cb1db2979d3d7b5417a8a4b131e09c5c5f6767c0
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / drivers / block / rbd.c
1
2 /*
3 rbd.c -- Export ceph rados objects as a Linux block device
4
5
6 based on drivers/block/osdblk.c:
7
8 Copyright 2009 Red Hat, Inc.
9
10 This program is free software; you can redistribute it and/or modify
11 it under the terms of the GNU General Public License as published by
12 the Free Software Foundation.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program; see the file COPYING. If not, write to
21 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
22
23
24
25 For usage instructions, please refer to:
26
27 Documentation/ABI/testing/sysfs-bus-rbd
28
29 */
30
31 #include <linux/ceph/libceph.h>
32 #include <linux/ceph/osd_client.h>
33 #include <linux/ceph/mon_client.h>
34 #include <linux/ceph/decode.h>
35 #include <linux/parser.h>
36 #include <linux/bsearch.h>
37
38 #include <linux/kernel.h>
39 #include <linux/device.h>
40 #include <linux/module.h>
41 #include <linux/fs.h>
42 #include <linux/blkdev.h>
43 #include <linux/slab.h>
44
45 #include "rbd_types.h"
46
47 #define RBD_DEBUG /* Activate rbd_assert() calls */
48
49 /*
50 * The basic unit of block I/O is a sector. It is interpreted in a
51 * number of contexts in Linux (blk, bio, genhd), but the default is
52 * universally 512 bytes. These symbols are just slightly more
53 * meaningful than the bare numbers they represent.
54 */
55 #define SECTOR_SHIFT 9
56 #define SECTOR_SIZE (1ULL << SECTOR_SHIFT)
57
58 /*
59 * Increment the given counter and return its updated value.
60 * If the counter is already 0 it will not be incremented.
61 * If the counter is already at its maximum value returns
62 * -EINVAL without updating it.
63 */
64 static int atomic_inc_return_safe(atomic_t *v)
65 {
66 unsigned int counter;
67
68 counter = (unsigned int)__atomic_add_unless(v, 1, 0);
69 if (counter <= (unsigned int)INT_MAX)
70 return (int)counter;
71
72 atomic_dec(v);
73
74 return -EINVAL;
75 }
76
77 /* Decrement the counter. Return the resulting value, or -EINVAL */
78 static int atomic_dec_return_safe(atomic_t *v)
79 {
80 int counter;
81
82 counter = atomic_dec_return(v);
83 if (counter >= 0)
84 return counter;
85
86 atomic_inc(v);
87
88 return -EINVAL;
89 }
90
91 #define RBD_DRV_NAME "rbd"
92 #define RBD_DRV_NAME_LONG "rbd (rados block device)"
93
94 #define RBD_MINORS_PER_MAJOR 256 /* max minors per blkdev */
95
96 #define RBD_SNAP_DEV_NAME_PREFIX "snap_"
97 #define RBD_MAX_SNAP_NAME_LEN \
98 (NAME_MAX - (sizeof (RBD_SNAP_DEV_NAME_PREFIX) - 1))
99
100 #define RBD_MAX_SNAP_COUNT 510 /* allows max snapc to fit in 4KB */
101
102 #define RBD_SNAP_HEAD_NAME "-"
103
104 #define BAD_SNAP_INDEX U32_MAX /* invalid index into snap array */
105
106 /* This allows a single page to hold an image name sent by OSD */
107 #define RBD_IMAGE_NAME_LEN_MAX (PAGE_SIZE - sizeof (__le32) - 1)
108 #define RBD_IMAGE_ID_LEN_MAX 64
109
110 #define RBD_OBJ_PREFIX_LEN_MAX 64
111
112 /* Feature bits */
113
114 #define RBD_FEATURE_LAYERING (1<<0)
115 #define RBD_FEATURE_STRIPINGV2 (1<<1)
116 #define RBD_FEATURES_ALL \
117 (RBD_FEATURE_LAYERING | RBD_FEATURE_STRIPINGV2)
118
119 /* Features supported by this (client software) implementation. */
120
121 #define RBD_FEATURES_SUPPORTED (RBD_FEATURES_ALL)
122
123 /*
124 * An RBD device name will be "rbd#", where the "rbd" comes from
125 * RBD_DRV_NAME above, and # is a unique integer identifier.
126 * MAX_INT_FORMAT_WIDTH is used in ensuring DEV_NAME_LEN is big
127 * enough to hold all possible device names.
128 */
129 #define DEV_NAME_LEN 32
130 #define MAX_INT_FORMAT_WIDTH ((5 * sizeof (int)) / 2 + 1)
131
132 /*
133 * block device image metadata (in-memory version)
134 */
135 struct rbd_image_header {
136 /* These six fields never change for a given rbd image */
137 char *object_prefix;
138 __u8 obj_order;
139 __u8 crypt_type;
140 __u8 comp_type;
141 u64 stripe_unit;
142 u64 stripe_count;
143 u64 features; /* Might be changeable someday? */
144
145 /* The remaining fields need to be updated occasionally */
146 u64 image_size;
147 struct ceph_snap_context *snapc;
148 char *snap_names; /* format 1 only */
149 u64 *snap_sizes; /* format 1 only */
150 };
151
152 /*
153 * An rbd image specification.
154 *
155 * The tuple (pool_id, image_id, snap_id) is sufficient to uniquely
156 * identify an image. Each rbd_dev structure includes a pointer to
157 * an rbd_spec structure that encapsulates this identity.
158 *
159 * Each of the id's in an rbd_spec has an associated name. For a
160 * user-mapped image, the names are supplied and the id's associated
161 * with them are looked up. For a layered image, a parent image is
162 * defined by the tuple, and the names are looked up.
163 *
164 * An rbd_dev structure contains a parent_spec pointer which is
165 * non-null if the image it represents is a child in a layered
166 * image. This pointer will refer to the rbd_spec structure used
167 * by the parent rbd_dev for its own identity (i.e., the structure
168 * is shared between the parent and child).
169 *
170 * Since these structures are populated once, during the discovery
171 * phase of image construction, they are effectively immutable so
172 * we make no effort to synchronize access to them.
173 *
174 * Note that code herein does not assume the image name is known (it
175 * could be a null pointer).
176 */
177 struct rbd_spec {
178 u64 pool_id;
179 const char *pool_name;
180
181 const char *image_id;
182 const char *image_name;
183
184 u64 snap_id;
185 const char *snap_name;
186
187 struct kref kref;
188 };
189
190 /*
191 * an instance of the client. multiple devices may share an rbd client.
192 */
193 struct rbd_client {
194 struct ceph_client *client;
195 struct kref kref;
196 struct list_head node;
197 };
198
199 struct rbd_img_request;
200 typedef void (*rbd_img_callback_t)(struct rbd_img_request *);
201
202 #define BAD_WHICH U32_MAX /* Good which or bad which, which? */
203
204 struct rbd_obj_request;
205 typedef void (*rbd_obj_callback_t)(struct rbd_obj_request *);
206
207 enum obj_request_type {
208 OBJ_REQUEST_NODATA, OBJ_REQUEST_BIO, OBJ_REQUEST_PAGES
209 };
210
211 enum obj_req_flags {
212 OBJ_REQ_DONE, /* completion flag: not done = 0, done = 1 */
213 OBJ_REQ_IMG_DATA, /* object usage: standalone = 0, image = 1 */
214 OBJ_REQ_KNOWN, /* EXISTS flag valid: no = 0, yes = 1 */
215 OBJ_REQ_EXISTS, /* target exists: no = 0, yes = 1 */
216 };
217
218 struct rbd_obj_request {
219 const char *object_name;
220 u64 offset; /* object start byte */
221 u64 length; /* bytes from offset */
222 unsigned long flags;
223
224 /*
225 * An object request associated with an image will have its
226 * img_data flag set; a standalone object request will not.
227 *
228 * A standalone object request will have which == BAD_WHICH
229 * and a null obj_request pointer.
230 *
231 * An object request initiated in support of a layered image
232 * object (to check for its existence before a write) will
233 * have which == BAD_WHICH and a non-null obj_request pointer.
234 *
235 * Finally, an object request for rbd image data will have
236 * which != BAD_WHICH, and will have a non-null img_request
237 * pointer. The value of which will be in the range
238 * 0..(img_request->obj_request_count-1).
239 */
240 union {
241 struct rbd_obj_request *obj_request; /* STAT op */
242 struct {
243 struct rbd_img_request *img_request;
244 u64 img_offset;
245 /* links for img_request->obj_requests list */
246 struct list_head links;
247 };
248 };
249 u32 which; /* posn image request list */
250
251 enum obj_request_type type;
252 union {
253 struct bio *bio_list;
254 struct {
255 struct page **pages;
256 u32 page_count;
257 };
258 };
259 struct page **copyup_pages;
260 u32 copyup_page_count;
261
262 struct ceph_osd_request *osd_req;
263
264 u64 xferred; /* bytes transferred */
265 int result;
266
267 rbd_obj_callback_t callback;
268 struct completion completion;
269
270 struct kref kref;
271 };
272
273 enum img_req_flags {
274 IMG_REQ_WRITE, /* I/O direction: read = 0, write = 1 */
275 IMG_REQ_CHILD, /* initiator: block = 0, child image = 1 */
276 IMG_REQ_LAYERED, /* ENOENT handling: normal = 0, layered = 1 */
277 };
278
279 struct rbd_img_request {
280 struct rbd_device *rbd_dev;
281 u64 offset; /* starting image byte offset */
282 u64 length; /* byte count from offset */
283 unsigned long flags;
284 union {
285 u64 snap_id; /* for reads */
286 struct ceph_snap_context *snapc; /* for writes */
287 };
288 union {
289 struct request *rq; /* block request */
290 struct rbd_obj_request *obj_request; /* obj req initiator */
291 };
292 struct page **copyup_pages;
293 u32 copyup_page_count;
294 spinlock_t completion_lock;/* protects next_completion */
295 u32 next_completion;
296 rbd_img_callback_t callback;
297 u64 xferred;/* aggregate bytes transferred */
298 int result; /* first nonzero obj_request result */
299
300 u32 obj_request_count;
301 struct list_head obj_requests; /* rbd_obj_request structs */
302
303 struct kref kref;
304 };
305
306 #define for_each_obj_request(ireq, oreq) \
307 list_for_each_entry(oreq, &(ireq)->obj_requests, links)
308 #define for_each_obj_request_from(ireq, oreq) \
309 list_for_each_entry_from(oreq, &(ireq)->obj_requests, links)
310 #define for_each_obj_request_safe(ireq, oreq, n) \
311 list_for_each_entry_safe_reverse(oreq, n, &(ireq)->obj_requests, links)
312
313 struct rbd_mapping {
314 u64 size;
315 u64 features;
316 bool read_only;
317 };
318
319 /*
320 * a single device
321 */
322 struct rbd_device {
323 int dev_id; /* blkdev unique id */
324
325 int major; /* blkdev assigned major */
326 struct gendisk *disk; /* blkdev's gendisk and rq */
327
328 u32 image_format; /* Either 1 or 2 */
329 struct rbd_client *rbd_client;
330
331 char name[DEV_NAME_LEN]; /* blkdev name, e.g. rbd3 */
332
333 spinlock_t lock; /* queue, flags, open_count */
334
335 struct rbd_image_header header;
336 unsigned long flags; /* possibly lock protected */
337 struct rbd_spec *spec;
338
339 char *header_name;
340
341 struct ceph_file_layout layout;
342
343 struct ceph_osd_event *watch_event;
344 struct rbd_obj_request *watch_request;
345
346 struct rbd_spec *parent_spec;
347 u64 parent_overlap;
348 atomic_t parent_ref;
349 struct rbd_device *parent;
350
351 /* protects updating the header */
352 struct rw_semaphore header_rwsem;
353
354 struct rbd_mapping mapping;
355
356 struct list_head node;
357
358 /* sysfs related */
359 struct device dev;
360 unsigned long open_count; /* protected by lock */
361 };
362
363 /*
364 * Flag bits for rbd_dev->flags. If atomicity is required,
365 * rbd_dev->lock is used to protect access.
366 *
367 * Currently, only the "removing" flag (which is coupled with the
368 * "open_count" field) requires atomic access.
369 */
370 enum rbd_dev_flags {
371 RBD_DEV_FLAG_EXISTS, /* mapped snapshot has not been deleted */
372 RBD_DEV_FLAG_REMOVING, /* this mapping is being removed */
373 };
374
375 static DEFINE_MUTEX(client_mutex); /* Serialize client creation */
376
377 static LIST_HEAD(rbd_dev_list); /* devices */
378 static DEFINE_SPINLOCK(rbd_dev_list_lock);
379
380 static LIST_HEAD(rbd_client_list); /* clients */
381 static DEFINE_SPINLOCK(rbd_client_list_lock);
382
383 /* Slab caches for frequently-allocated structures */
384
385 static struct kmem_cache *rbd_img_request_cache;
386 static struct kmem_cache *rbd_obj_request_cache;
387 static struct kmem_cache *rbd_segment_name_cache;
388
389 static int rbd_img_request_submit(struct rbd_img_request *img_request);
390
391 static void rbd_dev_device_release(struct device *dev);
392
393 static ssize_t rbd_add(struct bus_type *bus, const char *buf,
394 size_t count);
395 static ssize_t rbd_remove(struct bus_type *bus, const char *buf,
396 size_t count);
397 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping);
398 static void rbd_spec_put(struct rbd_spec *spec);
399
400 static BUS_ATTR(add, S_IWUSR, NULL, rbd_add);
401 static BUS_ATTR(remove, S_IWUSR, NULL, rbd_remove);
402
403 static struct attribute *rbd_bus_attrs[] = {
404 &bus_attr_add.attr,
405 &bus_attr_remove.attr,
406 NULL,
407 };
408 ATTRIBUTE_GROUPS(rbd_bus);
409
410 static struct bus_type rbd_bus_type = {
411 .name = "rbd",
412 .bus_groups = rbd_bus_groups,
413 };
414
415 static void rbd_root_dev_release(struct device *dev)
416 {
417 }
418
419 static struct device rbd_root_dev = {
420 .init_name = "rbd",
421 .release = rbd_root_dev_release,
422 };
423
424 static __printf(2, 3)
425 void rbd_warn(struct rbd_device *rbd_dev, const char *fmt, ...)
426 {
427 struct va_format vaf;
428 va_list args;
429
430 va_start(args, fmt);
431 vaf.fmt = fmt;
432 vaf.va = &args;
433
434 if (!rbd_dev)
435 printk(KERN_WARNING "%s: %pV\n", RBD_DRV_NAME, &vaf);
436 else if (rbd_dev->disk)
437 printk(KERN_WARNING "%s: %s: %pV\n",
438 RBD_DRV_NAME, rbd_dev->disk->disk_name, &vaf);
439 else if (rbd_dev->spec && rbd_dev->spec->image_name)
440 printk(KERN_WARNING "%s: image %s: %pV\n",
441 RBD_DRV_NAME, rbd_dev->spec->image_name, &vaf);
442 else if (rbd_dev->spec && rbd_dev->spec->image_id)
443 printk(KERN_WARNING "%s: id %s: %pV\n",
444 RBD_DRV_NAME, rbd_dev->spec->image_id, &vaf);
445 else /* punt */
446 printk(KERN_WARNING "%s: rbd_dev %p: %pV\n",
447 RBD_DRV_NAME, rbd_dev, &vaf);
448 va_end(args);
449 }
450
451 #ifdef RBD_DEBUG
452 #define rbd_assert(expr) \
453 if (unlikely(!(expr))) { \
454 printk(KERN_ERR "\nAssertion failure in %s() " \
455 "at line %d:\n\n" \
456 "\trbd_assert(%s);\n\n", \
457 __func__, __LINE__, #expr); \
458 BUG(); \
459 }
460 #else /* !RBD_DEBUG */
461 # define rbd_assert(expr) ((void) 0)
462 #endif /* !RBD_DEBUG */
463
464 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request);
465 static void rbd_img_parent_read(struct rbd_obj_request *obj_request);
466 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev);
467
468 static int rbd_dev_refresh(struct rbd_device *rbd_dev);
469 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev);
470 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev);
471 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
472 u64 snap_id);
473 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
474 u8 *order, u64 *snap_size);
475 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
476 u64 *snap_features);
477 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name);
478
479 static int rbd_open(struct block_device *bdev, fmode_t mode)
480 {
481 struct rbd_device *rbd_dev = bdev->bd_disk->private_data;
482 bool removing = false;
483
484 if ((mode & FMODE_WRITE) && rbd_dev->mapping.read_only)
485 return -EROFS;
486
487 spin_lock_irq(&rbd_dev->lock);
488 if (test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags))
489 removing = true;
490 else
491 rbd_dev->open_count++;
492 spin_unlock_irq(&rbd_dev->lock);
493 if (removing)
494 return -ENOENT;
495
496 (void) get_device(&rbd_dev->dev);
497 set_device_ro(bdev, rbd_dev->mapping.read_only);
498
499 return 0;
500 }
501
502 static void rbd_release(struct gendisk *disk, fmode_t mode)
503 {
504 struct rbd_device *rbd_dev = disk->private_data;
505 unsigned long open_count_before;
506
507 spin_lock_irq(&rbd_dev->lock);
508 open_count_before = rbd_dev->open_count--;
509 spin_unlock_irq(&rbd_dev->lock);
510 rbd_assert(open_count_before > 0);
511
512 put_device(&rbd_dev->dev);
513 }
514
515 static const struct block_device_operations rbd_bd_ops = {
516 .owner = THIS_MODULE,
517 .open = rbd_open,
518 .release = rbd_release,
519 };
520
521 /*
522 * Initialize an rbd client instance. Success or not, this function
523 * consumes ceph_opts. Caller holds client_mutex.
524 */
525 static struct rbd_client *rbd_client_create(struct ceph_options *ceph_opts)
526 {
527 struct rbd_client *rbdc;
528 int ret = -ENOMEM;
529
530 dout("%s:\n", __func__);
531 rbdc = kmalloc(sizeof(struct rbd_client), GFP_KERNEL);
532 if (!rbdc)
533 goto out_opt;
534
535 kref_init(&rbdc->kref);
536 INIT_LIST_HEAD(&rbdc->node);
537
538 rbdc->client = ceph_create_client(ceph_opts, rbdc, 0, 0);
539 if (IS_ERR(rbdc->client))
540 goto out_rbdc;
541 ceph_opts = NULL; /* Now rbdc->client is responsible for ceph_opts */
542
543 ret = ceph_open_session(rbdc->client);
544 if (ret < 0)
545 goto out_client;
546
547 spin_lock(&rbd_client_list_lock);
548 list_add_tail(&rbdc->node, &rbd_client_list);
549 spin_unlock(&rbd_client_list_lock);
550
551 dout("%s: rbdc %p\n", __func__, rbdc);
552
553 return rbdc;
554 out_client:
555 ceph_destroy_client(rbdc->client);
556 out_rbdc:
557 kfree(rbdc);
558 out_opt:
559 if (ceph_opts)
560 ceph_destroy_options(ceph_opts);
561 dout("%s: error %d\n", __func__, ret);
562
563 return ERR_PTR(ret);
564 }
565
566 static struct rbd_client *__rbd_get_client(struct rbd_client *rbdc)
567 {
568 kref_get(&rbdc->kref);
569
570 return rbdc;
571 }
572
573 /*
574 * Find a ceph client with specific addr and configuration. If
575 * found, bump its reference count.
576 */
577 static struct rbd_client *rbd_client_find(struct ceph_options *ceph_opts)
578 {
579 struct rbd_client *client_node;
580 bool found = false;
581
582 if (ceph_opts->flags & CEPH_OPT_NOSHARE)
583 return NULL;
584
585 spin_lock(&rbd_client_list_lock);
586 list_for_each_entry(client_node, &rbd_client_list, node) {
587 if (!ceph_compare_options(ceph_opts, client_node->client)) {
588 __rbd_get_client(client_node);
589
590 found = true;
591 break;
592 }
593 }
594 spin_unlock(&rbd_client_list_lock);
595
596 return found ? client_node : NULL;
597 }
598
599 /*
600 * mount options
601 */
602 enum {
603 Opt_last_int,
604 /* int args above */
605 Opt_last_string,
606 /* string args above */
607 Opt_read_only,
608 Opt_read_write,
609 /* Boolean args above */
610 Opt_last_bool,
611 };
612
613 static match_table_t rbd_opts_tokens = {
614 /* int args above */
615 /* string args above */
616 {Opt_read_only, "read_only"},
617 {Opt_read_only, "ro"}, /* Alternate spelling */
618 {Opt_read_write, "read_write"},
619 {Opt_read_write, "rw"}, /* Alternate spelling */
620 /* Boolean args above */
621 {-1, NULL}
622 };
623
624 struct rbd_options {
625 bool read_only;
626 };
627
628 #define RBD_READ_ONLY_DEFAULT false
629
630 static int parse_rbd_opts_token(char *c, void *private)
631 {
632 struct rbd_options *rbd_opts = private;
633 substring_t argstr[MAX_OPT_ARGS];
634 int token, intval, ret;
635
636 token = match_token(c, rbd_opts_tokens, argstr);
637 if (token < 0)
638 return -EINVAL;
639
640 if (token < Opt_last_int) {
641 ret = match_int(&argstr[0], &intval);
642 if (ret < 0) {
643 pr_err("bad mount option arg (not int) "
644 "at '%s'\n", c);
645 return ret;
646 }
647 dout("got int token %d val %d\n", token, intval);
648 } else if (token > Opt_last_int && token < Opt_last_string) {
649 dout("got string token %d val %s\n", token,
650 argstr[0].from);
651 } else if (token > Opt_last_string && token < Opt_last_bool) {
652 dout("got Boolean token %d\n", token);
653 } else {
654 dout("got token %d\n", token);
655 }
656
657 switch (token) {
658 case Opt_read_only:
659 rbd_opts->read_only = true;
660 break;
661 case Opt_read_write:
662 rbd_opts->read_only = false;
663 break;
664 default:
665 rbd_assert(false);
666 break;
667 }
668 return 0;
669 }
670
671 /*
672 * Get a ceph client with specific addr and configuration, if one does
673 * not exist create it. Either way, ceph_opts is consumed by this
674 * function.
675 */
676 static struct rbd_client *rbd_get_client(struct ceph_options *ceph_opts)
677 {
678 struct rbd_client *rbdc;
679
680 mutex_lock_nested(&client_mutex, SINGLE_DEPTH_NESTING);
681 rbdc = rbd_client_find(ceph_opts);
682 if (rbdc) /* using an existing client */
683 ceph_destroy_options(ceph_opts);
684 else
685 rbdc = rbd_client_create(ceph_opts);
686 mutex_unlock(&client_mutex);
687
688 return rbdc;
689 }
690
691 /*
692 * Destroy ceph client
693 *
694 * Caller must hold rbd_client_list_lock.
695 */
696 static void rbd_client_release(struct kref *kref)
697 {
698 struct rbd_client *rbdc = container_of(kref, struct rbd_client, kref);
699
700 dout("%s: rbdc %p\n", __func__, rbdc);
701 spin_lock(&rbd_client_list_lock);
702 list_del(&rbdc->node);
703 spin_unlock(&rbd_client_list_lock);
704
705 ceph_destroy_client(rbdc->client);
706 kfree(rbdc);
707 }
708
709 /*
710 * Drop reference to ceph client node. If it's not referenced anymore, release
711 * it.
712 */
713 static void rbd_put_client(struct rbd_client *rbdc)
714 {
715 if (rbdc)
716 kref_put(&rbdc->kref, rbd_client_release);
717 }
718
719 static bool rbd_image_format_valid(u32 image_format)
720 {
721 return image_format == 1 || image_format == 2;
722 }
723
724 static bool rbd_dev_ondisk_valid(struct rbd_image_header_ondisk *ondisk)
725 {
726 size_t size;
727 u32 snap_count;
728
729 /* The header has to start with the magic rbd header text */
730 if (memcmp(&ondisk->text, RBD_HEADER_TEXT, sizeof (RBD_HEADER_TEXT)))
731 return false;
732
733 /* The bio layer requires at least sector-sized I/O */
734
735 if (ondisk->options.order < SECTOR_SHIFT)
736 return false;
737
738 /* If we use u64 in a few spots we may be able to loosen this */
739
740 if (ondisk->options.order > 8 * sizeof (int) - 1)
741 return false;
742
743 /*
744 * The size of a snapshot header has to fit in a size_t, and
745 * that limits the number of snapshots.
746 */
747 snap_count = le32_to_cpu(ondisk->snap_count);
748 size = SIZE_MAX - sizeof (struct ceph_snap_context);
749 if (snap_count > size / sizeof (__le64))
750 return false;
751
752 /*
753 * Not only that, but the size of the entire the snapshot
754 * header must also be representable in a size_t.
755 */
756 size -= snap_count * sizeof (__le64);
757 if ((u64) size < le64_to_cpu(ondisk->snap_names_len))
758 return false;
759
760 return true;
761 }
762
763 /*
764 * Fill an rbd image header with information from the given format 1
765 * on-disk header.
766 */
767 static int rbd_header_from_disk(struct rbd_device *rbd_dev,
768 struct rbd_image_header_ondisk *ondisk)
769 {
770 struct rbd_image_header *header = &rbd_dev->header;
771 bool first_time = header->object_prefix == NULL;
772 struct ceph_snap_context *snapc;
773 char *object_prefix = NULL;
774 char *snap_names = NULL;
775 u64 *snap_sizes = NULL;
776 u32 snap_count;
777 size_t size;
778 int ret = -ENOMEM;
779 u32 i;
780
781 /* Allocate this now to avoid having to handle failure below */
782
783 if (first_time) {
784 size_t len;
785
786 len = strnlen(ondisk->object_prefix,
787 sizeof (ondisk->object_prefix));
788 object_prefix = kmalloc(len + 1, GFP_KERNEL);
789 if (!object_prefix)
790 return -ENOMEM;
791 memcpy(object_prefix, ondisk->object_prefix, len);
792 object_prefix[len] = '\0';
793 }
794
795 /* Allocate the snapshot context and fill it in */
796
797 snap_count = le32_to_cpu(ondisk->snap_count);
798 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
799 if (!snapc)
800 goto out_err;
801 snapc->seq = le64_to_cpu(ondisk->snap_seq);
802 if (snap_count) {
803 struct rbd_image_snap_ondisk *snaps;
804 u64 snap_names_len = le64_to_cpu(ondisk->snap_names_len);
805
806 /* We'll keep a copy of the snapshot names... */
807
808 if (snap_names_len > (u64)SIZE_MAX)
809 goto out_2big;
810 snap_names = kmalloc(snap_names_len, GFP_KERNEL);
811 if (!snap_names)
812 goto out_err;
813
814 /* ...as well as the array of their sizes. */
815
816 size = snap_count * sizeof (*header->snap_sizes);
817 snap_sizes = kmalloc(size, GFP_KERNEL);
818 if (!snap_sizes)
819 goto out_err;
820
821 /*
822 * Copy the names, and fill in each snapshot's id
823 * and size.
824 *
825 * Note that rbd_dev_v1_header_info() guarantees the
826 * ondisk buffer we're working with has
827 * snap_names_len bytes beyond the end of the
828 * snapshot id array, this memcpy() is safe.
829 */
830 memcpy(snap_names, &ondisk->snaps[snap_count], snap_names_len);
831 snaps = ondisk->snaps;
832 for (i = 0; i < snap_count; i++) {
833 snapc->snaps[i] = le64_to_cpu(snaps[i].id);
834 snap_sizes[i] = le64_to_cpu(snaps[i].image_size);
835 }
836 }
837
838 /* We won't fail any more, fill in the header */
839
840 if (first_time) {
841 header->object_prefix = object_prefix;
842 header->obj_order = ondisk->options.order;
843 header->crypt_type = ondisk->options.crypt_type;
844 header->comp_type = ondisk->options.comp_type;
845 /* The rest aren't used for format 1 images */
846 header->stripe_unit = 0;
847 header->stripe_count = 0;
848 header->features = 0;
849 } else {
850 ceph_put_snap_context(header->snapc);
851 kfree(header->snap_names);
852 kfree(header->snap_sizes);
853 }
854
855 /* The remaining fields always get updated (when we refresh) */
856
857 header->image_size = le64_to_cpu(ondisk->image_size);
858 header->snapc = snapc;
859 header->snap_names = snap_names;
860 header->snap_sizes = snap_sizes;
861
862 /* Make sure mapping size is consistent with header info */
863
864 if (rbd_dev->spec->snap_id == CEPH_NOSNAP || first_time)
865 if (rbd_dev->mapping.size != header->image_size)
866 rbd_dev->mapping.size = header->image_size;
867
868 return 0;
869 out_2big:
870 ret = -EIO;
871 out_err:
872 kfree(snap_sizes);
873 kfree(snap_names);
874 ceph_put_snap_context(snapc);
875 kfree(object_prefix);
876
877 return ret;
878 }
879
880 static const char *_rbd_dev_v1_snap_name(struct rbd_device *rbd_dev, u32 which)
881 {
882 const char *snap_name;
883
884 rbd_assert(which < rbd_dev->header.snapc->num_snaps);
885
886 /* Skip over names until we find the one we are looking for */
887
888 snap_name = rbd_dev->header.snap_names;
889 while (which--)
890 snap_name += strlen(snap_name) + 1;
891
892 return kstrdup(snap_name, GFP_KERNEL);
893 }
894
895 /*
896 * Snapshot id comparison function for use with qsort()/bsearch().
897 * Note that result is for snapshots in *descending* order.
898 */
899 static int snapid_compare_reverse(const void *s1, const void *s2)
900 {
901 u64 snap_id1 = *(u64 *)s1;
902 u64 snap_id2 = *(u64 *)s2;
903
904 if (snap_id1 < snap_id2)
905 return 1;
906 return snap_id1 == snap_id2 ? 0 : -1;
907 }
908
909 /*
910 * Search a snapshot context to see if the given snapshot id is
911 * present.
912 *
913 * Returns the position of the snapshot id in the array if it's found,
914 * or BAD_SNAP_INDEX otherwise.
915 *
916 * Note: The snapshot array is in kept sorted (by the osd) in
917 * reverse order, highest snapshot id first.
918 */
919 static u32 rbd_dev_snap_index(struct rbd_device *rbd_dev, u64 snap_id)
920 {
921 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
922 u64 *found;
923
924 found = bsearch(&snap_id, &snapc->snaps, snapc->num_snaps,
925 sizeof (snap_id), snapid_compare_reverse);
926
927 return found ? (u32)(found - &snapc->snaps[0]) : BAD_SNAP_INDEX;
928 }
929
930 static const char *rbd_dev_v1_snap_name(struct rbd_device *rbd_dev,
931 u64 snap_id)
932 {
933 u32 which;
934 const char *snap_name;
935
936 which = rbd_dev_snap_index(rbd_dev, snap_id);
937 if (which == BAD_SNAP_INDEX)
938 return ERR_PTR(-ENOENT);
939
940 snap_name = _rbd_dev_v1_snap_name(rbd_dev, which);
941 return snap_name ? snap_name : ERR_PTR(-ENOMEM);
942 }
943
944 static const char *rbd_snap_name(struct rbd_device *rbd_dev, u64 snap_id)
945 {
946 if (snap_id == CEPH_NOSNAP)
947 return RBD_SNAP_HEAD_NAME;
948
949 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
950 if (rbd_dev->image_format == 1)
951 return rbd_dev_v1_snap_name(rbd_dev, snap_id);
952
953 return rbd_dev_v2_snap_name(rbd_dev, snap_id);
954 }
955
956 static int rbd_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
957 u64 *snap_size)
958 {
959 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
960 if (snap_id == CEPH_NOSNAP) {
961 *snap_size = rbd_dev->header.image_size;
962 } else if (rbd_dev->image_format == 1) {
963 u32 which;
964
965 which = rbd_dev_snap_index(rbd_dev, snap_id);
966 if (which == BAD_SNAP_INDEX)
967 return -ENOENT;
968
969 *snap_size = rbd_dev->header.snap_sizes[which];
970 } else {
971 u64 size = 0;
972 int ret;
973
974 ret = _rbd_dev_v2_snap_size(rbd_dev, snap_id, NULL, &size);
975 if (ret)
976 return ret;
977
978 *snap_size = size;
979 }
980 return 0;
981 }
982
983 static int rbd_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
984 u64 *snap_features)
985 {
986 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
987 if (snap_id == CEPH_NOSNAP) {
988 *snap_features = rbd_dev->header.features;
989 } else if (rbd_dev->image_format == 1) {
990 *snap_features = 0; /* No features for format 1 */
991 } else {
992 u64 features = 0;
993 int ret;
994
995 ret = _rbd_dev_v2_snap_features(rbd_dev, snap_id, &features);
996 if (ret)
997 return ret;
998
999 *snap_features = features;
1000 }
1001 return 0;
1002 }
1003
1004 static int rbd_dev_mapping_set(struct rbd_device *rbd_dev)
1005 {
1006 u64 snap_id = rbd_dev->spec->snap_id;
1007 u64 size = 0;
1008 u64 features = 0;
1009 int ret;
1010
1011 ret = rbd_snap_size(rbd_dev, snap_id, &size);
1012 if (ret)
1013 return ret;
1014 ret = rbd_snap_features(rbd_dev, snap_id, &features);
1015 if (ret)
1016 return ret;
1017
1018 rbd_dev->mapping.size = size;
1019 rbd_dev->mapping.features = features;
1020
1021 return 0;
1022 }
1023
1024 static void rbd_dev_mapping_clear(struct rbd_device *rbd_dev)
1025 {
1026 rbd_dev->mapping.size = 0;
1027 rbd_dev->mapping.features = 0;
1028 }
1029
1030 static const char *rbd_segment_name(struct rbd_device *rbd_dev, u64 offset)
1031 {
1032 char *name;
1033 u64 segment;
1034 int ret;
1035 char *name_format;
1036
1037 name = kmem_cache_alloc(rbd_segment_name_cache, GFP_NOIO);
1038 if (!name)
1039 return NULL;
1040 segment = offset >> rbd_dev->header.obj_order;
1041 name_format = "%s.%012llx";
1042 if (rbd_dev->image_format == 2)
1043 name_format = "%s.%016llx";
1044 ret = snprintf(name, MAX_OBJ_NAME_SIZE + 1, name_format,
1045 rbd_dev->header.object_prefix, segment);
1046 if (ret < 0 || ret > MAX_OBJ_NAME_SIZE) {
1047 pr_err("error formatting segment name for #%llu (%d)\n",
1048 segment, ret);
1049 kfree(name);
1050 name = NULL;
1051 }
1052
1053 return name;
1054 }
1055
1056 static void rbd_segment_name_free(const char *name)
1057 {
1058 /* The explicit cast here is needed to drop the const qualifier */
1059
1060 kmem_cache_free(rbd_segment_name_cache, (void *)name);
1061 }
1062
1063 static u64 rbd_segment_offset(struct rbd_device *rbd_dev, u64 offset)
1064 {
1065 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1066
1067 return offset & (segment_size - 1);
1068 }
1069
1070 static u64 rbd_segment_length(struct rbd_device *rbd_dev,
1071 u64 offset, u64 length)
1072 {
1073 u64 segment_size = (u64) 1 << rbd_dev->header.obj_order;
1074
1075 offset &= segment_size - 1;
1076
1077 rbd_assert(length <= U64_MAX - offset);
1078 if (offset + length > segment_size)
1079 length = segment_size - offset;
1080
1081 return length;
1082 }
1083
1084 /*
1085 * returns the size of an object in the image
1086 */
1087 static u64 rbd_obj_bytes(struct rbd_image_header *header)
1088 {
1089 return 1 << header->obj_order;
1090 }
1091
1092 /*
1093 * bio helpers
1094 */
1095
1096 static void bio_chain_put(struct bio *chain)
1097 {
1098 struct bio *tmp;
1099
1100 while (chain) {
1101 tmp = chain;
1102 chain = chain->bi_next;
1103 bio_put(tmp);
1104 }
1105 }
1106
1107 /*
1108 * zeros a bio chain, starting at specific offset
1109 */
1110 static void zero_bio_chain(struct bio *chain, int start_ofs)
1111 {
1112 struct bio_vec *bv;
1113 unsigned long flags;
1114 void *buf;
1115 int i;
1116 int pos = 0;
1117
1118 while (chain) {
1119 bio_for_each_segment(bv, chain, i) {
1120 if (pos + bv->bv_len > start_ofs) {
1121 int remainder = max(start_ofs - pos, 0);
1122 buf = bvec_kmap_irq(bv, &flags);
1123 memset(buf + remainder, 0,
1124 bv->bv_len - remainder);
1125 flush_dcache_page(bv->bv_page);
1126 bvec_kunmap_irq(buf, &flags);
1127 }
1128 pos += bv->bv_len;
1129 }
1130
1131 chain = chain->bi_next;
1132 }
1133 }
1134
1135 /*
1136 * similar to zero_bio_chain(), zeros data defined by a page array,
1137 * starting at the given byte offset from the start of the array and
1138 * continuing up to the given end offset. The pages array is
1139 * assumed to be big enough to hold all bytes up to the end.
1140 */
1141 static void zero_pages(struct page **pages, u64 offset, u64 end)
1142 {
1143 struct page **page = &pages[offset >> PAGE_SHIFT];
1144
1145 rbd_assert(end > offset);
1146 rbd_assert(end - offset <= (u64)SIZE_MAX);
1147 while (offset < end) {
1148 size_t page_offset;
1149 size_t length;
1150 unsigned long flags;
1151 void *kaddr;
1152
1153 page_offset = offset & ~PAGE_MASK;
1154 length = min_t(size_t, PAGE_SIZE - page_offset, end - offset);
1155 local_irq_save(flags);
1156 kaddr = kmap_atomic(*page);
1157 memset(kaddr + page_offset, 0, length);
1158 flush_dcache_page(*page);
1159 kunmap_atomic(kaddr);
1160 local_irq_restore(flags);
1161
1162 offset += length;
1163 page++;
1164 }
1165 }
1166
1167 /*
1168 * Clone a portion of a bio, starting at the given byte offset
1169 * and continuing for the number of bytes indicated.
1170 */
1171 static struct bio *bio_clone_range(struct bio *bio_src,
1172 unsigned int offset,
1173 unsigned int len,
1174 gfp_t gfpmask)
1175 {
1176 struct bio_vec *bv;
1177 unsigned int resid;
1178 unsigned short idx;
1179 unsigned int voff;
1180 unsigned short end_idx;
1181 unsigned short vcnt;
1182 struct bio *bio;
1183
1184 /* Handle the easy case for the caller */
1185
1186 if (!offset && len == bio_src->bi_size)
1187 return bio_clone(bio_src, gfpmask);
1188
1189 if (WARN_ON_ONCE(!len))
1190 return NULL;
1191 if (WARN_ON_ONCE(len > bio_src->bi_size))
1192 return NULL;
1193 if (WARN_ON_ONCE(offset > bio_src->bi_size - len))
1194 return NULL;
1195
1196 /* Find first affected segment... */
1197
1198 resid = offset;
1199 bio_for_each_segment(bv, bio_src, idx) {
1200 if (resid < bv->bv_len)
1201 break;
1202 resid -= bv->bv_len;
1203 }
1204 voff = resid;
1205
1206 /* ...and the last affected segment */
1207
1208 resid += len;
1209 __bio_for_each_segment(bv, bio_src, end_idx, idx) {
1210 if (resid <= bv->bv_len)
1211 break;
1212 resid -= bv->bv_len;
1213 }
1214 vcnt = end_idx - idx + 1;
1215
1216 /* Build the clone */
1217
1218 bio = bio_alloc(gfpmask, (unsigned int) vcnt);
1219 if (!bio)
1220 return NULL; /* ENOMEM */
1221
1222 bio->bi_bdev = bio_src->bi_bdev;
1223 bio->bi_sector = bio_src->bi_sector + (offset >> SECTOR_SHIFT);
1224 bio->bi_rw = bio_src->bi_rw;
1225 bio->bi_flags |= 1 << BIO_CLONED;
1226
1227 /*
1228 * Copy over our part of the bio_vec, then update the first
1229 * and last (or only) entries.
1230 */
1231 memcpy(&bio->bi_io_vec[0], &bio_src->bi_io_vec[idx],
1232 vcnt * sizeof (struct bio_vec));
1233 bio->bi_io_vec[0].bv_offset += voff;
1234 if (vcnt > 1) {
1235 bio->bi_io_vec[0].bv_len -= voff;
1236 bio->bi_io_vec[vcnt - 1].bv_len = resid;
1237 } else {
1238 bio->bi_io_vec[0].bv_len = len;
1239 }
1240
1241 bio->bi_vcnt = vcnt;
1242 bio->bi_size = len;
1243 bio->bi_idx = 0;
1244
1245 return bio;
1246 }
1247
1248 /*
1249 * Clone a portion of a bio chain, starting at the given byte offset
1250 * into the first bio in the source chain and continuing for the
1251 * number of bytes indicated. The result is another bio chain of
1252 * exactly the given length, or a null pointer on error.
1253 *
1254 * The bio_src and offset parameters are both in-out. On entry they
1255 * refer to the first source bio and the offset into that bio where
1256 * the start of data to be cloned is located.
1257 *
1258 * On return, bio_src is updated to refer to the bio in the source
1259 * chain that contains first un-cloned byte, and *offset will
1260 * contain the offset of that byte within that bio.
1261 */
1262 static struct bio *bio_chain_clone_range(struct bio **bio_src,
1263 unsigned int *offset,
1264 unsigned int len,
1265 gfp_t gfpmask)
1266 {
1267 struct bio *bi = *bio_src;
1268 unsigned int off = *offset;
1269 struct bio *chain = NULL;
1270 struct bio **end;
1271
1272 /* Build up a chain of clone bios up to the limit */
1273
1274 if (!bi || off >= bi->bi_size || !len)
1275 return NULL; /* Nothing to clone */
1276
1277 end = &chain;
1278 while (len) {
1279 unsigned int bi_size;
1280 struct bio *bio;
1281
1282 if (!bi) {
1283 rbd_warn(NULL, "bio_chain exhausted with %u left", len);
1284 goto out_err; /* EINVAL; ran out of bio's */
1285 }
1286 bi_size = min_t(unsigned int, bi->bi_size - off, len);
1287 bio = bio_clone_range(bi, off, bi_size, gfpmask);
1288 if (!bio)
1289 goto out_err; /* ENOMEM */
1290
1291 *end = bio;
1292 end = &bio->bi_next;
1293
1294 off += bi_size;
1295 if (off == bi->bi_size) {
1296 bi = bi->bi_next;
1297 off = 0;
1298 }
1299 len -= bi_size;
1300 }
1301 *bio_src = bi;
1302 *offset = off;
1303
1304 return chain;
1305 out_err:
1306 bio_chain_put(chain);
1307
1308 return NULL;
1309 }
1310
1311 /*
1312 * The default/initial value for all object request flags is 0. For
1313 * each flag, once its value is set to 1 it is never reset to 0
1314 * again.
1315 */
1316 static void obj_request_img_data_set(struct rbd_obj_request *obj_request)
1317 {
1318 if (test_and_set_bit(OBJ_REQ_IMG_DATA, &obj_request->flags)) {
1319 struct rbd_device *rbd_dev;
1320
1321 rbd_dev = obj_request->img_request->rbd_dev;
1322 rbd_warn(rbd_dev, "obj_request %p already marked img_data\n",
1323 obj_request);
1324 }
1325 }
1326
1327 static bool obj_request_img_data_test(struct rbd_obj_request *obj_request)
1328 {
1329 smp_mb();
1330 return test_bit(OBJ_REQ_IMG_DATA, &obj_request->flags) != 0;
1331 }
1332
1333 static void obj_request_done_set(struct rbd_obj_request *obj_request)
1334 {
1335 if (test_and_set_bit(OBJ_REQ_DONE, &obj_request->flags)) {
1336 struct rbd_device *rbd_dev = NULL;
1337
1338 if (obj_request_img_data_test(obj_request))
1339 rbd_dev = obj_request->img_request->rbd_dev;
1340 rbd_warn(rbd_dev, "obj_request %p already marked done\n",
1341 obj_request);
1342 }
1343 }
1344
1345 static bool obj_request_done_test(struct rbd_obj_request *obj_request)
1346 {
1347 smp_mb();
1348 return test_bit(OBJ_REQ_DONE, &obj_request->flags) != 0;
1349 }
1350
1351 /*
1352 * This sets the KNOWN flag after (possibly) setting the EXISTS
1353 * flag. The latter is set based on the "exists" value provided.
1354 *
1355 * Note that for our purposes once an object exists it never goes
1356 * away again. It's possible that the response from two existence
1357 * checks are separated by the creation of the target object, and
1358 * the first ("doesn't exist") response arrives *after* the second
1359 * ("does exist"). In that case we ignore the second one.
1360 */
1361 static void obj_request_existence_set(struct rbd_obj_request *obj_request,
1362 bool exists)
1363 {
1364 if (exists)
1365 set_bit(OBJ_REQ_EXISTS, &obj_request->flags);
1366 set_bit(OBJ_REQ_KNOWN, &obj_request->flags);
1367 smp_mb();
1368 }
1369
1370 static bool obj_request_known_test(struct rbd_obj_request *obj_request)
1371 {
1372 smp_mb();
1373 return test_bit(OBJ_REQ_KNOWN, &obj_request->flags) != 0;
1374 }
1375
1376 static bool obj_request_exists_test(struct rbd_obj_request *obj_request)
1377 {
1378 smp_mb();
1379 return test_bit(OBJ_REQ_EXISTS, &obj_request->flags) != 0;
1380 }
1381
1382 static void rbd_obj_request_get(struct rbd_obj_request *obj_request)
1383 {
1384 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1385 atomic_read(&obj_request->kref.refcount));
1386 kref_get(&obj_request->kref);
1387 }
1388
1389 static void rbd_obj_request_destroy(struct kref *kref);
1390 static void rbd_obj_request_put(struct rbd_obj_request *obj_request)
1391 {
1392 rbd_assert(obj_request != NULL);
1393 dout("%s: obj %p (was %d)\n", __func__, obj_request,
1394 atomic_read(&obj_request->kref.refcount));
1395 kref_put(&obj_request->kref, rbd_obj_request_destroy);
1396 }
1397
1398 static bool img_request_child_test(struct rbd_img_request *img_request);
1399 static void rbd_parent_request_destroy(struct kref *kref);
1400 static void rbd_img_request_destroy(struct kref *kref);
1401 static void rbd_img_request_put(struct rbd_img_request *img_request)
1402 {
1403 rbd_assert(img_request != NULL);
1404 dout("%s: img %p (was %d)\n", __func__, img_request,
1405 atomic_read(&img_request->kref.refcount));
1406 if (img_request_child_test(img_request))
1407 kref_put(&img_request->kref, rbd_parent_request_destroy);
1408 else
1409 kref_put(&img_request->kref, rbd_img_request_destroy);
1410 }
1411
1412 static inline void rbd_img_obj_request_add(struct rbd_img_request *img_request,
1413 struct rbd_obj_request *obj_request)
1414 {
1415 rbd_assert(obj_request->img_request == NULL);
1416
1417 /* Image request now owns object's original reference */
1418 obj_request->img_request = img_request;
1419 obj_request->which = img_request->obj_request_count;
1420 rbd_assert(!obj_request_img_data_test(obj_request));
1421 obj_request_img_data_set(obj_request);
1422 rbd_assert(obj_request->which != BAD_WHICH);
1423 img_request->obj_request_count++;
1424 list_add_tail(&obj_request->links, &img_request->obj_requests);
1425 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1426 obj_request->which);
1427 }
1428
1429 static inline void rbd_img_obj_request_del(struct rbd_img_request *img_request,
1430 struct rbd_obj_request *obj_request)
1431 {
1432 rbd_assert(obj_request->which != BAD_WHICH);
1433
1434 dout("%s: img %p obj %p w=%u\n", __func__, img_request, obj_request,
1435 obj_request->which);
1436 list_del(&obj_request->links);
1437 rbd_assert(img_request->obj_request_count > 0);
1438 img_request->obj_request_count--;
1439 rbd_assert(obj_request->which == img_request->obj_request_count);
1440 obj_request->which = BAD_WHICH;
1441 rbd_assert(obj_request_img_data_test(obj_request));
1442 rbd_assert(obj_request->img_request == img_request);
1443 obj_request->img_request = NULL;
1444 obj_request->callback = NULL;
1445 rbd_obj_request_put(obj_request);
1446 }
1447
1448 static bool obj_request_type_valid(enum obj_request_type type)
1449 {
1450 switch (type) {
1451 case OBJ_REQUEST_NODATA:
1452 case OBJ_REQUEST_BIO:
1453 case OBJ_REQUEST_PAGES:
1454 return true;
1455 default:
1456 return false;
1457 }
1458 }
1459
1460 static int rbd_obj_request_submit(struct ceph_osd_client *osdc,
1461 struct rbd_obj_request *obj_request)
1462 {
1463 dout("%s: osdc %p obj %p\n", __func__, osdc, obj_request);
1464
1465 return ceph_osdc_start_request(osdc, obj_request->osd_req, false);
1466 }
1467
1468 static void rbd_img_request_complete(struct rbd_img_request *img_request)
1469 {
1470
1471 dout("%s: img %p\n", __func__, img_request);
1472
1473 /*
1474 * If no error occurred, compute the aggregate transfer
1475 * count for the image request. We could instead use
1476 * atomic64_cmpxchg() to update it as each object request
1477 * completes; not clear which way is better off hand.
1478 */
1479 if (!img_request->result) {
1480 struct rbd_obj_request *obj_request;
1481 u64 xferred = 0;
1482
1483 for_each_obj_request(img_request, obj_request)
1484 xferred += obj_request->xferred;
1485 img_request->xferred = xferred;
1486 }
1487
1488 if (img_request->callback)
1489 img_request->callback(img_request);
1490 else
1491 rbd_img_request_put(img_request);
1492 }
1493
1494 /* Caller is responsible for rbd_obj_request_destroy(obj_request) */
1495
1496 static int rbd_obj_request_wait(struct rbd_obj_request *obj_request)
1497 {
1498 dout("%s: obj %p\n", __func__, obj_request);
1499
1500 return wait_for_completion_interruptible(&obj_request->completion);
1501 }
1502
1503 /*
1504 * The default/initial value for all image request flags is 0. Each
1505 * is conditionally set to 1 at image request initialization time
1506 * and currently never change thereafter.
1507 */
1508 static void img_request_write_set(struct rbd_img_request *img_request)
1509 {
1510 set_bit(IMG_REQ_WRITE, &img_request->flags);
1511 smp_mb();
1512 }
1513
1514 static bool img_request_write_test(struct rbd_img_request *img_request)
1515 {
1516 smp_mb();
1517 return test_bit(IMG_REQ_WRITE, &img_request->flags) != 0;
1518 }
1519
1520 static void img_request_child_set(struct rbd_img_request *img_request)
1521 {
1522 set_bit(IMG_REQ_CHILD, &img_request->flags);
1523 smp_mb();
1524 }
1525
1526 static void img_request_child_clear(struct rbd_img_request *img_request)
1527 {
1528 clear_bit(IMG_REQ_CHILD, &img_request->flags);
1529 smp_mb();
1530 }
1531
1532 static bool img_request_child_test(struct rbd_img_request *img_request)
1533 {
1534 smp_mb();
1535 return test_bit(IMG_REQ_CHILD, &img_request->flags) != 0;
1536 }
1537
1538 static void img_request_layered_set(struct rbd_img_request *img_request)
1539 {
1540 set_bit(IMG_REQ_LAYERED, &img_request->flags);
1541 smp_mb();
1542 }
1543
1544 static void img_request_layered_clear(struct rbd_img_request *img_request)
1545 {
1546 clear_bit(IMG_REQ_LAYERED, &img_request->flags);
1547 smp_mb();
1548 }
1549
1550 static bool img_request_layered_test(struct rbd_img_request *img_request)
1551 {
1552 smp_mb();
1553 return test_bit(IMG_REQ_LAYERED, &img_request->flags) != 0;
1554 }
1555
1556 static void
1557 rbd_img_obj_request_read_callback(struct rbd_obj_request *obj_request)
1558 {
1559 u64 xferred = obj_request->xferred;
1560 u64 length = obj_request->length;
1561
1562 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1563 obj_request, obj_request->img_request, obj_request->result,
1564 xferred, length);
1565 /*
1566 * ENOENT means a hole in the image. We zero-fill the entire
1567 * length of the request. A short read also implies zero-fill
1568 * to the end of the request. An error requires the whole
1569 * length of the request to be reported finished with an error
1570 * to the block layer. In each case we update the xferred
1571 * count to indicate the whole request was satisfied.
1572 */
1573 rbd_assert(obj_request->type != OBJ_REQUEST_NODATA);
1574 if (obj_request->result == -ENOENT) {
1575 if (obj_request->type == OBJ_REQUEST_BIO)
1576 zero_bio_chain(obj_request->bio_list, 0);
1577 else
1578 zero_pages(obj_request->pages, 0, length);
1579 obj_request->result = 0;
1580 } else if (xferred < length && !obj_request->result) {
1581 if (obj_request->type == OBJ_REQUEST_BIO)
1582 zero_bio_chain(obj_request->bio_list, xferred);
1583 else
1584 zero_pages(obj_request->pages, xferred, length);
1585 }
1586 obj_request->xferred = length;
1587 obj_request_done_set(obj_request);
1588 }
1589
1590 static void rbd_obj_request_complete(struct rbd_obj_request *obj_request)
1591 {
1592 dout("%s: obj %p cb %p\n", __func__, obj_request,
1593 obj_request->callback);
1594 if (obj_request->callback)
1595 obj_request->callback(obj_request);
1596 else
1597 complete_all(&obj_request->completion);
1598 }
1599
1600 static void rbd_osd_trivial_callback(struct rbd_obj_request *obj_request)
1601 {
1602 dout("%s: obj %p\n", __func__, obj_request);
1603 obj_request_done_set(obj_request);
1604 }
1605
1606 static void rbd_osd_read_callback(struct rbd_obj_request *obj_request)
1607 {
1608 struct rbd_img_request *img_request = NULL;
1609 struct rbd_device *rbd_dev = NULL;
1610 bool layered = false;
1611
1612 if (obj_request_img_data_test(obj_request)) {
1613 img_request = obj_request->img_request;
1614 layered = img_request && img_request_layered_test(img_request);
1615 rbd_dev = img_request->rbd_dev;
1616 }
1617
1618 dout("%s: obj %p img %p result %d %llu/%llu\n", __func__,
1619 obj_request, img_request, obj_request->result,
1620 obj_request->xferred, obj_request->length);
1621 if (layered && obj_request->result == -ENOENT &&
1622 obj_request->img_offset < rbd_dev->parent_overlap)
1623 rbd_img_parent_read(obj_request);
1624 else if (img_request)
1625 rbd_img_obj_request_read_callback(obj_request);
1626 else
1627 obj_request_done_set(obj_request);
1628 }
1629
1630 static void rbd_osd_write_callback(struct rbd_obj_request *obj_request)
1631 {
1632 dout("%s: obj %p result %d %llu\n", __func__, obj_request,
1633 obj_request->result, obj_request->length);
1634 /*
1635 * There is no such thing as a successful short write. Set
1636 * it to our originally-requested length.
1637 */
1638 obj_request->xferred = obj_request->length;
1639 obj_request_done_set(obj_request);
1640 }
1641
1642 /*
1643 * For a simple stat call there's nothing to do. We'll do more if
1644 * this is part of a write sequence for a layered image.
1645 */
1646 static void rbd_osd_stat_callback(struct rbd_obj_request *obj_request)
1647 {
1648 dout("%s: obj %p\n", __func__, obj_request);
1649 obj_request_done_set(obj_request);
1650 }
1651
1652 static void rbd_osd_req_callback(struct ceph_osd_request *osd_req,
1653 struct ceph_msg *msg)
1654 {
1655 struct rbd_obj_request *obj_request = osd_req->r_priv;
1656 u16 opcode;
1657
1658 dout("%s: osd_req %p msg %p\n", __func__, osd_req, msg);
1659 rbd_assert(osd_req == obj_request->osd_req);
1660 if (obj_request_img_data_test(obj_request)) {
1661 rbd_assert(obj_request->img_request);
1662 rbd_assert(obj_request->which != BAD_WHICH);
1663 } else {
1664 rbd_assert(obj_request->which == BAD_WHICH);
1665 }
1666
1667 if (osd_req->r_result < 0)
1668 obj_request->result = osd_req->r_result;
1669
1670 BUG_ON(osd_req->r_num_ops > 2);
1671
1672 /*
1673 * We support a 64-bit length, but ultimately it has to be
1674 * passed to blk_end_request(), which takes an unsigned int.
1675 */
1676 obj_request->xferred = osd_req->r_reply_op_len[0];
1677 rbd_assert(obj_request->xferred < (u64)UINT_MAX);
1678 opcode = osd_req->r_ops[0].op;
1679 switch (opcode) {
1680 case CEPH_OSD_OP_READ:
1681 rbd_osd_read_callback(obj_request);
1682 break;
1683 case CEPH_OSD_OP_WRITE:
1684 rbd_osd_write_callback(obj_request);
1685 break;
1686 case CEPH_OSD_OP_STAT:
1687 rbd_osd_stat_callback(obj_request);
1688 break;
1689 case CEPH_OSD_OP_CALL:
1690 case CEPH_OSD_OP_NOTIFY_ACK:
1691 case CEPH_OSD_OP_WATCH:
1692 rbd_osd_trivial_callback(obj_request);
1693 break;
1694 default:
1695 rbd_warn(NULL, "%s: unsupported op %hu\n",
1696 obj_request->object_name, (unsigned short) opcode);
1697 break;
1698 }
1699
1700 if (obj_request_done_test(obj_request))
1701 rbd_obj_request_complete(obj_request);
1702 }
1703
1704 static void rbd_osd_req_format_read(struct rbd_obj_request *obj_request)
1705 {
1706 struct rbd_img_request *img_request = obj_request->img_request;
1707 struct ceph_osd_request *osd_req = obj_request->osd_req;
1708 u64 snap_id;
1709
1710 rbd_assert(osd_req != NULL);
1711
1712 snap_id = img_request ? img_request->snap_id : CEPH_NOSNAP;
1713 ceph_osdc_build_request(osd_req, obj_request->offset,
1714 NULL, snap_id, NULL);
1715 }
1716
1717 static void rbd_osd_req_format_write(struct rbd_obj_request *obj_request)
1718 {
1719 struct rbd_img_request *img_request = obj_request->img_request;
1720 struct ceph_osd_request *osd_req = obj_request->osd_req;
1721 struct ceph_snap_context *snapc;
1722 struct timespec mtime = CURRENT_TIME;
1723
1724 rbd_assert(osd_req != NULL);
1725
1726 snapc = img_request ? img_request->snapc : NULL;
1727 ceph_osdc_build_request(osd_req, obj_request->offset,
1728 snapc, CEPH_NOSNAP, &mtime);
1729 }
1730
1731 static struct ceph_osd_request *rbd_osd_req_create(
1732 struct rbd_device *rbd_dev,
1733 bool write_request,
1734 struct rbd_obj_request *obj_request)
1735 {
1736 struct ceph_snap_context *snapc = NULL;
1737 struct ceph_osd_client *osdc;
1738 struct ceph_osd_request *osd_req;
1739
1740 if (obj_request_img_data_test(obj_request)) {
1741 struct rbd_img_request *img_request = obj_request->img_request;
1742
1743 rbd_assert(write_request ==
1744 img_request_write_test(img_request));
1745 if (write_request)
1746 snapc = img_request->snapc;
1747 }
1748
1749 /* Allocate and initialize the request, for the single op */
1750
1751 osdc = &rbd_dev->rbd_client->client->osdc;
1752 osd_req = ceph_osdc_alloc_request(osdc, snapc, 1, false, GFP_ATOMIC);
1753 if (!osd_req)
1754 return NULL; /* ENOMEM */
1755
1756 if (write_request)
1757 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1758 else
1759 osd_req->r_flags = CEPH_OSD_FLAG_READ;
1760
1761 osd_req->r_callback = rbd_osd_req_callback;
1762 osd_req->r_priv = obj_request;
1763
1764 osd_req->r_oid_len = strlen(obj_request->object_name);
1765 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1766 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1767
1768 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1769
1770 return osd_req;
1771 }
1772
1773 /*
1774 * Create a copyup osd request based on the information in the
1775 * object request supplied. A copyup request has two osd ops,
1776 * a copyup method call, and a "normal" write request.
1777 */
1778 static struct ceph_osd_request *
1779 rbd_osd_req_create_copyup(struct rbd_obj_request *obj_request)
1780 {
1781 struct rbd_img_request *img_request;
1782 struct ceph_snap_context *snapc;
1783 struct rbd_device *rbd_dev;
1784 struct ceph_osd_client *osdc;
1785 struct ceph_osd_request *osd_req;
1786
1787 rbd_assert(obj_request_img_data_test(obj_request));
1788 img_request = obj_request->img_request;
1789 rbd_assert(img_request);
1790 rbd_assert(img_request_write_test(img_request));
1791
1792 /* Allocate and initialize the request, for the two ops */
1793
1794 snapc = img_request->snapc;
1795 rbd_dev = img_request->rbd_dev;
1796 osdc = &rbd_dev->rbd_client->client->osdc;
1797 osd_req = ceph_osdc_alloc_request(osdc, snapc, 2, false, GFP_ATOMIC);
1798 if (!osd_req)
1799 return NULL; /* ENOMEM */
1800
1801 osd_req->r_flags = CEPH_OSD_FLAG_WRITE | CEPH_OSD_FLAG_ONDISK;
1802 osd_req->r_callback = rbd_osd_req_callback;
1803 osd_req->r_priv = obj_request;
1804
1805 osd_req->r_oid_len = strlen(obj_request->object_name);
1806 rbd_assert(osd_req->r_oid_len < sizeof (osd_req->r_oid));
1807 memcpy(osd_req->r_oid, obj_request->object_name, osd_req->r_oid_len);
1808
1809 osd_req->r_file_layout = rbd_dev->layout; /* struct */
1810
1811 return osd_req;
1812 }
1813
1814
1815 static void rbd_osd_req_destroy(struct ceph_osd_request *osd_req)
1816 {
1817 ceph_osdc_put_request(osd_req);
1818 }
1819
1820 /* object_name is assumed to be a non-null pointer and NUL-terminated */
1821
1822 static struct rbd_obj_request *rbd_obj_request_create(const char *object_name,
1823 u64 offset, u64 length,
1824 enum obj_request_type type)
1825 {
1826 struct rbd_obj_request *obj_request;
1827 size_t size;
1828 char *name;
1829
1830 rbd_assert(obj_request_type_valid(type));
1831
1832 size = strlen(object_name) + 1;
1833 name = kmalloc(size, GFP_KERNEL);
1834 if (!name)
1835 return NULL;
1836
1837 obj_request = kmem_cache_zalloc(rbd_obj_request_cache, GFP_KERNEL);
1838 if (!obj_request) {
1839 kfree(name);
1840 return NULL;
1841 }
1842
1843 obj_request->object_name = memcpy(name, object_name, size);
1844 obj_request->offset = offset;
1845 obj_request->length = length;
1846 obj_request->flags = 0;
1847 obj_request->which = BAD_WHICH;
1848 obj_request->type = type;
1849 INIT_LIST_HEAD(&obj_request->links);
1850 init_completion(&obj_request->completion);
1851 kref_init(&obj_request->kref);
1852
1853 dout("%s: \"%s\" %llu/%llu %d -> obj %p\n", __func__, object_name,
1854 offset, length, (int)type, obj_request);
1855
1856 return obj_request;
1857 }
1858
1859 static void rbd_obj_request_destroy(struct kref *kref)
1860 {
1861 struct rbd_obj_request *obj_request;
1862
1863 obj_request = container_of(kref, struct rbd_obj_request, kref);
1864
1865 dout("%s: obj %p\n", __func__, obj_request);
1866
1867 rbd_assert(obj_request->img_request == NULL);
1868 rbd_assert(obj_request->which == BAD_WHICH);
1869
1870 if (obj_request->osd_req)
1871 rbd_osd_req_destroy(obj_request->osd_req);
1872
1873 rbd_assert(obj_request_type_valid(obj_request->type));
1874 switch (obj_request->type) {
1875 case OBJ_REQUEST_NODATA:
1876 break; /* Nothing to do */
1877 case OBJ_REQUEST_BIO:
1878 if (obj_request->bio_list)
1879 bio_chain_put(obj_request->bio_list);
1880 break;
1881 case OBJ_REQUEST_PAGES:
1882 if (obj_request->pages)
1883 ceph_release_page_vector(obj_request->pages,
1884 obj_request->page_count);
1885 break;
1886 }
1887
1888 kfree(obj_request->object_name);
1889 obj_request->object_name = NULL;
1890 kmem_cache_free(rbd_obj_request_cache, obj_request);
1891 }
1892
1893 /* It's OK to call this for a device with no parent */
1894
1895 static void rbd_spec_put(struct rbd_spec *spec);
1896 static void rbd_dev_unparent(struct rbd_device *rbd_dev)
1897 {
1898 rbd_dev_remove_parent(rbd_dev);
1899 rbd_spec_put(rbd_dev->parent_spec);
1900 rbd_dev->parent_spec = NULL;
1901 rbd_dev->parent_overlap = 0;
1902 }
1903
1904 /*
1905 * Parent image reference counting is used to determine when an
1906 * image's parent fields can be safely torn down--after there are no
1907 * more in-flight requests to the parent image. When the last
1908 * reference is dropped, cleaning them up is safe.
1909 */
1910 static void rbd_dev_parent_put(struct rbd_device *rbd_dev)
1911 {
1912 int counter;
1913
1914 if (!rbd_dev->parent_spec)
1915 return;
1916
1917 counter = atomic_dec_return_safe(&rbd_dev->parent_ref);
1918 if (counter > 0)
1919 return;
1920
1921 /* Last reference; clean up parent data structures */
1922
1923 if (!counter)
1924 rbd_dev_unparent(rbd_dev);
1925 else
1926 rbd_warn(rbd_dev, "parent reference underflow\n");
1927 }
1928
1929 /*
1930 * If an image has a non-zero parent overlap, get a reference to its
1931 * parent.
1932 *
1933 * We must get the reference before checking for the overlap to
1934 * coordinate properly with zeroing the parent overlap in
1935 * rbd_dev_v2_parent_info() when an image gets flattened. We
1936 * drop it again if there is no overlap.
1937 *
1938 * Returns true if the rbd device has a parent with a non-zero
1939 * overlap and a reference for it was successfully taken, or
1940 * false otherwise.
1941 */
1942 static bool rbd_dev_parent_get(struct rbd_device *rbd_dev)
1943 {
1944 int counter;
1945
1946 if (!rbd_dev->parent_spec)
1947 return false;
1948
1949 counter = atomic_inc_return_safe(&rbd_dev->parent_ref);
1950 if (counter > 0 && rbd_dev->parent_overlap)
1951 return true;
1952
1953 /* Image was flattened, but parent is not yet torn down */
1954
1955 if (counter < 0)
1956 rbd_warn(rbd_dev, "parent reference overflow\n");
1957
1958 return false;
1959 }
1960
1961 /*
1962 * Caller is responsible for filling in the list of object requests
1963 * that comprises the image request, and the Linux request pointer
1964 * (if there is one).
1965 */
1966 static struct rbd_img_request *rbd_img_request_create(
1967 struct rbd_device *rbd_dev,
1968 u64 offset, u64 length,
1969 bool write_request)
1970 {
1971 struct rbd_img_request *img_request;
1972
1973 img_request = kmem_cache_alloc(rbd_img_request_cache, GFP_ATOMIC);
1974 if (!img_request)
1975 return NULL;
1976
1977 if (write_request) {
1978 down_read(&rbd_dev->header_rwsem);
1979 ceph_get_snap_context(rbd_dev->header.snapc);
1980 up_read(&rbd_dev->header_rwsem);
1981 }
1982
1983 img_request->rq = NULL;
1984 img_request->rbd_dev = rbd_dev;
1985 img_request->offset = offset;
1986 img_request->length = length;
1987 img_request->flags = 0;
1988 if (write_request) {
1989 img_request_write_set(img_request);
1990 img_request->snapc = rbd_dev->header.snapc;
1991 } else {
1992 img_request->snap_id = rbd_dev->spec->snap_id;
1993 }
1994 if (rbd_dev_parent_get(rbd_dev))
1995 img_request_layered_set(img_request);
1996 spin_lock_init(&img_request->completion_lock);
1997 img_request->next_completion = 0;
1998 img_request->callback = NULL;
1999 img_request->result = 0;
2000 img_request->obj_request_count = 0;
2001 INIT_LIST_HEAD(&img_request->obj_requests);
2002 kref_init(&img_request->kref);
2003
2004 dout("%s: rbd_dev %p %s %llu/%llu -> img %p\n", __func__, rbd_dev,
2005 write_request ? "write" : "read", offset, length,
2006 img_request);
2007
2008 return img_request;
2009 }
2010
2011 static void rbd_img_request_destroy(struct kref *kref)
2012 {
2013 struct rbd_img_request *img_request;
2014 struct rbd_obj_request *obj_request;
2015 struct rbd_obj_request *next_obj_request;
2016
2017 img_request = container_of(kref, struct rbd_img_request, kref);
2018
2019 dout("%s: img %p\n", __func__, img_request);
2020
2021 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2022 rbd_img_obj_request_del(img_request, obj_request);
2023 rbd_assert(img_request->obj_request_count == 0);
2024
2025 if (img_request_layered_test(img_request)) {
2026 img_request_layered_clear(img_request);
2027 rbd_dev_parent_put(img_request->rbd_dev);
2028 }
2029
2030 if (img_request_write_test(img_request))
2031 ceph_put_snap_context(img_request->snapc);
2032
2033 kmem_cache_free(rbd_img_request_cache, img_request);
2034 }
2035
2036 static struct rbd_img_request *rbd_parent_request_create(
2037 struct rbd_obj_request *obj_request,
2038 u64 img_offset, u64 length)
2039 {
2040 struct rbd_img_request *parent_request;
2041 struct rbd_device *rbd_dev;
2042
2043 rbd_assert(obj_request->img_request);
2044 rbd_dev = obj_request->img_request->rbd_dev;
2045
2046 parent_request = rbd_img_request_create(rbd_dev->parent,
2047 img_offset, length, false);
2048 if (!parent_request)
2049 return NULL;
2050
2051 img_request_child_set(parent_request);
2052 rbd_obj_request_get(obj_request);
2053 parent_request->obj_request = obj_request;
2054
2055 return parent_request;
2056 }
2057
2058 static void rbd_parent_request_destroy(struct kref *kref)
2059 {
2060 struct rbd_img_request *parent_request;
2061 struct rbd_obj_request *orig_request;
2062
2063 parent_request = container_of(kref, struct rbd_img_request, kref);
2064 orig_request = parent_request->obj_request;
2065
2066 parent_request->obj_request = NULL;
2067 rbd_obj_request_put(orig_request);
2068 img_request_child_clear(parent_request);
2069
2070 rbd_img_request_destroy(kref);
2071 }
2072
2073 static bool rbd_img_obj_end_request(struct rbd_obj_request *obj_request)
2074 {
2075 struct rbd_img_request *img_request;
2076 unsigned int xferred;
2077 int result;
2078 bool more;
2079
2080 rbd_assert(obj_request_img_data_test(obj_request));
2081 img_request = obj_request->img_request;
2082
2083 rbd_assert(obj_request->xferred <= (u64)UINT_MAX);
2084 xferred = (unsigned int)obj_request->xferred;
2085 result = obj_request->result;
2086 if (result) {
2087 struct rbd_device *rbd_dev = img_request->rbd_dev;
2088
2089 rbd_warn(rbd_dev, "%s %llx at %llx (%llx)\n",
2090 img_request_write_test(img_request) ? "write" : "read",
2091 obj_request->length, obj_request->img_offset,
2092 obj_request->offset);
2093 rbd_warn(rbd_dev, " result %d xferred %x\n",
2094 result, xferred);
2095 if (!img_request->result)
2096 img_request->result = result;
2097 }
2098
2099 /* Image object requests don't own their page array */
2100
2101 if (obj_request->type == OBJ_REQUEST_PAGES) {
2102 obj_request->pages = NULL;
2103 obj_request->page_count = 0;
2104 }
2105
2106 if (img_request_child_test(img_request)) {
2107 rbd_assert(img_request->obj_request != NULL);
2108 more = obj_request->which < img_request->obj_request_count - 1;
2109 } else {
2110 rbd_assert(img_request->rq != NULL);
2111 more = blk_end_request(img_request->rq, result, xferred);
2112 }
2113
2114 return more;
2115 }
2116
2117 static void rbd_img_obj_callback(struct rbd_obj_request *obj_request)
2118 {
2119 struct rbd_img_request *img_request;
2120 u32 which = obj_request->which;
2121 bool more = true;
2122
2123 rbd_assert(obj_request_img_data_test(obj_request));
2124 img_request = obj_request->img_request;
2125
2126 dout("%s: img %p obj %p\n", __func__, img_request, obj_request);
2127 rbd_assert(img_request != NULL);
2128 rbd_assert(img_request->obj_request_count > 0);
2129 rbd_assert(which != BAD_WHICH);
2130 rbd_assert(which < img_request->obj_request_count);
2131 rbd_assert(which >= img_request->next_completion);
2132
2133 spin_lock_irq(&img_request->completion_lock);
2134 if (which != img_request->next_completion)
2135 goto out;
2136
2137 for_each_obj_request_from(img_request, obj_request) {
2138 rbd_assert(more);
2139 rbd_assert(which < img_request->obj_request_count);
2140
2141 if (!obj_request_done_test(obj_request))
2142 break;
2143 more = rbd_img_obj_end_request(obj_request);
2144 which++;
2145 }
2146
2147 rbd_assert(more ^ (which == img_request->obj_request_count));
2148 img_request->next_completion = which;
2149 out:
2150 spin_unlock_irq(&img_request->completion_lock);
2151
2152 if (!more)
2153 rbd_img_request_complete(img_request);
2154 }
2155
2156 /*
2157 * Split up an image request into one or more object requests, each
2158 * to a different object. The "type" parameter indicates whether
2159 * "data_desc" is the pointer to the head of a list of bio
2160 * structures, or the base of a page array. In either case this
2161 * function assumes data_desc describes memory sufficient to hold
2162 * all data described by the image request.
2163 */
2164 static int rbd_img_request_fill(struct rbd_img_request *img_request,
2165 enum obj_request_type type,
2166 void *data_desc)
2167 {
2168 struct rbd_device *rbd_dev = img_request->rbd_dev;
2169 struct rbd_obj_request *obj_request = NULL;
2170 struct rbd_obj_request *next_obj_request;
2171 bool write_request = img_request_write_test(img_request);
2172 struct bio *bio_list = NULL;
2173 unsigned int bio_offset = 0;
2174 struct page **pages = NULL;
2175 u64 img_offset;
2176 u64 resid;
2177 u16 opcode;
2178
2179 dout("%s: img %p type %d data_desc %p\n", __func__, img_request,
2180 (int)type, data_desc);
2181
2182 opcode = write_request ? CEPH_OSD_OP_WRITE : CEPH_OSD_OP_READ;
2183 img_offset = img_request->offset;
2184 resid = img_request->length;
2185 rbd_assert(resid > 0);
2186
2187 if (type == OBJ_REQUEST_BIO) {
2188 bio_list = data_desc;
2189 rbd_assert(img_offset == bio_list->bi_sector << SECTOR_SHIFT);
2190 } else {
2191 rbd_assert(type == OBJ_REQUEST_PAGES);
2192 pages = data_desc;
2193 }
2194
2195 while (resid) {
2196 struct ceph_osd_request *osd_req;
2197 const char *object_name;
2198 u64 offset;
2199 u64 length;
2200
2201 object_name = rbd_segment_name(rbd_dev, img_offset);
2202 if (!object_name)
2203 goto out_unwind;
2204 offset = rbd_segment_offset(rbd_dev, img_offset);
2205 length = rbd_segment_length(rbd_dev, img_offset, resid);
2206 obj_request = rbd_obj_request_create(object_name,
2207 offset, length, type);
2208 /* object request has its own copy of the object name */
2209 rbd_segment_name_free(object_name);
2210 if (!obj_request)
2211 goto out_unwind;
2212 /*
2213 * set obj_request->img_request before creating the
2214 * osd_request so that it gets the right snapc
2215 */
2216 rbd_img_obj_request_add(img_request, obj_request);
2217
2218 if (type == OBJ_REQUEST_BIO) {
2219 unsigned int clone_size;
2220
2221 rbd_assert(length <= (u64)UINT_MAX);
2222 clone_size = (unsigned int)length;
2223 obj_request->bio_list =
2224 bio_chain_clone_range(&bio_list,
2225 &bio_offset,
2226 clone_size,
2227 GFP_ATOMIC);
2228 if (!obj_request->bio_list)
2229 goto out_partial;
2230 } else {
2231 unsigned int page_count;
2232
2233 obj_request->pages = pages;
2234 page_count = (u32)calc_pages_for(offset, length);
2235 obj_request->page_count = page_count;
2236 if ((offset + length) & ~PAGE_MASK)
2237 page_count--; /* more on last page */
2238 pages += page_count;
2239 }
2240
2241 osd_req = rbd_osd_req_create(rbd_dev, write_request,
2242 obj_request);
2243 if (!osd_req)
2244 goto out_partial;
2245 obj_request->osd_req = osd_req;
2246 obj_request->callback = rbd_img_obj_callback;
2247
2248 osd_req_op_extent_init(osd_req, 0, opcode, offset, length,
2249 0, 0);
2250 if (type == OBJ_REQUEST_BIO)
2251 osd_req_op_extent_osd_data_bio(osd_req, 0,
2252 obj_request->bio_list, length);
2253 else
2254 osd_req_op_extent_osd_data_pages(osd_req, 0,
2255 obj_request->pages, length,
2256 offset & ~PAGE_MASK, false, false);
2257
2258 if (write_request)
2259 rbd_osd_req_format_write(obj_request);
2260 else
2261 rbd_osd_req_format_read(obj_request);
2262
2263 obj_request->img_offset = img_offset;
2264
2265 img_offset += length;
2266 resid -= length;
2267 }
2268
2269 return 0;
2270
2271 out_partial:
2272 rbd_obj_request_put(obj_request);
2273 out_unwind:
2274 for_each_obj_request_safe(img_request, obj_request, next_obj_request)
2275 rbd_obj_request_put(obj_request);
2276
2277 return -ENOMEM;
2278 }
2279
2280 static void
2281 rbd_img_obj_copyup_callback(struct rbd_obj_request *obj_request)
2282 {
2283 struct rbd_img_request *img_request;
2284 struct rbd_device *rbd_dev;
2285 struct page **pages;
2286 u32 page_count;
2287
2288 rbd_assert(obj_request->type == OBJ_REQUEST_BIO);
2289 rbd_assert(obj_request_img_data_test(obj_request));
2290 img_request = obj_request->img_request;
2291 rbd_assert(img_request);
2292
2293 rbd_dev = img_request->rbd_dev;
2294 rbd_assert(rbd_dev);
2295
2296 pages = obj_request->copyup_pages;
2297 rbd_assert(pages != NULL);
2298 obj_request->copyup_pages = NULL;
2299 page_count = obj_request->copyup_page_count;
2300 rbd_assert(page_count);
2301 obj_request->copyup_page_count = 0;
2302 ceph_release_page_vector(pages, page_count);
2303
2304 /*
2305 * We want the transfer count to reflect the size of the
2306 * original write request. There is no such thing as a
2307 * successful short write, so if the request was successful
2308 * we can just set it to the originally-requested length.
2309 */
2310 if (!obj_request->result)
2311 obj_request->xferred = obj_request->length;
2312
2313 /* Finish up with the normal image object callback */
2314
2315 rbd_img_obj_callback(obj_request);
2316 }
2317
2318 static void
2319 rbd_img_obj_parent_read_full_callback(struct rbd_img_request *img_request)
2320 {
2321 struct rbd_obj_request *orig_request;
2322 struct ceph_osd_request *osd_req;
2323 struct ceph_osd_client *osdc;
2324 struct rbd_device *rbd_dev;
2325 struct page **pages;
2326 u32 page_count;
2327 int img_result;
2328 u64 parent_length;
2329 u64 offset;
2330 u64 length;
2331
2332 rbd_assert(img_request_child_test(img_request));
2333
2334 /* First get what we need from the image request */
2335
2336 pages = img_request->copyup_pages;
2337 rbd_assert(pages != NULL);
2338 img_request->copyup_pages = NULL;
2339 page_count = img_request->copyup_page_count;
2340 rbd_assert(page_count);
2341 img_request->copyup_page_count = 0;
2342
2343 orig_request = img_request->obj_request;
2344 rbd_assert(orig_request != NULL);
2345 rbd_assert(obj_request_type_valid(orig_request->type));
2346 img_result = img_request->result;
2347 parent_length = img_request->length;
2348 rbd_assert(parent_length == img_request->xferred);
2349 rbd_img_request_put(img_request);
2350
2351 rbd_assert(orig_request->img_request);
2352 rbd_dev = orig_request->img_request->rbd_dev;
2353 rbd_assert(rbd_dev);
2354
2355 /*
2356 * If the overlap has become 0 (most likely because the
2357 * image has been flattened) we need to free the pages
2358 * and re-submit the original write request.
2359 */
2360 if (!rbd_dev->parent_overlap) {
2361 struct ceph_osd_client *osdc;
2362
2363 ceph_release_page_vector(pages, page_count);
2364 osdc = &rbd_dev->rbd_client->client->osdc;
2365 img_result = rbd_obj_request_submit(osdc, orig_request);
2366 if (!img_result)
2367 return;
2368 }
2369
2370 if (img_result)
2371 goto out_err;
2372
2373 /*
2374 * The original osd request is of no use to use any more.
2375 * We need a new one that can hold the two ops in a copyup
2376 * request. Allocate the new copyup osd request for the
2377 * original request, and release the old one.
2378 */
2379 img_result = -ENOMEM;
2380 osd_req = rbd_osd_req_create_copyup(orig_request);
2381 if (!osd_req)
2382 goto out_err;
2383 rbd_osd_req_destroy(orig_request->osd_req);
2384 orig_request->osd_req = osd_req;
2385 orig_request->copyup_pages = pages;
2386 orig_request->copyup_page_count = page_count;
2387
2388 /* Initialize the copyup op */
2389
2390 osd_req_op_cls_init(osd_req, 0, CEPH_OSD_OP_CALL, "rbd", "copyup");
2391 osd_req_op_cls_request_data_pages(osd_req, 0, pages, parent_length, 0,
2392 false, false);
2393
2394 /* Then the original write request op */
2395
2396 offset = orig_request->offset;
2397 length = orig_request->length;
2398 osd_req_op_extent_init(osd_req, 1, CEPH_OSD_OP_WRITE,
2399 offset, length, 0, 0);
2400 if (orig_request->type == OBJ_REQUEST_BIO)
2401 osd_req_op_extent_osd_data_bio(osd_req, 1,
2402 orig_request->bio_list, length);
2403 else
2404 osd_req_op_extent_osd_data_pages(osd_req, 1,
2405 orig_request->pages, length,
2406 offset & ~PAGE_MASK, false, false);
2407
2408 rbd_osd_req_format_write(orig_request);
2409
2410 /* All set, send it off. */
2411
2412 orig_request->callback = rbd_img_obj_copyup_callback;
2413 osdc = &rbd_dev->rbd_client->client->osdc;
2414 img_result = rbd_obj_request_submit(osdc, orig_request);
2415 if (!img_result)
2416 return;
2417 out_err:
2418 /* Record the error code and complete the request */
2419
2420 orig_request->result = img_result;
2421 orig_request->xferred = 0;
2422 obj_request_done_set(orig_request);
2423 rbd_obj_request_complete(orig_request);
2424 }
2425
2426 /*
2427 * Read from the parent image the range of data that covers the
2428 * entire target of the given object request. This is used for
2429 * satisfying a layered image write request when the target of an
2430 * object request from the image request does not exist.
2431 *
2432 * A page array big enough to hold the returned data is allocated
2433 * and supplied to rbd_img_request_fill() as the "data descriptor."
2434 * When the read completes, this page array will be transferred to
2435 * the original object request for the copyup operation.
2436 *
2437 * If an error occurs, record it as the result of the original
2438 * object request and mark it done so it gets completed.
2439 */
2440 static int rbd_img_obj_parent_read_full(struct rbd_obj_request *obj_request)
2441 {
2442 struct rbd_img_request *img_request = NULL;
2443 struct rbd_img_request *parent_request = NULL;
2444 struct rbd_device *rbd_dev;
2445 u64 img_offset;
2446 u64 length;
2447 struct page **pages = NULL;
2448 u32 page_count;
2449 int result;
2450
2451 rbd_assert(obj_request_img_data_test(obj_request));
2452 rbd_assert(obj_request_type_valid(obj_request->type));
2453
2454 img_request = obj_request->img_request;
2455 rbd_assert(img_request != NULL);
2456 rbd_dev = img_request->rbd_dev;
2457 rbd_assert(rbd_dev->parent != NULL);
2458
2459 /*
2460 * Determine the byte range covered by the object in the
2461 * child image to which the original request was to be sent.
2462 */
2463 img_offset = obj_request->img_offset - obj_request->offset;
2464 length = (u64)1 << rbd_dev->header.obj_order;
2465
2466 /*
2467 * There is no defined parent data beyond the parent
2468 * overlap, so limit what we read at that boundary if
2469 * necessary.
2470 */
2471 if (img_offset + length > rbd_dev->parent_overlap) {
2472 rbd_assert(img_offset < rbd_dev->parent_overlap);
2473 length = rbd_dev->parent_overlap - img_offset;
2474 }
2475
2476 /*
2477 * Allocate a page array big enough to receive the data read
2478 * from the parent.
2479 */
2480 page_count = (u32)calc_pages_for(0, length);
2481 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2482 if (IS_ERR(pages)) {
2483 result = PTR_ERR(pages);
2484 pages = NULL;
2485 goto out_err;
2486 }
2487
2488 result = -ENOMEM;
2489 parent_request = rbd_parent_request_create(obj_request,
2490 img_offset, length);
2491 if (!parent_request)
2492 goto out_err;
2493
2494 result = rbd_img_request_fill(parent_request, OBJ_REQUEST_PAGES, pages);
2495 if (result)
2496 goto out_err;
2497 parent_request->copyup_pages = pages;
2498 parent_request->copyup_page_count = page_count;
2499
2500 parent_request->callback = rbd_img_obj_parent_read_full_callback;
2501 result = rbd_img_request_submit(parent_request);
2502 if (!result)
2503 return 0;
2504
2505 parent_request->copyup_pages = NULL;
2506 parent_request->copyup_page_count = 0;
2507 parent_request->obj_request = NULL;
2508 rbd_obj_request_put(obj_request);
2509 out_err:
2510 if (pages)
2511 ceph_release_page_vector(pages, page_count);
2512 if (parent_request)
2513 rbd_img_request_put(parent_request);
2514 obj_request->result = result;
2515 obj_request->xferred = 0;
2516 obj_request_done_set(obj_request);
2517
2518 return result;
2519 }
2520
2521 static void rbd_img_obj_exists_callback(struct rbd_obj_request *obj_request)
2522 {
2523 struct rbd_obj_request *orig_request;
2524 struct rbd_device *rbd_dev;
2525 int result;
2526
2527 rbd_assert(!obj_request_img_data_test(obj_request));
2528
2529 /*
2530 * All we need from the object request is the original
2531 * request and the result of the STAT op. Grab those, then
2532 * we're done with the request.
2533 */
2534 orig_request = obj_request->obj_request;
2535 obj_request->obj_request = NULL;
2536 rbd_obj_request_put(orig_request);
2537 rbd_assert(orig_request);
2538 rbd_assert(orig_request->img_request);
2539
2540 result = obj_request->result;
2541 obj_request->result = 0;
2542
2543 dout("%s: obj %p for obj %p result %d %llu/%llu\n", __func__,
2544 obj_request, orig_request, result,
2545 obj_request->xferred, obj_request->length);
2546 rbd_obj_request_put(obj_request);
2547
2548 /*
2549 * If the overlap has become 0 (most likely because the
2550 * image has been flattened) we need to free the pages
2551 * and re-submit the original write request.
2552 */
2553 rbd_dev = orig_request->img_request->rbd_dev;
2554 if (!rbd_dev->parent_overlap) {
2555 struct ceph_osd_client *osdc;
2556
2557 osdc = &rbd_dev->rbd_client->client->osdc;
2558 result = rbd_obj_request_submit(osdc, orig_request);
2559 if (!result)
2560 return;
2561 }
2562
2563 /*
2564 * Our only purpose here is to determine whether the object
2565 * exists, and we don't want to treat the non-existence as
2566 * an error. If something else comes back, transfer the
2567 * error to the original request and complete it now.
2568 */
2569 if (!result) {
2570 obj_request_existence_set(orig_request, true);
2571 } else if (result == -ENOENT) {
2572 obj_request_existence_set(orig_request, false);
2573 } else if (result) {
2574 orig_request->result = result;
2575 goto out;
2576 }
2577
2578 /*
2579 * Resubmit the original request now that we have recorded
2580 * whether the target object exists.
2581 */
2582 orig_request->result = rbd_img_obj_request_submit(orig_request);
2583 out:
2584 if (orig_request->result)
2585 rbd_obj_request_complete(orig_request);
2586 }
2587
2588 static int rbd_img_obj_exists_submit(struct rbd_obj_request *obj_request)
2589 {
2590 struct rbd_obj_request *stat_request;
2591 struct rbd_device *rbd_dev;
2592 struct ceph_osd_client *osdc;
2593 struct page **pages = NULL;
2594 u32 page_count;
2595 size_t size;
2596 int ret;
2597
2598 /*
2599 * The response data for a STAT call consists of:
2600 * le64 length;
2601 * struct {
2602 * le32 tv_sec;
2603 * le32 tv_nsec;
2604 * } mtime;
2605 */
2606 size = sizeof (__le64) + sizeof (__le32) + sizeof (__le32);
2607 page_count = (u32)calc_pages_for(0, size);
2608 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2609 if (IS_ERR(pages))
2610 return PTR_ERR(pages);
2611
2612 ret = -ENOMEM;
2613 stat_request = rbd_obj_request_create(obj_request->object_name, 0, 0,
2614 OBJ_REQUEST_PAGES);
2615 if (!stat_request)
2616 goto out;
2617
2618 rbd_obj_request_get(obj_request);
2619 stat_request->obj_request = obj_request;
2620 stat_request->pages = pages;
2621 stat_request->page_count = page_count;
2622
2623 rbd_assert(obj_request->img_request);
2624 rbd_dev = obj_request->img_request->rbd_dev;
2625 stat_request->osd_req = rbd_osd_req_create(rbd_dev, false,
2626 stat_request);
2627 if (!stat_request->osd_req)
2628 goto out;
2629 stat_request->callback = rbd_img_obj_exists_callback;
2630
2631 osd_req_op_init(stat_request->osd_req, 0, CEPH_OSD_OP_STAT);
2632 osd_req_op_raw_data_in_pages(stat_request->osd_req, 0, pages, size, 0,
2633 false, false);
2634 rbd_osd_req_format_read(stat_request);
2635
2636 osdc = &rbd_dev->rbd_client->client->osdc;
2637 ret = rbd_obj_request_submit(osdc, stat_request);
2638 out:
2639 if (ret)
2640 rbd_obj_request_put(obj_request);
2641
2642 return ret;
2643 }
2644
2645 static int rbd_img_obj_request_submit(struct rbd_obj_request *obj_request)
2646 {
2647 struct rbd_img_request *img_request;
2648 struct rbd_device *rbd_dev;
2649 bool known;
2650
2651 rbd_assert(obj_request_img_data_test(obj_request));
2652
2653 img_request = obj_request->img_request;
2654 rbd_assert(img_request);
2655 rbd_dev = img_request->rbd_dev;
2656
2657 /*
2658 * Only writes to layered images need special handling.
2659 * Reads and non-layered writes are simple object requests.
2660 * Layered writes that start beyond the end of the overlap
2661 * with the parent have no parent data, so they too are
2662 * simple object requests. Finally, if the target object is
2663 * known to already exist, its parent data has already been
2664 * copied, so a write to the object can also be handled as a
2665 * simple object request.
2666 */
2667 if (!img_request_write_test(img_request) ||
2668 !img_request_layered_test(img_request) ||
2669 rbd_dev->parent_overlap <= obj_request->img_offset ||
2670 ((known = obj_request_known_test(obj_request)) &&
2671 obj_request_exists_test(obj_request))) {
2672
2673 struct rbd_device *rbd_dev;
2674 struct ceph_osd_client *osdc;
2675
2676 rbd_dev = obj_request->img_request->rbd_dev;
2677 osdc = &rbd_dev->rbd_client->client->osdc;
2678
2679 return rbd_obj_request_submit(osdc, obj_request);
2680 }
2681
2682 /*
2683 * It's a layered write. The target object might exist but
2684 * we may not know that yet. If we know it doesn't exist,
2685 * start by reading the data for the full target object from
2686 * the parent so we can use it for a copyup to the target.
2687 */
2688 if (known)
2689 return rbd_img_obj_parent_read_full(obj_request);
2690
2691 /* We don't know whether the target exists. Go find out. */
2692
2693 return rbd_img_obj_exists_submit(obj_request);
2694 }
2695
2696 static int rbd_img_request_submit(struct rbd_img_request *img_request)
2697 {
2698 struct rbd_obj_request *obj_request;
2699 struct rbd_obj_request *next_obj_request;
2700
2701 dout("%s: img %p\n", __func__, img_request);
2702 for_each_obj_request_safe(img_request, obj_request, next_obj_request) {
2703 int ret;
2704
2705 ret = rbd_img_obj_request_submit(obj_request);
2706 if (ret)
2707 return ret;
2708 }
2709
2710 return 0;
2711 }
2712
2713 static void rbd_img_parent_read_callback(struct rbd_img_request *img_request)
2714 {
2715 struct rbd_obj_request *obj_request;
2716 struct rbd_device *rbd_dev;
2717 u64 obj_end;
2718 u64 img_xferred;
2719 int img_result;
2720
2721 rbd_assert(img_request_child_test(img_request));
2722
2723 /* First get what we need from the image request and release it */
2724
2725 obj_request = img_request->obj_request;
2726 img_xferred = img_request->xferred;
2727 img_result = img_request->result;
2728 rbd_img_request_put(img_request);
2729
2730 /*
2731 * If the overlap has become 0 (most likely because the
2732 * image has been flattened) we need to re-submit the
2733 * original request.
2734 */
2735 rbd_assert(obj_request);
2736 rbd_assert(obj_request->img_request);
2737 rbd_dev = obj_request->img_request->rbd_dev;
2738 if (!rbd_dev->parent_overlap) {
2739 struct ceph_osd_client *osdc;
2740
2741 osdc = &rbd_dev->rbd_client->client->osdc;
2742 img_result = rbd_obj_request_submit(osdc, obj_request);
2743 if (!img_result)
2744 return;
2745 }
2746
2747 obj_request->result = img_result;
2748 if (obj_request->result)
2749 goto out;
2750
2751 /*
2752 * We need to zero anything beyond the parent overlap
2753 * boundary. Since rbd_img_obj_request_read_callback()
2754 * will zero anything beyond the end of a short read, an
2755 * easy way to do this is to pretend the data from the
2756 * parent came up short--ending at the overlap boundary.
2757 */
2758 rbd_assert(obj_request->img_offset < U64_MAX - obj_request->length);
2759 obj_end = obj_request->img_offset + obj_request->length;
2760 if (obj_end > rbd_dev->parent_overlap) {
2761 u64 xferred = 0;
2762
2763 if (obj_request->img_offset < rbd_dev->parent_overlap)
2764 xferred = rbd_dev->parent_overlap -
2765 obj_request->img_offset;
2766
2767 obj_request->xferred = min(img_xferred, xferred);
2768 } else {
2769 obj_request->xferred = img_xferred;
2770 }
2771 out:
2772 rbd_img_obj_request_read_callback(obj_request);
2773 rbd_obj_request_complete(obj_request);
2774 }
2775
2776 static void rbd_img_parent_read(struct rbd_obj_request *obj_request)
2777 {
2778 struct rbd_img_request *img_request;
2779 int result;
2780
2781 rbd_assert(obj_request_img_data_test(obj_request));
2782 rbd_assert(obj_request->img_request != NULL);
2783 rbd_assert(obj_request->result == (s32) -ENOENT);
2784 rbd_assert(obj_request_type_valid(obj_request->type));
2785
2786 /* rbd_read_finish(obj_request, obj_request->length); */
2787 img_request = rbd_parent_request_create(obj_request,
2788 obj_request->img_offset,
2789 obj_request->length);
2790 result = -ENOMEM;
2791 if (!img_request)
2792 goto out_err;
2793
2794 if (obj_request->type == OBJ_REQUEST_BIO)
2795 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
2796 obj_request->bio_list);
2797 else
2798 result = rbd_img_request_fill(img_request, OBJ_REQUEST_PAGES,
2799 obj_request->pages);
2800 if (result)
2801 goto out_err;
2802
2803 img_request->callback = rbd_img_parent_read_callback;
2804 result = rbd_img_request_submit(img_request);
2805 if (result)
2806 goto out_err;
2807
2808 return;
2809 out_err:
2810 if (img_request)
2811 rbd_img_request_put(img_request);
2812 obj_request->result = result;
2813 obj_request->xferred = 0;
2814 obj_request_done_set(obj_request);
2815 }
2816
2817 static int rbd_obj_notify_ack_sync(struct rbd_device *rbd_dev, u64 notify_id)
2818 {
2819 struct rbd_obj_request *obj_request;
2820 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2821 int ret;
2822
2823 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2824 OBJ_REQUEST_NODATA);
2825 if (!obj_request)
2826 return -ENOMEM;
2827
2828 ret = -ENOMEM;
2829 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2830 if (!obj_request->osd_req)
2831 goto out;
2832
2833 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_NOTIFY_ACK,
2834 notify_id, 0, 0);
2835 rbd_osd_req_format_read(obj_request);
2836
2837 ret = rbd_obj_request_submit(osdc, obj_request);
2838 if (ret)
2839 goto out;
2840 ret = rbd_obj_request_wait(obj_request);
2841 out:
2842 rbd_obj_request_put(obj_request);
2843
2844 return ret;
2845 }
2846
2847 static void rbd_watch_cb(u64 ver, u64 notify_id, u8 opcode, void *data)
2848 {
2849 struct rbd_device *rbd_dev = (struct rbd_device *)data;
2850 int ret;
2851
2852 if (!rbd_dev)
2853 return;
2854
2855 dout("%s: \"%s\" notify_id %llu opcode %u\n", __func__,
2856 rbd_dev->header_name, (unsigned long long)notify_id,
2857 (unsigned int)opcode);
2858 ret = rbd_dev_refresh(rbd_dev);
2859 if (ret)
2860 rbd_warn(rbd_dev, "header refresh error (%d)\n", ret);
2861
2862 rbd_obj_notify_ack_sync(rbd_dev, notify_id);
2863 }
2864
2865 /*
2866 * Request sync osd watch/unwatch. The value of "start" determines
2867 * whether a watch request is being initiated or torn down.
2868 */
2869 static int rbd_dev_header_watch_sync(struct rbd_device *rbd_dev, bool start)
2870 {
2871 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2872 struct rbd_obj_request *obj_request;
2873 int ret;
2874
2875 rbd_assert(start ^ !!rbd_dev->watch_event);
2876 rbd_assert(start ^ !!rbd_dev->watch_request);
2877
2878 if (start) {
2879 ret = ceph_osdc_create_event(osdc, rbd_watch_cb, rbd_dev,
2880 &rbd_dev->watch_event);
2881 if (ret < 0)
2882 return ret;
2883 rbd_assert(rbd_dev->watch_event != NULL);
2884 }
2885
2886 ret = -ENOMEM;
2887 obj_request = rbd_obj_request_create(rbd_dev->header_name, 0, 0,
2888 OBJ_REQUEST_NODATA);
2889 if (!obj_request)
2890 goto out_cancel;
2891
2892 obj_request->osd_req = rbd_osd_req_create(rbd_dev, true, obj_request);
2893 if (!obj_request->osd_req)
2894 goto out_cancel;
2895
2896 if (start)
2897 ceph_osdc_set_request_linger(osdc, obj_request->osd_req);
2898 else
2899 ceph_osdc_unregister_linger_request(osdc,
2900 rbd_dev->watch_request->osd_req);
2901
2902 osd_req_op_watch_init(obj_request->osd_req, 0, CEPH_OSD_OP_WATCH,
2903 rbd_dev->watch_event->cookie, 0, start ? 1 : 0);
2904 rbd_osd_req_format_write(obj_request);
2905
2906 ret = rbd_obj_request_submit(osdc, obj_request);
2907 if (ret)
2908 goto out_cancel;
2909 ret = rbd_obj_request_wait(obj_request);
2910 if (ret)
2911 goto out_cancel;
2912 ret = obj_request->result;
2913 if (ret)
2914 goto out_cancel;
2915
2916 /*
2917 * A watch request is set to linger, so the underlying osd
2918 * request won't go away until we unregister it. We retain
2919 * a pointer to the object request during that time (in
2920 * rbd_dev->watch_request), so we'll keep a reference to
2921 * it. We'll drop that reference (below) after we've
2922 * unregistered it.
2923 */
2924 if (start) {
2925 rbd_dev->watch_request = obj_request;
2926
2927 return 0;
2928 }
2929
2930 /* We have successfully torn down the watch request */
2931
2932 rbd_obj_request_put(rbd_dev->watch_request);
2933 rbd_dev->watch_request = NULL;
2934 out_cancel:
2935 /* Cancel the event if we're tearing down, or on error */
2936 ceph_osdc_cancel_event(rbd_dev->watch_event);
2937 rbd_dev->watch_event = NULL;
2938 if (obj_request)
2939 rbd_obj_request_put(obj_request);
2940
2941 return ret;
2942 }
2943
2944 /*
2945 * Synchronous osd object method call. Returns the number of bytes
2946 * returned in the outbound buffer, or a negative error code.
2947 */
2948 static int rbd_obj_method_sync(struct rbd_device *rbd_dev,
2949 const char *object_name,
2950 const char *class_name,
2951 const char *method_name,
2952 const void *outbound,
2953 size_t outbound_size,
2954 void *inbound,
2955 size_t inbound_size)
2956 {
2957 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
2958 struct rbd_obj_request *obj_request;
2959 struct page **pages;
2960 u32 page_count;
2961 int ret;
2962
2963 /*
2964 * Method calls are ultimately read operations. The result
2965 * should placed into the inbound buffer provided. They
2966 * also supply outbound data--parameters for the object
2967 * method. Currently if this is present it will be a
2968 * snapshot id.
2969 */
2970 page_count = (u32)calc_pages_for(0, inbound_size);
2971 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
2972 if (IS_ERR(pages))
2973 return PTR_ERR(pages);
2974
2975 ret = -ENOMEM;
2976 obj_request = rbd_obj_request_create(object_name, 0, inbound_size,
2977 OBJ_REQUEST_PAGES);
2978 if (!obj_request)
2979 goto out;
2980
2981 obj_request->pages = pages;
2982 obj_request->page_count = page_count;
2983
2984 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
2985 if (!obj_request->osd_req)
2986 goto out;
2987
2988 osd_req_op_cls_init(obj_request->osd_req, 0, CEPH_OSD_OP_CALL,
2989 class_name, method_name);
2990 if (outbound_size) {
2991 struct ceph_pagelist *pagelist;
2992
2993 pagelist = kmalloc(sizeof (*pagelist), GFP_NOFS);
2994 if (!pagelist)
2995 goto out;
2996
2997 ceph_pagelist_init(pagelist);
2998 ceph_pagelist_append(pagelist, outbound, outbound_size);
2999 osd_req_op_cls_request_data_pagelist(obj_request->osd_req, 0,
3000 pagelist);
3001 }
3002 osd_req_op_cls_response_data_pages(obj_request->osd_req, 0,
3003 obj_request->pages, inbound_size,
3004 0, false, false);
3005 rbd_osd_req_format_read(obj_request);
3006
3007 ret = rbd_obj_request_submit(osdc, obj_request);
3008 if (ret)
3009 goto out;
3010 ret = rbd_obj_request_wait(obj_request);
3011 if (ret)
3012 goto out;
3013
3014 ret = obj_request->result;
3015 if (ret < 0)
3016 goto out;
3017
3018 rbd_assert(obj_request->xferred < (u64)INT_MAX);
3019 ret = (int)obj_request->xferred;
3020 ceph_copy_from_page_vector(pages, inbound, 0, obj_request->xferred);
3021 out:
3022 if (obj_request)
3023 rbd_obj_request_put(obj_request);
3024 else
3025 ceph_release_page_vector(pages, page_count);
3026
3027 return ret;
3028 }
3029
3030 static void rbd_request_fn(struct request_queue *q)
3031 __releases(q->queue_lock) __acquires(q->queue_lock)
3032 {
3033 struct rbd_device *rbd_dev = q->queuedata;
3034 bool read_only = rbd_dev->mapping.read_only;
3035 struct request *rq;
3036 int result;
3037
3038 while ((rq = blk_fetch_request(q))) {
3039 bool write_request = rq_data_dir(rq) == WRITE;
3040 struct rbd_img_request *img_request;
3041 u64 offset;
3042 u64 length;
3043
3044 /* Ignore any non-FS requests that filter through. */
3045
3046 if (rq->cmd_type != REQ_TYPE_FS) {
3047 dout("%s: non-fs request type %d\n", __func__,
3048 (int) rq->cmd_type);
3049 __blk_end_request_all(rq, 0);
3050 continue;
3051 }
3052
3053 /* Ignore/skip any zero-length requests */
3054
3055 offset = (u64) blk_rq_pos(rq) << SECTOR_SHIFT;
3056 length = (u64) blk_rq_bytes(rq);
3057
3058 if (!length) {
3059 dout("%s: zero-length request\n", __func__);
3060 __blk_end_request_all(rq, 0);
3061 continue;
3062 }
3063
3064 spin_unlock_irq(q->queue_lock);
3065
3066 /* Disallow writes to a read-only device */
3067
3068 if (write_request) {
3069 result = -EROFS;
3070 if (read_only)
3071 goto end_request;
3072 rbd_assert(rbd_dev->spec->snap_id == CEPH_NOSNAP);
3073 }
3074
3075 /*
3076 * Quit early if the mapped snapshot no longer
3077 * exists. It's still possible the snapshot will
3078 * have disappeared by the time our request arrives
3079 * at the osd, but there's no sense in sending it if
3080 * we already know.
3081 */
3082 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags)) {
3083 dout("request for non-existent snapshot");
3084 rbd_assert(rbd_dev->spec->snap_id != CEPH_NOSNAP);
3085 result = -ENXIO;
3086 goto end_request;
3087 }
3088
3089 result = -EINVAL;
3090 if (offset && length > U64_MAX - offset + 1) {
3091 rbd_warn(rbd_dev, "bad request range (%llu~%llu)\n",
3092 offset, length);
3093 goto end_request; /* Shouldn't happen */
3094 }
3095
3096 result = -EIO;
3097 if (offset + length > rbd_dev->mapping.size) {
3098 rbd_warn(rbd_dev, "beyond EOD (%llu~%llu > %llu)\n",
3099 offset, length, rbd_dev->mapping.size);
3100 goto end_request;
3101 }
3102
3103 result = -ENOMEM;
3104 img_request = rbd_img_request_create(rbd_dev, offset, length,
3105 write_request);
3106 if (!img_request)
3107 goto end_request;
3108
3109 img_request->rq = rq;
3110
3111 result = rbd_img_request_fill(img_request, OBJ_REQUEST_BIO,
3112 rq->bio);
3113 if (!result)
3114 result = rbd_img_request_submit(img_request);
3115 if (result)
3116 rbd_img_request_put(img_request);
3117 end_request:
3118 spin_lock_irq(q->queue_lock);
3119 if (result < 0) {
3120 rbd_warn(rbd_dev, "%s %llx at %llx result %d\n",
3121 write_request ? "write" : "read",
3122 length, offset, result);
3123
3124 __blk_end_request_all(rq, result);
3125 }
3126 }
3127 }
3128
3129 /*
3130 * a queue callback. Makes sure that we don't create a bio that spans across
3131 * multiple osd objects. One exception would be with a single page bios,
3132 * which we handle later at bio_chain_clone_range()
3133 */
3134 static int rbd_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
3135 struct bio_vec *bvec)
3136 {
3137 struct rbd_device *rbd_dev = q->queuedata;
3138 sector_t sector_offset;
3139 sector_t sectors_per_obj;
3140 sector_t obj_sector_offset;
3141 int ret;
3142
3143 /*
3144 * Find how far into its rbd object the partition-relative
3145 * bio start sector is to offset relative to the enclosing
3146 * device.
3147 */
3148 sector_offset = get_start_sect(bmd->bi_bdev) + bmd->bi_sector;
3149 sectors_per_obj = 1 << (rbd_dev->header.obj_order - SECTOR_SHIFT);
3150 obj_sector_offset = sector_offset & (sectors_per_obj - 1);
3151
3152 /*
3153 * Compute the number of bytes from that offset to the end
3154 * of the object. Account for what's already used by the bio.
3155 */
3156 ret = (int) (sectors_per_obj - obj_sector_offset) << SECTOR_SHIFT;
3157 if (ret > bmd->bi_size)
3158 ret -= bmd->bi_size;
3159 else
3160 ret = 0;
3161
3162 /*
3163 * Don't send back more than was asked for. And if the bio
3164 * was empty, let the whole thing through because: "Note
3165 * that a block device *must* allow a single page to be
3166 * added to an empty bio."
3167 */
3168 rbd_assert(bvec->bv_len <= PAGE_SIZE);
3169 if (ret > (int) bvec->bv_len || !bmd->bi_size)
3170 ret = (int) bvec->bv_len;
3171
3172 return ret;
3173 }
3174
3175 static void rbd_free_disk(struct rbd_device *rbd_dev)
3176 {
3177 struct gendisk *disk = rbd_dev->disk;
3178
3179 if (!disk)
3180 return;
3181
3182 rbd_dev->disk = NULL;
3183 if (disk->flags & GENHD_FL_UP) {
3184 del_gendisk(disk);
3185 if (disk->queue)
3186 blk_cleanup_queue(disk->queue);
3187 }
3188 put_disk(disk);
3189 }
3190
3191 static int rbd_obj_read_sync(struct rbd_device *rbd_dev,
3192 const char *object_name,
3193 u64 offset, u64 length, void *buf)
3194
3195 {
3196 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
3197 struct rbd_obj_request *obj_request;
3198 struct page **pages = NULL;
3199 u32 page_count;
3200 size_t size;
3201 int ret;
3202
3203 page_count = (u32) calc_pages_for(offset, length);
3204 pages = ceph_alloc_page_vector(page_count, GFP_KERNEL);
3205 if (IS_ERR(pages))
3206 ret = PTR_ERR(pages);
3207
3208 ret = -ENOMEM;
3209 obj_request = rbd_obj_request_create(object_name, offset, length,
3210 OBJ_REQUEST_PAGES);
3211 if (!obj_request)
3212 goto out;
3213
3214 obj_request->pages = pages;
3215 obj_request->page_count = page_count;
3216
3217 obj_request->osd_req = rbd_osd_req_create(rbd_dev, false, obj_request);
3218 if (!obj_request->osd_req)
3219 goto out;
3220
3221 osd_req_op_extent_init(obj_request->osd_req, 0, CEPH_OSD_OP_READ,
3222 offset, length, 0, 0);
3223 osd_req_op_extent_osd_data_pages(obj_request->osd_req, 0,
3224 obj_request->pages,
3225 obj_request->length,
3226 obj_request->offset & ~PAGE_MASK,
3227 false, false);
3228 rbd_osd_req_format_read(obj_request);
3229
3230 ret = rbd_obj_request_submit(osdc, obj_request);
3231 if (ret)
3232 goto out;
3233 ret = rbd_obj_request_wait(obj_request);
3234 if (ret)
3235 goto out;
3236
3237 ret = obj_request->result;
3238 if (ret < 0)
3239 goto out;
3240
3241 rbd_assert(obj_request->xferred <= (u64) SIZE_MAX);
3242 size = (size_t) obj_request->xferred;
3243 ceph_copy_from_page_vector(pages, buf, 0, size);
3244 rbd_assert(size <= (size_t)INT_MAX);
3245 ret = (int)size;
3246 out:
3247 if (obj_request)
3248 rbd_obj_request_put(obj_request);
3249 else
3250 ceph_release_page_vector(pages, page_count);
3251
3252 return ret;
3253 }
3254
3255 /*
3256 * Read the complete header for the given rbd device. On successful
3257 * return, the rbd_dev->header field will contain up-to-date
3258 * information about the image.
3259 */
3260 static int rbd_dev_v1_header_info(struct rbd_device *rbd_dev)
3261 {
3262 struct rbd_image_header_ondisk *ondisk = NULL;
3263 u32 snap_count = 0;
3264 u64 names_size = 0;
3265 u32 want_count;
3266 int ret;
3267
3268 /*
3269 * The complete header will include an array of its 64-bit
3270 * snapshot ids, followed by the names of those snapshots as
3271 * a contiguous block of NUL-terminated strings. Note that
3272 * the number of snapshots could change by the time we read
3273 * it in, in which case we re-read it.
3274 */
3275 do {
3276 size_t size;
3277
3278 kfree(ondisk);
3279
3280 size = sizeof (*ondisk);
3281 size += snap_count * sizeof (struct rbd_image_snap_ondisk);
3282 size += names_size;
3283 ondisk = kmalloc(size, GFP_KERNEL);
3284 if (!ondisk)
3285 return -ENOMEM;
3286
3287 ret = rbd_obj_read_sync(rbd_dev, rbd_dev->header_name,
3288 0, size, ondisk);
3289 if (ret < 0)
3290 goto out;
3291 if ((size_t)ret < size) {
3292 ret = -ENXIO;
3293 rbd_warn(rbd_dev, "short header read (want %zd got %d)",
3294 size, ret);
3295 goto out;
3296 }
3297 if (!rbd_dev_ondisk_valid(ondisk)) {
3298 ret = -ENXIO;
3299 rbd_warn(rbd_dev, "invalid header");
3300 goto out;
3301 }
3302
3303 names_size = le64_to_cpu(ondisk->snap_names_len);
3304 want_count = snap_count;
3305 snap_count = le32_to_cpu(ondisk->snap_count);
3306 } while (snap_count != want_count);
3307
3308 ret = rbd_header_from_disk(rbd_dev, ondisk);
3309 out:
3310 kfree(ondisk);
3311
3312 return ret;
3313 }
3314
3315 /*
3316 * Clear the rbd device's EXISTS flag if the snapshot it's mapped to
3317 * has disappeared from the (just updated) snapshot context.
3318 */
3319 static void rbd_exists_validate(struct rbd_device *rbd_dev)
3320 {
3321 u64 snap_id;
3322
3323 if (!test_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags))
3324 return;
3325
3326 snap_id = rbd_dev->spec->snap_id;
3327 if (snap_id == CEPH_NOSNAP)
3328 return;
3329
3330 if (rbd_dev_snap_index(rbd_dev, snap_id) == BAD_SNAP_INDEX)
3331 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
3332 }
3333
3334 static void rbd_dev_update_size(struct rbd_device *rbd_dev)
3335 {
3336 sector_t size;
3337 bool removing;
3338
3339 /*
3340 * Don't hold the lock while doing disk operations,
3341 * or lock ordering will conflict with the bdev mutex via:
3342 * rbd_add() -> blkdev_get() -> rbd_open()
3343 */
3344 spin_lock_irq(&rbd_dev->lock);
3345 removing = test_bit(RBD_DEV_FLAG_REMOVING, &rbd_dev->flags);
3346 spin_unlock_irq(&rbd_dev->lock);
3347 /*
3348 * If the device is being removed, rbd_dev->disk has
3349 * been destroyed, so don't try to update its size
3350 */
3351 if (!removing) {
3352 size = (sector_t)rbd_dev->mapping.size / SECTOR_SIZE;
3353 dout("setting size to %llu sectors", (unsigned long long)size);
3354 set_capacity(rbd_dev->disk, size);
3355 revalidate_disk(rbd_dev->disk);
3356 }
3357 }
3358
3359 static int rbd_dev_refresh(struct rbd_device *rbd_dev)
3360 {
3361 u64 mapping_size;
3362 int ret;
3363
3364 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
3365 down_write(&rbd_dev->header_rwsem);
3366 mapping_size = rbd_dev->mapping.size;
3367 if (rbd_dev->image_format == 1)
3368 ret = rbd_dev_v1_header_info(rbd_dev);
3369 else
3370 ret = rbd_dev_v2_header_info(rbd_dev);
3371
3372 /* If it's a mapped snapshot, validate its EXISTS flag */
3373
3374 rbd_exists_validate(rbd_dev);
3375 up_write(&rbd_dev->header_rwsem);
3376
3377 if (mapping_size != rbd_dev->mapping.size) {
3378 rbd_dev_update_size(rbd_dev);
3379 }
3380
3381 return ret;
3382 }
3383
3384 static int rbd_init_disk(struct rbd_device *rbd_dev)
3385 {
3386 struct gendisk *disk;
3387 struct request_queue *q;
3388 u64 segment_size;
3389
3390 /* create gendisk info */
3391 disk = alloc_disk(RBD_MINORS_PER_MAJOR);
3392 if (!disk)
3393 return -ENOMEM;
3394
3395 snprintf(disk->disk_name, sizeof(disk->disk_name), RBD_DRV_NAME "%d",
3396 rbd_dev->dev_id);
3397 disk->major = rbd_dev->major;
3398 disk->first_minor = 0;
3399 disk->fops = &rbd_bd_ops;
3400 disk->private_data = rbd_dev;
3401
3402 q = blk_init_queue(rbd_request_fn, &rbd_dev->lock);
3403 if (!q)
3404 goto out_disk;
3405
3406 /* We use the default size, but let's be explicit about it. */
3407 blk_queue_physical_block_size(q, SECTOR_SIZE);
3408
3409 /* set io sizes to object size */
3410 segment_size = rbd_obj_bytes(&rbd_dev->header);
3411 blk_queue_max_hw_sectors(q, segment_size / SECTOR_SIZE);
3412 blk_queue_max_segment_size(q, segment_size);
3413 blk_queue_io_min(q, segment_size);
3414 blk_queue_io_opt(q, segment_size);
3415
3416 blk_queue_merge_bvec(q, rbd_merge_bvec);
3417 disk->queue = q;
3418
3419 q->queuedata = rbd_dev;
3420
3421 rbd_dev->disk = disk;
3422
3423 return 0;
3424 out_disk:
3425 put_disk(disk);
3426
3427 return -ENOMEM;
3428 }
3429
3430 /*
3431 sysfs
3432 */
3433
3434 static struct rbd_device *dev_to_rbd_dev(struct device *dev)
3435 {
3436 return container_of(dev, struct rbd_device, dev);
3437 }
3438
3439 static ssize_t rbd_size_show(struct device *dev,
3440 struct device_attribute *attr, char *buf)
3441 {
3442 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3443
3444 return sprintf(buf, "%llu\n",
3445 (unsigned long long)rbd_dev->mapping.size);
3446 }
3447
3448 /*
3449 * Note this shows the features for whatever's mapped, which is not
3450 * necessarily the base image.
3451 */
3452 static ssize_t rbd_features_show(struct device *dev,
3453 struct device_attribute *attr, char *buf)
3454 {
3455 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3456
3457 return sprintf(buf, "0x%016llx\n",
3458 (unsigned long long)rbd_dev->mapping.features);
3459 }
3460
3461 static ssize_t rbd_major_show(struct device *dev,
3462 struct device_attribute *attr, char *buf)
3463 {
3464 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3465
3466 if (rbd_dev->major)
3467 return sprintf(buf, "%d\n", rbd_dev->major);
3468
3469 return sprintf(buf, "(none)\n");
3470
3471 }
3472
3473 static ssize_t rbd_client_id_show(struct device *dev,
3474 struct device_attribute *attr, char *buf)
3475 {
3476 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3477
3478 return sprintf(buf, "client%lld\n",
3479 ceph_client_id(rbd_dev->rbd_client->client));
3480 }
3481
3482 static ssize_t rbd_pool_show(struct device *dev,
3483 struct device_attribute *attr, char *buf)
3484 {
3485 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3486
3487 return sprintf(buf, "%s\n", rbd_dev->spec->pool_name);
3488 }
3489
3490 static ssize_t rbd_pool_id_show(struct device *dev,
3491 struct device_attribute *attr, char *buf)
3492 {
3493 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3494
3495 return sprintf(buf, "%llu\n",
3496 (unsigned long long) rbd_dev->spec->pool_id);
3497 }
3498
3499 static ssize_t rbd_name_show(struct device *dev,
3500 struct device_attribute *attr, char *buf)
3501 {
3502 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3503
3504 if (rbd_dev->spec->image_name)
3505 return sprintf(buf, "%s\n", rbd_dev->spec->image_name);
3506
3507 return sprintf(buf, "(unknown)\n");
3508 }
3509
3510 static ssize_t rbd_image_id_show(struct device *dev,
3511 struct device_attribute *attr, char *buf)
3512 {
3513 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3514
3515 return sprintf(buf, "%s\n", rbd_dev->spec->image_id);
3516 }
3517
3518 /*
3519 * Shows the name of the currently-mapped snapshot (or
3520 * RBD_SNAP_HEAD_NAME for the base image).
3521 */
3522 static ssize_t rbd_snap_show(struct device *dev,
3523 struct device_attribute *attr,
3524 char *buf)
3525 {
3526 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3527
3528 return sprintf(buf, "%s\n", rbd_dev->spec->snap_name);
3529 }
3530
3531 /*
3532 * For an rbd v2 image, shows the pool id, image id, and snapshot id
3533 * for the parent image. If there is no parent, simply shows
3534 * "(no parent image)".
3535 */
3536 static ssize_t rbd_parent_show(struct device *dev,
3537 struct device_attribute *attr,
3538 char *buf)
3539 {
3540 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3541 struct rbd_spec *spec = rbd_dev->parent_spec;
3542 int count;
3543 char *bufp = buf;
3544
3545 if (!spec)
3546 return sprintf(buf, "(no parent image)\n");
3547
3548 count = sprintf(bufp, "pool_id %llu\npool_name %s\n",
3549 (unsigned long long) spec->pool_id, spec->pool_name);
3550 if (count < 0)
3551 return count;
3552 bufp += count;
3553
3554 count = sprintf(bufp, "image_id %s\nimage_name %s\n", spec->image_id,
3555 spec->image_name ? spec->image_name : "(unknown)");
3556 if (count < 0)
3557 return count;
3558 bufp += count;
3559
3560 count = sprintf(bufp, "snap_id %llu\nsnap_name %s\n",
3561 (unsigned long long) spec->snap_id, spec->snap_name);
3562 if (count < 0)
3563 return count;
3564 bufp += count;
3565
3566 count = sprintf(bufp, "overlap %llu\n", rbd_dev->parent_overlap);
3567 if (count < 0)
3568 return count;
3569 bufp += count;
3570
3571 return (ssize_t) (bufp - buf);
3572 }
3573
3574 static ssize_t rbd_image_refresh(struct device *dev,
3575 struct device_attribute *attr,
3576 const char *buf,
3577 size_t size)
3578 {
3579 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
3580 int ret;
3581
3582 ret = rbd_dev_refresh(rbd_dev);
3583 if (ret)
3584 rbd_warn(rbd_dev, ": manual header refresh error (%d)\n", ret);
3585
3586 return ret < 0 ? ret : size;
3587 }
3588
3589 static DEVICE_ATTR(size, S_IRUGO, rbd_size_show, NULL);
3590 static DEVICE_ATTR(features, S_IRUGO, rbd_features_show, NULL);
3591 static DEVICE_ATTR(major, S_IRUGO, rbd_major_show, NULL);
3592 static DEVICE_ATTR(client_id, S_IRUGO, rbd_client_id_show, NULL);
3593 static DEVICE_ATTR(pool, S_IRUGO, rbd_pool_show, NULL);
3594 static DEVICE_ATTR(pool_id, S_IRUGO, rbd_pool_id_show, NULL);
3595 static DEVICE_ATTR(name, S_IRUGO, rbd_name_show, NULL);
3596 static DEVICE_ATTR(image_id, S_IRUGO, rbd_image_id_show, NULL);
3597 static DEVICE_ATTR(refresh, S_IWUSR, NULL, rbd_image_refresh);
3598 static DEVICE_ATTR(current_snap, S_IRUGO, rbd_snap_show, NULL);
3599 static DEVICE_ATTR(parent, S_IRUGO, rbd_parent_show, NULL);
3600
3601 static struct attribute *rbd_attrs[] = {
3602 &dev_attr_size.attr,
3603 &dev_attr_features.attr,
3604 &dev_attr_major.attr,
3605 &dev_attr_client_id.attr,
3606 &dev_attr_pool.attr,
3607 &dev_attr_pool_id.attr,
3608 &dev_attr_name.attr,
3609 &dev_attr_image_id.attr,
3610 &dev_attr_current_snap.attr,
3611 &dev_attr_parent.attr,
3612 &dev_attr_refresh.attr,
3613 NULL
3614 };
3615
3616 static struct attribute_group rbd_attr_group = {
3617 .attrs = rbd_attrs,
3618 };
3619
3620 static const struct attribute_group *rbd_attr_groups[] = {
3621 &rbd_attr_group,
3622 NULL
3623 };
3624
3625 static void rbd_sysfs_dev_release(struct device *dev)
3626 {
3627 }
3628
3629 static struct device_type rbd_device_type = {
3630 .name = "rbd",
3631 .groups = rbd_attr_groups,
3632 .release = rbd_sysfs_dev_release,
3633 };
3634
3635 static struct rbd_spec *rbd_spec_get(struct rbd_spec *spec)
3636 {
3637 kref_get(&spec->kref);
3638
3639 return spec;
3640 }
3641
3642 static void rbd_spec_free(struct kref *kref);
3643 static void rbd_spec_put(struct rbd_spec *spec)
3644 {
3645 if (spec)
3646 kref_put(&spec->kref, rbd_spec_free);
3647 }
3648
3649 static struct rbd_spec *rbd_spec_alloc(void)
3650 {
3651 struct rbd_spec *spec;
3652
3653 spec = kzalloc(sizeof (*spec), GFP_KERNEL);
3654 if (!spec)
3655 return NULL;
3656 kref_init(&spec->kref);
3657
3658 return spec;
3659 }
3660
3661 static void rbd_spec_free(struct kref *kref)
3662 {
3663 struct rbd_spec *spec = container_of(kref, struct rbd_spec, kref);
3664
3665 kfree(spec->pool_name);
3666 kfree(spec->image_id);
3667 kfree(spec->image_name);
3668 kfree(spec->snap_name);
3669 kfree(spec);
3670 }
3671
3672 static struct rbd_device *rbd_dev_create(struct rbd_client *rbdc,
3673 struct rbd_spec *spec)
3674 {
3675 struct rbd_device *rbd_dev;
3676
3677 rbd_dev = kzalloc(sizeof (*rbd_dev), GFP_KERNEL);
3678 if (!rbd_dev)
3679 return NULL;
3680
3681 spin_lock_init(&rbd_dev->lock);
3682 rbd_dev->flags = 0;
3683 atomic_set(&rbd_dev->parent_ref, 0);
3684 INIT_LIST_HEAD(&rbd_dev->node);
3685 init_rwsem(&rbd_dev->header_rwsem);
3686
3687 rbd_dev->spec = spec;
3688 rbd_dev->rbd_client = rbdc;
3689
3690 /* Initialize the layout used for all rbd requests */
3691
3692 rbd_dev->layout.fl_stripe_unit = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3693 rbd_dev->layout.fl_stripe_count = cpu_to_le32(1);
3694 rbd_dev->layout.fl_object_size = cpu_to_le32(1 << RBD_MAX_OBJ_ORDER);
3695 rbd_dev->layout.fl_pg_pool = cpu_to_le32((u32) spec->pool_id);
3696
3697 return rbd_dev;
3698 }
3699
3700 static void rbd_dev_destroy(struct rbd_device *rbd_dev)
3701 {
3702 rbd_put_client(rbd_dev->rbd_client);
3703 rbd_spec_put(rbd_dev->spec);
3704 kfree(rbd_dev);
3705 }
3706
3707 /*
3708 * Get the size and object order for an image snapshot, or if
3709 * snap_id is CEPH_NOSNAP, gets this information for the base
3710 * image.
3711 */
3712 static int _rbd_dev_v2_snap_size(struct rbd_device *rbd_dev, u64 snap_id,
3713 u8 *order, u64 *snap_size)
3714 {
3715 __le64 snapid = cpu_to_le64(snap_id);
3716 int ret;
3717 struct {
3718 u8 order;
3719 __le64 size;
3720 } __attribute__ ((packed)) size_buf = { 0 };
3721
3722 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3723 "rbd", "get_size",
3724 &snapid, sizeof (snapid),
3725 &size_buf, sizeof (size_buf));
3726 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3727 if (ret < 0)
3728 return ret;
3729 if (ret < sizeof (size_buf))
3730 return -ERANGE;
3731
3732 if (order) {
3733 *order = size_buf.order;
3734 dout(" order %u", (unsigned int)*order);
3735 }
3736 *snap_size = le64_to_cpu(size_buf.size);
3737
3738 dout(" snap_id 0x%016llx snap_size = %llu\n",
3739 (unsigned long long)snap_id,
3740 (unsigned long long)*snap_size);
3741
3742 return 0;
3743 }
3744
3745 static int rbd_dev_v2_image_size(struct rbd_device *rbd_dev)
3746 {
3747 return _rbd_dev_v2_snap_size(rbd_dev, CEPH_NOSNAP,
3748 &rbd_dev->header.obj_order,
3749 &rbd_dev->header.image_size);
3750 }
3751
3752 static int rbd_dev_v2_object_prefix(struct rbd_device *rbd_dev)
3753 {
3754 void *reply_buf;
3755 int ret;
3756 void *p;
3757
3758 reply_buf = kzalloc(RBD_OBJ_PREFIX_LEN_MAX, GFP_KERNEL);
3759 if (!reply_buf)
3760 return -ENOMEM;
3761
3762 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3763 "rbd", "get_object_prefix", NULL, 0,
3764 reply_buf, RBD_OBJ_PREFIX_LEN_MAX);
3765 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3766 if (ret < 0)
3767 goto out;
3768
3769 p = reply_buf;
3770 rbd_dev->header.object_prefix = ceph_extract_encoded_string(&p,
3771 p + ret, NULL, GFP_NOIO);
3772 ret = 0;
3773
3774 if (IS_ERR(rbd_dev->header.object_prefix)) {
3775 ret = PTR_ERR(rbd_dev->header.object_prefix);
3776 rbd_dev->header.object_prefix = NULL;
3777 } else {
3778 dout(" object_prefix = %s\n", rbd_dev->header.object_prefix);
3779 }
3780 out:
3781 kfree(reply_buf);
3782
3783 return ret;
3784 }
3785
3786 static int _rbd_dev_v2_snap_features(struct rbd_device *rbd_dev, u64 snap_id,
3787 u64 *snap_features)
3788 {
3789 __le64 snapid = cpu_to_le64(snap_id);
3790 struct {
3791 __le64 features;
3792 __le64 incompat;
3793 } __attribute__ ((packed)) features_buf = { 0 };
3794 u64 incompat;
3795 int ret;
3796
3797 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3798 "rbd", "get_features",
3799 &snapid, sizeof (snapid),
3800 &features_buf, sizeof (features_buf));
3801 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3802 if (ret < 0)
3803 return ret;
3804 if (ret < sizeof (features_buf))
3805 return -ERANGE;
3806
3807 incompat = le64_to_cpu(features_buf.incompat);
3808 if (incompat & ~RBD_FEATURES_SUPPORTED)
3809 return -ENXIO;
3810
3811 *snap_features = le64_to_cpu(features_buf.features);
3812
3813 dout(" snap_id 0x%016llx features = 0x%016llx incompat = 0x%016llx\n",
3814 (unsigned long long)snap_id,
3815 (unsigned long long)*snap_features,
3816 (unsigned long long)le64_to_cpu(features_buf.incompat));
3817
3818 return 0;
3819 }
3820
3821 static int rbd_dev_v2_features(struct rbd_device *rbd_dev)
3822 {
3823 return _rbd_dev_v2_snap_features(rbd_dev, CEPH_NOSNAP,
3824 &rbd_dev->header.features);
3825 }
3826
3827 static int rbd_dev_v2_parent_info(struct rbd_device *rbd_dev)
3828 {
3829 struct rbd_spec *parent_spec;
3830 size_t size;
3831 void *reply_buf = NULL;
3832 __le64 snapid;
3833 void *p;
3834 void *end;
3835 u64 pool_id;
3836 char *image_id;
3837 u64 snap_id;
3838 u64 overlap;
3839 int ret;
3840
3841 parent_spec = rbd_spec_alloc();
3842 if (!parent_spec)
3843 return -ENOMEM;
3844
3845 size = sizeof (__le64) + /* pool_id */
3846 sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX + /* image_id */
3847 sizeof (__le64) + /* snap_id */
3848 sizeof (__le64); /* overlap */
3849 reply_buf = kmalloc(size, GFP_KERNEL);
3850 if (!reply_buf) {
3851 ret = -ENOMEM;
3852 goto out_err;
3853 }
3854
3855 snapid = cpu_to_le64(CEPH_NOSNAP);
3856 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3857 "rbd", "get_parent",
3858 &snapid, sizeof (snapid),
3859 reply_buf, size);
3860 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3861 if (ret < 0)
3862 goto out_err;
3863
3864 p = reply_buf;
3865 end = reply_buf + ret;
3866 ret = -ERANGE;
3867 ceph_decode_64_safe(&p, end, pool_id, out_err);
3868 if (pool_id == CEPH_NOPOOL) {
3869 /*
3870 * Either the parent never existed, or we have
3871 * record of it but the image got flattened so it no
3872 * longer has a parent. When the parent of a
3873 * layered image disappears we immediately set the
3874 * overlap to 0. The effect of this is that all new
3875 * requests will be treated as if the image had no
3876 * parent.
3877 */
3878 if (rbd_dev->parent_overlap) {
3879 rbd_dev->parent_overlap = 0;
3880 smp_mb();
3881 rbd_dev_parent_put(rbd_dev);
3882 pr_info("%s: clone image has been flattened\n",
3883 rbd_dev->disk->disk_name);
3884 }
3885
3886 goto out; /* No parent? No problem. */
3887 }
3888
3889 /* The ceph file layout needs to fit pool id in 32 bits */
3890
3891 ret = -EIO;
3892 if (pool_id > (u64)U32_MAX) {
3893 rbd_warn(NULL, "parent pool id too large (%llu > %u)\n",
3894 (unsigned long long)pool_id, U32_MAX);
3895 goto out_err;
3896 }
3897
3898 image_id = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
3899 if (IS_ERR(image_id)) {
3900 ret = PTR_ERR(image_id);
3901 goto out_err;
3902 }
3903 ceph_decode_64_safe(&p, end, snap_id, out_err);
3904 ceph_decode_64_safe(&p, end, overlap, out_err);
3905
3906 /*
3907 * The parent won't change (except when the clone is
3908 * flattened, already handled that). So we only need to
3909 * record the parent spec we have not already done so.
3910 */
3911 if (!rbd_dev->parent_spec) {
3912 parent_spec->pool_id = pool_id;
3913 parent_spec->image_id = image_id;
3914 parent_spec->snap_id = snap_id;
3915 rbd_dev->parent_spec = parent_spec;
3916 parent_spec = NULL; /* rbd_dev now owns this */
3917 }
3918
3919 /*
3920 * We always update the parent overlap. If it's zero we
3921 * treat it specially.
3922 */
3923 rbd_dev->parent_overlap = overlap;
3924 smp_mb();
3925 if (!overlap) {
3926
3927 /* A null parent_spec indicates it's the initial probe */
3928
3929 if (parent_spec) {
3930 /*
3931 * The overlap has become zero, so the clone
3932 * must have been resized down to 0 at some
3933 * point. Treat this the same as a flatten.
3934 */
3935 rbd_dev_parent_put(rbd_dev);
3936 pr_info("%s: clone image now standalone\n",
3937 rbd_dev->disk->disk_name);
3938 } else {
3939 /*
3940 * For the initial probe, if we find the
3941 * overlap is zero we just pretend there was
3942 * no parent image.
3943 */
3944 rbd_warn(rbd_dev, "ignoring parent of "
3945 "clone with overlap 0\n");
3946 }
3947 }
3948 out:
3949 ret = 0;
3950 out_err:
3951 kfree(reply_buf);
3952 rbd_spec_put(parent_spec);
3953
3954 return ret;
3955 }
3956
3957 static int rbd_dev_v2_striping_info(struct rbd_device *rbd_dev)
3958 {
3959 struct {
3960 __le64 stripe_unit;
3961 __le64 stripe_count;
3962 } __attribute__ ((packed)) striping_info_buf = { 0 };
3963 size_t size = sizeof (striping_info_buf);
3964 void *p;
3965 u64 obj_size;
3966 u64 stripe_unit;
3967 u64 stripe_count;
3968 int ret;
3969
3970 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
3971 "rbd", "get_stripe_unit_count", NULL, 0,
3972 (char *)&striping_info_buf, size);
3973 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
3974 if (ret < 0)
3975 return ret;
3976 if (ret < size)
3977 return -ERANGE;
3978
3979 /*
3980 * We don't actually support the "fancy striping" feature
3981 * (STRIPINGV2) yet, but if the striping sizes are the
3982 * defaults the behavior is the same as before. So find
3983 * out, and only fail if the image has non-default values.
3984 */
3985 ret = -EINVAL;
3986 obj_size = (u64)1 << rbd_dev->header.obj_order;
3987 p = &striping_info_buf;
3988 stripe_unit = ceph_decode_64(&p);
3989 if (stripe_unit != obj_size) {
3990 rbd_warn(rbd_dev, "unsupported stripe unit "
3991 "(got %llu want %llu)",
3992 stripe_unit, obj_size);
3993 return -EINVAL;
3994 }
3995 stripe_count = ceph_decode_64(&p);
3996 if (stripe_count != 1) {
3997 rbd_warn(rbd_dev, "unsupported stripe count "
3998 "(got %llu want 1)", stripe_count);
3999 return -EINVAL;
4000 }
4001 rbd_dev->header.stripe_unit = stripe_unit;
4002 rbd_dev->header.stripe_count = stripe_count;
4003
4004 return 0;
4005 }
4006
4007 static char *rbd_dev_image_name(struct rbd_device *rbd_dev)
4008 {
4009 size_t image_id_size;
4010 char *image_id;
4011 void *p;
4012 void *end;
4013 size_t size;
4014 void *reply_buf = NULL;
4015 size_t len = 0;
4016 char *image_name = NULL;
4017 int ret;
4018
4019 rbd_assert(!rbd_dev->spec->image_name);
4020
4021 len = strlen(rbd_dev->spec->image_id);
4022 image_id_size = sizeof (__le32) + len;
4023 image_id = kmalloc(image_id_size, GFP_KERNEL);
4024 if (!image_id)
4025 return NULL;
4026
4027 p = image_id;
4028 end = image_id + image_id_size;
4029 ceph_encode_string(&p, end, rbd_dev->spec->image_id, (u32)len);
4030
4031 size = sizeof (__le32) + RBD_IMAGE_NAME_LEN_MAX;
4032 reply_buf = kmalloc(size, GFP_KERNEL);
4033 if (!reply_buf)
4034 goto out;
4035
4036 ret = rbd_obj_method_sync(rbd_dev, RBD_DIRECTORY,
4037 "rbd", "dir_get_name",
4038 image_id, image_id_size,
4039 reply_buf, size);
4040 if (ret < 0)
4041 goto out;
4042 p = reply_buf;
4043 end = reply_buf + ret;
4044
4045 image_name = ceph_extract_encoded_string(&p, end, &len, GFP_KERNEL);
4046 if (IS_ERR(image_name))
4047 image_name = NULL;
4048 else
4049 dout("%s: name is %s len is %zd\n", __func__, image_name, len);
4050 out:
4051 kfree(reply_buf);
4052 kfree(image_id);
4053
4054 return image_name;
4055 }
4056
4057 static u64 rbd_v1_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4058 {
4059 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4060 const char *snap_name;
4061 u32 which = 0;
4062
4063 /* Skip over names until we find the one we are looking for */
4064
4065 snap_name = rbd_dev->header.snap_names;
4066 while (which < snapc->num_snaps) {
4067 if (!strcmp(name, snap_name))
4068 return snapc->snaps[which];
4069 snap_name += strlen(snap_name) + 1;
4070 which++;
4071 }
4072 return CEPH_NOSNAP;
4073 }
4074
4075 static u64 rbd_v2_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4076 {
4077 struct ceph_snap_context *snapc = rbd_dev->header.snapc;
4078 u32 which;
4079 bool found = false;
4080 u64 snap_id;
4081
4082 for (which = 0; !found && which < snapc->num_snaps; which++) {
4083 const char *snap_name;
4084
4085 snap_id = snapc->snaps[which];
4086 snap_name = rbd_dev_v2_snap_name(rbd_dev, snap_id);
4087 if (IS_ERR(snap_name)) {
4088 /* ignore no-longer existing snapshots */
4089 if (PTR_ERR(snap_name) == -ENOENT)
4090 continue;
4091 else
4092 break;
4093 }
4094 found = !strcmp(name, snap_name);
4095 kfree(snap_name);
4096 }
4097 return found ? snap_id : CEPH_NOSNAP;
4098 }
4099
4100 /*
4101 * Assumes name is never RBD_SNAP_HEAD_NAME; returns CEPH_NOSNAP if
4102 * no snapshot by that name is found, or if an error occurs.
4103 */
4104 static u64 rbd_snap_id_by_name(struct rbd_device *rbd_dev, const char *name)
4105 {
4106 if (rbd_dev->image_format == 1)
4107 return rbd_v1_snap_id_by_name(rbd_dev, name);
4108
4109 return rbd_v2_snap_id_by_name(rbd_dev, name);
4110 }
4111
4112 /*
4113 * When an rbd image has a parent image, it is identified by the
4114 * pool, image, and snapshot ids (not names). This function fills
4115 * in the names for those ids. (It's OK if we can't figure out the
4116 * name for an image id, but the pool and snapshot ids should always
4117 * exist and have names.) All names in an rbd spec are dynamically
4118 * allocated.
4119 *
4120 * When an image being mapped (not a parent) is probed, we have the
4121 * pool name and pool id, image name and image id, and the snapshot
4122 * name. The only thing we're missing is the snapshot id.
4123 */
4124 static int rbd_dev_spec_update(struct rbd_device *rbd_dev)
4125 {
4126 struct ceph_osd_client *osdc = &rbd_dev->rbd_client->client->osdc;
4127 struct rbd_spec *spec = rbd_dev->spec;
4128 const char *pool_name;
4129 const char *image_name;
4130 const char *snap_name;
4131 int ret;
4132
4133 /*
4134 * An image being mapped will have the pool name (etc.), but
4135 * we need to look up the snapshot id.
4136 */
4137 if (spec->pool_name) {
4138 if (strcmp(spec->snap_name, RBD_SNAP_HEAD_NAME)) {
4139 u64 snap_id;
4140
4141 snap_id = rbd_snap_id_by_name(rbd_dev, spec->snap_name);
4142 if (snap_id == CEPH_NOSNAP)
4143 return -ENOENT;
4144 spec->snap_id = snap_id;
4145 } else {
4146 spec->snap_id = CEPH_NOSNAP;
4147 }
4148
4149 return 0;
4150 }
4151
4152 /* Get the pool name; we have to make our own copy of this */
4153
4154 pool_name = ceph_pg_pool_name_by_id(osdc->osdmap, spec->pool_id);
4155 if (!pool_name) {
4156 rbd_warn(rbd_dev, "no pool with id %llu", spec->pool_id);
4157 return -EIO;
4158 }
4159 pool_name = kstrdup(pool_name, GFP_KERNEL);
4160 if (!pool_name)
4161 return -ENOMEM;
4162
4163 /* Fetch the image name; tolerate failure here */
4164
4165 image_name = rbd_dev_image_name(rbd_dev);
4166 if (!image_name)
4167 rbd_warn(rbd_dev, "unable to get image name");
4168
4169 /* Look up the snapshot name, and make a copy */
4170
4171 snap_name = rbd_snap_name(rbd_dev, spec->snap_id);
4172 if (IS_ERR(snap_name)) {
4173 ret = PTR_ERR(snap_name);
4174 goto out_err;
4175 }
4176
4177 spec->pool_name = pool_name;
4178 spec->image_name = image_name;
4179 spec->snap_name = snap_name;
4180
4181 return 0;
4182 out_err:
4183 kfree(image_name);
4184 kfree(pool_name);
4185
4186 return ret;
4187 }
4188
4189 static int rbd_dev_v2_snap_context(struct rbd_device *rbd_dev)
4190 {
4191 size_t size;
4192 int ret;
4193 void *reply_buf;
4194 void *p;
4195 void *end;
4196 u64 seq;
4197 u32 snap_count;
4198 struct ceph_snap_context *snapc;
4199 u32 i;
4200
4201 /*
4202 * We'll need room for the seq value (maximum snapshot id),
4203 * snapshot count, and array of that many snapshot ids.
4204 * For now we have a fixed upper limit on the number we're
4205 * prepared to receive.
4206 */
4207 size = sizeof (__le64) + sizeof (__le32) +
4208 RBD_MAX_SNAP_COUNT * sizeof (__le64);
4209 reply_buf = kzalloc(size, GFP_KERNEL);
4210 if (!reply_buf)
4211 return -ENOMEM;
4212
4213 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4214 "rbd", "get_snapcontext", NULL, 0,
4215 reply_buf, size);
4216 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4217 if (ret < 0)
4218 goto out;
4219
4220 p = reply_buf;
4221 end = reply_buf + ret;
4222 ret = -ERANGE;
4223 ceph_decode_64_safe(&p, end, seq, out);
4224 ceph_decode_32_safe(&p, end, snap_count, out);
4225
4226 /*
4227 * Make sure the reported number of snapshot ids wouldn't go
4228 * beyond the end of our buffer. But before checking that,
4229 * make sure the computed size of the snapshot context we
4230 * allocate is representable in a size_t.
4231 */
4232 if (snap_count > (SIZE_MAX - sizeof (struct ceph_snap_context))
4233 / sizeof (u64)) {
4234 ret = -EINVAL;
4235 goto out;
4236 }
4237 if (!ceph_has_room(&p, end, snap_count * sizeof (__le64)))
4238 goto out;
4239 ret = 0;
4240
4241 snapc = ceph_create_snap_context(snap_count, GFP_KERNEL);
4242 if (!snapc) {
4243 ret = -ENOMEM;
4244 goto out;
4245 }
4246 snapc->seq = seq;
4247 for (i = 0; i < snap_count; i++)
4248 snapc->snaps[i] = ceph_decode_64(&p);
4249
4250 ceph_put_snap_context(rbd_dev->header.snapc);
4251 rbd_dev->header.snapc = snapc;
4252
4253 dout(" snap context seq = %llu, snap_count = %u\n",
4254 (unsigned long long)seq, (unsigned int)snap_count);
4255 out:
4256 kfree(reply_buf);
4257
4258 return ret;
4259 }
4260
4261 static const char *rbd_dev_v2_snap_name(struct rbd_device *rbd_dev,
4262 u64 snap_id)
4263 {
4264 size_t size;
4265 void *reply_buf;
4266 __le64 snapid;
4267 int ret;
4268 void *p;
4269 void *end;
4270 char *snap_name;
4271
4272 size = sizeof (__le32) + RBD_MAX_SNAP_NAME_LEN;
4273 reply_buf = kmalloc(size, GFP_KERNEL);
4274 if (!reply_buf)
4275 return ERR_PTR(-ENOMEM);
4276
4277 snapid = cpu_to_le64(snap_id);
4278 ret = rbd_obj_method_sync(rbd_dev, rbd_dev->header_name,
4279 "rbd", "get_snapshot_name",
4280 &snapid, sizeof (snapid),
4281 reply_buf, size);
4282 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4283 if (ret < 0) {
4284 snap_name = ERR_PTR(ret);
4285 goto out;
4286 }
4287
4288 p = reply_buf;
4289 end = reply_buf + ret;
4290 snap_name = ceph_extract_encoded_string(&p, end, NULL, GFP_KERNEL);
4291 if (IS_ERR(snap_name))
4292 goto out;
4293
4294 dout(" snap_id 0x%016llx snap_name = %s\n",
4295 (unsigned long long)snap_id, snap_name);
4296 out:
4297 kfree(reply_buf);
4298
4299 return snap_name;
4300 }
4301
4302 static int rbd_dev_v2_header_info(struct rbd_device *rbd_dev)
4303 {
4304 bool first_time = rbd_dev->header.object_prefix == NULL;
4305 int ret;
4306
4307 ret = rbd_dev_v2_image_size(rbd_dev);
4308 if (ret)
4309 return ret;
4310
4311 if (first_time) {
4312 ret = rbd_dev_v2_header_onetime(rbd_dev);
4313 if (ret)
4314 return ret;
4315 }
4316
4317 /*
4318 * If the image supports layering, get the parent info. We
4319 * need to probe the first time regardless. Thereafter we
4320 * only need to if there's a parent, to see if it has
4321 * disappeared due to the mapped image getting flattened.
4322 */
4323 if (rbd_dev->header.features & RBD_FEATURE_LAYERING &&
4324 (first_time || rbd_dev->parent_spec)) {
4325 bool warn;
4326
4327 ret = rbd_dev_v2_parent_info(rbd_dev);
4328 if (ret)
4329 return ret;
4330
4331 /*
4332 * Print a warning if this is the initial probe and
4333 * the image has a parent. Don't print it if the
4334 * image now being probed is itself a parent. We
4335 * can tell at this point because we won't know its
4336 * pool name yet (just its pool id).
4337 */
4338 warn = rbd_dev->parent_spec && rbd_dev->spec->pool_name;
4339 if (first_time && warn)
4340 rbd_warn(rbd_dev, "WARNING: kernel layering "
4341 "is EXPERIMENTAL!");
4342 }
4343
4344 if (rbd_dev->spec->snap_id == CEPH_NOSNAP)
4345 if (rbd_dev->mapping.size != rbd_dev->header.image_size)
4346 rbd_dev->mapping.size = rbd_dev->header.image_size;
4347
4348 ret = rbd_dev_v2_snap_context(rbd_dev);
4349 dout("rbd_dev_v2_snap_context returned %d\n", ret);
4350
4351 return ret;
4352 }
4353
4354 static int rbd_bus_add_dev(struct rbd_device *rbd_dev)
4355 {
4356 struct device *dev;
4357 int ret;
4358
4359 dev = &rbd_dev->dev;
4360 dev->bus = &rbd_bus_type;
4361 dev->type = &rbd_device_type;
4362 dev->parent = &rbd_root_dev;
4363 dev->release = rbd_dev_device_release;
4364 dev_set_name(dev, "%d", rbd_dev->dev_id);
4365 ret = device_register(dev);
4366
4367 return ret;
4368 }
4369
4370 static void rbd_bus_del_dev(struct rbd_device *rbd_dev)
4371 {
4372 device_unregister(&rbd_dev->dev);
4373 }
4374
4375 static atomic64_t rbd_dev_id_max = ATOMIC64_INIT(0);
4376
4377 /*
4378 * Get a unique rbd identifier for the given new rbd_dev, and add
4379 * the rbd_dev to the global list. The minimum rbd id is 1.
4380 */
4381 static void rbd_dev_id_get(struct rbd_device *rbd_dev)
4382 {
4383 rbd_dev->dev_id = atomic64_inc_return(&rbd_dev_id_max);
4384
4385 spin_lock(&rbd_dev_list_lock);
4386 list_add_tail(&rbd_dev->node, &rbd_dev_list);
4387 spin_unlock(&rbd_dev_list_lock);
4388 dout("rbd_dev %p given dev id %llu\n", rbd_dev,
4389 (unsigned long long) rbd_dev->dev_id);
4390 }
4391
4392 /*
4393 * Remove an rbd_dev from the global list, and record that its
4394 * identifier is no longer in use.
4395 */
4396 static void rbd_dev_id_put(struct rbd_device *rbd_dev)
4397 {
4398 struct list_head *tmp;
4399 int rbd_id = rbd_dev->dev_id;
4400 int max_id;
4401
4402 rbd_assert(rbd_id > 0);
4403
4404 dout("rbd_dev %p released dev id %llu\n", rbd_dev,
4405 (unsigned long long) rbd_dev->dev_id);
4406 spin_lock(&rbd_dev_list_lock);
4407 list_del_init(&rbd_dev->node);
4408
4409 /*
4410 * If the id being "put" is not the current maximum, there
4411 * is nothing special we need to do.
4412 */
4413 if (rbd_id != atomic64_read(&rbd_dev_id_max)) {
4414 spin_unlock(&rbd_dev_list_lock);
4415 return;
4416 }
4417
4418 /*
4419 * We need to update the current maximum id. Search the
4420 * list to find out what it is. We're more likely to find
4421 * the maximum at the end, so search the list backward.
4422 */
4423 max_id = 0;
4424 list_for_each_prev(tmp, &rbd_dev_list) {
4425 struct rbd_device *rbd_dev;
4426
4427 rbd_dev = list_entry(tmp, struct rbd_device, node);
4428 if (rbd_dev->dev_id > max_id)
4429 max_id = rbd_dev->dev_id;
4430 }
4431 spin_unlock(&rbd_dev_list_lock);
4432
4433 /*
4434 * The max id could have been updated by rbd_dev_id_get(), in
4435 * which case it now accurately reflects the new maximum.
4436 * Be careful not to overwrite the maximum value in that
4437 * case.
4438 */
4439 atomic64_cmpxchg(&rbd_dev_id_max, rbd_id, max_id);
4440 dout(" max dev id has been reset\n");
4441 }
4442
4443 /*
4444 * Skips over white space at *buf, and updates *buf to point to the
4445 * first found non-space character (if any). Returns the length of
4446 * the token (string of non-white space characters) found. Note
4447 * that *buf must be terminated with '\0'.
4448 */
4449 static inline size_t next_token(const char **buf)
4450 {
4451 /*
4452 * These are the characters that produce nonzero for
4453 * isspace() in the "C" and "POSIX" locales.
4454 */
4455 const char *spaces = " \f\n\r\t\v";
4456
4457 *buf += strspn(*buf, spaces); /* Find start of token */
4458
4459 return strcspn(*buf, spaces); /* Return token length */
4460 }
4461
4462 /*
4463 * Finds the next token in *buf, and if the provided token buffer is
4464 * big enough, copies the found token into it. The result, if
4465 * copied, is guaranteed to be terminated with '\0'. Note that *buf
4466 * must be terminated with '\0' on entry.
4467 *
4468 * Returns the length of the token found (not including the '\0').
4469 * Return value will be 0 if no token is found, and it will be >=
4470 * token_size if the token would not fit.
4471 *
4472 * The *buf pointer will be updated to point beyond the end of the
4473 * found token. Note that this occurs even if the token buffer is
4474 * too small to hold it.
4475 */
4476 static inline size_t copy_token(const char **buf,
4477 char *token,
4478 size_t token_size)
4479 {
4480 size_t len;
4481
4482 len = next_token(buf);
4483 if (len < token_size) {
4484 memcpy(token, *buf, len);
4485 *(token + len) = '\0';
4486 }
4487 *buf += len;
4488
4489 return len;
4490 }
4491
4492 /*
4493 * Finds the next token in *buf, dynamically allocates a buffer big
4494 * enough to hold a copy of it, and copies the token into the new
4495 * buffer. The copy is guaranteed to be terminated with '\0'. Note
4496 * that a duplicate buffer is created even for a zero-length token.
4497 *
4498 * Returns a pointer to the newly-allocated duplicate, or a null
4499 * pointer if memory for the duplicate was not available. If
4500 * the lenp argument is a non-null pointer, the length of the token
4501 * (not including the '\0') is returned in *lenp.
4502 *
4503 * If successful, the *buf pointer will be updated to point beyond
4504 * the end of the found token.
4505 *
4506 * Note: uses GFP_KERNEL for allocation.
4507 */
4508 static inline char *dup_token(const char **buf, size_t *lenp)
4509 {
4510 char *dup;
4511 size_t len;
4512
4513 len = next_token(buf);
4514 dup = kmemdup(*buf, len + 1, GFP_KERNEL);
4515 if (!dup)
4516 return NULL;
4517 *(dup + len) = '\0';
4518 *buf += len;
4519
4520 if (lenp)
4521 *lenp = len;
4522
4523 return dup;
4524 }
4525
4526 /*
4527 * Parse the options provided for an "rbd add" (i.e., rbd image
4528 * mapping) request. These arrive via a write to /sys/bus/rbd/add,
4529 * and the data written is passed here via a NUL-terminated buffer.
4530 * Returns 0 if successful or an error code otherwise.
4531 *
4532 * The information extracted from these options is recorded in
4533 * the other parameters which return dynamically-allocated
4534 * structures:
4535 * ceph_opts
4536 * The address of a pointer that will refer to a ceph options
4537 * structure. Caller must release the returned pointer using
4538 * ceph_destroy_options() when it is no longer needed.
4539 * rbd_opts
4540 * Address of an rbd options pointer. Fully initialized by
4541 * this function; caller must release with kfree().
4542 * spec
4543 * Address of an rbd image specification pointer. Fully
4544 * initialized by this function based on parsed options.
4545 * Caller must release with rbd_spec_put().
4546 *
4547 * The options passed take this form:
4548 * <mon_addrs> <options> <pool_name> <image_name> [<snap_id>]
4549 * where:
4550 * <mon_addrs>
4551 * A comma-separated list of one or more monitor addresses.
4552 * A monitor address is an ip address, optionally followed
4553 * by a port number (separated by a colon).
4554 * I.e.: ip1[:port1][,ip2[:port2]...]
4555 * <options>
4556 * A comma-separated list of ceph and/or rbd options.
4557 * <pool_name>
4558 * The name of the rados pool containing the rbd image.
4559 * <image_name>
4560 * The name of the image in that pool to map.
4561 * <snap_id>
4562 * An optional snapshot id. If provided, the mapping will
4563 * present data from the image at the time that snapshot was
4564 * created. The image head is used if no snapshot id is
4565 * provided. Snapshot mappings are always read-only.
4566 */
4567 static int rbd_add_parse_args(const char *buf,
4568 struct ceph_options **ceph_opts,
4569 struct rbd_options **opts,
4570 struct rbd_spec **rbd_spec)
4571 {
4572 size_t len;
4573 char *options;
4574 const char *mon_addrs;
4575 char *snap_name;
4576 size_t mon_addrs_size;
4577 struct rbd_spec *spec = NULL;
4578 struct rbd_options *rbd_opts = NULL;
4579 struct ceph_options *copts;
4580 int ret;
4581
4582 /* The first four tokens are required */
4583
4584 len = next_token(&buf);
4585 if (!len) {
4586 rbd_warn(NULL, "no monitor address(es) provided");
4587 return -EINVAL;
4588 }
4589 mon_addrs = buf;
4590 mon_addrs_size = len + 1;
4591 buf += len;
4592
4593 ret = -EINVAL;
4594 options = dup_token(&buf, NULL);
4595 if (!options)
4596 return -ENOMEM;
4597 if (!*options) {
4598 rbd_warn(NULL, "no options provided");
4599 goto out_err;
4600 }
4601
4602 spec = rbd_spec_alloc();
4603 if (!spec)
4604 goto out_mem;
4605
4606 spec->pool_name = dup_token(&buf, NULL);
4607 if (!spec->pool_name)
4608 goto out_mem;
4609 if (!*spec->pool_name) {
4610 rbd_warn(NULL, "no pool name provided");
4611 goto out_err;
4612 }
4613
4614 spec->image_name = dup_token(&buf, NULL);
4615 if (!spec->image_name)
4616 goto out_mem;
4617 if (!*spec->image_name) {
4618 rbd_warn(NULL, "no image name provided");
4619 goto out_err;
4620 }
4621
4622 /*
4623 * Snapshot name is optional; default is to use "-"
4624 * (indicating the head/no snapshot).
4625 */
4626 len = next_token(&buf);
4627 if (!len) {
4628 buf = RBD_SNAP_HEAD_NAME; /* No snapshot supplied */
4629 len = sizeof (RBD_SNAP_HEAD_NAME) - 1;
4630 } else if (len > RBD_MAX_SNAP_NAME_LEN) {
4631 ret = -ENAMETOOLONG;
4632 goto out_err;
4633 }
4634 snap_name = kmemdup(buf, len + 1, GFP_KERNEL);
4635 if (!snap_name)
4636 goto out_mem;
4637 *(snap_name + len) = '\0';
4638 spec->snap_name = snap_name;
4639
4640 /* Initialize all rbd options to the defaults */
4641
4642 rbd_opts = kzalloc(sizeof (*rbd_opts), GFP_KERNEL);
4643 if (!rbd_opts)
4644 goto out_mem;
4645
4646 rbd_opts->read_only = RBD_READ_ONLY_DEFAULT;
4647
4648 copts = ceph_parse_options(options, mon_addrs,
4649 mon_addrs + mon_addrs_size - 1,
4650 parse_rbd_opts_token, rbd_opts);
4651 if (IS_ERR(copts)) {
4652 ret = PTR_ERR(copts);
4653 goto out_err;
4654 }
4655 kfree(options);
4656
4657 *ceph_opts = copts;
4658 *opts = rbd_opts;
4659 *rbd_spec = spec;
4660
4661 return 0;
4662 out_mem:
4663 ret = -ENOMEM;
4664 out_err:
4665 kfree(rbd_opts);
4666 rbd_spec_put(spec);
4667 kfree(options);
4668
4669 return ret;
4670 }
4671
4672 /*
4673 * An rbd format 2 image has a unique identifier, distinct from the
4674 * name given to it by the user. Internally, that identifier is
4675 * what's used to specify the names of objects related to the image.
4676 *
4677 * A special "rbd id" object is used to map an rbd image name to its
4678 * id. If that object doesn't exist, then there is no v2 rbd image
4679 * with the supplied name.
4680 *
4681 * This function will record the given rbd_dev's image_id field if
4682 * it can be determined, and in that case will return 0. If any
4683 * errors occur a negative errno will be returned and the rbd_dev's
4684 * image_id field will be unchanged (and should be NULL).
4685 */
4686 static int rbd_dev_image_id(struct rbd_device *rbd_dev)
4687 {
4688 int ret;
4689 size_t size;
4690 char *object_name;
4691 void *response;
4692 char *image_id;
4693
4694 /*
4695 * When probing a parent image, the image id is already
4696 * known (and the image name likely is not). There's no
4697 * need to fetch the image id again in this case. We
4698 * do still need to set the image format though.
4699 */
4700 if (rbd_dev->spec->image_id) {
4701 rbd_dev->image_format = *rbd_dev->spec->image_id ? 2 : 1;
4702
4703 return 0;
4704 }
4705
4706 /*
4707 * First, see if the format 2 image id file exists, and if
4708 * so, get the image's persistent id from it.
4709 */
4710 size = sizeof (RBD_ID_PREFIX) + strlen(rbd_dev->spec->image_name);
4711 object_name = kmalloc(size, GFP_NOIO);
4712 if (!object_name)
4713 return -ENOMEM;
4714 sprintf(object_name, "%s%s", RBD_ID_PREFIX, rbd_dev->spec->image_name);
4715 dout("rbd id object name is %s\n", object_name);
4716
4717 /* Response will be an encoded string, which includes a length */
4718
4719 size = sizeof (__le32) + RBD_IMAGE_ID_LEN_MAX;
4720 response = kzalloc(size, GFP_NOIO);
4721 if (!response) {
4722 ret = -ENOMEM;
4723 goto out;
4724 }
4725
4726 /* If it doesn't exist we'll assume it's a format 1 image */
4727
4728 ret = rbd_obj_method_sync(rbd_dev, object_name,
4729 "rbd", "get_id", NULL, 0,
4730 response, RBD_IMAGE_ID_LEN_MAX);
4731 dout("%s: rbd_obj_method_sync returned %d\n", __func__, ret);
4732 if (ret == -ENOENT) {
4733 image_id = kstrdup("", GFP_KERNEL);
4734 ret = image_id ? 0 : -ENOMEM;
4735 if (!ret)
4736 rbd_dev->image_format = 1;
4737 } else if (ret > sizeof (__le32)) {
4738 void *p = response;
4739
4740 image_id = ceph_extract_encoded_string(&p, p + ret,
4741 NULL, GFP_NOIO);
4742 ret = IS_ERR(image_id) ? PTR_ERR(image_id) : 0;
4743 if (!ret)
4744 rbd_dev->image_format = 2;
4745 } else {
4746 ret = -EINVAL;
4747 }
4748
4749 if (!ret) {
4750 rbd_dev->spec->image_id = image_id;
4751 dout("image_id is %s\n", image_id);
4752 }
4753 out:
4754 kfree(response);
4755 kfree(object_name);
4756
4757 return ret;
4758 }
4759
4760 /*
4761 * Undo whatever state changes are made by v1 or v2 header info
4762 * call.
4763 */
4764 static void rbd_dev_unprobe(struct rbd_device *rbd_dev)
4765 {
4766 struct rbd_image_header *header;
4767
4768 /* Drop parent reference unless it's already been done (or none) */
4769
4770 if (rbd_dev->parent_overlap)
4771 rbd_dev_parent_put(rbd_dev);
4772
4773 /* Free dynamic fields from the header, then zero it out */
4774
4775 header = &rbd_dev->header;
4776 ceph_put_snap_context(header->snapc);
4777 kfree(header->snap_sizes);
4778 kfree(header->snap_names);
4779 kfree(header->object_prefix);
4780 memset(header, 0, sizeof (*header));
4781 }
4782
4783 static int rbd_dev_v2_header_onetime(struct rbd_device *rbd_dev)
4784 {
4785 int ret;
4786
4787 ret = rbd_dev_v2_object_prefix(rbd_dev);
4788 if (ret)
4789 goto out_err;
4790
4791 /*
4792 * Get the and check features for the image. Currently the
4793 * features are assumed to never change.
4794 */
4795 ret = rbd_dev_v2_features(rbd_dev);
4796 if (ret)
4797 goto out_err;
4798
4799 /* If the image supports fancy striping, get its parameters */
4800
4801 if (rbd_dev->header.features & RBD_FEATURE_STRIPINGV2) {
4802 ret = rbd_dev_v2_striping_info(rbd_dev);
4803 if (ret < 0)
4804 goto out_err;
4805 }
4806 /* No support for crypto and compression type format 2 images */
4807
4808 return 0;
4809 out_err:
4810 rbd_dev->header.features = 0;
4811 kfree(rbd_dev->header.object_prefix);
4812 rbd_dev->header.object_prefix = NULL;
4813
4814 return ret;
4815 }
4816
4817 static int rbd_dev_probe_parent(struct rbd_device *rbd_dev)
4818 {
4819 struct rbd_device *parent = NULL;
4820 struct rbd_spec *parent_spec;
4821 struct rbd_client *rbdc;
4822 int ret;
4823
4824 if (!rbd_dev->parent_spec)
4825 return 0;
4826 /*
4827 * We need to pass a reference to the client and the parent
4828 * spec when creating the parent rbd_dev. Images related by
4829 * parent/child relationships always share both.
4830 */
4831 parent_spec = rbd_spec_get(rbd_dev->parent_spec);
4832 rbdc = __rbd_get_client(rbd_dev->rbd_client);
4833
4834 ret = -ENOMEM;
4835 parent = rbd_dev_create(rbdc, parent_spec);
4836 if (!parent)
4837 goto out_err;
4838
4839 ret = rbd_dev_image_probe(parent, false);
4840 if (ret < 0)
4841 goto out_err;
4842 rbd_dev->parent = parent;
4843 atomic_set(&rbd_dev->parent_ref, 1);
4844
4845 return 0;
4846 out_err:
4847 if (parent) {
4848 rbd_dev_unparent(rbd_dev);
4849 kfree(rbd_dev->header_name);
4850 rbd_dev_destroy(parent);
4851 } else {
4852 rbd_put_client(rbdc);
4853 rbd_spec_put(parent_spec);
4854 }
4855
4856 return ret;
4857 }
4858
4859 static int rbd_dev_device_setup(struct rbd_device *rbd_dev)
4860 {
4861 int ret;
4862
4863 /* generate unique id: find highest unique id, add one */
4864 rbd_dev_id_get(rbd_dev);
4865
4866 /* Fill in the device name, now that we have its id. */
4867 BUILD_BUG_ON(DEV_NAME_LEN
4868 < sizeof (RBD_DRV_NAME) + MAX_INT_FORMAT_WIDTH);
4869 sprintf(rbd_dev->name, "%s%d", RBD_DRV_NAME, rbd_dev->dev_id);
4870
4871 /* Get our block major device number. */
4872
4873 ret = register_blkdev(0, rbd_dev->name);
4874 if (ret < 0)
4875 goto err_out_id;
4876 rbd_dev->major = ret;
4877
4878 /* Set up the blkdev mapping. */
4879
4880 ret = rbd_init_disk(rbd_dev);
4881 if (ret)
4882 goto err_out_blkdev;
4883
4884 ret = rbd_dev_mapping_set(rbd_dev);
4885 if (ret)
4886 goto err_out_disk;
4887 set_capacity(rbd_dev->disk, rbd_dev->mapping.size / SECTOR_SIZE);
4888
4889 ret = rbd_bus_add_dev(rbd_dev);
4890 if (ret)
4891 goto err_out_mapping;
4892
4893 /* Everything's ready. Announce the disk to the world. */
4894
4895 set_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
4896 add_disk(rbd_dev->disk);
4897
4898 pr_info("%s: added with size 0x%llx\n", rbd_dev->disk->disk_name,
4899 (unsigned long long) rbd_dev->mapping.size);
4900
4901 return ret;
4902
4903 err_out_mapping:
4904 rbd_dev_mapping_clear(rbd_dev);
4905 err_out_disk:
4906 rbd_free_disk(rbd_dev);
4907 err_out_blkdev:
4908 unregister_blkdev(rbd_dev->major, rbd_dev->name);
4909 err_out_id:
4910 rbd_dev_id_put(rbd_dev);
4911 rbd_dev_mapping_clear(rbd_dev);
4912
4913 return ret;
4914 }
4915
4916 static int rbd_dev_header_name(struct rbd_device *rbd_dev)
4917 {
4918 struct rbd_spec *spec = rbd_dev->spec;
4919 size_t size;
4920
4921 /* Record the header object name for this rbd image. */
4922
4923 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4924
4925 if (rbd_dev->image_format == 1)
4926 size = strlen(spec->image_name) + sizeof (RBD_SUFFIX);
4927 else
4928 size = sizeof (RBD_HEADER_PREFIX) + strlen(spec->image_id);
4929
4930 rbd_dev->header_name = kmalloc(size, GFP_KERNEL);
4931 if (!rbd_dev->header_name)
4932 return -ENOMEM;
4933
4934 if (rbd_dev->image_format == 1)
4935 sprintf(rbd_dev->header_name, "%s%s",
4936 spec->image_name, RBD_SUFFIX);
4937 else
4938 sprintf(rbd_dev->header_name, "%s%s",
4939 RBD_HEADER_PREFIX, spec->image_id);
4940 return 0;
4941 }
4942
4943 static void rbd_dev_image_release(struct rbd_device *rbd_dev)
4944 {
4945 rbd_dev_unprobe(rbd_dev);
4946 kfree(rbd_dev->header_name);
4947 rbd_dev->header_name = NULL;
4948 rbd_dev->image_format = 0;
4949 kfree(rbd_dev->spec->image_id);
4950 rbd_dev->spec->image_id = NULL;
4951
4952 rbd_dev_destroy(rbd_dev);
4953 }
4954
4955 /*
4956 * Probe for the existence of the header object for the given rbd
4957 * device. If this image is the one being mapped (i.e., not a
4958 * parent), initiate a watch on its header object before using that
4959 * object to get detailed information about the rbd image.
4960 */
4961 static int rbd_dev_image_probe(struct rbd_device *rbd_dev, bool mapping)
4962 {
4963 int ret;
4964 int tmp;
4965
4966 /*
4967 * Get the id from the image id object. Unless there's an
4968 * error, rbd_dev->spec->image_id will be filled in with
4969 * a dynamically-allocated string, and rbd_dev->image_format
4970 * will be set to either 1 or 2.
4971 */
4972 ret = rbd_dev_image_id(rbd_dev);
4973 if (ret)
4974 return ret;
4975 rbd_assert(rbd_dev->spec->image_id);
4976 rbd_assert(rbd_image_format_valid(rbd_dev->image_format));
4977
4978 ret = rbd_dev_header_name(rbd_dev);
4979 if (ret)
4980 goto err_out_format;
4981
4982 if (mapping) {
4983 ret = rbd_dev_header_watch_sync(rbd_dev, true);
4984 if (ret)
4985 goto out_header_name;
4986 }
4987
4988 if (rbd_dev->image_format == 1)
4989 ret = rbd_dev_v1_header_info(rbd_dev);
4990 else
4991 ret = rbd_dev_v2_header_info(rbd_dev);
4992 if (ret)
4993 goto err_out_watch;
4994
4995 ret = rbd_dev_spec_update(rbd_dev);
4996 if (ret)
4997 goto err_out_probe;
4998
4999 ret = rbd_dev_probe_parent(rbd_dev);
5000 if (ret)
5001 goto err_out_probe;
5002
5003 dout("discovered format %u image, header name is %s\n",
5004 rbd_dev->image_format, rbd_dev->header_name);
5005
5006 return 0;
5007 err_out_probe:
5008 rbd_dev_unprobe(rbd_dev);
5009 err_out_watch:
5010 if (mapping) {
5011 tmp = rbd_dev_header_watch_sync(rbd_dev, false);
5012 if (tmp)
5013 rbd_warn(rbd_dev, "unable to tear down "
5014 "watch request (%d)\n", tmp);
5015 }
5016 out_header_name:
5017 kfree(rbd_dev->header_name);
5018 rbd_dev->header_name = NULL;
5019 err_out_format:
5020 rbd_dev->image_format = 0;
5021 kfree(rbd_dev->spec->image_id);
5022 rbd_dev->spec->image_id = NULL;
5023
5024 dout("probe failed, returning %d\n", ret);
5025
5026 return ret;
5027 }
5028
5029 static ssize_t rbd_add(struct bus_type *bus,
5030 const char *buf,
5031 size_t count)
5032 {
5033 struct rbd_device *rbd_dev = NULL;
5034 struct ceph_options *ceph_opts = NULL;
5035 struct rbd_options *rbd_opts = NULL;
5036 struct rbd_spec *spec = NULL;
5037 struct rbd_client *rbdc;
5038 struct ceph_osd_client *osdc;
5039 bool read_only;
5040 int rc = -ENOMEM;
5041
5042 if (!try_module_get(THIS_MODULE))
5043 return -ENODEV;
5044
5045 /* parse add command */
5046 rc = rbd_add_parse_args(buf, &ceph_opts, &rbd_opts, &spec);
5047 if (rc < 0)
5048 goto err_out_module;
5049 read_only = rbd_opts->read_only;
5050 kfree(rbd_opts);
5051 rbd_opts = NULL; /* done with this */
5052
5053 rbdc = rbd_get_client(ceph_opts);
5054 if (IS_ERR(rbdc)) {
5055 rc = PTR_ERR(rbdc);
5056 goto err_out_args;
5057 }
5058
5059 /* pick the pool */
5060 osdc = &rbdc->client->osdc;
5061 rc = ceph_pg_poolid_by_name(osdc->osdmap, spec->pool_name);
5062 if (rc < 0)
5063 goto err_out_client;
5064 spec->pool_id = (u64)rc;
5065
5066 /* The ceph file layout needs to fit pool id in 32 bits */
5067
5068 if (spec->pool_id > (u64)U32_MAX) {
5069 rbd_warn(NULL, "pool id too large (%llu > %u)\n",
5070 (unsigned long long)spec->pool_id, U32_MAX);
5071 rc = -EIO;
5072 goto err_out_client;
5073 }
5074
5075 rbd_dev = rbd_dev_create(rbdc, spec);
5076 if (!rbd_dev)
5077 goto err_out_client;
5078 rbdc = NULL; /* rbd_dev now owns this */
5079 spec = NULL; /* rbd_dev now owns this */
5080
5081 rc = rbd_dev_image_probe(rbd_dev, true);
5082 if (rc < 0)
5083 goto err_out_rbd_dev;
5084
5085 /* If we are mapping a snapshot it must be marked read-only */
5086
5087 if (rbd_dev->spec->snap_id != CEPH_NOSNAP)
5088 read_only = true;
5089 rbd_dev->mapping.read_only = read_only;
5090
5091 rc = rbd_dev_device_setup(rbd_dev);
5092 if (rc) {
5093 rbd_dev_image_release(rbd_dev);
5094 goto err_out_module;
5095 }
5096
5097 return count;
5098
5099 err_out_rbd_dev:
5100 rbd_dev_destroy(rbd_dev);
5101 err_out_client:
5102 rbd_put_client(rbdc);
5103 err_out_args:
5104 rbd_spec_put(spec);
5105 err_out_module:
5106 module_put(THIS_MODULE);
5107
5108 dout("Error adding device %s\n", buf);
5109
5110 return (ssize_t)rc;
5111 }
5112
5113 static void rbd_dev_device_release(struct device *dev)
5114 {
5115 struct rbd_device *rbd_dev = dev_to_rbd_dev(dev);
5116
5117 rbd_free_disk(rbd_dev);
5118 clear_bit(RBD_DEV_FLAG_EXISTS, &rbd_dev->flags);
5119 rbd_dev_mapping_clear(rbd_dev);
5120 unregister_blkdev(rbd_dev->major, rbd_dev->name);
5121 rbd_dev->major = 0;
5122 rbd_dev_id_put(rbd_dev);
5123 rbd_dev_mapping_clear(rbd_dev);
5124 }
5125
5126 static void rbd_dev_remove_parent(struct rbd_device *rbd_dev)
5127 {
5128 while (rbd_dev->parent) {
5129 struct rbd_device *first = rbd_dev;
5130 struct rbd_device *second = first->parent;
5131 struct rbd_device *third;
5132
5133 /*
5134 * Follow to the parent with no grandparent and
5135 * remove it.
5136 */
5137 while (second && (third = second->parent)) {
5138 first = second;
5139 second = third;
5140 }
5141 rbd_assert(second);
5142 rbd_dev_image_release(second);
5143 first->parent = NULL;
5144 first->parent_overlap = 0;
5145
5146 rbd_assert(first->parent_spec);
5147 rbd_spec_put(first->parent_spec);
5148 first->parent_spec = NULL;
5149 }
5150 }
5151
5152 static ssize_t rbd_remove(struct bus_type *bus,
5153 const char *buf,
5154 size_t count)
5155 {
5156 struct rbd_device *rbd_dev = NULL;
5157 struct list_head *tmp;
5158 int dev_id;
5159 unsigned long ul;
5160 bool already = false;
5161 int ret;
5162
5163 ret = kstrtoul(buf, 10, &ul);
5164 if (ret)
5165 return ret;
5166
5167 /* convert to int; abort if we lost anything in the conversion */
5168 dev_id = (int)ul;
5169 if (dev_id != ul)
5170 return -EINVAL;
5171
5172 ret = -ENOENT;
5173 spin_lock(&rbd_dev_list_lock);
5174 list_for_each(tmp, &rbd_dev_list) {
5175 rbd_dev = list_entry(tmp, struct rbd_device, node);
5176 if (rbd_dev->dev_id == dev_id) {
5177 ret = 0;
5178 break;
5179 }
5180 }
5181 if (!ret) {
5182 spin_lock_irq(&rbd_dev->lock);
5183 if (rbd_dev->open_count)
5184 ret = -EBUSY;
5185 else
5186 already = test_and_set_bit(RBD_DEV_FLAG_REMOVING,
5187 &rbd_dev->flags);
5188 spin_unlock_irq(&rbd_dev->lock);
5189 }
5190 spin_unlock(&rbd_dev_list_lock);
5191 if (ret < 0 || already)
5192 return ret;
5193
5194 ret = rbd_dev_header_watch_sync(rbd_dev, false);
5195 if (ret)
5196 rbd_warn(rbd_dev, "failed to cancel watch event (%d)\n", ret);
5197
5198 /*
5199 * flush remaining watch callbacks - these must be complete
5200 * before the osd_client is shutdown
5201 */
5202 dout("%s: flushing notifies", __func__);
5203 ceph_osdc_flush_notifies(&rbd_dev->rbd_client->client->osdc);
5204 /*
5205 * Don't free anything from rbd_dev->disk until after all
5206 * notifies are completely processed. Otherwise
5207 * rbd_bus_del_dev() will race with rbd_watch_cb(), resulting
5208 * in a potential use after free of rbd_dev->disk or rbd_dev.
5209 */
5210 rbd_bus_del_dev(rbd_dev);
5211 rbd_dev_image_release(rbd_dev);
5212 module_put(THIS_MODULE);
5213
5214 return count;
5215 }
5216
5217 /*
5218 * create control files in sysfs
5219 * /sys/bus/rbd/...
5220 */
5221 static int rbd_sysfs_init(void)
5222 {
5223 int ret;
5224
5225 ret = device_register(&rbd_root_dev);
5226 if (ret < 0)
5227 return ret;
5228
5229 ret = bus_register(&rbd_bus_type);
5230 if (ret < 0)
5231 device_unregister(&rbd_root_dev);
5232
5233 return ret;
5234 }
5235
5236 static void rbd_sysfs_cleanup(void)
5237 {
5238 bus_unregister(&rbd_bus_type);
5239 device_unregister(&rbd_root_dev);
5240 }
5241
5242 static int rbd_slab_init(void)
5243 {
5244 rbd_assert(!rbd_img_request_cache);
5245 rbd_img_request_cache = kmem_cache_create("rbd_img_request",
5246 sizeof (struct rbd_img_request),
5247 __alignof__(struct rbd_img_request),
5248 0, NULL);
5249 if (!rbd_img_request_cache)
5250 return -ENOMEM;
5251
5252 rbd_assert(!rbd_obj_request_cache);
5253 rbd_obj_request_cache = kmem_cache_create("rbd_obj_request",
5254 sizeof (struct rbd_obj_request),
5255 __alignof__(struct rbd_obj_request),
5256 0, NULL);
5257 if (!rbd_obj_request_cache)
5258 goto out_err;
5259
5260 rbd_assert(!rbd_segment_name_cache);
5261 rbd_segment_name_cache = kmem_cache_create("rbd_segment_name",
5262 MAX_OBJ_NAME_SIZE + 1, 1, 0, NULL);
5263 if (rbd_segment_name_cache)
5264 return 0;
5265 out_err:
5266 if (rbd_obj_request_cache) {
5267 kmem_cache_destroy(rbd_obj_request_cache);
5268 rbd_obj_request_cache = NULL;
5269 }
5270
5271 kmem_cache_destroy(rbd_img_request_cache);
5272 rbd_img_request_cache = NULL;
5273
5274 return -ENOMEM;
5275 }
5276
5277 static void rbd_slab_exit(void)
5278 {
5279 rbd_assert(rbd_segment_name_cache);
5280 kmem_cache_destroy(rbd_segment_name_cache);
5281 rbd_segment_name_cache = NULL;
5282
5283 rbd_assert(rbd_obj_request_cache);
5284 kmem_cache_destroy(rbd_obj_request_cache);
5285 rbd_obj_request_cache = NULL;
5286
5287 rbd_assert(rbd_img_request_cache);
5288 kmem_cache_destroy(rbd_img_request_cache);
5289 rbd_img_request_cache = NULL;
5290 }
5291
5292 static int __init rbd_init(void)
5293 {
5294 int rc;
5295
5296 if (!libceph_compatible(NULL)) {
5297 rbd_warn(NULL, "libceph incompatibility (quitting)");
5298
5299 return -EINVAL;
5300 }
5301 rc = rbd_slab_init();
5302 if (rc)
5303 return rc;
5304 rc = rbd_sysfs_init();
5305 if (rc)
5306 rbd_slab_exit();
5307 else
5308 pr_info("loaded " RBD_DRV_NAME_LONG "\n");
5309
5310 return rc;
5311 }
5312
5313 static void __exit rbd_exit(void)
5314 {
5315 rbd_sysfs_cleanup();
5316 rbd_slab_exit();
5317 }
5318
5319 module_init(rbd_init);
5320 module_exit(rbd_exit);
5321
5322 MODULE_AUTHOR("Alex Elder <elder@inktank.com>");
5323 MODULE_AUTHOR("Sage Weil <sage@newdream.net>");
5324 MODULE_AUTHOR("Yehuda Sadeh <yehuda@hq.newdream.net>");
5325 MODULE_DESCRIPTION("rados block device");
5326
5327 /* following authorship retained from original osdblk.c */
5328 MODULE_AUTHOR("Jeff Garzik <jeff@garzik.org>");
5329
5330 MODULE_LICENSE("GPL");