Merge branch 'fixes' of git://git.linaro.org/people/rmk/linux-arm
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / block / pktcdvd.c
1 /*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5 *
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
8 *
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
11 *
12 * Theory of operation:
13 *
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
22 *
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
26 *
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
33 *
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
38 *
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
44 *
45 *************************************************************************/
46
47 #include <linux/pktcdvd.h>
48 #include <linux/module.h>
49 #include <linux/types.h>
50 #include <linux/kernel.h>
51 #include <linux/compat.h>
52 #include <linux/kthread.h>
53 #include <linux/errno.h>
54 #include <linux/spinlock.h>
55 #include <linux/file.h>
56 #include <linux/proc_fs.h>
57 #include <linux/seq_file.h>
58 #include <linux/miscdevice.h>
59 #include <linux/freezer.h>
60 #include <linux/mutex.h>
61 #include <linux/slab.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_ioctl.h>
64 #include <scsi/scsi.h>
65 #include <linux/debugfs.h>
66 #include <linux/device.h>
67
68 #include <asm/uaccess.h>
69
70 #define DRIVER_NAME "pktcdvd"
71
72 #if PACKET_DEBUG
73 #define DPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
74 #else
75 #define DPRINTK(fmt, args...)
76 #endif
77
78 #if PACKET_DEBUG > 1
79 #define VPRINTK(fmt, args...) printk(KERN_NOTICE fmt, ##args)
80 #else
81 #define VPRINTK(fmt, args...)
82 #endif
83
84 #define MAX_SPEED 0xffff
85
86 #define ZONE(sector, pd) (((sector) + (pd)->offset) & ~((pd)->settings.size - 1))
87
88 static DEFINE_MUTEX(pktcdvd_mutex);
89 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
90 static struct proc_dir_entry *pkt_proc;
91 static int pktdev_major;
92 static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
93 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
94 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
95 static mempool_t *psd_pool;
96
97 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
98 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
99
100 /* forward declaration */
101 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
102 static int pkt_remove_dev(dev_t pkt_dev);
103 static int pkt_seq_show(struct seq_file *m, void *p);
104
105
106
107 /*
108 * create and register a pktcdvd kernel object.
109 */
110 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
111 const char* name,
112 struct kobject* parent,
113 struct kobj_type* ktype)
114 {
115 struct pktcdvd_kobj *p;
116 int error;
117
118 p = kzalloc(sizeof(*p), GFP_KERNEL);
119 if (!p)
120 return NULL;
121 p->pd = pd;
122 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
123 if (error) {
124 kobject_put(&p->kobj);
125 return NULL;
126 }
127 kobject_uevent(&p->kobj, KOBJ_ADD);
128 return p;
129 }
130 /*
131 * remove a pktcdvd kernel object.
132 */
133 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
134 {
135 if (p)
136 kobject_put(&p->kobj);
137 }
138 /*
139 * default release function for pktcdvd kernel objects.
140 */
141 static void pkt_kobj_release(struct kobject *kobj)
142 {
143 kfree(to_pktcdvdkobj(kobj));
144 }
145
146
147 /**********************************************************
148 *
149 * sysfs interface for pktcdvd
150 * by (C) 2006 Thomas Maier <balagi@justmail.de>
151 *
152 **********************************************************/
153
154 #define DEF_ATTR(_obj,_name,_mode) \
155 static struct attribute _obj = { .name = _name, .mode = _mode }
156
157 /**********************************************************
158 /sys/class/pktcdvd/pktcdvd[0-7]/
159 stat/reset
160 stat/packets_started
161 stat/packets_finished
162 stat/kb_written
163 stat/kb_read
164 stat/kb_read_gather
165 write_queue/size
166 write_queue/congestion_off
167 write_queue/congestion_on
168 **********************************************************/
169
170 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
171 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
172 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
173 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
174 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
175 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
176
177 static struct attribute *kobj_pkt_attrs_stat[] = {
178 &kobj_pkt_attr_st1,
179 &kobj_pkt_attr_st2,
180 &kobj_pkt_attr_st3,
181 &kobj_pkt_attr_st4,
182 &kobj_pkt_attr_st5,
183 &kobj_pkt_attr_st6,
184 NULL
185 };
186
187 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
188 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
189 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
190
191 static struct attribute *kobj_pkt_attrs_wqueue[] = {
192 &kobj_pkt_attr_wq1,
193 &kobj_pkt_attr_wq2,
194 &kobj_pkt_attr_wq3,
195 NULL
196 };
197
198 static ssize_t kobj_pkt_show(struct kobject *kobj,
199 struct attribute *attr, char *data)
200 {
201 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
202 int n = 0;
203 int v;
204 if (strcmp(attr->name, "packets_started") == 0) {
205 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
206
207 } else if (strcmp(attr->name, "packets_finished") == 0) {
208 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
209
210 } else if (strcmp(attr->name, "kb_written") == 0) {
211 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
212
213 } else if (strcmp(attr->name, "kb_read") == 0) {
214 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
215
216 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
217 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
218
219 } else if (strcmp(attr->name, "size") == 0) {
220 spin_lock(&pd->lock);
221 v = pd->bio_queue_size;
222 spin_unlock(&pd->lock);
223 n = sprintf(data, "%d\n", v);
224
225 } else if (strcmp(attr->name, "congestion_off") == 0) {
226 spin_lock(&pd->lock);
227 v = pd->write_congestion_off;
228 spin_unlock(&pd->lock);
229 n = sprintf(data, "%d\n", v);
230
231 } else if (strcmp(attr->name, "congestion_on") == 0) {
232 spin_lock(&pd->lock);
233 v = pd->write_congestion_on;
234 spin_unlock(&pd->lock);
235 n = sprintf(data, "%d\n", v);
236 }
237 return n;
238 }
239
240 static void init_write_congestion_marks(int* lo, int* hi)
241 {
242 if (*hi > 0) {
243 *hi = max(*hi, 500);
244 *hi = min(*hi, 1000000);
245 if (*lo <= 0)
246 *lo = *hi - 100;
247 else {
248 *lo = min(*lo, *hi - 100);
249 *lo = max(*lo, 100);
250 }
251 } else {
252 *hi = -1;
253 *lo = -1;
254 }
255 }
256
257 static ssize_t kobj_pkt_store(struct kobject *kobj,
258 struct attribute *attr,
259 const char *data, size_t len)
260 {
261 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
262 int val;
263
264 if (strcmp(attr->name, "reset") == 0 && len > 0) {
265 pd->stats.pkt_started = 0;
266 pd->stats.pkt_ended = 0;
267 pd->stats.secs_w = 0;
268 pd->stats.secs_rg = 0;
269 pd->stats.secs_r = 0;
270
271 } else if (strcmp(attr->name, "congestion_off") == 0
272 && sscanf(data, "%d", &val) == 1) {
273 spin_lock(&pd->lock);
274 pd->write_congestion_off = val;
275 init_write_congestion_marks(&pd->write_congestion_off,
276 &pd->write_congestion_on);
277 spin_unlock(&pd->lock);
278
279 } else if (strcmp(attr->name, "congestion_on") == 0
280 && sscanf(data, "%d", &val) == 1) {
281 spin_lock(&pd->lock);
282 pd->write_congestion_on = val;
283 init_write_congestion_marks(&pd->write_congestion_off,
284 &pd->write_congestion_on);
285 spin_unlock(&pd->lock);
286 }
287 return len;
288 }
289
290 static const struct sysfs_ops kobj_pkt_ops = {
291 .show = kobj_pkt_show,
292 .store = kobj_pkt_store
293 };
294 static struct kobj_type kobj_pkt_type_stat = {
295 .release = pkt_kobj_release,
296 .sysfs_ops = &kobj_pkt_ops,
297 .default_attrs = kobj_pkt_attrs_stat
298 };
299 static struct kobj_type kobj_pkt_type_wqueue = {
300 .release = pkt_kobj_release,
301 .sysfs_ops = &kobj_pkt_ops,
302 .default_attrs = kobj_pkt_attrs_wqueue
303 };
304
305 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
306 {
307 if (class_pktcdvd) {
308 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
309 "%s", pd->name);
310 if (IS_ERR(pd->dev))
311 pd->dev = NULL;
312 }
313 if (pd->dev) {
314 pd->kobj_stat = pkt_kobj_create(pd, "stat",
315 &pd->dev->kobj,
316 &kobj_pkt_type_stat);
317 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
318 &pd->dev->kobj,
319 &kobj_pkt_type_wqueue);
320 }
321 }
322
323 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
324 {
325 pkt_kobj_remove(pd->kobj_stat);
326 pkt_kobj_remove(pd->kobj_wqueue);
327 if (class_pktcdvd)
328 device_unregister(pd->dev);
329 }
330
331
332 /********************************************************************
333 /sys/class/pktcdvd/
334 add map block device
335 remove unmap packet dev
336 device_map show mappings
337 *******************************************************************/
338
339 static void class_pktcdvd_release(struct class *cls)
340 {
341 kfree(cls);
342 }
343 static ssize_t class_pktcdvd_show_map(struct class *c,
344 struct class_attribute *attr,
345 char *data)
346 {
347 int n = 0;
348 int idx;
349 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
350 for (idx = 0; idx < MAX_WRITERS; idx++) {
351 struct pktcdvd_device *pd = pkt_devs[idx];
352 if (!pd)
353 continue;
354 n += sprintf(data+n, "%s %u:%u %u:%u\n",
355 pd->name,
356 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
357 MAJOR(pd->bdev->bd_dev),
358 MINOR(pd->bdev->bd_dev));
359 }
360 mutex_unlock(&ctl_mutex);
361 return n;
362 }
363
364 static ssize_t class_pktcdvd_store_add(struct class *c,
365 struct class_attribute *attr,
366 const char *buf,
367 size_t count)
368 {
369 unsigned int major, minor;
370
371 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
372 /* pkt_setup_dev() expects caller to hold reference to self */
373 if (!try_module_get(THIS_MODULE))
374 return -ENODEV;
375
376 pkt_setup_dev(MKDEV(major, minor), NULL);
377
378 module_put(THIS_MODULE);
379
380 return count;
381 }
382
383 return -EINVAL;
384 }
385
386 static ssize_t class_pktcdvd_store_remove(struct class *c,
387 struct class_attribute *attr,
388 const char *buf,
389 size_t count)
390 {
391 unsigned int major, minor;
392 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
393 pkt_remove_dev(MKDEV(major, minor));
394 return count;
395 }
396 return -EINVAL;
397 }
398
399 static struct class_attribute class_pktcdvd_attrs[] = {
400 __ATTR(add, 0200, NULL, class_pktcdvd_store_add),
401 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove),
402 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL),
403 __ATTR_NULL
404 };
405
406
407 static int pkt_sysfs_init(void)
408 {
409 int ret = 0;
410
411 /*
412 * create control files in sysfs
413 * /sys/class/pktcdvd/...
414 */
415 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
416 if (!class_pktcdvd)
417 return -ENOMEM;
418 class_pktcdvd->name = DRIVER_NAME;
419 class_pktcdvd->owner = THIS_MODULE;
420 class_pktcdvd->class_release = class_pktcdvd_release;
421 class_pktcdvd->class_attrs = class_pktcdvd_attrs;
422 ret = class_register(class_pktcdvd);
423 if (ret) {
424 kfree(class_pktcdvd);
425 class_pktcdvd = NULL;
426 printk(DRIVER_NAME": failed to create class pktcdvd\n");
427 return ret;
428 }
429 return 0;
430 }
431
432 static void pkt_sysfs_cleanup(void)
433 {
434 if (class_pktcdvd)
435 class_destroy(class_pktcdvd);
436 class_pktcdvd = NULL;
437 }
438
439 /********************************************************************
440 entries in debugfs
441
442 /sys/kernel/debug/pktcdvd[0-7]/
443 info
444
445 *******************************************************************/
446
447 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
448 {
449 return pkt_seq_show(m, p);
450 }
451
452 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
453 {
454 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
455 }
456
457 static const struct file_operations debug_fops = {
458 .open = pkt_debugfs_fops_open,
459 .read = seq_read,
460 .llseek = seq_lseek,
461 .release = single_release,
462 .owner = THIS_MODULE,
463 };
464
465 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
466 {
467 if (!pkt_debugfs_root)
468 return;
469 pd->dfs_f_info = NULL;
470 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
471 if (IS_ERR(pd->dfs_d_root)) {
472 pd->dfs_d_root = NULL;
473 return;
474 }
475 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
476 pd->dfs_d_root, pd, &debug_fops);
477 if (IS_ERR(pd->dfs_f_info)) {
478 pd->dfs_f_info = NULL;
479 return;
480 }
481 }
482
483 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
484 {
485 if (!pkt_debugfs_root)
486 return;
487 if (pd->dfs_f_info)
488 debugfs_remove(pd->dfs_f_info);
489 pd->dfs_f_info = NULL;
490 if (pd->dfs_d_root)
491 debugfs_remove(pd->dfs_d_root);
492 pd->dfs_d_root = NULL;
493 }
494
495 static void pkt_debugfs_init(void)
496 {
497 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
498 if (IS_ERR(pkt_debugfs_root)) {
499 pkt_debugfs_root = NULL;
500 return;
501 }
502 }
503
504 static void pkt_debugfs_cleanup(void)
505 {
506 if (!pkt_debugfs_root)
507 return;
508 debugfs_remove(pkt_debugfs_root);
509 pkt_debugfs_root = NULL;
510 }
511
512 /* ----------------------------------------------------------*/
513
514
515 static void pkt_bio_finished(struct pktcdvd_device *pd)
516 {
517 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
518 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
519 VPRINTK(DRIVER_NAME": queue empty\n");
520 atomic_set(&pd->iosched.attention, 1);
521 wake_up(&pd->wqueue);
522 }
523 }
524
525 /*
526 * Allocate a packet_data struct
527 */
528 static struct packet_data *pkt_alloc_packet_data(int frames)
529 {
530 int i;
531 struct packet_data *pkt;
532
533 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
534 if (!pkt)
535 goto no_pkt;
536
537 pkt->frames = frames;
538 pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames);
539 if (!pkt->w_bio)
540 goto no_bio;
541
542 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
543 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
544 if (!pkt->pages[i])
545 goto no_page;
546 }
547
548 spin_lock_init(&pkt->lock);
549 bio_list_init(&pkt->orig_bios);
550
551 for (i = 0; i < frames; i++) {
552 struct bio *bio = bio_kmalloc(GFP_KERNEL, 1);
553 if (!bio)
554 goto no_rd_bio;
555
556 pkt->r_bios[i] = bio;
557 }
558
559 return pkt;
560
561 no_rd_bio:
562 for (i = 0; i < frames; i++) {
563 struct bio *bio = pkt->r_bios[i];
564 if (bio)
565 bio_put(bio);
566 }
567
568 no_page:
569 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
570 if (pkt->pages[i])
571 __free_page(pkt->pages[i]);
572 bio_put(pkt->w_bio);
573 no_bio:
574 kfree(pkt);
575 no_pkt:
576 return NULL;
577 }
578
579 /*
580 * Free a packet_data struct
581 */
582 static void pkt_free_packet_data(struct packet_data *pkt)
583 {
584 int i;
585
586 for (i = 0; i < pkt->frames; i++) {
587 struct bio *bio = pkt->r_bios[i];
588 if (bio)
589 bio_put(bio);
590 }
591 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
592 __free_page(pkt->pages[i]);
593 bio_put(pkt->w_bio);
594 kfree(pkt);
595 }
596
597 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
598 {
599 struct packet_data *pkt, *next;
600
601 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
602
603 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
604 pkt_free_packet_data(pkt);
605 }
606 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
607 }
608
609 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
610 {
611 struct packet_data *pkt;
612
613 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
614
615 while (nr_packets > 0) {
616 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
617 if (!pkt) {
618 pkt_shrink_pktlist(pd);
619 return 0;
620 }
621 pkt->id = nr_packets;
622 pkt->pd = pd;
623 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
624 nr_packets--;
625 }
626 return 1;
627 }
628
629 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
630 {
631 struct rb_node *n = rb_next(&node->rb_node);
632 if (!n)
633 return NULL;
634 return rb_entry(n, struct pkt_rb_node, rb_node);
635 }
636
637 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
638 {
639 rb_erase(&node->rb_node, &pd->bio_queue);
640 mempool_free(node, pd->rb_pool);
641 pd->bio_queue_size--;
642 BUG_ON(pd->bio_queue_size < 0);
643 }
644
645 /*
646 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
647 */
648 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
649 {
650 struct rb_node *n = pd->bio_queue.rb_node;
651 struct rb_node *next;
652 struct pkt_rb_node *tmp;
653
654 if (!n) {
655 BUG_ON(pd->bio_queue_size > 0);
656 return NULL;
657 }
658
659 for (;;) {
660 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
661 if (s <= tmp->bio->bi_sector)
662 next = n->rb_left;
663 else
664 next = n->rb_right;
665 if (!next)
666 break;
667 n = next;
668 }
669
670 if (s > tmp->bio->bi_sector) {
671 tmp = pkt_rbtree_next(tmp);
672 if (!tmp)
673 return NULL;
674 }
675 BUG_ON(s > tmp->bio->bi_sector);
676 return tmp;
677 }
678
679 /*
680 * Insert a node into the pd->bio_queue rb tree.
681 */
682 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
683 {
684 struct rb_node **p = &pd->bio_queue.rb_node;
685 struct rb_node *parent = NULL;
686 sector_t s = node->bio->bi_sector;
687 struct pkt_rb_node *tmp;
688
689 while (*p) {
690 parent = *p;
691 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
692 if (s < tmp->bio->bi_sector)
693 p = &(*p)->rb_left;
694 else
695 p = &(*p)->rb_right;
696 }
697 rb_link_node(&node->rb_node, parent, p);
698 rb_insert_color(&node->rb_node, &pd->bio_queue);
699 pd->bio_queue_size++;
700 }
701
702 /*
703 * Send a packet_command to the underlying block device and
704 * wait for completion.
705 */
706 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
707 {
708 struct request_queue *q = bdev_get_queue(pd->bdev);
709 struct request *rq;
710 int ret = 0;
711
712 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
713 WRITE : READ, __GFP_WAIT);
714
715 if (cgc->buflen) {
716 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
717 goto out;
718 }
719
720 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
721 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
722
723 rq->timeout = 60*HZ;
724 rq->cmd_type = REQ_TYPE_BLOCK_PC;
725 if (cgc->quiet)
726 rq->cmd_flags |= REQ_QUIET;
727
728 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
729 if (rq->errors)
730 ret = -EIO;
731 out:
732 blk_put_request(rq);
733 return ret;
734 }
735
736 /*
737 * A generic sense dump / resolve mechanism should be implemented across
738 * all ATAPI + SCSI devices.
739 */
740 static void pkt_dump_sense(struct packet_command *cgc)
741 {
742 static char *info[9] = { "No sense", "Recovered error", "Not ready",
743 "Medium error", "Hardware error", "Illegal request",
744 "Unit attention", "Data protect", "Blank check" };
745 int i;
746 struct request_sense *sense = cgc->sense;
747
748 printk(DRIVER_NAME":");
749 for (i = 0; i < CDROM_PACKET_SIZE; i++)
750 printk(" %02x", cgc->cmd[i]);
751 printk(" - ");
752
753 if (sense == NULL) {
754 printk("no sense\n");
755 return;
756 }
757
758 printk("sense %02x.%02x.%02x", sense->sense_key, sense->asc, sense->ascq);
759
760 if (sense->sense_key > 8) {
761 printk(" (INVALID)\n");
762 return;
763 }
764
765 printk(" (%s)\n", info[sense->sense_key]);
766 }
767
768 /*
769 * flush the drive cache to media
770 */
771 static int pkt_flush_cache(struct pktcdvd_device *pd)
772 {
773 struct packet_command cgc;
774
775 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
776 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
777 cgc.quiet = 1;
778
779 /*
780 * the IMMED bit -- we default to not setting it, although that
781 * would allow a much faster close, this is safer
782 */
783 #if 0
784 cgc.cmd[1] = 1 << 1;
785 #endif
786 return pkt_generic_packet(pd, &cgc);
787 }
788
789 /*
790 * speed is given as the normal factor, e.g. 4 for 4x
791 */
792 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
793 unsigned write_speed, unsigned read_speed)
794 {
795 struct packet_command cgc;
796 struct request_sense sense;
797 int ret;
798
799 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
800 cgc.sense = &sense;
801 cgc.cmd[0] = GPCMD_SET_SPEED;
802 cgc.cmd[2] = (read_speed >> 8) & 0xff;
803 cgc.cmd[3] = read_speed & 0xff;
804 cgc.cmd[4] = (write_speed >> 8) & 0xff;
805 cgc.cmd[5] = write_speed & 0xff;
806
807 if ((ret = pkt_generic_packet(pd, &cgc)))
808 pkt_dump_sense(&cgc);
809
810 return ret;
811 }
812
813 /*
814 * Queue a bio for processing by the low-level CD device. Must be called
815 * from process context.
816 */
817 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
818 {
819 spin_lock(&pd->iosched.lock);
820 if (bio_data_dir(bio) == READ)
821 bio_list_add(&pd->iosched.read_queue, bio);
822 else
823 bio_list_add(&pd->iosched.write_queue, bio);
824 spin_unlock(&pd->iosched.lock);
825
826 atomic_set(&pd->iosched.attention, 1);
827 wake_up(&pd->wqueue);
828 }
829
830 /*
831 * Process the queued read/write requests. This function handles special
832 * requirements for CDRW drives:
833 * - A cache flush command must be inserted before a read request if the
834 * previous request was a write.
835 * - Switching between reading and writing is slow, so don't do it more often
836 * than necessary.
837 * - Optimize for throughput at the expense of latency. This means that streaming
838 * writes will never be interrupted by a read, but if the drive has to seek
839 * before the next write, switch to reading instead if there are any pending
840 * read requests.
841 * - Set the read speed according to current usage pattern. When only reading
842 * from the device, it's best to use the highest possible read speed, but
843 * when switching often between reading and writing, it's better to have the
844 * same read and write speeds.
845 */
846 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
847 {
848
849 if (atomic_read(&pd->iosched.attention) == 0)
850 return;
851 atomic_set(&pd->iosched.attention, 0);
852
853 for (;;) {
854 struct bio *bio;
855 int reads_queued, writes_queued;
856
857 spin_lock(&pd->iosched.lock);
858 reads_queued = !bio_list_empty(&pd->iosched.read_queue);
859 writes_queued = !bio_list_empty(&pd->iosched.write_queue);
860 spin_unlock(&pd->iosched.lock);
861
862 if (!reads_queued && !writes_queued)
863 break;
864
865 if (pd->iosched.writing) {
866 int need_write_seek = 1;
867 spin_lock(&pd->iosched.lock);
868 bio = bio_list_peek(&pd->iosched.write_queue);
869 spin_unlock(&pd->iosched.lock);
870 if (bio && (bio->bi_sector == pd->iosched.last_write))
871 need_write_seek = 0;
872 if (need_write_seek && reads_queued) {
873 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
874 VPRINTK(DRIVER_NAME": write, waiting\n");
875 break;
876 }
877 pkt_flush_cache(pd);
878 pd->iosched.writing = 0;
879 }
880 } else {
881 if (!reads_queued && writes_queued) {
882 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
883 VPRINTK(DRIVER_NAME": read, waiting\n");
884 break;
885 }
886 pd->iosched.writing = 1;
887 }
888 }
889
890 spin_lock(&pd->iosched.lock);
891 if (pd->iosched.writing)
892 bio = bio_list_pop(&pd->iosched.write_queue);
893 else
894 bio = bio_list_pop(&pd->iosched.read_queue);
895 spin_unlock(&pd->iosched.lock);
896
897 if (!bio)
898 continue;
899
900 if (bio_data_dir(bio) == READ)
901 pd->iosched.successive_reads += bio->bi_size >> 10;
902 else {
903 pd->iosched.successive_reads = 0;
904 pd->iosched.last_write = bio_end_sector(bio);
905 }
906 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
907 if (pd->read_speed == pd->write_speed) {
908 pd->read_speed = MAX_SPEED;
909 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
910 }
911 } else {
912 if (pd->read_speed != pd->write_speed) {
913 pd->read_speed = pd->write_speed;
914 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
915 }
916 }
917
918 atomic_inc(&pd->cdrw.pending_bios);
919 generic_make_request(bio);
920 }
921 }
922
923 /*
924 * Special care is needed if the underlying block device has a small
925 * max_phys_segments value.
926 */
927 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
928 {
929 if ((pd->settings.size << 9) / CD_FRAMESIZE
930 <= queue_max_segments(q)) {
931 /*
932 * The cdrom device can handle one segment/frame
933 */
934 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
935 return 0;
936 } else if ((pd->settings.size << 9) / PAGE_SIZE
937 <= queue_max_segments(q)) {
938 /*
939 * We can handle this case at the expense of some extra memory
940 * copies during write operations
941 */
942 set_bit(PACKET_MERGE_SEGS, &pd->flags);
943 return 0;
944 } else {
945 printk(DRIVER_NAME": cdrom max_phys_segments too small\n");
946 return -EIO;
947 }
948 }
949
950 /*
951 * Copy all data for this packet to pkt->pages[], so that
952 * a) The number of required segments for the write bio is minimized, which
953 * is necessary for some scsi controllers.
954 * b) The data can be used as cache to avoid read requests if we receive a
955 * new write request for the same zone.
956 */
957 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
958 {
959 int f, p, offs;
960
961 /* Copy all data to pkt->pages[] */
962 p = 0;
963 offs = 0;
964 for (f = 0; f < pkt->frames; f++) {
965 if (bvec[f].bv_page != pkt->pages[p]) {
966 void *vfrom = kmap_atomic(bvec[f].bv_page) + bvec[f].bv_offset;
967 void *vto = page_address(pkt->pages[p]) + offs;
968 memcpy(vto, vfrom, CD_FRAMESIZE);
969 kunmap_atomic(vfrom);
970 bvec[f].bv_page = pkt->pages[p];
971 bvec[f].bv_offset = offs;
972 } else {
973 BUG_ON(bvec[f].bv_offset != offs);
974 }
975 offs += CD_FRAMESIZE;
976 if (offs >= PAGE_SIZE) {
977 offs = 0;
978 p++;
979 }
980 }
981 }
982
983 static void pkt_end_io_read(struct bio *bio, int err)
984 {
985 struct packet_data *pkt = bio->bi_private;
986 struct pktcdvd_device *pd = pkt->pd;
987 BUG_ON(!pd);
988
989 VPRINTK("pkt_end_io_read: bio=%p sec0=%llx sec=%llx err=%d\n", bio,
990 (unsigned long long)pkt->sector, (unsigned long long)bio->bi_sector, err);
991
992 if (err)
993 atomic_inc(&pkt->io_errors);
994 if (atomic_dec_and_test(&pkt->io_wait)) {
995 atomic_inc(&pkt->run_sm);
996 wake_up(&pd->wqueue);
997 }
998 pkt_bio_finished(pd);
999 }
1000
1001 static void pkt_end_io_packet_write(struct bio *bio, int err)
1002 {
1003 struct packet_data *pkt = bio->bi_private;
1004 struct pktcdvd_device *pd = pkt->pd;
1005 BUG_ON(!pd);
1006
1007 VPRINTK("pkt_end_io_packet_write: id=%d, err=%d\n", pkt->id, err);
1008
1009 pd->stats.pkt_ended++;
1010
1011 pkt_bio_finished(pd);
1012 atomic_dec(&pkt->io_wait);
1013 atomic_inc(&pkt->run_sm);
1014 wake_up(&pd->wqueue);
1015 }
1016
1017 /*
1018 * Schedule reads for the holes in a packet
1019 */
1020 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1021 {
1022 int frames_read = 0;
1023 struct bio *bio;
1024 int f;
1025 char written[PACKET_MAX_SIZE];
1026
1027 BUG_ON(bio_list_empty(&pkt->orig_bios));
1028
1029 atomic_set(&pkt->io_wait, 0);
1030 atomic_set(&pkt->io_errors, 0);
1031
1032 /*
1033 * Figure out which frames we need to read before we can write.
1034 */
1035 memset(written, 0, sizeof(written));
1036 spin_lock(&pkt->lock);
1037 bio_list_for_each(bio, &pkt->orig_bios) {
1038 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1039 int num_frames = bio->bi_size / CD_FRAMESIZE;
1040 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1041 BUG_ON(first_frame < 0);
1042 BUG_ON(first_frame + num_frames > pkt->frames);
1043 for (f = first_frame; f < first_frame + num_frames; f++)
1044 written[f] = 1;
1045 }
1046 spin_unlock(&pkt->lock);
1047
1048 if (pkt->cache_valid) {
1049 VPRINTK("pkt_gather_data: zone %llx cached\n",
1050 (unsigned long long)pkt->sector);
1051 goto out_account;
1052 }
1053
1054 /*
1055 * Schedule reads for missing parts of the packet.
1056 */
1057 for (f = 0; f < pkt->frames; f++) {
1058 int p, offset;
1059
1060 if (written[f])
1061 continue;
1062
1063 bio = pkt->r_bios[f];
1064 bio_reset(bio);
1065 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1066 bio->bi_bdev = pd->bdev;
1067 bio->bi_end_io = pkt_end_io_read;
1068 bio->bi_private = pkt;
1069
1070 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1071 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1072 VPRINTK("pkt_gather_data: Adding frame %d, page:%p offs:%d\n",
1073 f, pkt->pages[p], offset);
1074 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1075 BUG();
1076
1077 atomic_inc(&pkt->io_wait);
1078 bio->bi_rw = READ;
1079 pkt_queue_bio(pd, bio);
1080 frames_read++;
1081 }
1082
1083 out_account:
1084 VPRINTK("pkt_gather_data: need %d frames for zone %llx\n",
1085 frames_read, (unsigned long long)pkt->sector);
1086 pd->stats.pkt_started++;
1087 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1088 }
1089
1090 /*
1091 * Find a packet matching zone, or the least recently used packet if
1092 * there is no match.
1093 */
1094 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1095 {
1096 struct packet_data *pkt;
1097
1098 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1099 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1100 list_del_init(&pkt->list);
1101 if (pkt->sector != zone)
1102 pkt->cache_valid = 0;
1103 return pkt;
1104 }
1105 }
1106 BUG();
1107 return NULL;
1108 }
1109
1110 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1111 {
1112 if (pkt->cache_valid) {
1113 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1114 } else {
1115 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1116 }
1117 }
1118
1119 /*
1120 * recover a failed write, query for relocation if possible
1121 *
1122 * returns 1 if recovery is possible, or 0 if not
1123 *
1124 */
1125 static int pkt_start_recovery(struct packet_data *pkt)
1126 {
1127 /*
1128 * FIXME. We need help from the file system to implement
1129 * recovery handling.
1130 */
1131 return 0;
1132 #if 0
1133 struct request *rq = pkt->rq;
1134 struct pktcdvd_device *pd = rq->rq_disk->private_data;
1135 struct block_device *pkt_bdev;
1136 struct super_block *sb = NULL;
1137 unsigned long old_block, new_block;
1138 sector_t new_sector;
1139
1140 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1141 if (pkt_bdev) {
1142 sb = get_super(pkt_bdev);
1143 bdput(pkt_bdev);
1144 }
1145
1146 if (!sb)
1147 return 0;
1148
1149 if (!sb->s_op->relocate_blocks)
1150 goto out;
1151
1152 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1153 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1154 goto out;
1155
1156 new_sector = new_block * (CD_FRAMESIZE >> 9);
1157 pkt->sector = new_sector;
1158
1159 bio_reset(pkt->bio);
1160 pkt->bio->bi_bdev = pd->bdev;
1161 pkt->bio->bi_rw = REQ_WRITE;
1162 pkt->bio->bi_sector = new_sector;
1163 pkt->bio->bi_size = pkt->frames * CD_FRAMESIZE;
1164 pkt->bio->bi_vcnt = pkt->frames;
1165
1166 pkt->bio->bi_end_io = pkt_end_io_packet_write;
1167 pkt->bio->bi_private = pkt;
1168
1169 drop_super(sb);
1170 return 1;
1171
1172 out:
1173 drop_super(sb);
1174 return 0;
1175 #endif
1176 }
1177
1178 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1179 {
1180 #if PACKET_DEBUG > 1
1181 static const char *state_name[] = {
1182 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1183 };
1184 enum packet_data_state old_state = pkt->state;
1185 VPRINTK("pkt %2d : s=%6llx %s -> %s\n", pkt->id, (unsigned long long)pkt->sector,
1186 state_name[old_state], state_name[state]);
1187 #endif
1188 pkt->state = state;
1189 }
1190
1191 /*
1192 * Scan the work queue to see if we can start a new packet.
1193 * returns non-zero if any work was done.
1194 */
1195 static int pkt_handle_queue(struct pktcdvd_device *pd)
1196 {
1197 struct packet_data *pkt, *p;
1198 struct bio *bio = NULL;
1199 sector_t zone = 0; /* Suppress gcc warning */
1200 struct pkt_rb_node *node, *first_node;
1201 struct rb_node *n;
1202 int wakeup;
1203
1204 VPRINTK("handle_queue\n");
1205
1206 atomic_set(&pd->scan_queue, 0);
1207
1208 if (list_empty(&pd->cdrw.pkt_free_list)) {
1209 VPRINTK("handle_queue: no pkt\n");
1210 return 0;
1211 }
1212
1213 /*
1214 * Try to find a zone we are not already working on.
1215 */
1216 spin_lock(&pd->lock);
1217 first_node = pkt_rbtree_find(pd, pd->current_sector);
1218 if (!first_node) {
1219 n = rb_first(&pd->bio_queue);
1220 if (n)
1221 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1222 }
1223 node = first_node;
1224 while (node) {
1225 bio = node->bio;
1226 zone = ZONE(bio->bi_sector, pd);
1227 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1228 if (p->sector == zone) {
1229 bio = NULL;
1230 goto try_next_bio;
1231 }
1232 }
1233 break;
1234 try_next_bio:
1235 node = pkt_rbtree_next(node);
1236 if (!node) {
1237 n = rb_first(&pd->bio_queue);
1238 if (n)
1239 node = rb_entry(n, struct pkt_rb_node, rb_node);
1240 }
1241 if (node == first_node)
1242 node = NULL;
1243 }
1244 spin_unlock(&pd->lock);
1245 if (!bio) {
1246 VPRINTK("handle_queue: no bio\n");
1247 return 0;
1248 }
1249
1250 pkt = pkt_get_packet_data(pd, zone);
1251
1252 pd->current_sector = zone + pd->settings.size;
1253 pkt->sector = zone;
1254 BUG_ON(pkt->frames != pd->settings.size >> 2);
1255 pkt->write_size = 0;
1256
1257 /*
1258 * Scan work queue for bios in the same zone and link them
1259 * to this packet.
1260 */
1261 spin_lock(&pd->lock);
1262 VPRINTK("pkt_handle_queue: looking for zone %llx\n", (unsigned long long)zone);
1263 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1264 bio = node->bio;
1265 VPRINTK("pkt_handle_queue: found zone=%llx\n",
1266 (unsigned long long)ZONE(bio->bi_sector, pd));
1267 if (ZONE(bio->bi_sector, pd) != zone)
1268 break;
1269 pkt_rbtree_erase(pd, node);
1270 spin_lock(&pkt->lock);
1271 bio_list_add(&pkt->orig_bios, bio);
1272 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1273 spin_unlock(&pkt->lock);
1274 }
1275 /* check write congestion marks, and if bio_queue_size is
1276 below, wake up any waiters */
1277 wakeup = (pd->write_congestion_on > 0
1278 && pd->bio_queue_size <= pd->write_congestion_off);
1279 spin_unlock(&pd->lock);
1280 if (wakeup) {
1281 clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1282 BLK_RW_ASYNC);
1283 }
1284
1285 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1286 pkt_set_state(pkt, PACKET_WAITING_STATE);
1287 atomic_set(&pkt->run_sm, 1);
1288
1289 spin_lock(&pd->cdrw.active_list_lock);
1290 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1291 spin_unlock(&pd->cdrw.active_list_lock);
1292
1293 return 1;
1294 }
1295
1296 /*
1297 * Assemble a bio to write one packet and queue the bio for processing
1298 * by the underlying block device.
1299 */
1300 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1301 {
1302 int f;
1303 struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1304
1305 bio_reset(pkt->w_bio);
1306 pkt->w_bio->bi_sector = pkt->sector;
1307 pkt->w_bio->bi_bdev = pd->bdev;
1308 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1309 pkt->w_bio->bi_private = pkt;
1310
1311 /* XXX: locking? */
1312 for (f = 0; f < pkt->frames; f++) {
1313 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1314 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1315 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1316 BUG();
1317 }
1318 VPRINTK(DRIVER_NAME": vcnt=%d\n", pkt->w_bio->bi_vcnt);
1319
1320 /*
1321 * Fill-in bvec with data from orig_bios.
1322 */
1323 spin_lock(&pkt->lock);
1324 bio_copy_data(pkt->w_bio, pkt->orig_bios.head);
1325
1326 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1327 spin_unlock(&pkt->lock);
1328
1329 VPRINTK("pkt_start_write: Writing %d frames for zone %llx\n",
1330 pkt->write_size, (unsigned long long)pkt->sector);
1331
1332 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1333 pkt_make_local_copy(pkt, bvec);
1334 pkt->cache_valid = 1;
1335 } else {
1336 pkt->cache_valid = 0;
1337 }
1338
1339 /* Start the write request */
1340 atomic_set(&pkt->io_wait, 1);
1341 pkt->w_bio->bi_rw = WRITE;
1342 pkt_queue_bio(pd, pkt->w_bio);
1343 }
1344
1345 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1346 {
1347 struct bio *bio;
1348
1349 if (!uptodate)
1350 pkt->cache_valid = 0;
1351
1352 /* Finish all bios corresponding to this packet */
1353 while ((bio = bio_list_pop(&pkt->orig_bios)))
1354 bio_endio(bio, uptodate ? 0 : -EIO);
1355 }
1356
1357 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1358 {
1359 int uptodate;
1360
1361 VPRINTK("run_state_machine: pkt %d\n", pkt->id);
1362
1363 for (;;) {
1364 switch (pkt->state) {
1365 case PACKET_WAITING_STATE:
1366 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1367 return;
1368
1369 pkt->sleep_time = 0;
1370 pkt_gather_data(pd, pkt);
1371 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1372 break;
1373
1374 case PACKET_READ_WAIT_STATE:
1375 if (atomic_read(&pkt->io_wait) > 0)
1376 return;
1377
1378 if (atomic_read(&pkt->io_errors) > 0) {
1379 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1380 } else {
1381 pkt_start_write(pd, pkt);
1382 }
1383 break;
1384
1385 case PACKET_WRITE_WAIT_STATE:
1386 if (atomic_read(&pkt->io_wait) > 0)
1387 return;
1388
1389 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1390 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1391 } else {
1392 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1393 }
1394 break;
1395
1396 case PACKET_RECOVERY_STATE:
1397 if (pkt_start_recovery(pkt)) {
1398 pkt_start_write(pd, pkt);
1399 } else {
1400 VPRINTK("No recovery possible\n");
1401 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1402 }
1403 break;
1404
1405 case PACKET_FINISHED_STATE:
1406 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1407 pkt_finish_packet(pkt, uptodate);
1408 return;
1409
1410 default:
1411 BUG();
1412 break;
1413 }
1414 }
1415 }
1416
1417 static void pkt_handle_packets(struct pktcdvd_device *pd)
1418 {
1419 struct packet_data *pkt, *next;
1420
1421 VPRINTK("pkt_handle_packets\n");
1422
1423 /*
1424 * Run state machine for active packets
1425 */
1426 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1427 if (atomic_read(&pkt->run_sm) > 0) {
1428 atomic_set(&pkt->run_sm, 0);
1429 pkt_run_state_machine(pd, pkt);
1430 }
1431 }
1432
1433 /*
1434 * Move no longer active packets to the free list
1435 */
1436 spin_lock(&pd->cdrw.active_list_lock);
1437 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1438 if (pkt->state == PACKET_FINISHED_STATE) {
1439 list_del(&pkt->list);
1440 pkt_put_packet_data(pd, pkt);
1441 pkt_set_state(pkt, PACKET_IDLE_STATE);
1442 atomic_set(&pd->scan_queue, 1);
1443 }
1444 }
1445 spin_unlock(&pd->cdrw.active_list_lock);
1446 }
1447
1448 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1449 {
1450 struct packet_data *pkt;
1451 int i;
1452
1453 for (i = 0; i < PACKET_NUM_STATES; i++)
1454 states[i] = 0;
1455
1456 spin_lock(&pd->cdrw.active_list_lock);
1457 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1458 states[pkt->state]++;
1459 }
1460 spin_unlock(&pd->cdrw.active_list_lock);
1461 }
1462
1463 /*
1464 * kcdrwd is woken up when writes have been queued for one of our
1465 * registered devices
1466 */
1467 static int kcdrwd(void *foobar)
1468 {
1469 struct pktcdvd_device *pd = foobar;
1470 struct packet_data *pkt;
1471 long min_sleep_time, residue;
1472
1473 set_user_nice(current, -20);
1474 set_freezable();
1475
1476 for (;;) {
1477 DECLARE_WAITQUEUE(wait, current);
1478
1479 /*
1480 * Wait until there is something to do
1481 */
1482 add_wait_queue(&pd->wqueue, &wait);
1483 for (;;) {
1484 set_current_state(TASK_INTERRUPTIBLE);
1485
1486 /* Check if we need to run pkt_handle_queue */
1487 if (atomic_read(&pd->scan_queue) > 0)
1488 goto work_to_do;
1489
1490 /* Check if we need to run the state machine for some packet */
1491 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1492 if (atomic_read(&pkt->run_sm) > 0)
1493 goto work_to_do;
1494 }
1495
1496 /* Check if we need to process the iosched queues */
1497 if (atomic_read(&pd->iosched.attention) != 0)
1498 goto work_to_do;
1499
1500 /* Otherwise, go to sleep */
1501 if (PACKET_DEBUG > 1) {
1502 int states[PACKET_NUM_STATES];
1503 pkt_count_states(pd, states);
1504 VPRINTK("kcdrwd: i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1505 states[0], states[1], states[2], states[3],
1506 states[4], states[5]);
1507 }
1508
1509 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1510 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1511 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1512 min_sleep_time = pkt->sleep_time;
1513 }
1514
1515 VPRINTK("kcdrwd: sleeping\n");
1516 residue = schedule_timeout(min_sleep_time);
1517 VPRINTK("kcdrwd: wake up\n");
1518
1519 /* make swsusp happy with our thread */
1520 try_to_freeze();
1521
1522 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1523 if (!pkt->sleep_time)
1524 continue;
1525 pkt->sleep_time -= min_sleep_time - residue;
1526 if (pkt->sleep_time <= 0) {
1527 pkt->sleep_time = 0;
1528 atomic_inc(&pkt->run_sm);
1529 }
1530 }
1531
1532 if (kthread_should_stop())
1533 break;
1534 }
1535 work_to_do:
1536 set_current_state(TASK_RUNNING);
1537 remove_wait_queue(&pd->wqueue, &wait);
1538
1539 if (kthread_should_stop())
1540 break;
1541
1542 /*
1543 * if pkt_handle_queue returns true, we can queue
1544 * another request.
1545 */
1546 while (pkt_handle_queue(pd))
1547 ;
1548
1549 /*
1550 * Handle packet state machine
1551 */
1552 pkt_handle_packets(pd);
1553
1554 /*
1555 * Handle iosched queues
1556 */
1557 pkt_iosched_process_queue(pd);
1558 }
1559
1560 return 0;
1561 }
1562
1563 static void pkt_print_settings(struct pktcdvd_device *pd)
1564 {
1565 printk(DRIVER_NAME": %s packets, ", pd->settings.fp ? "Fixed" : "Variable");
1566 printk("%u blocks, ", pd->settings.size >> 2);
1567 printk("Mode-%c disc\n", pd->settings.block_mode == 8 ? '1' : '2');
1568 }
1569
1570 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1571 {
1572 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1573
1574 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1575 cgc->cmd[2] = page_code | (page_control << 6);
1576 cgc->cmd[7] = cgc->buflen >> 8;
1577 cgc->cmd[8] = cgc->buflen & 0xff;
1578 cgc->data_direction = CGC_DATA_READ;
1579 return pkt_generic_packet(pd, cgc);
1580 }
1581
1582 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1583 {
1584 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1585 memset(cgc->buffer, 0, 2);
1586 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1587 cgc->cmd[1] = 0x10; /* PF */
1588 cgc->cmd[7] = cgc->buflen >> 8;
1589 cgc->cmd[8] = cgc->buflen & 0xff;
1590 cgc->data_direction = CGC_DATA_WRITE;
1591 return pkt_generic_packet(pd, cgc);
1592 }
1593
1594 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1595 {
1596 struct packet_command cgc;
1597 int ret;
1598
1599 /* set up command and get the disc info */
1600 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1601 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1602 cgc.cmd[8] = cgc.buflen = 2;
1603 cgc.quiet = 1;
1604
1605 if ((ret = pkt_generic_packet(pd, &cgc)))
1606 return ret;
1607
1608 /* not all drives have the same disc_info length, so requeue
1609 * packet with the length the drive tells us it can supply
1610 */
1611 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1612 sizeof(di->disc_information_length);
1613
1614 if (cgc.buflen > sizeof(disc_information))
1615 cgc.buflen = sizeof(disc_information);
1616
1617 cgc.cmd[8] = cgc.buflen;
1618 return pkt_generic_packet(pd, &cgc);
1619 }
1620
1621 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1622 {
1623 struct packet_command cgc;
1624 int ret;
1625
1626 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1627 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1628 cgc.cmd[1] = type & 3;
1629 cgc.cmd[4] = (track & 0xff00) >> 8;
1630 cgc.cmd[5] = track & 0xff;
1631 cgc.cmd[8] = 8;
1632 cgc.quiet = 1;
1633
1634 if ((ret = pkt_generic_packet(pd, &cgc)))
1635 return ret;
1636
1637 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1638 sizeof(ti->track_information_length);
1639
1640 if (cgc.buflen > sizeof(track_information))
1641 cgc.buflen = sizeof(track_information);
1642
1643 cgc.cmd[8] = cgc.buflen;
1644 return pkt_generic_packet(pd, &cgc);
1645 }
1646
1647 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1648 long *last_written)
1649 {
1650 disc_information di;
1651 track_information ti;
1652 __u32 last_track;
1653 int ret = -1;
1654
1655 if ((ret = pkt_get_disc_info(pd, &di)))
1656 return ret;
1657
1658 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1659 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1660 return ret;
1661
1662 /* if this track is blank, try the previous. */
1663 if (ti.blank) {
1664 last_track--;
1665 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1666 return ret;
1667 }
1668
1669 /* if last recorded field is valid, return it. */
1670 if (ti.lra_v) {
1671 *last_written = be32_to_cpu(ti.last_rec_address);
1672 } else {
1673 /* make it up instead */
1674 *last_written = be32_to_cpu(ti.track_start) +
1675 be32_to_cpu(ti.track_size);
1676 if (ti.free_blocks)
1677 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1678 }
1679 return 0;
1680 }
1681
1682 /*
1683 * write mode select package based on pd->settings
1684 */
1685 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1686 {
1687 struct packet_command cgc;
1688 struct request_sense sense;
1689 write_param_page *wp;
1690 char buffer[128];
1691 int ret, size;
1692
1693 /* doesn't apply to DVD+RW or DVD-RAM */
1694 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1695 return 0;
1696
1697 memset(buffer, 0, sizeof(buffer));
1698 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1699 cgc.sense = &sense;
1700 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1701 pkt_dump_sense(&cgc);
1702 return ret;
1703 }
1704
1705 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1706 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1707 if (size > sizeof(buffer))
1708 size = sizeof(buffer);
1709
1710 /*
1711 * now get it all
1712 */
1713 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1714 cgc.sense = &sense;
1715 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1716 pkt_dump_sense(&cgc);
1717 return ret;
1718 }
1719
1720 /*
1721 * write page is offset header + block descriptor length
1722 */
1723 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1724
1725 wp->fp = pd->settings.fp;
1726 wp->track_mode = pd->settings.track_mode;
1727 wp->write_type = pd->settings.write_type;
1728 wp->data_block_type = pd->settings.block_mode;
1729
1730 wp->multi_session = 0;
1731
1732 #ifdef PACKET_USE_LS
1733 wp->link_size = 7;
1734 wp->ls_v = 1;
1735 #endif
1736
1737 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1738 wp->session_format = 0;
1739 wp->subhdr2 = 0x20;
1740 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1741 wp->session_format = 0x20;
1742 wp->subhdr2 = 8;
1743 #if 0
1744 wp->mcn[0] = 0x80;
1745 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1746 #endif
1747 } else {
1748 /*
1749 * paranoia
1750 */
1751 printk(DRIVER_NAME": write mode wrong %d\n", wp->data_block_type);
1752 return 1;
1753 }
1754 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1755
1756 cgc.buflen = cgc.cmd[8] = size;
1757 if ((ret = pkt_mode_select(pd, &cgc))) {
1758 pkt_dump_sense(&cgc);
1759 return ret;
1760 }
1761
1762 pkt_print_settings(pd);
1763 return 0;
1764 }
1765
1766 /*
1767 * 1 -- we can write to this track, 0 -- we can't
1768 */
1769 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1770 {
1771 switch (pd->mmc3_profile) {
1772 case 0x1a: /* DVD+RW */
1773 case 0x12: /* DVD-RAM */
1774 /* The track is always writable on DVD+RW/DVD-RAM */
1775 return 1;
1776 default:
1777 break;
1778 }
1779
1780 if (!ti->packet || !ti->fp)
1781 return 0;
1782
1783 /*
1784 * "good" settings as per Mt Fuji.
1785 */
1786 if (ti->rt == 0 && ti->blank == 0)
1787 return 1;
1788
1789 if (ti->rt == 0 && ti->blank == 1)
1790 return 1;
1791
1792 if (ti->rt == 1 && ti->blank == 0)
1793 return 1;
1794
1795 printk(DRIVER_NAME": bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1796 return 0;
1797 }
1798
1799 /*
1800 * 1 -- we can write to this disc, 0 -- we can't
1801 */
1802 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1803 {
1804 switch (pd->mmc3_profile) {
1805 case 0x0a: /* CD-RW */
1806 case 0xffff: /* MMC3 not supported */
1807 break;
1808 case 0x1a: /* DVD+RW */
1809 case 0x13: /* DVD-RW */
1810 case 0x12: /* DVD-RAM */
1811 return 1;
1812 default:
1813 VPRINTK(DRIVER_NAME": Wrong disc profile (%x)\n", pd->mmc3_profile);
1814 return 0;
1815 }
1816
1817 /*
1818 * for disc type 0xff we should probably reserve a new track.
1819 * but i'm not sure, should we leave this to user apps? probably.
1820 */
1821 if (di->disc_type == 0xff) {
1822 printk(DRIVER_NAME": Unknown disc. No track?\n");
1823 return 0;
1824 }
1825
1826 if (di->disc_type != 0x20 && di->disc_type != 0) {
1827 printk(DRIVER_NAME": Wrong disc type (%x)\n", di->disc_type);
1828 return 0;
1829 }
1830
1831 if (di->erasable == 0) {
1832 printk(DRIVER_NAME": Disc not erasable\n");
1833 return 0;
1834 }
1835
1836 if (di->border_status == PACKET_SESSION_RESERVED) {
1837 printk(DRIVER_NAME": Can't write to last track (reserved)\n");
1838 return 0;
1839 }
1840
1841 return 1;
1842 }
1843
1844 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1845 {
1846 struct packet_command cgc;
1847 unsigned char buf[12];
1848 disc_information di;
1849 track_information ti;
1850 int ret, track;
1851
1852 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1853 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1854 cgc.cmd[8] = 8;
1855 ret = pkt_generic_packet(pd, &cgc);
1856 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1857
1858 memset(&di, 0, sizeof(disc_information));
1859 memset(&ti, 0, sizeof(track_information));
1860
1861 if ((ret = pkt_get_disc_info(pd, &di))) {
1862 printk("failed get_disc\n");
1863 return ret;
1864 }
1865
1866 if (!pkt_writable_disc(pd, &di))
1867 return -EROFS;
1868
1869 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1870
1871 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1872 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1873 printk(DRIVER_NAME": failed get_track\n");
1874 return ret;
1875 }
1876
1877 if (!pkt_writable_track(pd, &ti)) {
1878 printk(DRIVER_NAME": can't write to this track\n");
1879 return -EROFS;
1880 }
1881
1882 /*
1883 * we keep packet size in 512 byte units, makes it easier to
1884 * deal with request calculations.
1885 */
1886 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1887 if (pd->settings.size == 0) {
1888 printk(DRIVER_NAME": detected zero packet size!\n");
1889 return -ENXIO;
1890 }
1891 if (pd->settings.size > PACKET_MAX_SECTORS) {
1892 printk(DRIVER_NAME": packet size is too big\n");
1893 return -EROFS;
1894 }
1895 pd->settings.fp = ti.fp;
1896 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1897
1898 if (ti.nwa_v) {
1899 pd->nwa = be32_to_cpu(ti.next_writable);
1900 set_bit(PACKET_NWA_VALID, &pd->flags);
1901 }
1902
1903 /*
1904 * in theory we could use lra on -RW media as well and just zero
1905 * blocks that haven't been written yet, but in practice that
1906 * is just a no-go. we'll use that for -R, naturally.
1907 */
1908 if (ti.lra_v) {
1909 pd->lra = be32_to_cpu(ti.last_rec_address);
1910 set_bit(PACKET_LRA_VALID, &pd->flags);
1911 } else {
1912 pd->lra = 0xffffffff;
1913 set_bit(PACKET_LRA_VALID, &pd->flags);
1914 }
1915
1916 /*
1917 * fine for now
1918 */
1919 pd->settings.link_loss = 7;
1920 pd->settings.write_type = 0; /* packet */
1921 pd->settings.track_mode = ti.track_mode;
1922
1923 /*
1924 * mode1 or mode2 disc
1925 */
1926 switch (ti.data_mode) {
1927 case PACKET_MODE1:
1928 pd->settings.block_mode = PACKET_BLOCK_MODE1;
1929 break;
1930 case PACKET_MODE2:
1931 pd->settings.block_mode = PACKET_BLOCK_MODE2;
1932 break;
1933 default:
1934 printk(DRIVER_NAME": unknown data mode\n");
1935 return -EROFS;
1936 }
1937 return 0;
1938 }
1939
1940 /*
1941 * enable/disable write caching on drive
1942 */
1943 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
1944 int set)
1945 {
1946 struct packet_command cgc;
1947 struct request_sense sense;
1948 unsigned char buf[64];
1949 int ret;
1950
1951 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1952 cgc.sense = &sense;
1953 cgc.buflen = pd->mode_offset + 12;
1954
1955 /*
1956 * caching mode page might not be there, so quiet this command
1957 */
1958 cgc.quiet = 1;
1959
1960 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1961 return ret;
1962
1963 buf[pd->mode_offset + 10] |= (!!set << 2);
1964
1965 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1966 ret = pkt_mode_select(pd, &cgc);
1967 if (ret) {
1968 printk(DRIVER_NAME": write caching control failed\n");
1969 pkt_dump_sense(&cgc);
1970 } else if (!ret && set)
1971 printk(DRIVER_NAME": enabled write caching on %s\n", pd->name);
1972 return ret;
1973 }
1974
1975 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1976 {
1977 struct packet_command cgc;
1978
1979 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1980 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1981 cgc.cmd[4] = lockflag ? 1 : 0;
1982 return pkt_generic_packet(pd, &cgc);
1983 }
1984
1985 /*
1986 * Returns drive maximum write speed
1987 */
1988 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1989 unsigned *write_speed)
1990 {
1991 struct packet_command cgc;
1992 struct request_sense sense;
1993 unsigned char buf[256+18];
1994 unsigned char *cap_buf;
1995 int ret, offset;
1996
1997 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1998 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1999 cgc.sense = &sense;
2000
2001 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2002 if (ret) {
2003 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
2004 sizeof(struct mode_page_header);
2005 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
2006 if (ret) {
2007 pkt_dump_sense(&cgc);
2008 return ret;
2009 }
2010 }
2011
2012 offset = 20; /* Obsoleted field, used by older drives */
2013 if (cap_buf[1] >= 28)
2014 offset = 28; /* Current write speed selected */
2015 if (cap_buf[1] >= 30) {
2016 /* If the drive reports at least one "Logical Unit Write
2017 * Speed Performance Descriptor Block", use the information
2018 * in the first block. (contains the highest speed)
2019 */
2020 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2021 if (num_spdb > 0)
2022 offset = 34;
2023 }
2024
2025 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2026 return 0;
2027 }
2028
2029 /* These tables from cdrecord - I don't have orange book */
2030 /* standard speed CD-RW (1-4x) */
2031 static char clv_to_speed[16] = {
2032 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2033 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2034 };
2035 /* high speed CD-RW (-10x) */
2036 static char hs_clv_to_speed[16] = {
2037 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2038 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2039 };
2040 /* ultra high speed CD-RW */
2041 static char us_clv_to_speed[16] = {
2042 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2043 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2044 };
2045
2046 /*
2047 * reads the maximum media speed from ATIP
2048 */
2049 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2050 unsigned *speed)
2051 {
2052 struct packet_command cgc;
2053 struct request_sense sense;
2054 unsigned char buf[64];
2055 unsigned int size, st, sp;
2056 int ret;
2057
2058 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2059 cgc.sense = &sense;
2060 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2061 cgc.cmd[1] = 2;
2062 cgc.cmd[2] = 4; /* READ ATIP */
2063 cgc.cmd[8] = 2;
2064 ret = pkt_generic_packet(pd, &cgc);
2065 if (ret) {
2066 pkt_dump_sense(&cgc);
2067 return ret;
2068 }
2069 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2070 if (size > sizeof(buf))
2071 size = sizeof(buf);
2072
2073 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2074 cgc.sense = &sense;
2075 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2076 cgc.cmd[1] = 2;
2077 cgc.cmd[2] = 4;
2078 cgc.cmd[8] = size;
2079 ret = pkt_generic_packet(pd, &cgc);
2080 if (ret) {
2081 pkt_dump_sense(&cgc);
2082 return ret;
2083 }
2084
2085 if (!(buf[6] & 0x40)) {
2086 printk(DRIVER_NAME": Disc type is not CD-RW\n");
2087 return 1;
2088 }
2089 if (!(buf[6] & 0x4)) {
2090 printk(DRIVER_NAME": A1 values on media are not valid, maybe not CDRW?\n");
2091 return 1;
2092 }
2093
2094 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2095
2096 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2097
2098 /* Info from cdrecord */
2099 switch (st) {
2100 case 0: /* standard speed */
2101 *speed = clv_to_speed[sp];
2102 break;
2103 case 1: /* high speed */
2104 *speed = hs_clv_to_speed[sp];
2105 break;
2106 case 2: /* ultra high speed */
2107 *speed = us_clv_to_speed[sp];
2108 break;
2109 default:
2110 printk(DRIVER_NAME": Unknown disc sub-type %d\n",st);
2111 return 1;
2112 }
2113 if (*speed) {
2114 printk(DRIVER_NAME": Max. media speed: %d\n",*speed);
2115 return 0;
2116 } else {
2117 printk(DRIVER_NAME": Unknown speed %d for sub-type %d\n",sp,st);
2118 return 1;
2119 }
2120 }
2121
2122 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2123 {
2124 struct packet_command cgc;
2125 struct request_sense sense;
2126 int ret;
2127
2128 VPRINTK(DRIVER_NAME": Performing OPC\n");
2129
2130 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2131 cgc.sense = &sense;
2132 cgc.timeout = 60*HZ;
2133 cgc.cmd[0] = GPCMD_SEND_OPC;
2134 cgc.cmd[1] = 1;
2135 if ((ret = pkt_generic_packet(pd, &cgc)))
2136 pkt_dump_sense(&cgc);
2137 return ret;
2138 }
2139
2140 static int pkt_open_write(struct pktcdvd_device *pd)
2141 {
2142 int ret;
2143 unsigned int write_speed, media_write_speed, read_speed;
2144
2145 if ((ret = pkt_probe_settings(pd))) {
2146 VPRINTK(DRIVER_NAME": %s failed probe\n", pd->name);
2147 return ret;
2148 }
2149
2150 if ((ret = pkt_set_write_settings(pd))) {
2151 DPRINTK(DRIVER_NAME": %s failed saving write settings\n", pd->name);
2152 return -EIO;
2153 }
2154
2155 pkt_write_caching(pd, USE_WCACHING);
2156
2157 if ((ret = pkt_get_max_speed(pd, &write_speed)))
2158 write_speed = 16 * 177;
2159 switch (pd->mmc3_profile) {
2160 case 0x13: /* DVD-RW */
2161 case 0x1a: /* DVD+RW */
2162 case 0x12: /* DVD-RAM */
2163 DPRINTK(DRIVER_NAME": write speed %ukB/s\n", write_speed);
2164 break;
2165 default:
2166 if ((ret = pkt_media_speed(pd, &media_write_speed)))
2167 media_write_speed = 16;
2168 write_speed = min(write_speed, media_write_speed * 177);
2169 DPRINTK(DRIVER_NAME": write speed %ux\n", write_speed / 176);
2170 break;
2171 }
2172 read_speed = write_speed;
2173
2174 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2175 DPRINTK(DRIVER_NAME": %s couldn't set write speed\n", pd->name);
2176 return -EIO;
2177 }
2178 pd->write_speed = write_speed;
2179 pd->read_speed = read_speed;
2180
2181 if ((ret = pkt_perform_opc(pd))) {
2182 DPRINTK(DRIVER_NAME": %s Optimum Power Calibration failed\n", pd->name);
2183 }
2184
2185 return 0;
2186 }
2187
2188 /*
2189 * called at open time.
2190 */
2191 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2192 {
2193 int ret;
2194 long lba;
2195 struct request_queue *q;
2196
2197 /*
2198 * We need to re-open the cdrom device without O_NONBLOCK to be able
2199 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2200 * so bdget() can't fail.
2201 */
2202 bdget(pd->bdev->bd_dev);
2203 if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd)))
2204 goto out;
2205
2206 if ((ret = pkt_get_last_written(pd, &lba))) {
2207 printk(DRIVER_NAME": pkt_get_last_written failed\n");
2208 goto out_putdev;
2209 }
2210
2211 set_capacity(pd->disk, lba << 2);
2212 set_capacity(pd->bdev->bd_disk, lba << 2);
2213 bd_set_size(pd->bdev, (loff_t)lba << 11);
2214
2215 q = bdev_get_queue(pd->bdev);
2216 if (write) {
2217 if ((ret = pkt_open_write(pd)))
2218 goto out_putdev;
2219 /*
2220 * Some CDRW drives can not handle writes larger than one packet,
2221 * even if the size is a multiple of the packet size.
2222 */
2223 spin_lock_irq(q->queue_lock);
2224 blk_queue_max_hw_sectors(q, pd->settings.size);
2225 spin_unlock_irq(q->queue_lock);
2226 set_bit(PACKET_WRITABLE, &pd->flags);
2227 } else {
2228 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2229 clear_bit(PACKET_WRITABLE, &pd->flags);
2230 }
2231
2232 if ((ret = pkt_set_segment_merging(pd, q)))
2233 goto out_putdev;
2234
2235 if (write) {
2236 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2237 printk(DRIVER_NAME": not enough memory for buffers\n");
2238 ret = -ENOMEM;
2239 goto out_putdev;
2240 }
2241 printk(DRIVER_NAME": %lukB available on disc\n", lba << 1);
2242 }
2243
2244 return 0;
2245
2246 out_putdev:
2247 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2248 out:
2249 return ret;
2250 }
2251
2252 /*
2253 * called when the device is closed. makes sure that the device flushes
2254 * the internal cache before we close.
2255 */
2256 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2257 {
2258 if (flush && pkt_flush_cache(pd))
2259 DPRINTK(DRIVER_NAME": %s not flushing cache\n", pd->name);
2260
2261 pkt_lock_door(pd, 0);
2262
2263 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2264 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2265
2266 pkt_shrink_pktlist(pd);
2267 }
2268
2269 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2270 {
2271 if (dev_minor >= MAX_WRITERS)
2272 return NULL;
2273 return pkt_devs[dev_minor];
2274 }
2275
2276 static int pkt_open(struct block_device *bdev, fmode_t mode)
2277 {
2278 struct pktcdvd_device *pd = NULL;
2279 int ret;
2280
2281 VPRINTK(DRIVER_NAME": entering open\n");
2282
2283 mutex_lock(&pktcdvd_mutex);
2284 mutex_lock(&ctl_mutex);
2285 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2286 if (!pd) {
2287 ret = -ENODEV;
2288 goto out;
2289 }
2290 BUG_ON(pd->refcnt < 0);
2291
2292 pd->refcnt++;
2293 if (pd->refcnt > 1) {
2294 if ((mode & FMODE_WRITE) &&
2295 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2296 ret = -EBUSY;
2297 goto out_dec;
2298 }
2299 } else {
2300 ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2301 if (ret)
2302 goto out_dec;
2303 /*
2304 * needed here as well, since ext2 (among others) may change
2305 * the blocksize at mount time
2306 */
2307 set_blocksize(bdev, CD_FRAMESIZE);
2308 }
2309
2310 mutex_unlock(&ctl_mutex);
2311 mutex_unlock(&pktcdvd_mutex);
2312 return 0;
2313
2314 out_dec:
2315 pd->refcnt--;
2316 out:
2317 VPRINTK(DRIVER_NAME": failed open (%d)\n", ret);
2318 mutex_unlock(&ctl_mutex);
2319 mutex_unlock(&pktcdvd_mutex);
2320 return ret;
2321 }
2322
2323 static void pkt_close(struct gendisk *disk, fmode_t mode)
2324 {
2325 struct pktcdvd_device *pd = disk->private_data;
2326
2327 mutex_lock(&pktcdvd_mutex);
2328 mutex_lock(&ctl_mutex);
2329 pd->refcnt--;
2330 BUG_ON(pd->refcnt < 0);
2331 if (pd->refcnt == 0) {
2332 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2333 pkt_release_dev(pd, flush);
2334 }
2335 mutex_unlock(&ctl_mutex);
2336 mutex_unlock(&pktcdvd_mutex);
2337 }
2338
2339
2340 static void pkt_end_io_read_cloned(struct bio *bio, int err)
2341 {
2342 struct packet_stacked_data *psd = bio->bi_private;
2343 struct pktcdvd_device *pd = psd->pd;
2344
2345 bio_put(bio);
2346 bio_endio(psd->bio, err);
2347 mempool_free(psd, psd_pool);
2348 pkt_bio_finished(pd);
2349 }
2350
2351 static void pkt_make_request(struct request_queue *q, struct bio *bio)
2352 {
2353 struct pktcdvd_device *pd;
2354 char b[BDEVNAME_SIZE];
2355 sector_t zone;
2356 struct packet_data *pkt;
2357 int was_empty, blocked_bio;
2358 struct pkt_rb_node *node;
2359
2360 pd = q->queuedata;
2361 if (!pd) {
2362 printk(DRIVER_NAME": %s incorrect request queue\n", bdevname(bio->bi_bdev, b));
2363 goto end_io;
2364 }
2365
2366 /*
2367 * Clone READ bios so we can have our own bi_end_io callback.
2368 */
2369 if (bio_data_dir(bio) == READ) {
2370 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2371 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2372
2373 psd->pd = pd;
2374 psd->bio = bio;
2375 cloned_bio->bi_bdev = pd->bdev;
2376 cloned_bio->bi_private = psd;
2377 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2378 pd->stats.secs_r += bio_sectors(bio);
2379 pkt_queue_bio(pd, cloned_bio);
2380 return;
2381 }
2382
2383 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2384 printk(DRIVER_NAME": WRITE for ro device %s (%llu)\n",
2385 pd->name, (unsigned long long)bio->bi_sector);
2386 goto end_io;
2387 }
2388
2389 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2390 printk(DRIVER_NAME": wrong bio size\n");
2391 goto end_io;
2392 }
2393
2394 blk_queue_bounce(q, &bio);
2395
2396 zone = ZONE(bio->bi_sector, pd);
2397 VPRINTK("pkt_make_request: start = %6llx stop = %6llx\n",
2398 (unsigned long long)bio->bi_sector,
2399 (unsigned long long)bio_end_sector(bio));
2400
2401 /* Check if we have to split the bio */
2402 {
2403 struct bio_pair *bp;
2404 sector_t last_zone;
2405 int first_sectors;
2406
2407 last_zone = ZONE(bio_end_sector(bio) - 1, pd);
2408 if (last_zone != zone) {
2409 BUG_ON(last_zone != zone + pd->settings.size);
2410 first_sectors = last_zone - bio->bi_sector;
2411 bp = bio_split(bio, first_sectors);
2412 BUG_ON(!bp);
2413 pkt_make_request(q, &bp->bio1);
2414 pkt_make_request(q, &bp->bio2);
2415 bio_pair_release(bp);
2416 return;
2417 }
2418 }
2419
2420 /*
2421 * If we find a matching packet in state WAITING or READ_WAIT, we can
2422 * just append this bio to that packet.
2423 */
2424 spin_lock(&pd->cdrw.active_list_lock);
2425 blocked_bio = 0;
2426 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2427 if (pkt->sector == zone) {
2428 spin_lock(&pkt->lock);
2429 if ((pkt->state == PACKET_WAITING_STATE) ||
2430 (pkt->state == PACKET_READ_WAIT_STATE)) {
2431 bio_list_add(&pkt->orig_bios, bio);
2432 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2433 if ((pkt->write_size >= pkt->frames) &&
2434 (pkt->state == PACKET_WAITING_STATE)) {
2435 atomic_inc(&pkt->run_sm);
2436 wake_up(&pd->wqueue);
2437 }
2438 spin_unlock(&pkt->lock);
2439 spin_unlock(&pd->cdrw.active_list_lock);
2440 return;
2441 } else {
2442 blocked_bio = 1;
2443 }
2444 spin_unlock(&pkt->lock);
2445 }
2446 }
2447 spin_unlock(&pd->cdrw.active_list_lock);
2448
2449 /*
2450 * Test if there is enough room left in the bio work queue
2451 * (queue size >= congestion on mark).
2452 * If not, wait till the work queue size is below the congestion off mark.
2453 */
2454 spin_lock(&pd->lock);
2455 if (pd->write_congestion_on > 0
2456 && pd->bio_queue_size >= pd->write_congestion_on) {
2457 set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2458 do {
2459 spin_unlock(&pd->lock);
2460 congestion_wait(BLK_RW_ASYNC, HZ);
2461 spin_lock(&pd->lock);
2462 } while(pd->bio_queue_size > pd->write_congestion_off);
2463 }
2464 spin_unlock(&pd->lock);
2465
2466 /*
2467 * No matching packet found. Store the bio in the work queue.
2468 */
2469 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2470 node->bio = bio;
2471 spin_lock(&pd->lock);
2472 BUG_ON(pd->bio_queue_size < 0);
2473 was_empty = (pd->bio_queue_size == 0);
2474 pkt_rbtree_insert(pd, node);
2475 spin_unlock(&pd->lock);
2476
2477 /*
2478 * Wake up the worker thread.
2479 */
2480 atomic_set(&pd->scan_queue, 1);
2481 if (was_empty) {
2482 /* This wake_up is required for correct operation */
2483 wake_up(&pd->wqueue);
2484 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2485 /*
2486 * This wake up is not required for correct operation,
2487 * but improves performance in some cases.
2488 */
2489 wake_up(&pd->wqueue);
2490 }
2491 return;
2492 end_io:
2493 bio_io_error(bio);
2494 }
2495
2496
2497
2498 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2499 struct bio_vec *bvec)
2500 {
2501 struct pktcdvd_device *pd = q->queuedata;
2502 sector_t zone = ZONE(bmd->bi_sector, pd);
2503 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2504 int remaining = (pd->settings.size << 9) - used;
2505 int remaining2;
2506
2507 /*
2508 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2509 * boundary, pkt_make_request() will split the bio.
2510 */
2511 remaining2 = PAGE_SIZE - bmd->bi_size;
2512 remaining = max(remaining, remaining2);
2513
2514 BUG_ON(remaining < 0);
2515 return remaining;
2516 }
2517
2518 static void pkt_init_queue(struct pktcdvd_device *pd)
2519 {
2520 struct request_queue *q = pd->disk->queue;
2521
2522 blk_queue_make_request(q, pkt_make_request);
2523 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2524 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2525 blk_queue_merge_bvec(q, pkt_merge_bvec);
2526 q->queuedata = pd;
2527 }
2528
2529 static int pkt_seq_show(struct seq_file *m, void *p)
2530 {
2531 struct pktcdvd_device *pd = m->private;
2532 char *msg;
2533 char bdev_buf[BDEVNAME_SIZE];
2534 int states[PACKET_NUM_STATES];
2535
2536 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2537 bdevname(pd->bdev, bdev_buf));
2538
2539 seq_printf(m, "\nSettings:\n");
2540 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2541
2542 if (pd->settings.write_type == 0)
2543 msg = "Packet";
2544 else
2545 msg = "Unknown";
2546 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2547
2548 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2549 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2550
2551 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2552
2553 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2554 msg = "Mode 1";
2555 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2556 msg = "Mode 2";
2557 else
2558 msg = "Unknown";
2559 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2560
2561 seq_printf(m, "\nStatistics:\n");
2562 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2563 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2564 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2565 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2566 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2567
2568 seq_printf(m, "\nMisc:\n");
2569 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2570 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2571 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2572 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2573 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2574 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2575
2576 seq_printf(m, "\nQueue state:\n");
2577 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2578 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2579 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2580
2581 pkt_count_states(pd, states);
2582 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2583 states[0], states[1], states[2], states[3], states[4], states[5]);
2584
2585 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2586 pd->write_congestion_off,
2587 pd->write_congestion_on);
2588 return 0;
2589 }
2590
2591 static int pkt_seq_open(struct inode *inode, struct file *file)
2592 {
2593 return single_open(file, pkt_seq_show, PDE_DATA(inode));
2594 }
2595
2596 static const struct file_operations pkt_proc_fops = {
2597 .open = pkt_seq_open,
2598 .read = seq_read,
2599 .llseek = seq_lseek,
2600 .release = single_release
2601 };
2602
2603 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2604 {
2605 int i;
2606 int ret = 0;
2607 char b[BDEVNAME_SIZE];
2608 struct block_device *bdev;
2609
2610 if (pd->pkt_dev == dev) {
2611 printk(DRIVER_NAME": Recursive setup not allowed\n");
2612 return -EBUSY;
2613 }
2614 for (i = 0; i < MAX_WRITERS; i++) {
2615 struct pktcdvd_device *pd2 = pkt_devs[i];
2616 if (!pd2)
2617 continue;
2618 if (pd2->bdev->bd_dev == dev) {
2619 printk(DRIVER_NAME": %s already setup\n", bdevname(pd2->bdev, b));
2620 return -EBUSY;
2621 }
2622 if (pd2->pkt_dev == dev) {
2623 printk(DRIVER_NAME": Can't chain pktcdvd devices\n");
2624 return -EBUSY;
2625 }
2626 }
2627
2628 bdev = bdget(dev);
2629 if (!bdev)
2630 return -ENOMEM;
2631 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2632 if (ret)
2633 return ret;
2634
2635 /* This is safe, since we have a reference from open(). */
2636 __module_get(THIS_MODULE);
2637
2638 pd->bdev = bdev;
2639 set_blocksize(bdev, CD_FRAMESIZE);
2640
2641 pkt_init_queue(pd);
2642
2643 atomic_set(&pd->cdrw.pending_bios, 0);
2644 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2645 if (IS_ERR(pd->cdrw.thread)) {
2646 printk(DRIVER_NAME": can't start kernel thread\n");
2647 ret = -ENOMEM;
2648 goto out_mem;
2649 }
2650
2651 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2652 DPRINTK(DRIVER_NAME": writer %s mapped to %s\n", pd->name, bdevname(bdev, b));
2653 return 0;
2654
2655 out_mem:
2656 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2657 /* This is safe: open() is still holding a reference. */
2658 module_put(THIS_MODULE);
2659 return ret;
2660 }
2661
2662 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2663 {
2664 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2665 int ret;
2666
2667 VPRINTK("pkt_ioctl: cmd %x, dev %d:%d\n", cmd,
2668 MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2669
2670 mutex_lock(&pktcdvd_mutex);
2671 switch (cmd) {
2672 case CDROMEJECT:
2673 /*
2674 * The door gets locked when the device is opened, so we
2675 * have to unlock it or else the eject command fails.
2676 */
2677 if (pd->refcnt == 1)
2678 pkt_lock_door(pd, 0);
2679 /* fallthru */
2680 /*
2681 * forward selected CDROM ioctls to CD-ROM, for UDF
2682 */
2683 case CDROMMULTISESSION:
2684 case CDROMREADTOCENTRY:
2685 case CDROM_LAST_WRITTEN:
2686 case CDROM_SEND_PACKET:
2687 case SCSI_IOCTL_SEND_COMMAND:
2688 ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2689 break;
2690
2691 default:
2692 VPRINTK(DRIVER_NAME": Unknown ioctl for %s (%x)\n", pd->name, cmd);
2693 ret = -ENOTTY;
2694 }
2695 mutex_unlock(&pktcdvd_mutex);
2696
2697 return ret;
2698 }
2699
2700 static unsigned int pkt_check_events(struct gendisk *disk,
2701 unsigned int clearing)
2702 {
2703 struct pktcdvd_device *pd = disk->private_data;
2704 struct gendisk *attached_disk;
2705
2706 if (!pd)
2707 return 0;
2708 if (!pd->bdev)
2709 return 0;
2710 attached_disk = pd->bdev->bd_disk;
2711 if (!attached_disk || !attached_disk->fops->check_events)
2712 return 0;
2713 return attached_disk->fops->check_events(attached_disk, clearing);
2714 }
2715
2716 static const struct block_device_operations pktcdvd_ops = {
2717 .owner = THIS_MODULE,
2718 .open = pkt_open,
2719 .release = pkt_close,
2720 .ioctl = pkt_ioctl,
2721 .check_events = pkt_check_events,
2722 };
2723
2724 static char *pktcdvd_devnode(struct gendisk *gd, umode_t *mode)
2725 {
2726 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2727 }
2728
2729 /*
2730 * Set up mapping from pktcdvd device to CD-ROM device.
2731 */
2732 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2733 {
2734 int idx;
2735 int ret = -ENOMEM;
2736 struct pktcdvd_device *pd;
2737 struct gendisk *disk;
2738
2739 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2740
2741 for (idx = 0; idx < MAX_WRITERS; idx++)
2742 if (!pkt_devs[idx])
2743 break;
2744 if (idx == MAX_WRITERS) {
2745 printk(DRIVER_NAME": max %d writers supported\n", MAX_WRITERS);
2746 ret = -EBUSY;
2747 goto out_mutex;
2748 }
2749
2750 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2751 if (!pd)
2752 goto out_mutex;
2753
2754 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2755 sizeof(struct pkt_rb_node));
2756 if (!pd->rb_pool)
2757 goto out_mem;
2758
2759 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2760 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2761 spin_lock_init(&pd->cdrw.active_list_lock);
2762
2763 spin_lock_init(&pd->lock);
2764 spin_lock_init(&pd->iosched.lock);
2765 bio_list_init(&pd->iosched.read_queue);
2766 bio_list_init(&pd->iosched.write_queue);
2767 sprintf(pd->name, DRIVER_NAME"%d", idx);
2768 init_waitqueue_head(&pd->wqueue);
2769 pd->bio_queue = RB_ROOT;
2770
2771 pd->write_congestion_on = write_congestion_on;
2772 pd->write_congestion_off = write_congestion_off;
2773
2774 disk = alloc_disk(1);
2775 if (!disk)
2776 goto out_mem;
2777 pd->disk = disk;
2778 disk->major = pktdev_major;
2779 disk->first_minor = idx;
2780 disk->fops = &pktcdvd_ops;
2781 disk->flags = GENHD_FL_REMOVABLE;
2782 strcpy(disk->disk_name, pd->name);
2783 disk->devnode = pktcdvd_devnode;
2784 disk->private_data = pd;
2785 disk->queue = blk_alloc_queue(GFP_KERNEL);
2786 if (!disk->queue)
2787 goto out_mem2;
2788
2789 pd->pkt_dev = MKDEV(pktdev_major, idx);
2790 ret = pkt_new_dev(pd, dev);
2791 if (ret)
2792 goto out_new_dev;
2793
2794 /* inherit events of the host device */
2795 disk->events = pd->bdev->bd_disk->events;
2796 disk->async_events = pd->bdev->bd_disk->async_events;
2797
2798 add_disk(disk);
2799
2800 pkt_sysfs_dev_new(pd);
2801 pkt_debugfs_dev_new(pd);
2802
2803 pkt_devs[idx] = pd;
2804 if (pkt_dev)
2805 *pkt_dev = pd->pkt_dev;
2806
2807 mutex_unlock(&ctl_mutex);
2808 return 0;
2809
2810 out_new_dev:
2811 blk_cleanup_queue(disk->queue);
2812 out_mem2:
2813 put_disk(disk);
2814 out_mem:
2815 if (pd->rb_pool)
2816 mempool_destroy(pd->rb_pool);
2817 kfree(pd);
2818 out_mutex:
2819 mutex_unlock(&ctl_mutex);
2820 printk(DRIVER_NAME": setup of pktcdvd device failed\n");
2821 return ret;
2822 }
2823
2824 /*
2825 * Tear down mapping from pktcdvd device to CD-ROM device.
2826 */
2827 static int pkt_remove_dev(dev_t pkt_dev)
2828 {
2829 struct pktcdvd_device *pd;
2830 int idx;
2831 int ret = 0;
2832
2833 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2834
2835 for (idx = 0; idx < MAX_WRITERS; idx++) {
2836 pd = pkt_devs[idx];
2837 if (pd && (pd->pkt_dev == pkt_dev))
2838 break;
2839 }
2840 if (idx == MAX_WRITERS) {
2841 DPRINTK(DRIVER_NAME": dev not setup\n");
2842 ret = -ENXIO;
2843 goto out;
2844 }
2845
2846 if (pd->refcnt > 0) {
2847 ret = -EBUSY;
2848 goto out;
2849 }
2850 if (!IS_ERR(pd->cdrw.thread))
2851 kthread_stop(pd->cdrw.thread);
2852
2853 pkt_devs[idx] = NULL;
2854
2855 pkt_debugfs_dev_remove(pd);
2856 pkt_sysfs_dev_remove(pd);
2857
2858 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2859
2860 remove_proc_entry(pd->name, pkt_proc);
2861 DPRINTK(DRIVER_NAME": writer %s unmapped\n", pd->name);
2862
2863 del_gendisk(pd->disk);
2864 blk_cleanup_queue(pd->disk->queue);
2865 put_disk(pd->disk);
2866
2867 mempool_destroy(pd->rb_pool);
2868 kfree(pd);
2869
2870 /* This is safe: open() is still holding a reference. */
2871 module_put(THIS_MODULE);
2872
2873 out:
2874 mutex_unlock(&ctl_mutex);
2875 return ret;
2876 }
2877
2878 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2879 {
2880 struct pktcdvd_device *pd;
2881
2882 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2883
2884 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2885 if (pd) {
2886 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2887 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2888 } else {
2889 ctrl_cmd->dev = 0;
2890 ctrl_cmd->pkt_dev = 0;
2891 }
2892 ctrl_cmd->num_devices = MAX_WRITERS;
2893
2894 mutex_unlock(&ctl_mutex);
2895 }
2896
2897 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2898 {
2899 void __user *argp = (void __user *)arg;
2900 struct pkt_ctrl_command ctrl_cmd;
2901 int ret = 0;
2902 dev_t pkt_dev = 0;
2903
2904 if (cmd != PACKET_CTRL_CMD)
2905 return -ENOTTY;
2906
2907 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2908 return -EFAULT;
2909
2910 switch (ctrl_cmd.command) {
2911 case PKT_CTRL_CMD_SETUP:
2912 if (!capable(CAP_SYS_ADMIN))
2913 return -EPERM;
2914 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2915 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2916 break;
2917 case PKT_CTRL_CMD_TEARDOWN:
2918 if (!capable(CAP_SYS_ADMIN))
2919 return -EPERM;
2920 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2921 break;
2922 case PKT_CTRL_CMD_STATUS:
2923 pkt_get_status(&ctrl_cmd);
2924 break;
2925 default:
2926 return -ENOTTY;
2927 }
2928
2929 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2930 return -EFAULT;
2931 return ret;
2932 }
2933
2934 #ifdef CONFIG_COMPAT
2935 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2936 {
2937 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2938 }
2939 #endif
2940
2941 static const struct file_operations pkt_ctl_fops = {
2942 .open = nonseekable_open,
2943 .unlocked_ioctl = pkt_ctl_ioctl,
2944 #ifdef CONFIG_COMPAT
2945 .compat_ioctl = pkt_ctl_compat_ioctl,
2946 #endif
2947 .owner = THIS_MODULE,
2948 .llseek = no_llseek,
2949 };
2950
2951 static struct miscdevice pkt_misc = {
2952 .minor = MISC_DYNAMIC_MINOR,
2953 .name = DRIVER_NAME,
2954 .nodename = "pktcdvd/control",
2955 .fops = &pkt_ctl_fops
2956 };
2957
2958 static int __init pkt_init(void)
2959 {
2960 int ret;
2961
2962 mutex_init(&ctl_mutex);
2963
2964 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
2965 sizeof(struct packet_stacked_data));
2966 if (!psd_pool)
2967 return -ENOMEM;
2968
2969 ret = register_blkdev(pktdev_major, DRIVER_NAME);
2970 if (ret < 0) {
2971 printk(DRIVER_NAME": Unable to register block device\n");
2972 goto out2;
2973 }
2974 if (!pktdev_major)
2975 pktdev_major = ret;
2976
2977 ret = pkt_sysfs_init();
2978 if (ret)
2979 goto out;
2980
2981 pkt_debugfs_init();
2982
2983 ret = misc_register(&pkt_misc);
2984 if (ret) {
2985 printk(DRIVER_NAME": Unable to register misc device\n");
2986 goto out_misc;
2987 }
2988
2989 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2990
2991 return 0;
2992
2993 out_misc:
2994 pkt_debugfs_cleanup();
2995 pkt_sysfs_cleanup();
2996 out:
2997 unregister_blkdev(pktdev_major, DRIVER_NAME);
2998 out2:
2999 mempool_destroy(psd_pool);
3000 return ret;
3001 }
3002
3003 static void __exit pkt_exit(void)
3004 {
3005 remove_proc_entry("driver/"DRIVER_NAME, NULL);
3006 misc_deregister(&pkt_misc);
3007
3008 pkt_debugfs_cleanup();
3009 pkt_sysfs_cleanup();
3010
3011 unregister_blkdev(pktdev_major, DRIVER_NAME);
3012 mempool_destroy(psd_pool);
3013 }
3014
3015 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3016 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3017 MODULE_LICENSE("GPL");
3018
3019 module_init(pkt_init);
3020 module_exit(pkt_exit);