64 snap_id; /* for reads */
217 };
218 spinlock_t completion_lock;/* protects next_completion */
219 u32 next_completion;
220 rbd_img_callback_t callback;
221
222 u32 obj_request_count;
223 struct list_head obj_requests; /* rbd_obj_request structs */
224
225 struct kref kref;
226 };
227
228 #define for_each_obj_request(ireq, oreq) \
229 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
230 #define for_each_obj_request_from(ireq, oreq) \
231 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
232 #define for_each_obj_request_safe(ireq, oreq, n) \
233 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
234
235 struct rbd_snap {
236 struct device dev;
237 const char *name;
238 u64 size;
239 struct list_head node;
240 u64 id;
241 u64 features;
242 };
243
244 struct rbd_mapping {
245 u64 size;
246 u64 features;
247 bool read_only;
248 };
249
250 /*
251 * a single device
252 */
253 struct rbd_device {
254 int dev_id; /* blkdev unique id */
255
256 int major; /* blkdev assigned major */
257 struct gendisk *disk; /* blkdev's gendisk and rq */
258
259 u32 image_format; /* Either 1 or 2 */
260 struct rbd_client *rbd_client;
261
262 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
263
264 spinlock_t lock; /* queue, flags, open_count */
265
266 struct rbd_image_header header;
267 unsigned long flags; /* possibly lock protected */
268 struct rbd_spec *spec;
269
270 char *header_name;
271
272 struct ceph_file_layout layout;
273
274 struct ceph_osd_event *watch_event;
275 struct rbd_obj_request *watch_request;
276
277 struct rbd_spec *parent_spec;
278 u64 parent_overlap;
279
280 /* protects updating the header */
281 struct rw_semaphore header_rwsem;
282
283 struct rbd_mapping mapping;
284
285 struct list_head node;
286
287 /* list of snapshots */
288 struct list_head snaps;
289
290 /* sysfs related */
291 struct device dev;
292 unsigned long open_count; /* protected by lock */
293 };
294
295 /*
296 * Flag bits for rbd_dev->flags. If atomicity is required,
297 * rbd_dev->lock is used to protect access.
298 *
299 * Currently, only the "removing" flag (which is coupled with the
300 * "open_count" field) requires atomic access.
301 */
302 enum rbd_dev_flags {
303 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
304 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
305 };
306
307 static DEFINE_MUTEX(ctl_mutex); /* Serialize open/close/setup/teardown */
308
309 static LIST_HEAD(rbd_dev_list); /* devices */
310 static DEFINE_SPINLOCK(rbd_dev_list_lock);
311
312 static LIST_HEAD(rbd_client_list); /* clients */
313 static DEFINE_SPINLOCK(rbd_client_list_lock);
314
315 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev);
316 static int rbd_dev_snaps_register(struct rbd_device *rbd_dev);
317
318 static void rbd_dev_release(struct device *dev);
319 static void rbd_remove_snap_dev(struct rbd_snap *snap);
320
321 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
322 size_t count);
323 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
324 size_t count);
325
326 static struct bus_attribute rbd_bus_attrs[] = {
327 __ATTR(add, S_IWUSR, NULL, rbd_add),
328 __ATTR(remove, S_IWUSR, NULL, rbd_remove),
329 __ATTR_NULL
330 };
331
332 static struct bus_type rbd_bus_type = {
333 .name = "rbd",
334 .bus_attrs = rbd_bus_attrs,
335 };
336
337 static void rbd_root_dev_release(struct device *dev)
338 {
339 }
340
341 static struct device rbd_root_dev = {
342 .init_name = "rbd",
343 .release = rbd_root_dev_release,
344 };
345
346 static __printf(2, 3)
347 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
348 {
349 struct va_format vaf;
350 va_list args;
351
352 va_start(args, fmt);
353 vaf.fmt = fmt;
354 vaf.va = &args;
355
356 if (!rbd_dev)
357 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
358 else if (rbd_dev->disk)
359 printk(KERN_WARNING "%s: %s: %pV\n",
360 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
361 else if (rbd_dev->spec && rbd_dev->spec->image_name)
362 printk(KERN_WARNING "%s: image %s: %pV\n",
363 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
364 else if (rbd_dev->spec && rbd_dev->spec->image_id)
365 printk(KERN_WARNING "%s: id %s: %pV\n",
366 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
367 else /* punt */
368 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
369 RBD_DRV_NAME, rbd_dev, &vaf);
370 va_end(args);
371 }
372
373 #ifdef RBD_DEBUG
374 #define rbd_assert(expr) \
375 if (unlikely(!(expr))) { \
376 printk(KERN_ERR "\nAssertion failure in %s() " \
377 "at line %d:\n\n" \
378 "\trbd_assert(%s);\n\n", \
379 __func__, __LINE__, #expr); \
380 BUG(); \
381 }
382 #else /* !RBD_DEBUG */
383 # define rbd_assert(expr) ((void) 0)
384 #endif /* !RBD_DEBUG */
385
386 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver);
387 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver);
388
389 static int rbd_open(struct block_device *bdev, fmode_t mode)
390 {
391 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
392 bool removing = false;
393
394 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
395 return -EROFS;
396
397 spin_lock_irq(&rbd_dev->lock);
398 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
399 removing = true;
400 else
401 rbd_dev->open_count++;
402 spin_unlock_irq(&rbd_dev->lock);
403 if (removing)
404 return -ENOENT;
405
406 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
407 (void) get_device(&rbd_dev->dev);
408 set_device_ro(bdev, rbd_dev->mapping.read_only);
409 mutex_unlock(&ctl_mutex);
410
411 return 0;
412 }
413
414 static int rbd_release(struct gendisk *disk, fmode_t mode)
415 {
416 struct rbd_device *rbd_dev = disk->private_data;
417 unsigned long open_count_before;
418
419 spin_lock_irq(&rbd_dev->lock);
420 open_count_before = rbd_dev->open_count--;
421 spin_unlock_irq(&rbd_dev->lock);
422 rbd_assert(open_count_before > 0);
423
424 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
425 put_device(&rbd_dev->dev);
426 mutex_unlock(&ctl_mutex);
427
428 return 0;
429 }
430
431 static const struct block_device_operations rbd_bd_ops = {
432 .owner = THIS_MODULE,
433 .open = rbd_open,
434 .release = rbd_release,
435 };
436
437 /*
438 * Initialize an rbd client instance.
439 * We own *ceph_opts.
440 */
441 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
442 {
443 struct rbd_client *rbdc;
444 int ret = -ENOMEM;
445
446 dout("%s:\n", __func__);
447 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
448 if (!rbdc)
449 goto out_opt;
450
451 kref_init(&rbdc->kref);
452 INIT_LIST_HEAD(&rbdc->node);
453
454 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
455
456 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
457 if (IS_ERR(rbdc->client))
458 goto out_mutex;
459 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
460
461 ret = ceph_open_session(rbdc->client);
462 if (ret < 0)
463 goto out_err;
464
465 spin_lock(&rbd_client_list_lock);
466 list_add_tail(&rbdc->node, &rbd_client_list);
467 spin_unlock(&rbd_client_list_lock);
468
469 mutex_unlock(&ctl_mutex);
470 dout("%s: rbdc %p\n", __func__, rbdc);
471
472 return rbdc;
473
474 out_err:
475 ceph_destroy_client(rbdc->client);
476 out_mutex:
477 mutex_unlock(&ctl_mutex);
478 kfree(rbdc);
479 out_opt:
480 if (ceph_opts)
481 ceph_destroy_options(ceph_opts);
482 dout("%s: error %d\n", __func__, ret);
483
484 return ERR_PTR(ret);
485 }
486
487 /*
488 * Find a ceph client with specific addr and configuration. If
489 * found, bump its reference count.
490 */
491 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
492 {
493 struct rbd_client *client_node;
494 bool found = false;
495
496 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
497 return NULL;
498
499 spin_lock(&rbd_client_list_lock);
500 list_for_each_entry(client_node, &rbd_client_list, node) {
501 if (!ceph_compare_options(ceph_opts, client_node->client)) {
502 kref_get(&client_node->kref);
503 found = true;
504 break;
505 }
506 }
507 spin_unlock(&rbd_client_list_lock);
508
509 return found ? client_node : NULL;
510 }
511
512 /*
513 * mount options
514 */
515 enum {
516 Opt_last_int,
517 /* int args above */
518 Opt_last_string,
519 /* string args above */
520 Opt_read_only,
521 Opt_read_write,
522 /* Boolean args above */
523 Opt_last_bool,
524 };
525
526 static match_table_t rbd_opts_tokens = {
527 /* int args above */
528 /* string args above */
529 {Opt_read_only, "read_only"},
530 {Opt_read_only, "ro"}, /* Alternate spelling */
531 {Opt_read_write, "read_write"},
532 {Opt_read_write, "rw"}, /* Alternate spelling */
533 /* Boolean args above */
534 {-1, NULL}
535 };
536
537 struct rbd_options {
538 bool read_only;
539 };
540
541 #define RBD_READ_ONLY_DEFAULT false
542
543 static int parse_rbd_opts_token(char *c, void *private)
544 {
545 struct rbd_options *rbd_opts = private;
546 substring_t argstr[MAX_OPT_ARGS];
547 int token, intval, ret;
548
549 token = match_token(c, rbd_opts_tokens, argstr);
550 if (token < 0)
551 return -EINVAL;
552
553 if (token < Opt_last_int) {
554 ret = match_int(&argstr[0], &intval);
555 if (ret < 0) {
556 pr_err("bad mount option arg (not int) "
557 "at '%s'\n", c);
558 return ret;
559 }
560 dout("got int token %d val %d\n", token, intval);
561 } else if (token > Opt_last_int && token < Opt_last_string) {
562 dout("got string token %d val %s\n", token,
563 argstr[0].from);
564 } else if (token > Opt_last_string && token < Opt_last_bool) {
565 dout("got Boolean token %d\n", token);
566 } else {
567 dout("got token %d\n", token);
568 }
569
570 switch (token) {
571 case Opt_read_only:
572 rbd_opts->read_only = true;
573 break;
574 case Opt_read_write:
575 rbd_opts->read_only = false;
576 break;
577 default:
578 rbd_assert(false);
579 break;
580 }
581 return 0;
582 }
583
584 /*
585 * Get a ceph client with specific addr and configuration, if one does
586 * not exist create it.
587 */
588 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
589 {
590 struct rbd_client *rbdc;
591
592 rbdc = rbd_client_find(ceph_opts);
593 if (rbdc) /* using an existing client */
594 ceph_destroy_options(ceph_opts);
595 else
596 rbdc = rbd_client_create(ceph_opts);
597
598 return rbdc;
599 }
600
601 /*
602 * Destroy ceph client
603 *
604 * Caller must hold rbd_client_list_lock.
605 */
606 static void rbd_client_release(struct kref *kref)
607 {
608 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
609
610 dout("%s: rbdc %p\n", __func__, rbdc);
611 spin_lock(&rbd_client_list_lock);
612 list_del(&rbdc->node);
613 spin_unlock(&rbd_client_list_lock);
614
615 ceph_destroy_client(rbdc->client);
616 kfree(rbdc);
617 }
618
619 /*
620 * Drop reference to ceph client node. If it's not referenced anymore, release
621 * it.
622 */
623 static void rbd_put_client(struct rbd_client *rbdc)
624 {
625 if (rbdc)
626 kref_put(&rbdc->kref, rbd_client_release);
627 }
628
629 static bool rbd_image_format_valid(u32 image_format)
630 {
631 return image_format == 1 || image_format == 2;
632 }
633
634 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
635 {
636 size_t size;
637 u32 snap_count;
638
639 /* The header has to start with the magic rbd header text */
640 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
641 return false;
642
643 /* The bio layer requires at least sector-sized I/O */
644
645 if (ondisk->options.order < SECTOR_SHIFT)
646 return false;
647
648 /* If we use u64 in a few spots we may be able to loosen this */
649
650 if (ondisk->options.order > 8 * sizeof (int) - 1)
651 return false;
652
653 /*
654 * The size of a snapshot header has to fit in a size_t, and
655 * that limits the number of snapshots.
656 */
657 snap_count = le32_to_cpu(ondisk->snap_count);
658 size = SIZE_MAX - sizeof (struct ceph_snap_context);
659 if (snap_count > size / sizeof (__le64))
660 return false;
661
662 /*
663 * Not only that, but the size of the entire the snapshot
664 * header must also be representable in a size_t.
665 */
666 size -= snap_count * sizeof (__le64);
667 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
668 return false;
669
670 return true;
671 }
672
673 /*
674 * Create a new header structure, translate header format from the on-disk
675 * header.
676 */
677 static int rbd_header_from_disk(struct rbd_image_header *header,
678 struct rbd_image_header_ondisk *ondisk)
679 {
680 u32 snap_count;
681 size_t len;
682 size_t size;
683 u32 i;
684
685 memset(header, 0, sizeof (*header));
686
687 snap_count = le32_to_cpu(ondisk->snap_count);
688
689 len = strnlen(ondisk->object_prefix, sizeof (ondisk->object_prefix));
690 header->object_prefix = kmalloc(len + 1, GFP_KERNEL);
691 if (!header->object_prefix)
692 return -ENOMEM;
693 memcpy(header->object_prefix, ondisk->object_prefix, len);
694 header->object_prefix[len] = '\0';
695
696 if (snap_count) {
697 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
698
699 /* Save a copy of the snapshot names */
700
701 if (snap_names_len > (u64) SIZE_MAX)
702 return -EIO;
703 header->snap_names = kmalloc(snap_names_len, GFP_KERNEL);
704 if (!header->snap_names)
705 goto out_err;
706 /*
707 * Note that rbd_dev_v1_header_read() guarantees
708 * the ondisk buffer we're working with has
709 * snap_names_len bytes beyond the end of the
710 * snapshot id array, this memcpy() is safe.
711 */
712 memcpy(header->snap_names, &ondisk->snaps[snap_count],
713 snap_names_len);
714
715 /* Record each snapshot's size */
716
717 size = snap_count * sizeof (*header->snap_sizes);
718 header->snap_sizes = kmalloc(size, GFP_KERNEL);
719 if (!header->snap_sizes)
720 goto out_err;
721 for (i = 0; i < snap_count; i++)
722 header->snap_sizes[i] =
723 le64_to_cpu(ondisk->snaps[i].image_size);
724 } else {
725 WARN_ON(ondisk->snap_names_len);
726 header->snap_names = NULL;
727 header->snap_sizes = NULL;
728 }
729
730 header->features = 0; /* No features support in v1 images */
731 header->obj_order = ondisk->options.order;
732 header->crypt_type = ondisk->options.crypt_type;
733 header->comp_type = ondisk->options.comp_type;
734
735 /* Allocate and fill in the snapshot context */
736
737 header->image_size = le64_to_cpu(ondisk->image_size);
738 size = sizeof (struct ceph_snap_context);
739 size += snap_count * sizeof (header->snapc->snaps[0]);
740 header->snapc = kzalloc(size, GFP_KERNEL);
741 if (!header->snapc)
742 goto out_err;
743
744 atomic_set(&header->snapc->nref, 1);
745 header->snapc->seq = le64_to_cpu(ondisk->snap_seq);
746 header->snapc->num_snaps = snap_count;
747 for (i = 0; i < snap_count; i++)
748 header->snapc->snaps[i] =
749 le64_to_cpu(ondisk->snaps[i].id);
750
751 return 0;
752
753 out_err:
754 kfree(header->snap_sizes);
755 header->snap_sizes = NULL;
756 kfree(header->snap_names);
757 header->snap_names = NULL;
758 kfree(header->object_prefix);
759 header->object_prefix = NULL;
760
761 return -ENOMEM;
762 }
763
764 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
765 {
766 struct rbd_snap *snap;
767
768 if (snap_id == CEPH_NOSNAP)
769 return RBD_SNAP_HEAD_NAME;
770
771 list_for_each_entry(snap, &rbd_dev->snaps, node)
772 if (snap_id == snap->id)
773 return snap->name;
774
775 return NULL;
776 }
777
778 static int snap_by_name(struct rbd_device *rbd_dev, const char *snap_name)
779 {
780
781 struct rbd_snap *snap;
782
783 list_for_each_entry(snap, &rbd_dev->snaps, node) {
784 if (!strcmp(snap_name, snap->name)) {
785 rbd_dev->spec->snap_id = snap->id;
786 rbd_dev->mapping.size = snap->size;
787 rbd_dev->mapping.features = snap->features;
788
789 return 0;
790 }
791 }
792
793 return -ENOENT;
794 }
795
796 static int rbd_dev_set_mapping(struct rbd_device *rbd_dev)
797 {
798 int ret;
799
800 if (!memcmp(rbd_dev->spec->snap_name, RBD_SNAP_HEAD_NAME,
801 sizeof (RBD_SNAP_HEAD_NAME))) {
802 rbd_dev->spec->snap_id = CEPH_NOSNAP;
803 rbd_dev->mapping.size = rbd_dev->header.image_size;
804 rbd_dev->mapping.features = rbd_dev->header.features;
805 ret = 0;
806 } else {
807 ret = snap_by_name(rbd_dev, rbd_dev->spec->snap_name);
808 if (ret < 0)
809 goto done;
810 rbd_dev->mapping.read_only = true;
811 }
812 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
813
814 done:
815 return ret;
816 }
817
818 static void rbd_header_free(struct rbd_image_header *header)
819 {
820 kfree(header->object_prefix);
821 header->object_prefix = NULL;
822 kfree(header->snap_sizes);
823 header->snap_sizes = NULL;
824 kfree(header->snap_names);
825 header->snap_names = NULL;
826 ceph_put_snap_context(header->snapc);
827 header->snapc = NULL;
828 }
829
830 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
831 {
832 char *name;
833 u64 segment;
834 int ret;
835
836 name = kmalloc(MAX_OBJ_NAME_SIZE + 1, GFP_NOIO);
837 if (!name)
838 return NULL;
839 segment = offset >> rbd_dev->header.obj_order;
840 ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, "%s.%012llx",
841 rbd_dev->header.object_prefix, segment);
842 if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
843 pr_err("error formatting segment name for #%llu (%d)\n",
844 segment, ret);
845 kfree(name);
846 name = NULL;
847 }
848
849 return name;
850 }
851
852 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
853 {
854 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
855
856 return offset & (segment_size - 1);
857 }
858
859 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
860 u64 offset, u64 length)
861 {
862 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
863
864 offset &= segment_size - 1;
865
866 rbd_assert(length <= U64_MAX - offset);
867 if (offset + length > segment_size)
868 length = segment_size - offset;
869
870 return length;
871 }
872
873 /*
874 * returns the size of an object in the image
875 */
876 static u64 rbd_obj_bytes(struct rbd_image_header *header)
877 {
878 return 1 << header->obj_order;
879 }
880
881 /*
882 * bio helpers
883 */
884
885 static void bio_chain_put(struct bio *chain)
886 {
887 struct bio *tmp;
888
889 while (chain) {
890 tmp = chain;
891 chain = chain->bi_next;
892 bio_put(tmp);
893 }
894 }
895
896 /*
897 * zeros a bio chain, starting at specific offset
898 */
899 static void zero_bio_chain(struct bio *chain, int start_ofs)
900 {
901 struct bio_vec *bv;
902 unsigned long flags;
903 void *buf;
904 int i;
905 int pos = 0;
906
907 while (chain) {
908 bio_for_each_segment(bv, chain, i) {
909 if (pos + bv->bv_len > start_ofs) {
910 int remainder = max(start_ofs - pos, 0);
911 buf = bvec_kmap_irq(bv, &flags);
912 memset(buf + remainder, 0,
913 bv->bv_len - remainder);
914 bvec_kunmap_irq(buf, &flags);
915 }
916 pos += bv->bv_len;
917 }
918
919 chain = chain->bi_next;
920 }
921 }
922
923 /*
924 * Clone a portion of a bio, starting at the given byte offset
925 * and continuing for the number of bytes indicated.
926 */
927 static struct bio *bio_clone_range(struct bio *bio_src,
928 unsigned int offset,
929 unsigned int len,
930 gfp_t gfpmask)
931 {
932 struct bio_vec *bv;
933 unsigned int resid;
934 unsigned short idx;
935 unsigned int voff;
936 unsigned short end_idx;
937 unsigned short vcnt;
938 struct bio *bio;
939
940 /* Handle the easy case for the caller */
941
942 if (!offset && len == bio_src->bi_size)
943 return bio_clone(bio_src, gfpmask);
944
945 if (WARN_ON_ONCE(!len))
946 return NULL;
947 if (WARN_ON_ONCE(len > bio_src->bi_size))
948 return NULL;
949 if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
950 return NULL;
951
952 /* Find first affected segment... */
953
954 resid = offset;
955 __bio_for_each_segment(bv, bio_src, idx, 0) {
956 if (resid < bv->bv_len)
957 break;
958 resid -= bv->bv_len;
959 }
960 voff = resid;
961
962 /* ...and the last affected segment */
963
964 resid += len;
965 __bio_for_each_segment(bv, bio_src, end_idx, idx) {
966 if (resid <= bv->bv_len)
967 break;
968 resid -= bv->bv_len;
969 }
970 vcnt = end_idx - idx + 1;
971
972 /* Build the clone */
973
974 bio = bio_alloc(gfpmask, (unsigned int) vcnt);
975 if (!bio)
976 return NULL; /* ENOMEM */
977
978 bio->bi_bdev = bio_src->bi_bdev;
979 bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
980 bio->bi_rw = bio_src->bi_rw;
981 bio->bi_flags |= 1 << BIO_CLONED;
982
983 /*
984 * Copy over our part of the bio_vec, then update the first
985 * and last (or only) entries.
986 */
987 memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
988 vcnt * sizeof (struct bio_vec));
989 bio->bi_io_vec[0].bv_offset += voff;
990 if (vcnt > 1) {
991 bio->bi_io_vec[0].bv_len -= voff;
992 bio->bi_io_vec[vcnt - 1].bv_len = resid;
993 } else {
994 bio->bi_io_vec[0].bv_len = len;
995 }
996
997 bio->bi_vcnt = vcnt;
998 bio->bi_size = len;
999 bio->bi_idx = 0;
1000
1001 return bio;
1002 }
1003
1004 /*
1005 * Clone a portion of a bio chain, starting at the given byte offset
1006 * into the first bio in the source chain and continuing for the
1007 * number of bytes indicated. The result is another bio chain of
1008 * exactly the given length, or a null pointer on error.
1009 *
1010 * The bio_src and offset parameters are both in-out. On entry they
1011 * refer to the first source bio and the offset into that bio where
1012 * the start of data to be cloned is located.
1013 *
1014 * On return, bio_src is updated to refer to the bio in the source
1015 * chain that contains first un-cloned byte, and *offset will
1016 * contain the offset of that byte within that bio.
1017 */
1018 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1019 unsigned int *offset,
1020 unsigned int len,
1021 gfp_t gfpmask)
1022 {
1023 struct bio *bi = *bio_src;
1024 unsigned int off = *offset;
1025 struct bio *chain = NULL;
1026 struct bio **end;
1027
1028 /* Build up a chain of clone bios up to the limit */
1029
1030 if (!bi || off >= bi->bi_size || !len)
1031 return NULL; /* Nothing to clone */
1032
1033 end = &chain;
1034 while (len) {
1035 unsigned int bi_size;
1036 struct bio *bio;
1037
1038 if (!bi) {
1039 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1040 goto out_err; /* EINVAL; ran out of bio's */
1041 }
1042 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1043 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1044 if (!bio)
1045 goto out_err; /* ENOMEM */
1046
1047 *end = bio;
1048 end = &bio->bi_next;
1049
1050 off += bi_size;
1051 if (off == bi->bi_size) {
1052 bi = bi->bi_next;
1053 off = 0;
1054 }
1055 len -= bi_size;
1056 }
1057 *bio_src = bi;
1058 *offset = off;
1059
1060 return chain;
1061 out_err:
1062 bio_chain_put(chain);
1063
1064 return NULL;
1065 }
1066
1067 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1068 {
1069 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1070 atomic_read(&obj_request->kref.refcount));
1071 kref_get(&obj_request->kref);
1072 }
1073
1074 static void rbd_obj_request_destroy(struct kref *kref);
1075 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1076 {
1077 rbd_assert(obj_request != NULL);
1078 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1079 atomic_read(&obj_request->kref.refcount));
1080 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1081 }
1082
1083 static void rbd_img_request_get(struct rbd_img_request *img_request)
1084 {
1085 dout("%s: img %p (was %d)\n", __func__, img_request,
1086 atomic_read(&img_request->kref.refcount));
1087 kref_get(&img_request->kref);
1088 }
1089
1090 static void rbd_img_request_destroy(struct kref *kref);
1091 static void rbd_img_request_put(struct rbd_img_request *img_request)
1092 {
1093 rbd_assert(img_request != NULL);
1094 dout("%s: img %p (was %d)\n", __func__, img_request,
1095 atomic_read(&img_request->kref.refcount));
1096 kref_put(&img_request->kref, rbd_img_request_destroy);
1097 }
1098
1099 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1100 struct rbd_obj_request *obj_request)
1101 {
1102 rbd_assert(obj_request->img_request == NULL);
1103
1104 rbd_obj_request_get(obj_request);
1105 obj_request->img_request = img_request;
1106 obj_request->which = img_request->obj_request_count;
1107 rbd_assert(obj_request->which != BAD_WHICH);
1108 img_request->obj_request_count++;
1109 list_add_tail(&obj_request->links, &img_request->obj_requests);
1110 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1111 obj_request->which);
1112 }
1113
1114 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1115 struct rbd_obj_request *obj_request)
1116 {
1117 rbd_assert(obj_request->which != BAD_WHICH);
1118
1119 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1120 obj_request->which);
1121 list_del(&obj_request->links);
1122 rbd_assert(img_request->obj_request_count > 0);
1123 img_request->obj_request_count--;
1124 rbd_assert(obj_request->which == img_request->obj_request_count);
1125 obj_request->which = BAD_WHICH;
1126 rbd_assert(obj_request->img_request == img_request);
1127 obj_request->img_request = NULL;
1128 obj_request->callback = NULL;
1129 rbd_obj_request_put(obj_request);
1130 }
1131
1132 static bool obj_request_type_valid(enum obj_request_type type)
1133 {
1134 switch (type) {
1135 case OBJ_REQUEST_NODATA:
1136 case OBJ_REQUEST_BIO:
1137 case OBJ_REQUEST_PAGES:
1138 return true;
1139 default:
1140 return false;
1141 }
1142 }
1143
1144 static struct ceph_osd_req_op *rbd_osd_req_op_create(u16 opcode, ...)
1145 {
1146 struct ceph_osd_req_op *op;
1147 va_list args;
1148 size_t size;
1149
1150 op = kzalloc(sizeof (*op), GFP_NOIO);
1151 if (!op)
1152 return NULL;
1153 op->op = opcode;
1154 va_start(args, opcode);
1155 switch (opcode) {
1156 case CEPH_OSD_OP_READ:
1157 case CEPH_OSD_OP_WRITE:
1158 /* rbd_osd_req_op_create(READ, offset, length) */
1159 /* rbd_osd_req_op_create(WRITE, offset, length) */
1160 op->extent.offset = va_arg(args, u64);
1161 op->extent.length = va_arg(args, u64);
1162 if (opcode == CEPH_OSD_OP_WRITE)
1163 op->payload_len = op->extent.length;
1164 break;
1165 case CEPH_OSD_OP_STAT:
1166 break;
1167 case CEPH_OSD_OP_CALL:
1168 /* rbd_osd_req_op_create(CALL, class, method, data, datalen) */
1169 op->cls.class_name = va_arg(args, char *);
1170 size = strlen(op->cls.class_name);
1171 rbd_assert(size <= (size_t) U8_MAX);
1172 op->cls.class_len = size;
1173 op->payload_len = size;
1174
1175 op->cls.method_name = va_arg(args, char *);
1176 size = strlen(op->cls.method_name);
1177 rbd_assert(size <= (size_t) U8_MAX);
1178 op->cls.method_len = size;
1179 op->payload_len += size;
1180
1181 op->cls.argc = 0;
1182 op->cls.indata = va_arg(args, void *);
1183 size = va_arg(args, size_t);
1184 rbd_assert(size <= (size_t) U32_MAX);
1185 op->cls.indata_len = (u32) size;
1186 op->payload_len += size;
1187 break;
1188 case CEPH_OSD_OP_NOTIFY_ACK:
1189 case CEPH_OSD_OP_WATCH:
1190 /* rbd_osd_req_op_create(NOTIFY_ACK, cookie, version) */
1191 /* rbd_osd_req_op_create(WATCH, cookie, version, flag) */
1192 op->watch.cookie = va_arg(args, u64);
1193 op->watch.ver = va_arg(args, u64);
1194 op->watch.ver = cpu_to_le64(op->watch.ver);
1195 if (opcode == CEPH_OSD_OP_WATCH && va_arg(args, int))
1196 op->watch.flag = (u8) 1;
1197 break;
1198 default:
1199 rbd_warn(NULL, "unsupported opcode %hu\n", opcode);
1200 kfree(op);
1201 op = NULL;
1202 break;
1203 }
1204 va_end(args);
1205
1206 return op;
1207 }
1208
1209 static void rbd_osd_req_op_destroy(struct ceph_osd_req_op *op)
1210 {
1211 kfree(op);
1212 }
1213
1214 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1215 struct rbd_obj_request *obj_request)
1216 {
1217 dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1218
1219 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1220 }
1221
1222 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1223 {
1224 dout("%s: img %p\n", __func__, img_request);
1225 if (img_request->callback)
1226 img_request->callback(img_request);
1227 else
1228 rbd_img_request_put(img_request);
1229 }
1230
1231 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1232
1233 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1234 {
1235 dout("%s: obj %p\n", __func__, obj_request);
1236
1237 return wait_for_completion_interruptible(&obj_request->completion);
1238 }
1239
1240 static void obj_request_done_init(struct rbd_obj_request *obj_request)
1241 {
1242 atomic_set(&obj_request->done, 0);
1243 smp_wmb();
1244 }
1245
1246 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1247 {
1248 int done;
1249
1250 done = atomic_inc_return(&obj_request->done);
1251 if (done > 1) {
1252 struct rbd_img_request *img_request = obj_request->img_request;
1253 struct rbd_device *rbd_dev;
1254
1255 rbd_dev = img_request ? img_request->rbd_dev : NULL;
1256 rbd_warn(rbd_dev, "obj_request %p was already done\n",
1257 obj_request);
1258 }
1259 }
1260
1261 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1262 {
1263 smp_mb();
1264 return atomic_read(&obj_request->done) != 0;
1265 }
1266
1267 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1268 {
1269 dout("%s: obj %p cb %p\n", __func__, obj_request,
1270 obj_request->callback);
1271 if (obj_request->callback)
1272 obj_request->callback(obj_request);
1273 else
1274 complete_all(&obj_request->completion);
1275 }
1276
1277 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1278 {
1279 dout("%s: obj %p\n", __func__, obj_request);
1280 obj_request_done_set(obj_request);
1281 }
1282
1283 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1284 {
1285 dout("%s: obj %p result %d %llu/%llu\n", __func__, obj_request,
1286 obj_request->result, obj_request->xferred, obj_request->length);
1287 /*
1288 * ENOENT means a hole in the object. We zero-fill the
1289 * entire length of the request. A short read also implies
1290 * zero-fill to the end of the request. Either way we
1291 * update the xferred count to indicate the whole request
1292 * was satisfied.
1293 */
1294 if (obj_request->result == -ENOENT) {
1295 zero_bio_chain(obj_request->bio_list, 0);
1296 obj_request->result = 0;
1297 obj_request->xferred = obj_request->length;
1298 } else if (obj_request->xferred < obj_request->length &&
1299 !obj_request->result) {
1300 zero_bio_chain(obj_request->bio_list, obj_request->xferred);
1301 obj_request->xferred = obj_request->length;
1302 }
1303 obj_request_done_set(obj_request);
1304 }
1305
1306 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1307 {
1308 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1309 obj_request->result, obj_request->length);
1310 /*
1311 * There is no such thing as a successful short write.
1312 * Our xferred value is the number of bytes transferred
1313 * back. Set it to our originally-requested length.
1314 */
1315 obj_request->xferred = obj_request->length;
1316 obj_request_done_set(obj_request);
1317 }
1318
1319 /*
1320 * For a simple stat call there's nothing to do. We'll do more if
1321 * this is part of a write sequence for a layered image.
1322 */
1323 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1324 {
1325 dout("%s: obj %p\n", __func__, obj_request);
1326 obj_request_done_set(obj_request);
1327 }
1328
1329 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1330 struct ceph_msg *msg)
1331 {
1332 struct rbd_obj_request *obj_request = osd_req->r_priv;
1333 u16 opcode;
1334
1335 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1336 rbd_assert(osd_req == obj_request->osd_req);
1337 rbd_assert(!!obj_request->img_request ^
1338 (obj_request->which == BAD_WHICH));
1339
1340 if (osd_req->r_result < 0)
1341 obj_request->result = osd_req->r_result;
1342 obj_request->version = le64_to_cpu(osd_req->r_reassert_version.version);
1343
1344 WARN_ON(osd_req->r_num_ops != 1); /* For now */
1345
1346 /*
1347 * We support a 64-bit length, but ultimately it has to be
1348 * passed to blk_end_request(), which takes an unsigned int.
1349 */
1350 obj_request->xferred = osd_req->r_reply_op_len[0];
1351 rbd_assert(obj_request->xferred < (u64) UINT_MAX);
1352 opcode = osd_req->r_request_ops[0].op;
1353 switch (opcode) {
1354 case CEPH_OSD_OP_READ:
1355 rbd_osd_read_callback(obj_request);
1356 break;
1357 case CEPH_OSD_OP_WRITE:
1358 rbd_osd_write_callback(obj_request);
1359 break;
1360 case CEPH_OSD_OP_STAT:
1361 rbd_osd_stat_callback(obj_request);
1362 break;
1363 case CEPH_OSD_OP_CALL:
1364 case CEPH_OSD_OP_NOTIFY_ACK:
1365 case CEPH_OSD_OP_WATCH:
1366 rbd_osd_trivial_callback(obj_request);
1367 break;
1368 default:
1369 rbd_warn(NULL, "%s: unsupported op %hu\n",
1370 obj_request->object_name, (unsigned short) opcode);
1371 break;
1372 }
1373
1374 if (obj_request_done_test(obj_request))
1375 rbd_obj_request_complete(obj_request);
1376 }
1377
1378 static struct ceph_osd_request *rbd_osd_req_create(
1379 struct rbd_device *rbd_dev,
1380 bool write_request,
1381 struct rbd_obj_request *obj_request,
1382 struct ceph_osd_req_op *op)
1383 {
1384 struct rbd_img_request *img_request = obj_request->img_request;
1385 struct ceph_snap_context *snapc = NULL;
1386 struct ceph_osd_client *osdc;
1387 struct ceph_osd_request *osd_req;
1388 struct timespec now;
1389 struct timespec *mtime;
1390 u64 snap_id = CEPH_NOSNAP;
1391 u64 offset = obj_request->offset;
1392 u64 length = obj_request->length;
1393
1394 if (img_request) {
1395 rbd_assert(img_request->write_request == write_request);
1396 if (img_request->write_request)
1397 snapc = img_request->snapc;
1398 else
1399 snap_id = img_request->snap_id;
1400 }
1401
1402 /* Allocate and initialize the request, for the single op */
1403
1404 osdc = &rbd_dev->rbd_client->client->osdc;
1405 osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1406 if (!osd_req)
1407 return NULL; /* ENOMEM */
1408
1409 rbd_assert(obj_request_type_valid(obj_request->type));
1410 switch (obj_request->type) {
1411 case OBJ_REQUEST_NODATA:
1412 break; /* Nothing to do */
1413 case OBJ_REQUEST_BIO:
1414 rbd_assert(obj_request->bio_list != NULL);
1415 osd_req->r_bio = obj_request->bio_list;
1416 break;
1417 case OBJ_REQUEST_PAGES:
1418 osd_req->r_pages = obj_request->pages;
1419 osd_req->r_num_pages = obj_request->page_count;
1420 osd_req->r_page_alignment = offset & ~PAGE_MASK;
1421 break;
1422 }
1423
1424 if (write_request) {
1425 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1426 now = CURRENT_TIME;
1427 mtime = &now;
1428 } else {
1429 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1430 mtime = NULL; /* not needed for reads */
1431 offset = 0; /* These are not used... */
1432 length = 0; /* ...for osd read requests */
1433 }
1434
1435 osd_req->r_callback = rbd_osd_req_callback;
1436 osd_req->r_priv = obj_request;
1437
1438 osd_req->r_oid_len = strlen(obj_request->object_name);
1439 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1440 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1441
1442 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1443
1444 /* osd_req will get its own reference to snapc (if non-null) */
1445
1446 ceph_osdc_build_request(osd_req, offset, length, 1, op,
1447 snapc, snap_id, mtime);
1448
1449 return osd_req;
1450 }
1451
1452 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1453 {
1454 ceph_osdc_put_request(osd_req);
1455 }
1456
1457 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1458
1459 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1460 u64 offset, u64 length,
1461 enum obj_request_type type)
1462 {
1463 struct rbd_obj_request *obj_request;
1464 size_t size;
1465 char *name;
1466
1467 rbd_assert(obj_request_type_valid(type));
1468
1469 size = strlen(object_name) + 1;
1470 obj_request = kzalloc(sizeof (*obj_request) + size, GFP_KERNEL);
1471 if (!obj_request)
1472 return NULL;
1473
1474 name = (char *)(obj_request + 1);
1475 obj_request->object_name = memcpy(name, object_name, size);
1476 obj_request->offset = offset;
1477 obj_request->length = length;
1478 obj_request->which = BAD_WHICH;
1479 obj_request->type = type;
1480 INIT_LIST_HEAD(&obj_request->links);
1481 obj_request_done_init(obj_request);
1482 init_completion(&obj_request->completion);
1483 kref_init(&obj_request->kref);
1484
1485 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1486 offset, length, (int)type, obj_request);
1487
1488 return obj_request;
1489 }
1490
1491 static void rbd_obj_request_destroy(struct kref *kref)
1492 {
1493 struct rbd_obj_request *obj_request;
1494
1495 obj_request = container_of(kref, struct rbd_obj_request, kref);
1496
1497 dout("%s: obj %p\n", __func__, obj_request);
1498
1499 rbd_assert(obj_request->img_request == NULL);
1500 rbd_assert(obj_request->which == BAD_WHICH);
1501
1502 if (obj_request->osd_req)
1503 rbd_osd_req_destroy(obj_request->osd_req);
1504
1505 rbd_assert(obj_request_type_valid(obj_request->type));
1506 switch (obj_request->type) {
1507 case OBJ_REQUEST_NODATA:
1508 break; /* Nothing to do */
1509 case OBJ_REQUEST_BIO:
1510 if (obj_request->bio_list)
1511 bio_chain_put(obj_request->bio_list);
1512 break;
1513 case OBJ_REQUEST_PAGES:
1514 if (obj_request->pages)
1515 ceph_release_page_vector(obj_request->pages,
1516 obj_request->page_count);
1517 break;
1518 }
1519
1520 kfree(obj_request);
1521 }
1522
1523 /*
1524 * Caller is responsible for filling in the list of object requests
1525 * that comprises the image request, and the Linux request pointer
1526 * (if there is one).
1527 */
1528 static struct rbd_img_request *rbd_img_request_create(
1529 struct rbd_device *rbd_dev,
1530 u64 offset, u64 length,
1531 bool write_request)
1532 {
1533 struct rbd_img_request *img_request;
1534 struct ceph_snap_context *snapc = NULL;
1535
1536 img_request = kmalloc(sizeof (*img_request), GFP_ATOMIC);
1537 if (!img_request)
1538 return NULL;
1539
1540 if (write_request) {
1541 down_read(&rbd_dev->header_rwsem);
1542 snapc = ceph_get_snap_context(rbd_dev->header.snapc);
1543 up_read(&rbd_dev->header_rwsem);
1544 if (WARN_ON(!snapc)) {
1545 kfree(img_request);
1546 return NULL; /* Shouldn't happen */
1547 }
1548 }
1549
1550 img_request->rq = NULL;
1551 img_request->rbd_dev = rbd_dev;
1552 img_request->offset = offset;
1553 img_request->length = length;
1554 img_request->write_request = write_request;
1555 if (write_request)
1556 img_request->snapc = snapc;
1557 else
1558 img_request->snap_id = rbd_dev->spec->snap_id;
1559 spin_lock_init(&img_request->completion_lock);
1560 img_request->next_completion = 0;
1561 img_request->callback = NULL;
1562 img_request->obj_request_count = 0;
1563 INIT_LIST_HEAD(&img_request->obj_requests);
1564 kref_init(&img_request->kref);
1565
1566 rbd_img_request_get(img_request); /* Avoid a warning */
1567 rbd_img_request_put(img_request); /* TEMPORARY */
1568
1569 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
1570 write_request ? "write" : "read", offset, length,
1571 img_request);
1572
1573 return img_request;
1574 }
1575
1576 static void rbd_img_request_destroy(struct kref *kref)
1577 {
1578 struct rbd_img_request *img_request;
1579 struct rbd_obj_request *obj_request;
1580 struct rbd_obj_request *next_obj_request;
1581
1582 img_request = container_of(kref, struct rbd_img_request, kref);
1583
1584 dout("%s: img %p\n", __func__, img_request);
1585
1586 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1587 rbd_img_obj_request_del(img_request, obj_request);
1588 rbd_assert(img_request->obj_request_count == 0);
1589
1590 if (img_request->write_request)
1591 ceph_put_snap_context(img_request->snapc);
1592
1593 kfree(img_request);
1594 }
1595
1596 static int rbd_img_request_fill_bio(struct rbd_img_request *img_request,
1597 struct bio *bio_list)
1598 {
1599 struct rbd_device *rbd_dev = img_request->rbd_dev;
1600 struct rbd_obj_request *obj_request = NULL;
1601 struct rbd_obj_request *next_obj_request;
1602 unsigned int bio_offset;
1603 u64 image_offset;
1604 u64 resid;
1605 u16 opcode;
1606
1607 dout("%s: img %p bio %p\n", __func__, img_request, bio_list);
1608
1609 opcode = img_request->write_request ? CEPH_OSD_OP_WRITE
1610 : CEPH_OSD_OP_READ;
1611 bio_offset = 0;
1612 image_offset = img_request->offset;
1613 rbd_assert(image_offset == bio_list->bi_sector << SECTOR_SHIFT);
1614 resid = img_request->length;
1615 rbd_assert(resid > 0);
1616 while (resid) {
1617 const char *object_name;
1618 unsigned int clone_size;
1619 struct ceph_osd_req_op *op;
1620 u64 offset;
1621 u64 length;
1622
1623 object_name = rbd_segment_name(rbd_dev, image_offset);
1624 if (!object_name)
1625 goto out_unwind;
1626 offset = rbd_segment_offset(rbd_dev, image_offset);
1627 length = rbd_segment_length(rbd_dev, image_offset, resid);
1628 obj_request = rbd_obj_request_create(object_name,
1629 offset, length,
1630 OBJ_REQUEST_BIO);
1631 kfree(object_name); /* object request has its own copy */
1632 if (!obj_request)
1633 goto out_unwind;
1634
1635 rbd_assert(length <= (u64) UINT_MAX);
1636 clone_size = (unsigned int) length;
1637 obj_request->bio_list = bio_chain_clone_range(&bio_list,
1638 &bio_offset, clone_size,
1639 GFP_ATOMIC);
1640 if (!obj_request->bio_list)
1641 goto out_partial;
1642
1643 /*
1644 * Build up the op to use in building the osd
1645 * request. Note that the contents of the op are
1646 * copied by rbd_osd_req_create().
1647 */
1648 op = rbd_osd_req_op_create(opcode, offset, length);
1649 if (!op)
1650 goto out_partial;
1651 obj_request->osd_req = rbd_osd_req_create(rbd_dev,
1652 img_request->write_request,
1653 obj_request, op);
1654 rbd_osd_req_op_destroy(op);
1655 if (!obj_request->osd_req)
1656 goto out_partial;
1657 /* status and version are initially zero-filled */
1658
1659 rbd_img_obj_request_add(img_request, obj_request);
1660
1661 image_offset += length;
1662 resid -= length;
1663 }
1664
1665 return 0;
1666
1667 out_partial:
1668 rbd_obj_request_put(obj_request);
1669 out_unwind:
1670 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
1671 rbd_obj_request_put(obj_request);
1672
1673 return -ENOMEM;
1674 }
1675
1676 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
1677 {
1678 struct rbd_img_request *img_request;
1679 u32 which = obj_request->which;
1680 bool more = true;
1681
1682 img_request = obj_request->img_request;
1683
1684 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
1685 rbd_assert(img_request != NULL);
1686 rbd_assert(img_request->rq != NULL);
1687 rbd_assert(img_request->obj_request_count > 0);
1688 rbd_assert(which != BAD_WHICH);
1689 rbd_assert(which < img_request->obj_request_count);
1690 rbd_assert(which >= img_request->next_completion);
1691
1692 spin_lock_irq(&img_request->completion_lock);
1693 if (which != img_request->next_completion)
1694 goto out;
1695
1696 for_each_obj_request_from(img_request, obj_request) {
1697 unsigned int xferred;
1698 int result;
1699
1700 rbd_assert(more);
1701 rbd_assert(which < img_request->obj_request_count);
1702
1703 if (!obj_request_done_test(obj_request))
1704 break;
1705
1706 rbd_assert(obj_request->xferred <= (u64) UINT_MAX);
1707 xferred = (unsigned int) obj_request->xferred;
1708 result = (int) obj_request->result;
1709 if (result)
1710 rbd_warn(NULL, "obj_request %s result %d xferred %u\n",
1711 img_request->write_request ? "write" : "read",
1712 result, xferred);
1713
1714 more = blk_end_request(img_request->rq, result, xferred);
1715 which++;
1716 }
1717
1718 rbd_assert(more ^ (which == img_request->obj_request_count));
1719 img_request->next_completion = which;
1720 out:
1721 spin_unlock_irq(&img_request->completion_lock);
1722
1723 if (!more)
1724 rbd_img_request_complete(img_request);
1725 }
1726
1727 static int rbd_img_request_submit(struct rbd_img_request *img_request)
1728 {
1729 struct rbd_device *rbd_dev = img_request->rbd_dev;
1730 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1731 struct rbd_obj_request *obj_request;
1732
1733 dout("%s: img %p\n", __func__, img_request);
1734 for_each_obj_request(img_request, obj_request) {
1735 int ret;
1736
1737 obj_request->callback = rbd_img_obj_callback;
1738 ret = rbd_obj_request_submit(osdc, obj_request);
1739 if (ret)
1740 return ret;
1741 /*
1742 * The image request has its own reference to each
1743 * of its object requests, so we can safely drop the
1744 * initial one here.
1745 */
1746 rbd_obj_request_put(obj_request);
1747 }
1748
1749 return 0;
1750 }
1751
1752 static int rbd_obj_notify_ack(struct rbd_device *rbd_dev,
1753 u64 ver, u64 notify_id)
1754 {
1755 struct rbd_obj_request *obj_request;
1756 struct ceph_osd_req_op *op;
1757 struct ceph_osd_client *osdc;
1758 int ret;
1759
1760 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
1761 OBJ_REQUEST_NODATA);
1762 if (!obj_request)
1763 return -ENOMEM;
1764
1765 ret = -ENOMEM;
1766 op = rbd_osd_req_op_create(CEPH_OSD_OP_NOTIFY_ACK, notify_id, ver);
1767 if (!op)
1768 goto out;
1769 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false,
1770 obj_request, op);
1771 rbd_osd_req_op_destroy(op);
1772 if (!obj_request->osd_req)
1773 goto out;
1774
1775 osdc = &rbd_dev->rbd_client->client->osdc;
1776 obj_request->callback = rbd_obj_request_put;
1777 ret = rbd_obj_request_submit(osdc, obj_request);
1778 out:
1779 if (ret)
1780 rbd_obj_request_put(obj_request);
1781
1782 return ret;
1783 }
1784
1785 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
1786 {
1787 struct rbd_device *rbd_dev = (struct rbd_device *)data;
1788 u64 hver;
1789 int rc;
1790
1791 if (!rbd_dev)
1792 return;
1793
1794 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
1795 rbd_dev->header_name, (unsigned long long) notify_id,
1796 (unsigned int) opcode);
1797 rc = rbd_dev_refresh(rbd_dev, &hver);
1798 if (rc)
1799 rbd_warn(rbd_dev, "got notification but failed to "
1800 " update snaps: %d\n", rc);
1801
1802 rbd_obj_notify_ack(rbd_dev, hver, notify_id);
1803 }
1804
1805 /*
1806 * Request sync osd watch/unwatch. The value of "start" determines
1807 * whether a watch request is being initiated or torn down.
1808 */
1809 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, int start)
1810 {
1811 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
1812 struct rbd_obj_request *obj_request;
1813 struct ceph_osd_req_op *op;
1814 int ret;
1815
1816 rbd_assert(start ^ !!rbd_dev->watch_event);
1817 rbd_assert(start ^ !!rbd_dev->watch_request);
1818
1819 if (start) {
1820 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
1821 &rbd_dev->watch_event);
1822 if (ret < 0)
1823 return ret;
1824 rbd_assert(rbd_dev->watch_event != NULL);
1825 }
1826
1827 ret = -ENOMEM;
1828 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
1829 OBJ_REQUEST_NODATA);
1830 if (!obj_request)
1831 goto out_cancel;
1832
1833 op = rbd_osd_req_op_create(CEPH_OSD_OP_WATCH,
1834 rbd_dev->watch_event->cookie,
1835 rbd_dev->header.obj_version, start);
1836 if (!op)
1837 goto out_cancel;
1838 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true,
1839 obj_request, op);
1840 rbd_osd_req_op_destroy(op);
1841 if (!obj_request->osd_req)
1842 goto out_cancel;
1843
1844 if (start)
1845 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
1846 else
1847 ceph_osdc_unregister_linger_request(osdc,
1848 rbd_dev->watch_request->osd_req);
1849 ret = rbd_obj_request_submit(osdc, obj_request);
1850 if (ret)
1851 goto out_cancel;
1852 ret = rbd_obj_request_wait(obj_request);
1853 if (ret)
1854 goto out_cancel;
1855 ret = obj_request->result;
1856 if (ret)
1857 goto out_cancel;
1858
1859 /*
1860 * A watch request is set to linger, so the underlying osd
1861 * request won't go away until we unregister it. We retain
1862 * a pointer to the object request during that time (in
1863 * rbd_dev->watch_request), so we'll keep a reference to
1864 * it. We'll drop that reference (below) after we've
1865 * unregistered it.
1866 */
1867 if (start) {
1868 rbd_dev->watch_request = obj_request;
1869
1870 return 0;
1871 }
1872
1873 /* We have successfully torn down the watch request */
1874
1875 rbd_obj_request_put(rbd_dev->watch_request);
1876 rbd_dev->watch_request = NULL;
1877 out_cancel:
1878 /* Cancel the event if we're tearing down, or on error */
1879 ceph_osdc_cancel_event(rbd_dev->watch_event);
1880 rbd_dev->watch_event = NULL;
1881 if (obj_request)
1882 rbd_obj_request_put(obj_request);
1883
1884 return ret;
1885 }
1886
1887 /*
1888 * Synchronous osd object method call
1889 */
1890 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
1891 const char *object_name,
1892 const char *class_name,
1893 const char *method_name,
1894 const char *outbound,
1895 size_t outbound_size,
1896 char *inbound,
1897 size_t inbound_size,
1898 u64 *version)
1899 {
1900 struct rbd_obj_request *obj_request;
1901 struct ceph_osd_client *osdc;
1902 struct ceph_osd_req_op *op;
1903 struct page **pages;
1904 u32 page_count;
1905 int ret;
1906
1907 /*
1908 * Method calls are ultimately read operations but they
1909 * don't involve object data (so no offset or length).
1910 * The result should placed into the inbound buffer
1911 * provided. They also supply outbound data--parameters for
1912 * the object method. Currently if this is present it will
1913 * be a snapshot id.
1914 */
1915 page_count = (u32) calc_pages_for(0, inbound_size);
1916 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
1917 if (IS_ERR(pages))
1918 return PTR_ERR(pages);
1919
1920 ret = -ENOMEM;
1921 obj_request = rbd_obj_request_create(object_name, 0, 0,
1922 OBJ_REQUEST_PAGES);
1923 if (!obj_request)
1924 goto out;
1925
1926 obj_request->pages = pages;
1927 obj_request->page_count = page_count;
1928
1929 op = rbd_osd_req_op_create(CEPH_OSD_OP_CALL, class_name,
1930 method_name, outbound, outbound_size);
1931 if (!op)
1932 goto out;
1933 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false,
1934 obj_request, op);
1935 rbd_osd_req_op_destroy(op);
1936 if (!obj_request->osd_req)
1937 goto out;
1938
1939 osdc = &rbd_dev->rbd_client->client->osdc;
1940 ret = rbd_obj_request_submit(osdc, obj_request);
1941 if (ret)
1942 goto out;
1943 ret = rbd_obj_request_wait(obj_request);
1944 if (ret)
1945 goto out;
1946
1947 ret = obj_request->result;
1948 if (ret < 0)
1949 goto out;
1950 ret = 0;
1951 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
1952 if (version)
1953 *version = obj_request->version;
1954 out:
1955 if (obj_request)
1956 rbd_obj_request_put(obj_request);
1957 else
1958 ceph_release_page_vector(pages, page_count);
1959
1960 return ret;
1961 }
1962
1963 static void rbd_request_fn(struct request_queue *q)
1964 __releases(q->queue_lock) __acquires(q->queue_lock)
1965 {
1966 struct rbd_device *rbd_dev = q->queuedata;
1967 bool read_only = rbd_dev->mapping.read_only;
1968 struct request *rq;
1969 int result;
1970
1971 while ((rq = blk_fetch_request(q))) {
1972 bool write_request = rq_data_dir(rq) == WRITE;
1973 struct rbd_img_request *img_request;
1974 u64 offset;
1975 u64 length;
1976
1977 /* Ignore any non-FS requests that filter through. */
1978
1979 if (rq->cmd_type != REQ_TYPE_FS) {
1980 dout("%s: non-fs request type %d\n", __func__,
1981 (int) rq->cmd_type);
1982 __blk_end_request_all(rq, 0);
1983 continue;
1984 }
1985
1986 /* Ignore/skip any zero-length requests */
1987
1988 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
1989 length = (u64) blk_rq_bytes(rq);
1990
1991 if (!length) {
1992 dout("%s: zero-length request\n", __func__);
1993 __blk_end_request_all(rq, 0);
1994 continue;
1995 }
1996
1997 spin_unlock_irq(q->queue_lock);
1998
1999 /* Disallow writes to a read-only device */
2000
2001 if (write_request) {
2002 result = -EROFS;
2003 if (read_only)
2004 goto end_request;
2005 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
2006 }
2007
2008 /*
2009 * Quit early if the mapped snapshot no longer
2010 * exists. It's still possible the snapshot will
2011 * have disappeared by the time our request arrives
2012 * at the osd, but there's no sense in sending it if
2013 * we already know.
2014 */
2015 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
2016 dout("request for non-existent snapshot");
2017 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
2018 result = -ENXIO;
2019 goto end_request;
2020 }
2021
2022 result = -EINVAL;
2023 if (WARN_ON(offset && length > U64_MAX - offset + 1))
2024 goto end_request; /* Shouldn't happen */
2025
2026 result = -ENOMEM;
2027 img_request = rbd_img_request_create(rbd_dev, offset, length,
2028 write_request);
2029 if (!img_request)
2030 goto end_request;
2031
2032 img_request->rq = rq;
2033
2034 result = rbd_img_request_fill_bio(img_request, rq->bio);
2035 if (!result)
2036 result = rbd_img_request_submit(img_request);
2037 if (result)
2038 rbd_img_request_put(img_request);
2039 end_request:
2040 spin_lock_irq(q->queue_lock);
2041 if (result < 0) {
2042 rbd_warn(rbd_dev, "obj_request %s result %d\n",
2043 write_request ? "write" : "read", result);
2044 __blk_end_request_all(rq, result);
2045 }
2046 }
2047 }
2048
2049 /*
2050 * a queue callback. Makes sure that we don't create a bio that spans across
2051 * multiple osd objects. One exception would be with a single page bios,
2052 * which we handle later at bio_chain_clone_range()
2053 */
2054 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2055 struct bio_vec *bvec)
2056 {
2057 struct rbd_device *rbd_dev = q->queuedata;
2058 sector_t sector_offset;
2059 sector_t sectors_per_obj;
2060 sector_t obj_sector_offset;
2061 int ret;
2062
2063 /*
2064 * Find how far into its rbd object the partition-relative
2065 * bio start sector is to offset relative to the enclosing
2066 * device.
2067 */
2068 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
2069 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
2070 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
2071
2072 /*
2073 * Compute the number of bytes from that offset to the end
2074 * of the object. Account for what's already used by the bio.
2075 */
2076 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
2077 if (ret > bmd->bi_size)
2078 ret -= bmd->bi_size;
2079 else
2080 ret = 0;
2081
2082 /*
2083 * Don't send back more than was asked for. And if the bio
2084 * was empty, let the whole thing through because: "Note
2085 * that a block device *must* allow a single page to be
2086 * added to an empty bio."
2087 */
2088 rbd_assert(bvec->bv_len <= PAGE_SIZE);
2089 if (ret > (int) bvec->bv_len || !bmd->bi_size)
2090 ret = (int) bvec->bv_len;
2091
2092 return ret;
2093 }
2094
2095 static void rbd_free_disk(struct rbd_device *rbd_dev)
2096 {
2097 struct gendisk *disk = rbd_dev->disk;
2098
2099 if (!disk)
2100 return;
2101
2102 if (disk->flags & GENHD_FL_UP)
2103 del_gendisk(disk);
2104 if (disk->queue)
2105 blk_cleanup_queue(disk->queue);
2106 put_disk(disk);
2107 }
2108
2109 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
2110 const char *object_name,
2111 u64 offset, u64 length,
2112 char *buf, u64 *version)
2113
2114 {
2115 struct ceph_osd_req_op *op;
2116 struct rbd_obj_request *obj_request;
2117 struct ceph_osd_client *osdc;
2118 struct page **pages = NULL;
2119 u32 page_count;
2120 size_t size;
2121 int ret;
2122
2123 page_count = (u32) calc_pages_for(offset, length);
2124 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2125 if (IS_ERR(pages))
2126 ret = PTR_ERR(pages);
2127
2128 ret = -ENOMEM;
2129 obj_request = rbd_obj_request_create(object_name, offset, length,
2130 OBJ_REQUEST_PAGES);
2131 if (!obj_request)
2132 goto out;
2133
2134 obj_request->pages = pages;
2135 obj_request->page_count = page_count;
2136
2137 op = rbd_osd_req_op_create(CEPH_OSD_OP_READ, offset, length);
2138 if (!op)
2139 goto out;
2140 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2141 obj_request, op);
2142 rbd_osd_req_op_destroy(op);
2143 if (!obj_request->osd_req)
2144 goto out;
2145
2146 osdc = &rbd_dev->rbd_client->client->osdc;
2147 ret = rbd_obj_request_submit(osdc, obj_request);
2148 if (ret)
2149 goto out;
2150 ret = rbd_obj_request_wait(obj_request);
2151 if (ret)
2152 goto out;
2153
2154 ret = obj_request->result;
2155 if (ret < 0)
2156 goto out;
2157
2158 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
2159 size = (size_t) obj_request->xferred;
2160 ceph_copy_from_page_vector(pages, buf, 0, size);
2161 rbd_assert(size <= (size_t) INT_MAX);
2162 ret = (int) size;
2163 if (version)
2164 *version = obj_request->version;
2165 out:
2166 if (obj_request)
2167 rbd_obj_request_put(obj_request);
2168 else
2169 ceph_release_page_vector(pages, page_count);
2170
2171 return ret;
2172 }
2173
2174 /*
2175 * Read the complete header for the given rbd device.
2176 *
2177 * Returns a pointer to a dynamically-allocated buffer containing
2178 * the complete and validated header. Caller can pass the address
2179 * of a variable that will be filled in with the version of the
2180 * header object at the time it was read.
2181 *
2182 * Returns a pointer-coded errno if a failure occurs.
2183 */
2184 static struct rbd_image_header_ondisk *
2185 rbd_dev_v1_header_read(struct rbd_device *rbd_dev, u64 *version)
2186 {
2187 struct rbd_image_header_ondisk *ondisk = NULL;
2188 u32 snap_count = 0;
2189 u64 names_size = 0;
2190 u32 want_count;
2191 int ret;
2192
2193 /*
2194 * The complete header will include an array of its 64-bit
2195 * snapshot ids, followed by the names of those snapshots as
2196 * a contiguous block of NUL-terminated strings. Note that
2197 * the number of snapshots could change by the time we read
2198 * it in, in which case we re-read it.
2199 */
2200 do {
2201 size_t size;
2202
2203 kfree(ondisk);
2204
2205 size = sizeof (*ondisk);
2206 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
2207 size += names_size;
2208 ondisk = kmalloc(size, GFP_KERNEL);
2209 if (!ondisk)
2210 return ERR_PTR(-ENOMEM);
2211
2212 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
2213 0, size,
2214 (char *) ondisk, version);
2215 if (ret < 0)
2216 goto out_err;
2217 if (WARN_ON((size_t) ret < size)) {
2218 ret = -ENXIO;
2219 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
2220 size, ret);
2221 goto out_err;
2222 }
2223 if (!rbd_dev_ondisk_valid(ondisk)) {
2224 ret = -ENXIO;
2225 rbd_warn(rbd_dev, "invalid header");
2226 goto out_err;
2227 }
2228
2229 names_size = le64_to_cpu(ondisk->snap_names_len);
2230 want_count = snap_count;
2231 snap_count = le32_to_cpu(ondisk->snap_count);
2232 } while (snap_count != want_count);
2233
2234 return ondisk;
2235
2236 out_err:
2237 kfree(ondisk);
2238
2239 return ERR_PTR(ret);
2240 }
2241
2242 /*
2243 * reload the ondisk the header
2244 */
2245 static int rbd_read_header(struct rbd_device *rbd_dev,
2246 struct rbd_image_header *header)
2247 {
2248 struct rbd_image_header_ondisk *ondisk;
2249 u64 ver = 0;
2250 int ret;
2251
2252 ondisk = rbd_dev_v1_header_read(rbd_dev, &ver);
2253 if (IS_ERR(ondisk))
2254 return PTR_ERR(ondisk);
2255 ret = rbd_header_from_disk(header, ondisk);
2256 if (ret >= 0)
2257 header->obj_version = ver;
2258 kfree(ondisk);
2259
2260 return ret;
2261 }
2262
2263 static void rbd_remove_all_snaps(struct rbd_device *rbd_dev)
2264 {
2265 struct rbd_snap *snap;
2266 struct rbd_snap *next;
2267
2268 list_for_each_entry_safe(snap, next, &rbd_dev->snaps, node)
2269 rbd_remove_snap_dev(snap);
2270 }
2271
2272 static void rbd_update_mapping_size(struct rbd_device *rbd_dev)
2273 {
2274 sector_t size;
2275
2276 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
2277 return;
2278
2279 size = (sector_t) rbd_dev->header.image_size / SECTOR_SIZE;
2280 dout("setting size to %llu sectors", (unsigned long long) size);
2281 rbd_dev->mapping.size = (u64) size;
2282 set_capacity(rbd_dev->disk, size);
2283 }
2284
2285 /*
2286 * only read the first part of the ondisk header, without the snaps info
2287 */
2288 static int rbd_dev_v1_refresh(struct rbd_device *rbd_dev, u64 *hver)
2289 {
2290 int ret;
2291 struct rbd_image_header h;
2292
2293 ret = rbd_read_header(rbd_dev, &h);
2294 if (ret < 0)
2295 return ret;
2296
2297 down_write(&rbd_dev->header_rwsem);
2298
2299 /* Update image size, and check for resize of mapped image */
2300 rbd_dev->header.image_size = h.image_size;
2301 rbd_update_mapping_size(rbd_dev);
2302
2303 /* rbd_dev->header.object_prefix shouldn't change */
2304 kfree(rbd_dev->header.snap_sizes);
2305 kfree(rbd_dev->header.snap_names);
2306 /* osd requests may still refer to snapc */
2307 ceph_put_snap_context(rbd_dev->header.snapc);
2308
2309 if (hver)
2310 *hver = h.obj_version;
2311 rbd_dev->header.obj_version = h.obj_version;
2312 rbd_dev->header.image_size = h.image_size;
2313 rbd_dev->header.snapc = h.snapc;
2314 rbd_dev->header.snap_names = h.snap_names;
2315 rbd_dev->header.snap_sizes = h.snap_sizes;
2316 /* Free the extra copy of the object prefix */
2317 WARN_ON(strcmp(rbd_dev->header.object_prefix, h.object_prefix));
2318 kfree(h.object_prefix);
2319
2320 ret = rbd_dev_snaps_update(rbd_dev);
2321 if (!ret)
2322 ret = rbd_dev_snaps_register(rbd_dev);
2323
2324 up_write(&rbd_dev->header_rwsem);
2325
2326 return ret;
2327 }
2328
2329 static int rbd_dev_refresh(struct rbd_device *rbd_dev, u64 *hver)
2330 {
2331 int ret;
2332
2333 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
2334 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2335 if (rbd_dev->image_format == 1)
2336 ret = rbd_dev_v1_refresh(rbd_dev, hver);
2337 else
2338 ret = rbd_dev_v2_refresh(rbd_dev, hver);
2339 mutex_unlock(&ctl_mutex);
2340
2341 return ret;
2342 }
2343
2344 static int rbd_init_disk(struct rbd_device *rbd_dev)
2345 {
2346 struct gendisk *disk;
2347 struct request_queue *q;
2348 u64 segment_size;
2349
2350 /* create gendisk info */
2351 disk = alloc_disk(RBD_MINORS_PER_MAJOR);
2352 if (!disk)
2353 return -ENOMEM;
2354
2355 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
2356 rbd_dev->dev_id);
2357 disk->major = rbd_dev->major;
2358 disk->first_minor = 0;
2359 disk->fops = &rbd_bd_ops;
2360 disk->private_data = rbd_dev;
2361
2362 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
2363 if (!q)
2364 goto out_disk;
2365
2366 /* We use the default size, but let's be explicit about it. */
2367 blk_queue_physical_block_size(q, SECTOR_SIZE);
2368
2369 /* set io sizes to object size */
2370 segment_size = rbd_obj_bytes(&rbd_dev->header);
2371 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
2372 blk_queue_max_segment_size(q, segment_size);
2373 blk_queue_io_min(q, segment_size);
2374 blk_queue_io_opt(q, segment_size);
2375
2376 blk_queue_merge_bvec(q, rbd_merge_bvec);
2377 disk->queue = q;
2378
2379 q->queuedata = rbd_dev;
2380
2381 rbd_dev->disk = disk;
2382
2383 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
2384
2385 return 0;
2386 out_disk:
2387 put_disk(disk);
2388
2389 return -ENOMEM;
2390 }
2391
2392 /*
2393 sysfs
2394 */
2395
2396 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
2397 {
2398 return container_of(dev, struct rbd_device, dev);
2399 }
2400
2401 static ssize_t rbd_size_show(struct device *dev,
2402 struct device_attribute *attr, char *buf)
2403 {
2404 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2405 sector_t size;
2406
2407 down_read(&rbd_dev->header_rwsem);
2408 size = get_capacity(rbd_dev->disk);
2409 up_read(&rbd_dev->header_rwsem);
2410
2411 return sprintf(buf, "%llu\n", (unsigned long long) size * SECTOR_SIZE);
2412 }
2413
2414 /*
2415 * Note this shows the features for whatever's mapped, which is not
2416 * necessarily the base image.
2417 */
2418 static ssize_t rbd_features_show(struct device *dev,
2419 struct device_attribute *attr, char *buf)
2420 {
2421 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2422
2423 return sprintf(buf, "0x%016llx\n",
2424 (unsigned long long) rbd_dev->mapping.features);
2425 }
2426
2427 static ssize_t rbd_major_show(struct device *dev,
2428 struct device_attribute *attr, char *buf)
2429 {
2430 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2431
2432 return sprintf(buf, "%d\n", rbd_dev->major);
2433 }
2434
2435 static ssize_t rbd_client_id_show(struct device *dev,
2436 struct device_attribute *attr, char *buf)
2437 {
2438 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2439
2440 return sprintf(buf, "client%lld\n",
2441 ceph_client_id(rbd_dev->rbd_client->client));
2442 }
2443
2444 static ssize_t rbd_pool_show(struct device *dev,
2445 struct device_attribute *attr, char *buf)
2446 {
2447 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2448
2449 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
2450 }
2451
2452 static ssize_t rbd_pool_id_show(struct device *dev,
2453 struct device_attribute *attr, char *buf)
2454 {
2455 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2456
2457 return sprintf(buf, "%llu\n",
2458 (unsigned long long) rbd_dev->spec->pool_id);
2459 }
2460
2461 static ssize_t rbd_name_show(struct device *dev,
2462 struct device_attribute *attr, char *buf)
2463 {
2464 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2465
2466 if (rbd_dev->spec->image_name)
2467 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
2468
2469 return sprintf(buf, "(unknown)\n");
2470 }
2471
2472 static ssize_t rbd_image_id_show(struct device *dev,
2473 struct device_attribute *attr, char *buf)
2474 {
2475 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2476
2477 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
2478 }
2479
2480 /*
2481 * Shows the name of the currently-mapped snapshot (or
2482 * RBD_SNAP_HEAD_NAME for the base image).
2483 */
2484 static ssize_t rbd_snap_show(struct device *dev,
2485 struct device_attribute *attr,
2486 char *buf)
2487 {
2488 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2489
2490 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
2491 }
2492
2493 /*
2494 * For an rbd v2 image, shows the pool id, image id, and snapshot id
2495 * for the parent image. If there is no parent, simply shows
2496 * "(no parent image)".
2497 */
2498 static ssize_t rbd_parent_show(struct device *dev,
2499 struct device_attribute *attr,
2500 char *buf)
2501 {
2502 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2503 struct rbd_spec *spec = rbd_dev->parent_spec;
2504 int count;
2505 char *bufp = buf;
2506
2507 if (!spec)
2508 return sprintf(buf, "(no parent image)\n");
2509
2510 count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
2511 (unsigned long long) spec->pool_id, spec->pool_name);
2512 if (count < 0)
2513 return count;
2514 bufp += count;
2515
2516 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
2517 spec->image_name ? spec->image_name : "(unknown)");
2518 if (count < 0)
2519 return count;
2520 bufp += count;
2521
2522 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
2523 (unsigned long long) spec->snap_id, spec->snap_name);
2524 if (count < 0)
2525 return count;
2526 bufp += count;
2527
2528 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
2529 if (count < 0)
2530 return count;
2531 bufp += count;
2532
2533 return (ssize_t) (bufp - buf);
2534 }
2535
2536 static ssize_t rbd_image_refresh(struct device *dev,
2537 struct device_attribute *attr,
2538 const char *buf,
2539 size_t size)
2540 {
2541 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
2542 int ret;
2543
2544 ret = rbd_dev_refresh(rbd_dev, NULL);
2545
2546 return ret < 0 ? ret : size;
2547 }
2548
2549 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
2550 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
2551 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
2552 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
2553 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
2554 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
2555 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
2556 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
2557 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
2558 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
2559 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
2560
2561 static struct attribute *rbd_attrs[] = {
2562 &dev_attr_size.attr,
2563 &dev_attr_features.attr,
2564 &dev_attr_major.attr,
2565 &dev_attr_client_id.attr,
2566 &dev_attr_pool.attr,
2567 &dev_attr_pool_id.attr,
2568 &dev_attr_name.attr,
2569 &dev_attr_image_id.attr,
2570 &dev_attr_current_snap.attr,
2571 &dev_attr_parent.attr,
2572 &dev_attr_refresh.attr,
2573 NULL
2574 };
2575
2576 static struct attribute_group rbd_attr_group = {
2577 .attrs = rbd_attrs,
2578 };
2579
2580 static const struct attribute_group *rbd_attr_groups[] = {
2581 &rbd_attr_group,
2582 NULL
2583 };
2584
2585 static void rbd_sysfs_dev_release(struct device *dev)
2586 {
2587 }
2588
2589 static struct device_type rbd_device_type = {
2590 .name = "rbd",
2591 .groups = rbd_attr_groups,
2592 .release = rbd_sysfs_dev_release,
2593 };
2594
2595
2596 /*
2597 sysfs - snapshots
2598 */
2599
2600 static ssize_t rbd_snap_size_show(struct device *dev,
2601 struct device_attribute *attr,
2602 char *buf)
2603 {
2604 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2605
2606 return sprintf(buf, "%llu\n", (unsigned long long)snap->size);
2607 }
2608
2609 static ssize_t rbd_snap_id_show(struct device *dev,
2610 struct device_attribute *attr,
2611 char *buf)
2612 {
2613 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2614
2615 return sprintf(buf, "%llu\n", (unsigned long long)snap->id);
2616 }
2617
2618 static ssize_t rbd_snap_features_show(struct device *dev,
2619 struct device_attribute *attr,
2620 char *buf)
2621 {
2622 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2623
2624 return sprintf(buf, "0x%016llx\n",
2625 (unsigned long long) snap->features);
2626 }
2627
2628 static DEVICE_ATTR(snap_size, S_IRUGO, rbd_snap_size_show, NULL);
2629 static DEVICE_ATTR(snap_id, S_IRUGO, rbd_snap_id_show, NULL);
2630 static DEVICE_ATTR(snap_features, S_IRUGO, rbd_snap_features_show, NULL);
2631
2632 static struct attribute *rbd_snap_attrs[] = {
2633 &dev_attr_snap_size.attr,
2634 &dev_attr_snap_id.attr,
2635 &dev_attr_snap_features.attr,
2636 NULL,
2637 };
2638
2639 static struct attribute_group rbd_snap_attr_group = {
2640 .attrs = rbd_snap_attrs,
2641 };
2642
2643 static void rbd_snap_dev_release(struct device *dev)
2644 {
2645 struct rbd_snap *snap = container_of(dev, struct rbd_snap, dev);
2646 kfree(snap->name);
2647 kfree(snap);
2648 }
2649
2650 static const struct attribute_group *rbd_snap_attr_groups[] = {
2651 &rbd_snap_attr_group,
2652 NULL
2653 };
2654
2655 static struct device_type rbd_snap_device_type = {
2656 .groups = rbd_snap_attr_groups,
2657 .release = rbd_snap_dev_release,
2658 };
2659
2660 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
2661 {
2662 kref_get(&spec->kref);
2663
2664 return spec;
2665 }
2666
2667 static void rbd_spec_free(struct kref *kref);
2668 static void rbd_spec_put(struct rbd_spec *spec)
2669 {
2670 if (spec)
2671 kref_put(&spec->kref, rbd_spec_free);
2672 }
2673
2674 static struct rbd_spec *rbd_spec_alloc(void)
2675 {
2676 struct rbd_spec *spec;
2677
2678 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
2679 if (!spec)
2680 return NULL;
2681 kref_init(&spec->kref);
2682
2683 rbd_spec_put(rbd_spec_get(spec)); /* TEMPORARY */
2684
2685 return spec;
2686 }
2687
2688 static void rbd_spec_free(struct kref *kref)
2689 {
2690 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
2691
2692 kfree(spec->pool_name);
2693 kfree(spec->image_id);
2694 kfree(spec->image_name);
2695 kfree(spec->snap_name);
2696 kfree(spec);
2697 }
2698
2699 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
2700 struct rbd_spec *spec)
2701 {
2702 struct rbd_device *rbd_dev;
2703
2704 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
2705 if (!rbd_dev)
2706 return NULL;
2707
2708 spin_lock_init(&rbd_dev->lock);
2709 rbd_dev->flags = 0;
2710 INIT_LIST_HEAD(&rbd_dev->node);
2711 INIT_LIST_HEAD(&rbd_dev->snaps);
2712 init_rwsem(&rbd_dev->header_rwsem);
2713
2714 rbd_dev->spec = spec;
2715 rbd_dev->rbd_client = rbdc;
2716
2717 /* Initialize the layout used for all rbd requests */
2718
2719 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
2720 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
2721 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
2722 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
2723
2724 return rbd_dev;
2725 }
2726
2727 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
2728 {
2729 rbd_spec_put(rbd_dev->parent_spec);
2730 kfree(rbd_dev->header_name);
2731 rbd_put_client(rbd_dev->rbd_client);
2732 rbd_spec_put(rbd_dev->spec);
2733 kfree(rbd_dev);
2734 }
2735
2736 static bool rbd_snap_registered(struct rbd_snap *snap)
2737 {
2738 bool ret = snap->dev.type == &rbd_snap_device_type;
2739 bool reg = device_is_registered(&snap->dev);
2740
2741 rbd_assert(!ret ^ reg);
2742
2743 return ret;
2744 }
2745
2746 static void rbd_remove_snap_dev(struct rbd_snap *snap)
2747 {
2748 list_del(&snap->node);
2749 if (device_is_registered(&snap->dev))
2750 device_unregister(&snap->dev);
2751 }
2752
2753 static int rbd_register_snap_dev(struct rbd_snap *snap,
2754 struct device *parent)
2755 {
2756 struct device *dev = &snap->dev;
2757 int ret;
2758
2759 dev->type = &rbd_snap_device_type;
2760 dev->parent = parent;
2761 dev->release = rbd_snap_dev_release;
2762 dev_set_name(dev, "%s%s", RBD_SNAP_DEV_NAME_PREFIX, snap->name);
2763 dout("%s: registering device for snapshot %s\n", __func__, snap->name);
2764
2765 ret = device_register(dev);
2766
2767 return ret;
2768 }
2769
2770 static struct rbd_snap *__rbd_add_snap_dev(struct rbd_device *rbd_dev,
2771 const char *snap_name,
2772 u64 snap_id, u64 snap_size,
2773 u64 snap_features)
2774 {
2775 struct rbd_snap *snap;
2776 int ret;
2777
2778 snap = kzalloc(sizeof (*snap), GFP_KERNEL);
2779 if (!snap)
2780 return ERR_PTR(-ENOMEM);
2781
2782 ret = -ENOMEM;
2783 snap->name = kstrdup(snap_name, GFP_KERNEL);
2784 if (!snap->name)
2785 goto err;
2786
2787 snap->id = snap_id;
2788 snap->size = snap_size;
2789 snap->features = snap_features;
2790
2791 return snap;
2792
2793 err:
2794 kfree(snap->name);
2795 kfree(snap);
2796
2797 return ERR_PTR(ret);
2798 }
2799
2800 static char *rbd_dev_v1_snap_info(struct rbd_device *rbd_dev, u32 which,
2801 u64 *snap_size, u64 *snap_features)
2802 {
2803 char *snap_name;
2804
2805 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
2806
2807 *snap_size = rbd_dev->header.snap_sizes[which];
2808 *snap_features = 0; /* No features for v1 */
2809
2810 /* Skip over names until we find the one we are looking for */
2811
2812 snap_name = rbd_dev->header.snap_names;
2813 while (which--)
2814 snap_name += strlen(snap_name) + 1;
2815
2816 return snap_name;
2817 }
2818
2819 /*
2820 * Get the size and object order for an image snapshot, or if
2821 * snap_id is CEPH_NOSNAP, gets this information for the base
2822 * image.
2823 */
2824 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
2825 u8 *order, u64 *snap_size)
2826 {
2827 __le64 snapid = cpu_to_le64(snap_id);
2828 int ret;
2829 struct {
2830 u8 order;
2831 __le64 size;
2832 } __attribute__ ((packed)) size_buf = { 0 };
2833
2834 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2835 "rbd", "get_size",
2836 (char *) &snapid, sizeof (snapid),
2837 (char *) &size_buf, sizeof (size_buf), NULL);
2838 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2839 if (ret < 0)
2840 return ret;
2841
2842 *order = size_buf.order;
2843 *snap_size = le64_to_cpu(size_buf.size);
2844
2845 dout(" snap_id 0x%016llx order = %u, snap_size = %llu\n",
2846 (unsigned long long) snap_id, (unsigned int) *order,
2847 (unsigned long long) *snap_size);
2848
2849 return 0;
2850 }
2851
2852 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
2853 {
2854 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
2855 &rbd_dev->header.obj_order,
2856 &rbd_dev->header.image_size);
2857 }
2858
2859 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
2860 {
2861 void *reply_buf;
2862 int ret;
2863 void *p;
2864
2865 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
2866 if (!reply_buf)
2867 return -ENOMEM;
2868
2869 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2870 "rbd", "get_object_prefix",
2871 NULL, 0,
2872 reply_buf, RBD_OBJ_PREFIX_LEN_MAX, NULL);
2873 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2874 if (ret < 0)
2875 goto out;
2876
2877 p = reply_buf;
2878 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
2879 p + RBD_OBJ_PREFIX_LEN_MAX,
2880 NULL, GFP_NOIO);
2881
2882 if (IS_ERR(rbd_dev->header.object_prefix)) {
2883 ret = PTR_ERR(rbd_dev->header.object_prefix);
2884 rbd_dev->header.object_prefix = NULL;
2885 } else {
2886 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
2887 }
2888
2889 out:
2890 kfree(reply_buf);
2891
2892 return ret;
2893 }
2894
2895 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
2896 u64 *snap_features)
2897 {
2898 __le64 snapid = cpu_to_le64(snap_id);
2899 struct {
2900 __le64 features;
2901 __le64 incompat;
2902 } features_buf = { 0 };
2903 u64 incompat;
2904 int ret;
2905
2906 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2907 "rbd", "get_features",
2908 (char *) &snapid, sizeof (snapid),
2909 (char *) &features_buf, sizeof (features_buf),
2910 NULL);
2911 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2912 if (ret < 0)
2913 return ret;
2914
2915 incompat = le64_to_cpu(features_buf.incompat);
2916 if (incompat & ~RBD_FEATURES_ALL)
2917 return -ENXIO;
2918
2919 *snap_features = le64_to_cpu(features_buf.features);
2920
2921 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
2922 (unsigned long long) snap_id,
2923 (unsigned long long) *snap_features,
2924 (unsigned long long) le64_to_cpu(features_buf.incompat));
2925
2926 return 0;
2927 }
2928
2929 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
2930 {
2931 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
2932 &rbd_dev->header.features);
2933 }
2934
2935 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
2936 {
2937 struct rbd_spec *parent_spec;
2938 size_t size;
2939 void *reply_buf = NULL;
2940 __le64 snapid;
2941 void *p;
2942 void *end;
2943 char *image_id;
2944 u64 overlap;
2945 int ret;
2946
2947 parent_spec = rbd_spec_alloc();
2948 if (!parent_spec)
2949 return -ENOMEM;
2950
2951 size = sizeof (__le64) + /* pool_id */
2952 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
2953 sizeof (__le64) + /* snap_id */
2954 sizeof (__le64); /* overlap */
2955 reply_buf = kmalloc(size, GFP_KERNEL);
2956 if (!reply_buf) {
2957 ret = -ENOMEM;
2958 goto out_err;
2959 }
2960
2961 snapid = cpu_to_le64(CEPH_NOSNAP);
2962 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
2963 "rbd", "get_parent",
2964 (char *) &snapid, sizeof (snapid),
2965 (char *) reply_buf, size, NULL);
2966 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
2967 if (ret < 0)
2968 goto out_err;
2969
2970 ret = -ERANGE;
2971 p = reply_buf;
2972 end = (char *) reply_buf + size;
2973 ceph_decode_64_safe(&p, end, parent_spec->pool_id, out_err);
2974 if (parent_spec->pool_id == CEPH_NOPOOL)
2975 goto out; /* No parent? No problem. */
2976
2977 /* The ceph file layout needs to fit pool id in 32 bits */
2978
2979 ret = -EIO;
2980 if (WARN_ON(parent_spec->pool_id > (u64) U32_MAX))
2981 goto out;
2982
2983 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
2984 if (IS_ERR(image_id)) {
2985 ret = PTR_ERR(image_id);
2986 goto out_err;
2987 }
2988 parent_spec->image_id = image_id;
2989 ceph_decode_64_safe(&p, end, parent_spec->snap_id, out_err);
2990 ceph_decode_64_safe(&p, end, overlap, out_err);
2991
2992 rbd_dev->parent_overlap = overlap;
2993 rbd_dev->parent_spec = parent_spec;
2994 parent_spec = NULL; /* rbd_dev now owns this */
2995 out:
2996 ret = 0;
2997 out_err:
2998 kfree(reply_buf);
2999 rbd_spec_put(parent_spec);
3000
3001 return ret;
3002 }
3003
3004 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
3005 {
3006 size_t image_id_size;
3007 char *image_id;
3008 void *p;
3009 void *end;
3010 size_t size;
3011 void *reply_buf = NULL;
3012 size_t len = 0;
3013 char *image_name = NULL;
3014 int ret;
3015
3016 rbd_assert(!rbd_dev->spec->image_name);
3017
3018 len = strlen(rbd_dev->spec->image_id);
3019 image_id_size = sizeof (__le32) + len;
3020 image_id = kmalloc(image_id_size, GFP_KERNEL);
3021 if (!image_id)
3022 return NULL;
3023
3024 p = image_id;
3025 end = (char *) image_id + image_id_size;
3026 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32) len);
3027
3028 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
3029 reply_buf = kmalloc(size, GFP_KERNEL);
3030 if (!reply_buf)
3031 goto out;
3032
3033 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
3034 "rbd", "dir_get_name",
3035 image_id, image_id_size,
3036 (char *) reply_buf, size, NULL);
3037 if (ret < 0)
3038 goto out;
3039 p = reply_buf;
3040 end = (char *) reply_buf + size;
3041 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
3042 if (IS_ERR(image_name))
3043 image_name = NULL;
3044 else
3045 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
3046 out:
3047 kfree(reply_buf);
3048 kfree(image_id);
3049
3050 return image_name;
3051 }
3052
3053 /*
3054 * When a parent image gets probed, we only have the pool, image,
3055 * and snapshot ids but not the names of any of them. This call
3056 * is made later to fill in those names. It has to be done after
3057 * rbd_dev_snaps_update() has completed because some of the
3058 * information (in particular, snapshot name) is not available
3059 * until then.
3060 */
3061 static int rbd_dev_probe_update_spec(struct rbd_device *rbd_dev)
3062 {
3063 struct ceph_osd_client *osdc;
3064 const char *name;
3065 void *reply_buf = NULL;
3066 int ret;
3067
3068 if (rbd_dev->spec->pool_name)
3069 return 0; /* Already have the names */
3070
3071 /* Look up the pool name */
3072
3073 osdc = &rbd_dev->rbd_client->client->osdc;
3074 name = ceph_pg_pool_name_by_id(osdc->osdmap, rbd_dev->spec->pool_id);
3075 if (!name) {
3076 rbd_warn(rbd_dev, "there is no pool with id %llu",
3077 rbd_dev->spec->pool_id); /* Really a BUG() */
3078 return -EIO;
3079 }
3080
3081 rbd_dev->spec->pool_name = kstrdup(name, GFP_KERNEL);
3082 if (!rbd_dev->spec->pool_name)
3083 return -ENOMEM;
3084
3085 /* Fetch the image name; tolerate failure here */
3086
3087 name = rbd_dev_image_name(rbd_dev);
3088 if (name)
3089 rbd_dev->spec->image_name = (char *) name;
3090 else
3091 rbd_warn(rbd_dev, "unable to get image name");
3092
3093 /* Look up the snapshot name. */
3094
3095 name = rbd_snap_name(rbd_dev, rbd_dev->spec->snap_id);
3096 if (!name) {
3097 rbd_warn(rbd_dev, "no snapshot with id %llu",
3098 rbd_dev->spec->snap_id); /* Really a BUG() */
3099 ret = -EIO;
3100 goto out_err;
3101 }
3102 rbd_dev->spec->snap_name = kstrdup(name, GFP_KERNEL);
3103 if(!rbd_dev->spec->snap_name)
3104 goto out_err;
3105
3106 return 0;
3107 out_err:
3108 kfree(reply_buf);
3109 kfree(rbd_dev->spec->pool_name);
3110 rbd_dev->spec->pool_name = NULL;
3111
3112 return ret;
3113 }
3114
3115 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev, u64 *ver)
3116 {
3117 size_t size;
3118 int ret;
3119 void *reply_buf;
3120 void *p;
3121 void *end;
3122 u64 seq;
3123 u32 snap_count;
3124 struct ceph_snap_context *snapc;
3125 u32 i;
3126
3127 /*
3128 * We'll need room for the seq value (maximum snapshot id),
3129 * snapshot count, and array of that many snapshot ids.
3130 * For now we have a fixed upper limit on the number we're
3131 * prepared to receive.
3132 */
3133 size = sizeof (__le64) + sizeof (__le32) +
3134 RBD_MAX_SNAP_COUNT * sizeof (__le64);
3135 reply_buf = kzalloc(size, GFP_KERNEL);
3136 if (!reply_buf)
3137 return -ENOMEM;
3138
3139 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3140 "rbd", "get_snapcontext",
3141 NULL, 0,
3142 reply_buf, size, ver);
3143 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3144 if (ret < 0)
3145 goto out;
3146
3147 ret = -ERANGE;
3148 p = reply_buf;
3149 end = (char *) reply_buf + size;
3150 ceph_decode_64_safe(&p, end, seq, out);
3151 ceph_decode_32_safe(&p, end, snap_count, out);
3152
3153 /*
3154 * Make sure the reported number of snapshot ids wouldn't go
3155 * beyond the end of our buffer. But before checking that,
3156 * make sure the computed size of the snapshot context we
3157 * allocate is representable in a size_t.
3158 */
3159 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
3160 / sizeof (u64)) {
3161 ret = -EINVAL;
3162 goto out;
3163 }
3164 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
3165 goto out;
3166
3167 size = sizeof (struct ceph_snap_context) +
3168 snap_count * sizeof (snapc->snaps[0]);
3169 snapc = kmalloc(size, GFP_KERNEL);
3170 if (!snapc) {
3171 ret = -ENOMEM;
3172 goto out;
3173 }
3174
3175 atomic_set(&snapc->nref, 1);
3176 snapc->seq = seq;
3177 snapc->num_snaps = snap_count;
3178 for (i = 0; i < snap_count; i++)
3179 snapc->snaps[i] = ceph_decode_64(&p);
3180
3181 rbd_dev->header.snapc = snapc;
3182
3183 dout(" snap context seq = %llu, snap_count = %u\n",
3184 (unsigned long long) seq, (unsigned int) snap_count);
3185
3186 out:
3187 kfree(reply_buf);
3188
3189 return 0;
3190 }
3191
3192 static char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev, u32 which)
3193 {
3194 size_t size;
3195 void *reply_buf;
3196 __le64 snap_id;
3197 int ret;
3198 void *p;
3199 void *end;
3200 char *snap_name;
3201
3202 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
3203 reply_buf = kmalloc(size, GFP_KERNEL);
3204 if (!reply_buf)
3205 return ERR_PTR(-ENOMEM);
3206
3207 snap_id = cpu_to_le64(rbd_dev->header.snapc->snaps[which]);
3208 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3209 "rbd", "get_snapshot_name",
3210 (char *) &snap_id, sizeof (snap_id),
3211 reply_buf, size, NULL);
3212 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3213 if (ret < 0)
3214 goto out;
3215
3216 p = reply_buf;
3217 end = (char *) reply_buf + size;
3218 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3219 if (IS_ERR(snap_name)) {
3220 ret = PTR_ERR(snap_name);
3221 goto out;
3222 } else {
3223 dout(" snap_id 0x%016llx snap_name = %s\n",
3224 (unsigned long long) le64_to_cpu(snap_id), snap_name);
3225 }
3226 kfree(reply_buf);
3227
3228 return snap_name;
3229 out:
3230 kfree(reply_buf);
3231
3232 return ERR_PTR(ret);
3233 }
3234
3235 static char *rbd_dev_v2_snap_info(struct rbd_device *rbd_dev, u32 which,
3236 u64 *snap_size, u64 *snap_features)
3237 {
3238 u64 snap_id;
3239 u8 order;
3240 int ret;
3241
3242 snap_id = rbd_dev->header.snapc->snaps[which];
3243 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, &order, snap_size);
3244 if (ret)
3245 return ERR_PTR(ret);
3246 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, snap_features);
3247 if (ret)
3248 return ERR_PTR(ret);
3249
3250 return rbd_dev_v2_snap_name(rbd_dev, which);
3251 }
3252
3253 static char *rbd_dev_snap_info(struct rbd_device *rbd_dev, u32 which,
3254 u64 *snap_size, u64 *snap_features)
3255 {
3256 if (rbd_dev->image_format == 1)
3257 return rbd_dev_v1_snap_info(rbd_dev, which,
3258 snap_size, snap_features);
3259 if (rbd_dev->image_format == 2)
3260 return rbd_dev_v2_snap_info(rbd_dev, which,
3261 snap_size, snap_features);
3262 return ERR_PTR(-EINVAL);
3263 }
3264
3265 static int rbd_dev_v2_refresh(struct rbd_device *rbd_dev, u64 *hver)
3266 {
3267 int ret;
3268 __u8 obj_order;
3269
3270 down_write(&rbd_dev->header_rwsem);
3271
3272 /* Grab old order first, to see if it changes */
3273
3274 obj_order = rbd_dev->header.obj_order,
3275 ret = rbd_dev_v2_image_size(rbd_dev);
3276 if (ret)
3277 goto out;
3278 if (rbd_dev->header.obj_order != obj_order) {
3279 ret = -EIO;
3280 goto out;
3281 }
3282 rbd_update_mapping_size(rbd_dev);
3283
3284 ret = rbd_dev_v2_snap_context(rbd_dev, hver);
3285 dout("rbd_dev_v2_snap_context returned %d\n", ret);
3286 if (ret)
3287 goto out;
3288 ret = rbd_dev_snaps_update(rbd_dev);
3289 dout("rbd_dev_snaps_update returned %d\n", ret);
3290 if (ret)
3291 goto out;
3292 ret = rbd_dev_snaps_register(rbd_dev);
3293 dout("rbd_dev_snaps_register returned %d\n", ret);
3294 out:
3295 up_write(&rbd_dev->header_rwsem);
3296
3297 return ret;
3298 }
3299
3300 /*
3301 * Scan the rbd device's current snapshot list and compare it to the
3302 * newly-received snapshot context. Remove any existing snapshots
3303 * not present in the new snapshot context. Add a new snapshot for
3304 * any snaphots in the snapshot context not in the current list.
3305 * And verify there are no changes to snapshots we already know
3306 * about.
3307 *
3308 * Assumes the snapshots in the snapshot context are sorted by
3309 * snapshot id, highest id first. (Snapshots in the rbd_dev's list
3310 * are also maintained in that order.)
3311 */
3312 static int rbd_dev_snaps_update(struct rbd_device *rbd_dev)
3313 {
3314 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
3315 const u32 snap_count = snapc->num_snaps;
3316 struct list_head *head = &rbd_dev->snaps;
3317 struct list_head *links = head->next;
3318 u32 index = 0;
3319
3320 dout("%s: snap count is %u\n", __func__, (unsigned int) snap_count);
3321 while (index < snap_count || links != head) {
3322 u64 snap_id;
3323 struct rbd_snap *snap;
3324 char *snap_name;
3325 u64 snap_size = 0;
3326 u64 snap_features = 0;
3327
3328 snap_id = index < snap_count ? snapc->snaps[index]
3329 : CEPH_NOSNAP;
3330 snap = links != head ? list_entry(links, struct rbd_snap, node)
3331 : NULL;
3332 rbd_assert(!snap || snap->id != CEPH_NOSNAP);
3333
3334 if (snap_id == CEPH_NOSNAP || (snap && snap->id > snap_id)) {
3335 struct list_head *next = links->next;
3336
3337 /*
3338 * A previously-existing snapshot is not in
3339 * the new snap context.
3340 *
3341 * If the now missing snapshot is the one the
3342 * image is mapped to, clear its exists flag
3343 * so we can avoid sending any more requests
3344 * to it.
3345 */
3346 if (rbd_dev->spec->snap_id == snap->id)
3347 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3348 rbd_remove_snap_dev(snap);
3349 dout("%ssnap id %llu has been removed\n",
3350 rbd_dev->spec->snap_id == snap->id ?
3351 "mapped " : "",
3352 (unsigned long long) snap->id);
3353
3354 /* Done with this list entry; advance */
3355
3356 links = next;
3357 continue;
3358 }
3359
3360 snap_name = rbd_dev_snap_info(rbd_dev, index,
3361 &snap_size, &snap_features);
3362 if (IS_ERR(snap_name))
3363 return PTR_ERR(snap_name);
3364
3365 dout("entry %u: snap_id = %llu\n", (unsigned int) snap_count,
3366 (unsigned long long) snap_id);
3367 if (!snap || (snap_id != CEPH_NOSNAP && snap->id < snap_id)) {
3368 struct rbd_snap *new_snap;
3369
3370 /* We haven't seen this snapshot before */
3371
3372 new_snap = __rbd_add_snap_dev(rbd_dev, snap_name,
3373 snap_id, snap_size, snap_features);
3374 if (IS_ERR(new_snap)) {
3375 int err = PTR_ERR(new_snap);
3376
3377 dout(" failed to add dev, error %d\n", err);
3378
3379 return err;
3380 }
3381
3382 /* New goes before existing, or at end of list */
3383
3384 dout(" added dev%s\n", snap ? "" : " at end\n");
3385 if (snap)
3386 list_add_tail(&new_snap->node, &snap->node);
3387 else
3388 list_add_tail(&new_snap->node, head);
3389 } else {
3390 /* Already have this one */
3391
3392 dout(" already present\n");
3393
3394 rbd_assert(snap->size == snap_size);
3395 rbd_assert(!strcmp(snap->name, snap_name));
3396 rbd_assert(snap->features == snap_features);
3397
3398 /* Done with this list entry; advance */
3399
3400 links = links->next;
3401 }
3402
3403 /* Advance to the next entry in the snapshot context */
3404
3405 index++;
3406 }
3407 dout("%s: done\n", __func__);
3408
3409 return 0;
3410 }
3411
3412 /*
3413 * Scan the list of snapshots and register the devices for any that
3414 * have not already been registered.
3415 */
3416 static int rbd_dev_snaps_register(struct rbd_device *rbd_dev)
3417 {
3418 struct rbd_snap *snap;
3419 int ret = 0;
3420
3421 dout("%s:\n", __func__);
3422 if (WARN_ON(!device_is_registered(&rbd_dev->dev)))
3423 return -EIO;
3424
3425 list_for_each_entry(snap, &rbd_dev->snaps, node) {
3426 if (!rbd_snap_registered(snap)) {
3427 ret = rbd_register_snap_dev(snap, &rbd_dev->dev);
3428 if (ret < 0)
3429 break;
3430 }
3431 }
3432 dout("%s: returning %d\n", __func__, ret);
3433
3434 return ret;
3435 }
3436
3437 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
3438 {
3439 struct device *dev;
3440 int ret;
3441
3442 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
3443
3444 dev = &rbd_dev->dev;
3445 dev->bus = &rbd_bus_type;
3446 dev->type = &rbd_device_type;
3447 dev->parent = &rbd_root_dev;
3448 dev->release = rbd_dev_release;
3449 dev_set_name(dev, "%d", rbd_dev->dev_id);
3450 ret = device_register(dev);
3451
3452 mutex_unlock(&ctl_mutex);
3453
3454 return ret;
3455 }
3456
3457 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
3458 {
3459 device_unregister(&rbd_dev->dev);
3460 }
3461
3462 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
3463
3464 /*
3465 * Get a unique rbd identifier for the given new rbd_dev, and add
3466 * the rbd_dev to the global list. The minimum rbd id is 1.
3467 */
3468 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
3469 {
3470 rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
3471
3472 spin_lock(&rbd_dev_list_lock);
3473 list_add_tail(&rbd_dev->node, &rbd_dev_list);
3474 spin_unlock(&rbd_dev_list_lock);
3475 dout("rbd_dev %p given dev id %llu\n", rbd_dev,
3476 (unsigned long long) rbd_dev->dev_id);
3477 }
3478
3479 /*
3480 * Remove an rbd_dev from the global list, and record that its
3481 * identifier is no longer in use.
3482 */
3483 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
3484 {
3485 struct list_head *tmp;
3486 int rbd_id = rbd_dev->dev_id;
3487 int max_id;
3488
3489 rbd_assert(rbd_id > 0);
3490
3491 dout("rbd_dev %p released dev id %llu\n", rbd_dev,
3492 (unsigned long long) rbd_dev->dev_id);
3493 spin_lock(&rbd_dev_list_lock);
3494 list_del_init(&rbd_dev->node);
3495
3496 /*
3497 * If the id being "put" is not the current maximum, there
3498 * is nothing special we need to do.
3499 */
3500 if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
3501 spin_unlock(&rbd_dev_list_lock);
3502 return;
3503 }
3504
3505 /*
3506 * We need to update the current maximum id. Search the
3507 * list to find out what it is. We're more likely to find
3508 * the maximum at the end, so search the list backward.
3509 */
3510 max_id = 0;
3511 list_for_each_prev(tmp, &rbd_dev_list) {
3512 struct rbd_device *rbd_dev;
3513
3514 rbd_dev = list_entry(tmp, struct rbd_device, node);
3515 if (rbd_dev->dev_id > max_id)
3516 max_id = rbd_dev->dev_id;
3517 }
3518 spin_unlock(&rbd_dev_list_lock);
3519
3520 /*
3521 * The max id could have been updated by rbd_dev_id_get(), in
3522 * which case it now accurately reflects the new maximum.
3523 * Be careful not to overwrite the maximum value in that
3524 * case.
3525 */
3526 atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
3527 dout(" max dev id has been reset\n");
3528 }
3529
3530 /*
3531 * Skips over white space at *buf, and updates *buf to point to the
3532 * first found non-space character (if any). Returns the length of
3533 * the token (string of non-white space characters) found. Note
3534 * that *buf must be terminated with '\0'.
3535 */
3536 static inline size_t next_token(const char **buf)
3537 {
3538 /*
3539 * These are the characters that produce nonzero for
3540 * isspace() in the "C" and "POSIX" locales.
3541 */
3542 const char *spaces = " \f\n\r\t\v";
3543
3544 *buf += strspn(*buf, spaces); /* Find start of token */
3545
3546 return strcspn(*buf, spaces); /* Return token length */
3547 }
3548
3549 /*
3550 * Finds the next token in *buf, and if the provided token buffer is
3551 * big enough, copies the found token into it. The result, if
3552 * copied, is guaranteed to be terminated with '\0'. Note that *buf
3553 * must be terminated with '\0' on entry.
3554 *
3555 * Returns the length of the token found (not including the '\0').
3556 * Return value will be 0 if no token is found, and it will be >=
3557 * token_size if the token would not fit.
3558 *
3559 * The *buf pointer will be updated to point beyond the end of the
3560 * found token. Note that this occurs even if the token buffer is
3561 * too small to hold it.
3562 */
3563 static inline size_t copy_token(const char **buf,
3564 char *token,
3565 size_t token_size)
3566 {
3567 size_t len;
3568
3569 len = next_token(buf);
3570 if (len < token_size) {
3571 memcpy(token, *buf, len);
3572 *(token + len) = '\0';
3573 }
3574 *buf += len;
3575
3576 return len;
3577 }
3578
3579 /*
3580 * Finds the next token in *buf, dynamically allocates a buffer big
3581 * enough to hold a copy of it, and copies the token into the new
3582 * buffer. The copy is guaranteed to be terminated with '\0'. Note
3583 * that a duplicate buffer is created even for a zero-length token.
3584 *
3585 * Returns a pointer to the newly-allocated duplicate, or a null
3586 * pointer if memory for the duplicate was not available. If
3587 * the lenp argument is a non-null pointer, the length of the token
3588 * (not including the '\0') is returned in *lenp.
3589 *
3590 * If successful, the *buf pointer will be updated to point beyond
3591 * the end of the found token.
3592 *
3593 * Note: uses GFP_KERNEL for allocation.
3594 */
3595 static inline char *dup_token(const char **buf, size_t *lenp)
3596 {
3597 char *dup;
3598 size_t len;
3599
3600 len = next_token(buf);
3601 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
3602 if (!dup)
3603 return NULL;
3604 *(dup + len) = '\0';
3605 *buf += len;
3606
3607 if (lenp)
3608 *lenp = len;
3609
3610 return dup;
3611 }
3612
3613 /*
3614 * Parse the options provided for an "rbd add" (i.e., rbd image
3615 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
3616 * and the data written is passed here via a NUL-terminated buffer.
3617 * Returns 0 if successful or an error code otherwise.
3618 *
3619 * The information extracted from these options is recorded in
3620 * the other parameters which return dynamically-allocated
3621 * structures:
3622 * ceph_opts
3623 * The address of a pointer that will refer to a ceph options
3624 * structure. Caller must release the returned pointer using
3625 * ceph_destroy_options() when it is no longer needed.
3626 * rbd_opts
3627 * Address of an rbd options pointer. Fully initialized by
3628 * this function; caller must release with kfree().
3629 * spec
3630 * Address of an rbd image specification pointer. Fully
3631 * initialized by this function based on parsed options.
3632 * Caller must release with rbd_spec_put().
3633 *
3634 * The options passed take this form:
3635 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
3636 * where:
3637 * <mon_addrs>
3638 * A comma-separated list of one or more monitor addresses.
3639 * A monitor address is an ip address, optionally followed
3640 * by a port number (separated by a colon).
3641 * I.e.: ip1[:port1][,ip2[:port2]...]
3642 * <options>
3643 * A comma-separated list of ceph and/or rbd options.
3644 * <pool_name>
3645 * The name of the rados pool containing the rbd image.
3646 * <image_name>
3647 * The name of the image in that pool to map.
3648 * <snap_id>
3649 * An optional snapshot id. If provided, the mapping will
3650 * present data from the image at the time that snapshot was
3651 * created. The image head is used if no snapshot id is
3652 * provided. Snapshot mappings are always read-only.
3653 */
3654 static int rbd_add_parse_args(const char *buf,
3655 struct ceph_options **ceph_opts,
3656 struct rbd_options **opts,
3657 struct rbd_spec **rbd_spec)
3658 {
3659 size_t len;
3660 char *options;
3661 const char *mon_addrs;
3662 size_t mon_addrs_size;
3663 struct rbd_spec *spec = NULL;
3664 struct rbd_options *rbd_opts = NULL;
3665 struct ceph_options *copts;
3666 int ret;
3667
3668 /* The first four tokens are required */
3669
3670 len = next_token(&buf);
3671 if (!len) {
3672 rbd_warn(NULL, "no monitor address(es) provided");
3673 return -EINVAL;
3674 }
3675 mon_addrs = buf;
3676 mon_addrs_size = len + 1;
3677 buf += len;
3678
3679 ret = -EINVAL;
3680 options = dup_token(&buf, NULL);
3681 if (!options)
3682 return -ENOMEM;
3683 if (!*options) {
3684 rbd_warn(NULL, "no options provided");
3685 goto out_err;
3686 }
3687
3688 spec = rbd_spec_alloc();
3689 if (!spec)
3690 goto out_mem;
3691
3692 spec->pool_name = dup_token(&buf, NULL);
3693 if (!spec->pool_name)
3694 goto out_mem;
3695 if (!*spec->pool_name) {
3696 rbd_warn(NULL, "no pool name provided");
3697 goto out_err;
3698 }
3699
3700 spec->image_name = dup_token(&buf, NULL);
3701 if (!spec->image_name)
3702 goto out_mem;
3703 if (!*spec->image_name) {
3704 rbd_warn(NULL, "no image name provided");
3705 goto out_err;
3706 }
3707
3708 /*
3709 * Snapshot name is optional; default is to use "-"
3710 * (indicating the head/no snapshot).
3711 */
3712 len = next_token(&buf);
3713 if (!len) {
3714 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
3715 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
3716 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
3717 ret = -ENAMETOOLONG;
3718 goto out_err;
3719 }
3720 spec->snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
3721 if (!spec->snap_name)
3722 goto out_mem;
3723 *(spec->snap_name + len) = '\0';
3724
3725 /* Initialize all rbd options to the defaults */
3726
3727 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
3728 if (!rbd_opts)
3729 goto out_mem;
3730
3731 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
3732
3733 copts = ceph_parse_options(options, mon_addrs,
3734 mon_addrs + mon_addrs_size - 1,
3735 parse_rbd_opts_token, rbd_opts);
3736 if (IS_ERR(copts)) {
3737 ret = PTR_ERR(copts);
3738 goto out_err;
3739 }
3740 kfree(options);
3741
3742 *ceph_opts = copts;
3743 *opts = rbd_opts;
3744 *rbd_spec = spec;
3745
3746 return 0;
3747 out_mem:
3748 ret = -ENOMEM;
3749 out_err:
3750 kfree(rbd_opts);
3751 rbd_spec_put(spec);
3752 kfree(options);
3753
3754 return ret;
3755 }
3756
3757 /*
3758 * An rbd format 2 image has a unique identifier, distinct from the
3759 * name given to it by the user. Internally, that identifier is
3760 * what's used to specify the names of objects related to the image.
3761 *
3762 * A special "rbd id" object is used to map an rbd image name to its
3763 * id. If that object doesn't exist, then there is no v2 rbd image
3764 * with the supplied name.
3765 *
3766 * This function will record the given rbd_dev's image_id field if
3767 * it can be determined, and in that case will return 0. If any
3768 * errors occur a negative errno will be returned and the rbd_dev's
3769 * image_id field will be unchanged (and should be NULL).
3770 */
3771 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
3772 {
3773 int ret;
3774 size_t size;
3775 char *object_name;
3776 void *response;
3777 void *p;
3778
3779 /*
3780 * When probing a parent image, the image id is already
3781 * known (and the image name likely is not). There's no
3782 * need to fetch the image id again in this case.
3783 */
3784 if (rbd_dev->spec->image_id)
3785 return 0;
3786
3787 /*
3788 * First, see if the format 2 image id file exists, and if
3789 * so, get the image's persistent id from it.
3790 */
3791 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
3792 object_name = kmalloc(size, GFP_NOIO);
3793 if (!object_name)
3794 return -ENOMEM;
3795 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
3796 dout("rbd id object name is %s\n", object_name);
3797
3798 /* Response will be an encoded string, which includes a length */
3799
3800 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
3801 response = kzalloc(size, GFP_NOIO);
3802 if (!response) {
3803 ret = -ENOMEM;
3804 goto out;
3805 }
3806
3807 ret = rbd_obj_method_sync(rbd_dev, object_name,
3808 "rbd", "get_id",
3809 NULL, 0,
3810 response, RBD_IMAGE_ID_LEN_MAX, NULL);
3811 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3812 if (ret < 0)
3813 goto out;
3814
3815 p = response;
3816 rbd_dev->spec->image_id = ceph_extract_encoded_string(&p,
3817 p + RBD_IMAGE_ID_LEN_MAX,
3818 NULL, GFP_NOIO);
3819 if (IS_ERR(rbd_dev->spec->image_id)) {
3820 ret = PTR_ERR(rbd_dev->spec->image_id);
3821 rbd_dev->spec->image_id = NULL;
3822 } else {
3823 dout("image_id is %s\n", rbd_dev->spec->image_id);
3824 }
3825 out:
3826 kfree(response);
3827 kfree(object_name);
3828
3829 return ret;
3830 }
3831
3832 static int rbd_dev_v1_probe(struct rbd_device *rbd_dev)
3833 {
3834 int ret;
3835 size_t size;
3836
3837 /* Version 1 images have no id; empty string is used */
3838
3839 rbd_dev->spec->image_id = kstrdup("", GFP_KERNEL);
3840 if (!rbd_dev->spec->image_id)
3841 return -ENOMEM;
3842
3843 /* Record the header object name for this rbd image. */
3844
3845 size = strlen(rbd_dev->spec->image_name) + sizeof (RBD_SUFFIX);
3846 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
3847 if (!rbd_dev->header_name) {
3848 ret = -ENOMEM;
3849 goto out_err;
3850 }
3851 sprintf(rbd_dev->header_name, "%s%s",
3852 rbd_dev->spec->image_name, RBD_SUFFIX);
3853
3854 /* Populate rbd image metadata */
3855
3856 ret = rbd_read_header(rbd_dev, &rbd_dev->header);
3857 if (ret < 0)
3858 goto out_err;
3859
3860 /* Version 1 images have no parent (no layering) */
3861
3862 rbd_dev->parent_spec = NULL;
3863 rbd_dev->parent_overlap = 0;
3864
3865 rbd_dev->image_format = 1;
3866
3867 dout("discovered version 1 image, header name is %s\n",
3868 rbd_dev->header_name);
3869
3870 return 0;
3871
3872 out_err:
3873 kfree(rbd_dev->header_name);
3874 rbd_dev->header_name = NULL;
3875 kfree(rbd_dev->spec->image_id);
3876 rbd_dev->spec->image_id = NULL;
3877
3878 return ret;
3879 }
3880
3881 static int rbd_dev_v2_probe(struct rbd_device *rbd_dev)
3882 {
3883 size_t size;
3884 int ret;
3885 u64 ver = 0;
3886
3887 /*
3888 * Image id was filled in by the caller. Record the header
3889 * object name for this rbd image.
3890 */
3891 size = sizeof (RBD_HEADER_PREFIX) + strlen(rbd_dev->spec->image_id);
3892 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
3893 if (!rbd_dev->header_name)
3894 return -ENOMEM;
3895 sprintf(rbd_dev->header_name, "%s%s",
3896 RBD_HEADER_PREFIX, rbd_dev->spec->image_id);
3897
3898 /* Get the size and object order for the image */
3899
3900 ret = rbd_dev_v2_image_size(rbd_dev);
3901 if (ret < 0)
3902 goto out_err;
3903
3904 /* Get the object prefix (a.k.a. block_name) for the image */
3905
3906 ret = rbd_dev_v2_object_prefix(rbd_dev);
3907 if (ret < 0)
3908 goto out_err;
3909
3910 /* Get the and check features for the image */
3911
3912 ret = rbd_dev_v2_features(rbd_dev);
3913 if (ret < 0)
3914 goto out_err;
3915
3916 /* If the image supports layering, get the parent info */
3917
3918 if (rbd_dev->header.features & RBD_FEATURE_LAYERING) {
3919 ret = rbd_dev_v2_parent_info(rbd_dev);
3920 if (ret < 0)
3921 goto out_err;
3922 }
3923
3924 /* crypto and compression type aren't (yet) supported for v2 images */
3925
3926 rbd_dev->header.crypt_type = 0;
3927 rbd_dev->header.comp_type = 0;
3928
3929 /* Get the snapshot context, plus the header version */
3930
3931 ret = rbd_dev_v2_snap_context(rbd_dev, &ver);
3932 if (ret)
3933 goto out_err;
3934 rbd_dev->header.obj_version = ver;
3935
3936 rbd_dev->image_format = 2;
3937
3938 dout("discovered version 2 image, header name is %s\n",
3939 rbd_dev->header_name);
3940
3941 return 0;
3942 out_err:
3943 rbd_dev->parent_overlap = 0;
3944 rbd_spec_put(rbd_dev->parent_spec);
3945 rbd_dev->parent_spec = NULL;
3946 kfree(rbd_dev->header_name);
3947 rbd_dev->header_name = NULL;
3948 kfree(rbd_dev->header.object_prefix);
3949 rbd_dev->header.object_prefix = NULL;
3950
3951 return ret;
3952 }
3953
3954 static int rbd_dev_probe_finish(struct rbd_device *rbd_dev)
3955 {
3956 int ret;
3957
3958 /* no need to lock here, as rbd_dev is not registered yet */
3959 ret = rbd_dev_snaps_update(rbd_dev);
3960 if (ret)
3961 return ret;
3962
3963 ret = rbd_dev_probe_update_spec(rbd_dev);
3964 if (ret)
3965 goto err_out_snaps;
3966
3967 ret = rbd_dev_set_mapping(rbd_dev);
3968 if (ret)
3969 goto err_out_snaps;
3970
3971 /* generate unique id: find highest unique id, add one */
3972 rbd_dev_id_get(rbd_dev);
3973
3974 /* Fill in the device name, now that we have its id. */
3975 BUILD_BUG_ON(DEV_NAME_LEN
3976 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
3977 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
3978
3979 /* Get our block major device number. */
3980
3981 ret = register_blkdev(0, rbd_dev->name);
3982 if (ret < 0)
3983 goto err_out_id;
3984 rbd_dev->major = ret;
3985
3986 /* Set up the blkdev mapping. */
3987
3988 ret = rbd_init_disk(rbd_dev);
3989 if (ret)
3990 goto err_out_blkdev;
3991
3992 ret = rbd_bus_add_dev(rbd_dev);
3993 if (ret)
3994 goto err_out_disk;
3995
3996 /*
3997 * At this point cleanup in the event of an error is the job
3998 * of the sysfs code (initiated by rbd_bus_del_dev()).
3999 */
4000 down_write(&rbd_dev->header_rwsem);
4001 ret = rbd_dev_snaps_register(rbd_dev);
4002 up_write(&rbd_dev->header_rwsem);
4003 if (ret)
4004 goto err_out_bus;
4005
4006 ret = rbd_dev_header_watch_sync(rbd_dev, 1);
4007 if (ret)
4008 goto err_out_bus;
4009
4010 /* Everything's ready. Announce the disk to the world. */
4011
4012 add_disk(rbd_dev->disk);
4013
4014 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4015 (unsigned long long) rbd_dev->mapping.size);
4016
4017 return ret;
4018 err_out_bus:
4019 /* this will also clean up rest of rbd_dev stuff */
4020
4021 rbd_bus_del_dev(rbd_dev);
4022
4023 return ret;
4024 err_out_disk:
4025 rbd_free_disk(rbd_dev);
4026 err_out_blkdev:
4027 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4028 err_out_id:
4029 rbd_dev_id_put(rbd_dev);
4030 err_out_snaps:
4031 rbd_remove_all_snaps(rbd_dev);
4032
4033 return ret;
4034 }
4035
4036 /*
4037 * Probe for the existence of the header object for the given rbd
4038 * device. For format 2 images this includes determining the image
4039 * id.
4040 */
4041 static int rbd_dev_probe(struct rbd_device *rbd_dev)
4042 {
4043 int ret;
4044
4045 /*
4046 * Get the id from the image id object. If it's not a
4047 * format 2 image, we'll get ENOENT back, and we'll assume
4048 * it's a format 1 image.
4049 */
4050 ret = rbd_dev_image_id(rbd_dev);
4051 if (ret)
4052 ret = rbd_dev_v1_probe(rbd_dev);
4053 else
4054 ret = rbd_dev_v2_probe(rbd_dev);
4055 if (ret) {
4056 dout("probe failed, returning %d\n", ret);
4057
4058 return ret;
4059 }
4060
4061 ret = rbd_dev_probe_finish(rbd_dev);
4062 if (ret)
4063 rbd_header_free(&rbd_dev->header);
4064
4065 return ret;
4066 }
4067
4068 static ssize_t rbd_add(struct bus_type *bus,
4069 const char *buf,
4070 size_t count)
4071 {
4072 struct rbd_device *rbd_dev = NULL;
4073 struct ceph_options *ceph_opts = NULL;
4074 struct rbd_options *rbd_opts = NULL;
4075 struct rbd_spec *spec = NULL;
4076 struct rbd_client *rbdc;
4077 struct ceph_osd_client *osdc;
4078 int rc = -ENOMEM;
4079
4080 if (!try_module_get(THIS_MODULE))
4081 return -ENODEV;
4082
4083 /* parse add command */
4084 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
4085 if (rc < 0)
4086 goto err_out_module;
4087
4088 rbdc = rbd_get_client(ceph_opts);
4089 if (IS_ERR(rbdc)) {
4090 rc = PTR_ERR(rbdc);
4091 goto err_out_args;
4092 }
4093 ceph_opts = NULL; /* rbd_dev client now owns this */
4094
4095 /* pick the pool */
4096 osdc = &rbdc->client->osdc;
4097 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
4098 if (rc < 0)
4099 goto err_out_client;
4100 spec->pool_id = (u64) rc;
4101
4102 /* The ceph file layout needs to fit pool id in 32 bits */
4103
4104 if (WARN_ON(spec->pool_id > (u64) U32_MAX)) {
4105 rc = -EIO;
4106 goto err_out_client;
4107 }
4108
4109 rbd_dev = rbd_dev_create(rbdc, spec);
4110 if (!rbd_dev)
4111 goto err_out_client;
4112 rbdc = NULL; /* rbd_dev now owns this */
4113 spec = NULL; /* rbd_dev now owns this */
4114
4115 rbd_dev->mapping.read_only = rbd_opts->read_only;
4116 kfree(rbd_opts);
4117 rbd_opts = NULL; /* done with this */
4118
4119 rc = rbd_dev_probe(rbd_dev);
4120 if (rc < 0)
4121 goto err_out_rbd_dev;
4122
4123 return count;
4124 err_out_rbd_dev:
4125 rbd_dev_destroy(rbd_dev);
4126 err_out_client:
4127 rbd_put_client(rbdc);
4128 err_out_args:
4129 if (ceph_opts)
4130 ceph_destroy_options(ceph_opts);
4131 kfree(rbd_opts);
4132 rbd_spec_put(spec);
4133 err_out_module:
4134 module_put(THIS_MODULE);
4135
4136 dout("Error adding device %s\n", buf);
4137
4138 return (ssize_t) rc;
4139 }
4140
4141 static struct rbd_device *__rbd_get_dev(unsigned long dev_id)
4142 {
4143 struct list_head *tmp;
4144 struct rbd_device *rbd_dev;
4145
4146 spin_lock(&rbd_dev_list_lock);
4147 list_for_each(tmp, &rbd_dev_list) {
4148 rbd_dev = list_entry(tmp, struct rbd_device, node);
4149 if (rbd_dev->dev_id == dev_id) {
4150 spin_unlock(&rbd_dev_list_lock);
4151 return rbd_dev;
4152 }
4153 }
4154 spin_unlock(&rbd_dev_list_lock);
4155 return NULL;
4156 }
4157
4158 static void rbd_dev_release(struct device *dev)
4159 {
4160 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
4161
4162 if (rbd_dev->watch_event)
4163 rbd_dev_header_watch_sync(rbd_dev, 0);
4164
4165 /* clean up and free blkdev */
4166 rbd_free_disk(rbd_dev);
4167 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4168
4169 /* release allocated disk header fields */
4170 rbd_header_free(&rbd_dev->header);
4171
4172 /* done with the id, and with the rbd_dev */
4173 rbd_dev_id_put(rbd_dev);
4174 rbd_assert(rbd_dev->rbd_client != NULL);
4175 rbd_dev_destroy(rbd_dev);
4176
4177 /* release module ref */
4178 module_put(THIS_MODULE);
4179 }
4180
4181 static ssize_t rbd_remove(struct bus_type *bus,
4182 const char *buf,
4183 size_t count)
4184 {
4185 struct rbd_device *rbd_dev = NULL;
4186 int target_id, rc;
4187 unsigned long ul;
4188 int ret = count;
4189
4190 rc = strict_strtoul(buf, 10, &ul);
4191 if (rc)
4192 return rc;
4193
4194 /* convert to int; abort if we lost anything in the conversion */
4195 target_id = (int) ul;
4196 if (target_id != ul)
4197 return -EINVAL;
4198
4199 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
4200
4201 rbd_dev = __rbd_get_dev(target_id);
4202 if (!rbd_dev) {
4203 ret = -ENOENT;
4204 goto done;
4205 }
4206
4207 spin_lock_irq(&rbd_dev->lock);
4208 if (rbd_dev->open_count)
4209 ret = -EBUSY;
4210 else
4211 set_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
4212 spin_unlock_irq(&rbd_dev->lock);
4213 if (ret < 0)
4214 goto done;
4215
4216 rbd_remove_all_snaps(rbd_dev);
4217 rbd_bus_del_dev(rbd_dev);
4218
4219 done:
4220 mutex_unlock(&ctl_mutex);
4221
4222 return ret;
4223 }
4224
4225 /*
4226 * create control files in sysfs
4227 * /sys/bus/rbd/...
4228 */
4229 static int rbd_sysfs_init(void)
4230 {
4231 int ret;
4232
4233 ret = device_register(&rbd_root_dev);
4234 if (ret < 0)
4235 return ret;
4236
4237 ret = bus_register(&rbd_bus_type);
4238 if (ret < 0)
4239 device_unregister(&rbd_root_dev);
4240
4241 return ret;
4242 }
4243
4244 static void rbd_sysfs_cleanup(void)
4245 {
4246 bus_unregister(&rbd_bus_type);
4247 device_unregister(&rbd_root_dev);
4248 }
4249
4250 static int __init rbd_init(void)
4251 {
4252 int rc;
4253
4254 if (!libceph_compatible(NULL)) {
4255 rbd_warn(NULL, "libceph incompatibility (quitting)");
4256
4257 return -EINVAL;
4258 }
4259 rc = rbd_sysfs_init();
4260 if (rc)
4261 return rc;
4262 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
4263 return 0;
4264 }
4265
4266 static void __exit rbd_exit(void)
4267 {
4268 rbd_sysfs_cleanup();
4269 }
4270
4271 module_init(rbd_init);
4272 module_exit(rbd_exit);
4273
4274 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
4275 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
4276 MODULE_DESCRIPTION("rados block device");
4277
4278 /* following authorship retained from original osdblk.c */
4279 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
4280
4281 MODULE_LICENSE("GPL");