ff8668c5efb10eebc1a02736d306cce1f43ad7ff
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / drivers / block / pktcdvd.c
1 /*
2 * Copyright (C) 2000 Jens Axboe <axboe@suse.de>
3 * Copyright (C) 2001-2004 Peter Osterlund <petero2@telia.com>
4 * Copyright (C) 2006 Thomas Maier <balagi@justmail.de>
5 *
6 * May be copied or modified under the terms of the GNU General Public
7 * License. See linux/COPYING for more information.
8 *
9 * Packet writing layer for ATAPI and SCSI CD-RW, DVD+RW, DVD-RW and
10 * DVD-RAM devices.
11 *
12 * Theory of operation:
13 *
14 * At the lowest level, there is the standard driver for the CD/DVD device,
15 * typically ide-cd.c or sr.c. This driver can handle read and write requests,
16 * but it doesn't know anything about the special restrictions that apply to
17 * packet writing. One restriction is that write requests must be aligned to
18 * packet boundaries on the physical media, and the size of a write request
19 * must be equal to the packet size. Another restriction is that a
20 * GPCMD_FLUSH_CACHE command has to be issued to the drive before a read
21 * command, if the previous command was a write.
22 *
23 * The purpose of the packet writing driver is to hide these restrictions from
24 * higher layers, such as file systems, and present a block device that can be
25 * randomly read and written using 2kB-sized blocks.
26 *
27 * The lowest layer in the packet writing driver is the packet I/O scheduler.
28 * Its data is defined by the struct packet_iosched and includes two bio
29 * queues with pending read and write requests. These queues are processed
30 * by the pkt_iosched_process_queue() function. The write requests in this
31 * queue are already properly aligned and sized. This layer is responsible for
32 * issuing the flush cache commands and scheduling the I/O in a good order.
33 *
34 * The next layer transforms unaligned write requests to aligned writes. This
35 * transformation requires reading missing pieces of data from the underlying
36 * block device, assembling the pieces to full packets and queuing them to the
37 * packet I/O scheduler.
38 *
39 * At the top layer there is a custom make_request_fn function that forwards
40 * read requests directly to the iosched queue and puts write requests in the
41 * unaligned write queue. A kernel thread performs the necessary read
42 * gathering to convert the unaligned writes to aligned writes and then feeds
43 * them to the packet I/O scheduler.
44 *
45 *************************************************************************/
46
47 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
48
49 #include <linux/pktcdvd.h>
50 #include <linux/module.h>
51 #include <linux/types.h>
52 #include <linux/kernel.h>
53 #include <linux/compat.h>
54 #include <linux/kthread.h>
55 #include <linux/errno.h>
56 #include <linux/spinlock.h>
57 #include <linux/file.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/miscdevice.h>
61 #include <linux/freezer.h>
62 #include <linux/mutex.h>
63 #include <linux/slab.h>
64 #include <scsi/scsi_cmnd.h>
65 #include <scsi/scsi_ioctl.h>
66 #include <scsi/scsi.h>
67 #include <linux/debugfs.h>
68 #include <linux/device.h>
69
70 #include <asm/uaccess.h>
71
72 #define DRIVER_NAME "pktcdvd"
73
74 #define pkt_err(pd, fmt, ...) \
75 pr_err("%s: " fmt, pd->name, ##__VA_ARGS__)
76 #define pkt_notice(pd, fmt, ...) \
77 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__)
78 #define pkt_info(pd, fmt, ...) \
79 pr_info("%s: " fmt, pd->name, ##__VA_ARGS__)
80
81 #define pkt_dbg(level, pd, fmt, ...) \
82 do { \
83 if (level == 2 && PACKET_DEBUG >= 2) \
84 pr_notice("%s: %s():" fmt, \
85 pd->name, __func__, ##__VA_ARGS__); \
86 else if (level == 1 && PACKET_DEBUG >= 1) \
87 pr_notice("%s: " fmt, pd->name, ##__VA_ARGS__); \
88 } while (0)
89
90 #define MAX_SPEED 0xffff
91
92 static DEFINE_MUTEX(pktcdvd_mutex);
93 static struct pktcdvd_device *pkt_devs[MAX_WRITERS];
94 static struct proc_dir_entry *pkt_proc;
95 static int pktdev_major;
96 static int write_congestion_on = PKT_WRITE_CONGESTION_ON;
97 static int write_congestion_off = PKT_WRITE_CONGESTION_OFF;
98 static struct mutex ctl_mutex; /* Serialize open/close/setup/teardown */
99 static mempool_t *psd_pool;
100
101 static struct class *class_pktcdvd = NULL; /* /sys/class/pktcdvd */
102 static struct dentry *pkt_debugfs_root = NULL; /* /sys/kernel/debug/pktcdvd */
103
104 /* forward declaration */
105 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev);
106 static int pkt_remove_dev(dev_t pkt_dev);
107 static int pkt_seq_show(struct seq_file *m, void *p);
108
109 static sector_t get_zone(sector_t sector, struct pktcdvd_device *pd)
110 {
111 return (sector + pd->offset) & ~(sector_t)(pd->settings.size - 1);
112 }
113
114 /*
115 * create and register a pktcdvd kernel object.
116 */
117 static struct pktcdvd_kobj* pkt_kobj_create(struct pktcdvd_device *pd,
118 const char* name,
119 struct kobject* parent,
120 struct kobj_type* ktype)
121 {
122 struct pktcdvd_kobj *p;
123 int error;
124
125 p = kzalloc(sizeof(*p), GFP_KERNEL);
126 if (!p)
127 return NULL;
128 p->pd = pd;
129 error = kobject_init_and_add(&p->kobj, ktype, parent, "%s", name);
130 if (error) {
131 kobject_put(&p->kobj);
132 return NULL;
133 }
134 kobject_uevent(&p->kobj, KOBJ_ADD);
135 return p;
136 }
137 /*
138 * remove a pktcdvd kernel object.
139 */
140 static void pkt_kobj_remove(struct pktcdvd_kobj *p)
141 {
142 if (p)
143 kobject_put(&p->kobj);
144 }
145 /*
146 * default release function for pktcdvd kernel objects.
147 */
148 static void pkt_kobj_release(struct kobject *kobj)
149 {
150 kfree(to_pktcdvdkobj(kobj));
151 }
152
153
154 /**********************************************************
155 *
156 * sysfs interface for pktcdvd
157 * by (C) 2006 Thomas Maier <balagi@justmail.de>
158 *
159 **********************************************************/
160
161 #define DEF_ATTR(_obj,_name,_mode) \
162 static struct attribute _obj = { .name = _name, .mode = _mode }
163
164 /**********************************************************
165 /sys/class/pktcdvd/pktcdvd[0-7]/
166 stat/reset
167 stat/packets_started
168 stat/packets_finished
169 stat/kb_written
170 stat/kb_read
171 stat/kb_read_gather
172 write_queue/size
173 write_queue/congestion_off
174 write_queue/congestion_on
175 **********************************************************/
176
177 DEF_ATTR(kobj_pkt_attr_st1, "reset", 0200);
178 DEF_ATTR(kobj_pkt_attr_st2, "packets_started", 0444);
179 DEF_ATTR(kobj_pkt_attr_st3, "packets_finished", 0444);
180 DEF_ATTR(kobj_pkt_attr_st4, "kb_written", 0444);
181 DEF_ATTR(kobj_pkt_attr_st5, "kb_read", 0444);
182 DEF_ATTR(kobj_pkt_attr_st6, "kb_read_gather", 0444);
183
184 static struct attribute *kobj_pkt_attrs_stat[] = {
185 &kobj_pkt_attr_st1,
186 &kobj_pkt_attr_st2,
187 &kobj_pkt_attr_st3,
188 &kobj_pkt_attr_st4,
189 &kobj_pkt_attr_st5,
190 &kobj_pkt_attr_st6,
191 NULL
192 };
193
194 DEF_ATTR(kobj_pkt_attr_wq1, "size", 0444);
195 DEF_ATTR(kobj_pkt_attr_wq2, "congestion_off", 0644);
196 DEF_ATTR(kobj_pkt_attr_wq3, "congestion_on", 0644);
197
198 static struct attribute *kobj_pkt_attrs_wqueue[] = {
199 &kobj_pkt_attr_wq1,
200 &kobj_pkt_attr_wq2,
201 &kobj_pkt_attr_wq3,
202 NULL
203 };
204
205 static ssize_t kobj_pkt_show(struct kobject *kobj,
206 struct attribute *attr, char *data)
207 {
208 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
209 int n = 0;
210 int v;
211 if (strcmp(attr->name, "packets_started") == 0) {
212 n = sprintf(data, "%lu\n", pd->stats.pkt_started);
213
214 } else if (strcmp(attr->name, "packets_finished") == 0) {
215 n = sprintf(data, "%lu\n", pd->stats.pkt_ended);
216
217 } else if (strcmp(attr->name, "kb_written") == 0) {
218 n = sprintf(data, "%lu\n", pd->stats.secs_w >> 1);
219
220 } else if (strcmp(attr->name, "kb_read") == 0) {
221 n = sprintf(data, "%lu\n", pd->stats.secs_r >> 1);
222
223 } else if (strcmp(attr->name, "kb_read_gather") == 0) {
224 n = sprintf(data, "%lu\n", pd->stats.secs_rg >> 1);
225
226 } else if (strcmp(attr->name, "size") == 0) {
227 spin_lock(&pd->lock);
228 v = pd->bio_queue_size;
229 spin_unlock(&pd->lock);
230 n = sprintf(data, "%d\n", v);
231
232 } else if (strcmp(attr->name, "congestion_off") == 0) {
233 spin_lock(&pd->lock);
234 v = pd->write_congestion_off;
235 spin_unlock(&pd->lock);
236 n = sprintf(data, "%d\n", v);
237
238 } else if (strcmp(attr->name, "congestion_on") == 0) {
239 spin_lock(&pd->lock);
240 v = pd->write_congestion_on;
241 spin_unlock(&pd->lock);
242 n = sprintf(data, "%d\n", v);
243 }
244 return n;
245 }
246
247 static void init_write_congestion_marks(int* lo, int* hi)
248 {
249 if (*hi > 0) {
250 *hi = max(*hi, 500);
251 *hi = min(*hi, 1000000);
252 if (*lo <= 0)
253 *lo = *hi - 100;
254 else {
255 *lo = min(*lo, *hi - 100);
256 *lo = max(*lo, 100);
257 }
258 } else {
259 *hi = -1;
260 *lo = -1;
261 }
262 }
263
264 static ssize_t kobj_pkt_store(struct kobject *kobj,
265 struct attribute *attr,
266 const char *data, size_t len)
267 {
268 struct pktcdvd_device *pd = to_pktcdvdkobj(kobj)->pd;
269 int val;
270
271 if (strcmp(attr->name, "reset") == 0 && len > 0) {
272 pd->stats.pkt_started = 0;
273 pd->stats.pkt_ended = 0;
274 pd->stats.secs_w = 0;
275 pd->stats.secs_rg = 0;
276 pd->stats.secs_r = 0;
277
278 } else if (strcmp(attr->name, "congestion_off") == 0
279 && sscanf(data, "%d", &val) == 1) {
280 spin_lock(&pd->lock);
281 pd->write_congestion_off = val;
282 init_write_congestion_marks(&pd->write_congestion_off,
283 &pd->write_congestion_on);
284 spin_unlock(&pd->lock);
285
286 } else if (strcmp(attr->name, "congestion_on") == 0
287 && sscanf(data, "%d", &val) == 1) {
288 spin_lock(&pd->lock);
289 pd->write_congestion_on = val;
290 init_write_congestion_marks(&pd->write_congestion_off,
291 &pd->write_congestion_on);
292 spin_unlock(&pd->lock);
293 }
294 return len;
295 }
296
297 static const struct sysfs_ops kobj_pkt_ops = {
298 .show = kobj_pkt_show,
299 .store = kobj_pkt_store
300 };
301 static struct kobj_type kobj_pkt_type_stat = {
302 .release = pkt_kobj_release,
303 .sysfs_ops = &kobj_pkt_ops,
304 .default_attrs = kobj_pkt_attrs_stat
305 };
306 static struct kobj_type kobj_pkt_type_wqueue = {
307 .release = pkt_kobj_release,
308 .sysfs_ops = &kobj_pkt_ops,
309 .default_attrs = kobj_pkt_attrs_wqueue
310 };
311
312 static void pkt_sysfs_dev_new(struct pktcdvd_device *pd)
313 {
314 if (class_pktcdvd) {
315 pd->dev = device_create(class_pktcdvd, NULL, MKDEV(0, 0), NULL,
316 "%s", pd->name);
317 if (IS_ERR(pd->dev))
318 pd->dev = NULL;
319 }
320 if (pd->dev) {
321 pd->kobj_stat = pkt_kobj_create(pd, "stat",
322 &pd->dev->kobj,
323 &kobj_pkt_type_stat);
324 pd->kobj_wqueue = pkt_kobj_create(pd, "write_queue",
325 &pd->dev->kobj,
326 &kobj_pkt_type_wqueue);
327 }
328 }
329
330 static void pkt_sysfs_dev_remove(struct pktcdvd_device *pd)
331 {
332 pkt_kobj_remove(pd->kobj_stat);
333 pkt_kobj_remove(pd->kobj_wqueue);
334 if (class_pktcdvd)
335 device_unregister(pd->dev);
336 }
337
338
339 /********************************************************************
340 /sys/class/pktcdvd/
341 add map block device
342 remove unmap packet dev
343 device_map show mappings
344 *******************************************************************/
345
346 static void class_pktcdvd_release(struct class *cls)
347 {
348 kfree(cls);
349 }
350 static ssize_t class_pktcdvd_show_map(struct class *c,
351 struct class_attribute *attr,
352 char *data)
353 {
354 int n = 0;
355 int idx;
356 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
357 for (idx = 0; idx < MAX_WRITERS; idx++) {
358 struct pktcdvd_device *pd = pkt_devs[idx];
359 if (!pd)
360 continue;
361 n += sprintf(data+n, "%s %u:%u %u:%u\n",
362 pd->name,
363 MAJOR(pd->pkt_dev), MINOR(pd->pkt_dev),
364 MAJOR(pd->bdev->bd_dev),
365 MINOR(pd->bdev->bd_dev));
366 }
367 mutex_unlock(&ctl_mutex);
368 return n;
369 }
370
371 static ssize_t class_pktcdvd_store_add(struct class *c,
372 struct class_attribute *attr,
373 const char *buf,
374 size_t count)
375 {
376 unsigned int major, minor;
377
378 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
379 /* pkt_setup_dev() expects caller to hold reference to self */
380 if (!try_module_get(THIS_MODULE))
381 return -ENODEV;
382
383 pkt_setup_dev(MKDEV(major, minor), NULL);
384
385 module_put(THIS_MODULE);
386
387 return count;
388 }
389
390 return -EINVAL;
391 }
392
393 static ssize_t class_pktcdvd_store_remove(struct class *c,
394 struct class_attribute *attr,
395 const char *buf,
396 size_t count)
397 {
398 unsigned int major, minor;
399 if (sscanf(buf, "%u:%u", &major, &minor) == 2) {
400 pkt_remove_dev(MKDEV(major, minor));
401 return count;
402 }
403 return -EINVAL;
404 }
405
406 static struct class_attribute class_pktcdvd_attrs[] = {
407 __ATTR(add, 0200, NULL, class_pktcdvd_store_add),
408 __ATTR(remove, 0200, NULL, class_pktcdvd_store_remove),
409 __ATTR(device_map, 0444, class_pktcdvd_show_map, NULL),
410 __ATTR_NULL
411 };
412
413
414 static int pkt_sysfs_init(void)
415 {
416 int ret = 0;
417
418 /*
419 * create control files in sysfs
420 * /sys/class/pktcdvd/...
421 */
422 class_pktcdvd = kzalloc(sizeof(*class_pktcdvd), GFP_KERNEL);
423 if (!class_pktcdvd)
424 return -ENOMEM;
425 class_pktcdvd->name = DRIVER_NAME;
426 class_pktcdvd->owner = THIS_MODULE;
427 class_pktcdvd->class_release = class_pktcdvd_release;
428 class_pktcdvd->class_attrs = class_pktcdvd_attrs;
429 ret = class_register(class_pktcdvd);
430 if (ret) {
431 kfree(class_pktcdvd);
432 class_pktcdvd = NULL;
433 pr_err("failed to create class pktcdvd\n");
434 return ret;
435 }
436 return 0;
437 }
438
439 static void pkt_sysfs_cleanup(void)
440 {
441 if (class_pktcdvd)
442 class_destroy(class_pktcdvd);
443 class_pktcdvd = NULL;
444 }
445
446 /********************************************************************
447 entries in debugfs
448
449 /sys/kernel/debug/pktcdvd[0-7]/
450 info
451
452 *******************************************************************/
453
454 static int pkt_debugfs_seq_show(struct seq_file *m, void *p)
455 {
456 return pkt_seq_show(m, p);
457 }
458
459 static int pkt_debugfs_fops_open(struct inode *inode, struct file *file)
460 {
461 return single_open(file, pkt_debugfs_seq_show, inode->i_private);
462 }
463
464 static const struct file_operations debug_fops = {
465 .open = pkt_debugfs_fops_open,
466 .read = seq_read,
467 .llseek = seq_lseek,
468 .release = single_release,
469 .owner = THIS_MODULE,
470 };
471
472 static void pkt_debugfs_dev_new(struct pktcdvd_device *pd)
473 {
474 if (!pkt_debugfs_root)
475 return;
476 pd->dfs_d_root = debugfs_create_dir(pd->name, pkt_debugfs_root);
477 if (!pd->dfs_d_root)
478 return;
479
480 pd->dfs_f_info = debugfs_create_file("info", S_IRUGO,
481 pd->dfs_d_root, pd, &debug_fops);
482 }
483
484 static void pkt_debugfs_dev_remove(struct pktcdvd_device *pd)
485 {
486 if (!pkt_debugfs_root)
487 return;
488 debugfs_remove(pd->dfs_f_info);
489 debugfs_remove(pd->dfs_d_root);
490 pd->dfs_f_info = NULL;
491 pd->dfs_d_root = NULL;
492 }
493
494 static void pkt_debugfs_init(void)
495 {
496 pkt_debugfs_root = debugfs_create_dir(DRIVER_NAME, NULL);
497 }
498
499 static void pkt_debugfs_cleanup(void)
500 {
501 debugfs_remove(pkt_debugfs_root);
502 pkt_debugfs_root = NULL;
503 }
504
505 /* ----------------------------------------------------------*/
506
507
508 static void pkt_bio_finished(struct pktcdvd_device *pd)
509 {
510 BUG_ON(atomic_read(&pd->cdrw.pending_bios) <= 0);
511 if (atomic_dec_and_test(&pd->cdrw.pending_bios)) {
512 pkt_dbg(2, pd, "queue empty\n");
513 atomic_set(&pd->iosched.attention, 1);
514 wake_up(&pd->wqueue);
515 }
516 }
517
518 /*
519 * Allocate a packet_data struct
520 */
521 static struct packet_data *pkt_alloc_packet_data(int frames)
522 {
523 int i;
524 struct packet_data *pkt;
525
526 pkt = kzalloc(sizeof(struct packet_data), GFP_KERNEL);
527 if (!pkt)
528 goto no_pkt;
529
530 pkt->frames = frames;
531 pkt->w_bio = bio_kmalloc(GFP_KERNEL, frames);
532 if (!pkt->w_bio)
533 goto no_bio;
534
535 for (i = 0; i < frames / FRAMES_PER_PAGE; i++) {
536 pkt->pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
537 if (!pkt->pages[i])
538 goto no_page;
539 }
540
541 spin_lock_init(&pkt->lock);
542 bio_list_init(&pkt->orig_bios);
543
544 for (i = 0; i < frames; i++) {
545 struct bio *bio = bio_kmalloc(GFP_KERNEL, 1);
546 if (!bio)
547 goto no_rd_bio;
548
549 pkt->r_bios[i] = bio;
550 }
551
552 return pkt;
553
554 no_rd_bio:
555 for (i = 0; i < frames; i++) {
556 struct bio *bio = pkt->r_bios[i];
557 if (bio)
558 bio_put(bio);
559 }
560
561 no_page:
562 for (i = 0; i < frames / FRAMES_PER_PAGE; i++)
563 if (pkt->pages[i])
564 __free_page(pkt->pages[i]);
565 bio_put(pkt->w_bio);
566 no_bio:
567 kfree(pkt);
568 no_pkt:
569 return NULL;
570 }
571
572 /*
573 * Free a packet_data struct
574 */
575 static void pkt_free_packet_data(struct packet_data *pkt)
576 {
577 int i;
578
579 for (i = 0; i < pkt->frames; i++) {
580 struct bio *bio = pkt->r_bios[i];
581 if (bio)
582 bio_put(bio);
583 }
584 for (i = 0; i < pkt->frames / FRAMES_PER_PAGE; i++)
585 __free_page(pkt->pages[i]);
586 bio_put(pkt->w_bio);
587 kfree(pkt);
588 }
589
590 static void pkt_shrink_pktlist(struct pktcdvd_device *pd)
591 {
592 struct packet_data *pkt, *next;
593
594 BUG_ON(!list_empty(&pd->cdrw.pkt_active_list));
595
596 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_free_list, list) {
597 pkt_free_packet_data(pkt);
598 }
599 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
600 }
601
602 static int pkt_grow_pktlist(struct pktcdvd_device *pd, int nr_packets)
603 {
604 struct packet_data *pkt;
605
606 BUG_ON(!list_empty(&pd->cdrw.pkt_free_list));
607
608 while (nr_packets > 0) {
609 pkt = pkt_alloc_packet_data(pd->settings.size >> 2);
610 if (!pkt) {
611 pkt_shrink_pktlist(pd);
612 return 0;
613 }
614 pkt->id = nr_packets;
615 pkt->pd = pd;
616 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
617 nr_packets--;
618 }
619 return 1;
620 }
621
622 static inline struct pkt_rb_node *pkt_rbtree_next(struct pkt_rb_node *node)
623 {
624 struct rb_node *n = rb_next(&node->rb_node);
625 if (!n)
626 return NULL;
627 return rb_entry(n, struct pkt_rb_node, rb_node);
628 }
629
630 static void pkt_rbtree_erase(struct pktcdvd_device *pd, struct pkt_rb_node *node)
631 {
632 rb_erase(&node->rb_node, &pd->bio_queue);
633 mempool_free(node, pd->rb_pool);
634 pd->bio_queue_size--;
635 BUG_ON(pd->bio_queue_size < 0);
636 }
637
638 /*
639 * Find the first node in the pd->bio_queue rb tree with a starting sector >= s.
640 */
641 static struct pkt_rb_node *pkt_rbtree_find(struct pktcdvd_device *pd, sector_t s)
642 {
643 struct rb_node *n = pd->bio_queue.rb_node;
644 struct rb_node *next;
645 struct pkt_rb_node *tmp;
646
647 if (!n) {
648 BUG_ON(pd->bio_queue_size > 0);
649 return NULL;
650 }
651
652 for (;;) {
653 tmp = rb_entry(n, struct pkt_rb_node, rb_node);
654 if (s <= tmp->bio->bi_sector)
655 next = n->rb_left;
656 else
657 next = n->rb_right;
658 if (!next)
659 break;
660 n = next;
661 }
662
663 if (s > tmp->bio->bi_sector) {
664 tmp = pkt_rbtree_next(tmp);
665 if (!tmp)
666 return NULL;
667 }
668 BUG_ON(s > tmp->bio->bi_sector);
669 return tmp;
670 }
671
672 /*
673 * Insert a node into the pd->bio_queue rb tree.
674 */
675 static void pkt_rbtree_insert(struct pktcdvd_device *pd, struct pkt_rb_node *node)
676 {
677 struct rb_node **p = &pd->bio_queue.rb_node;
678 struct rb_node *parent = NULL;
679 sector_t s = node->bio->bi_sector;
680 struct pkt_rb_node *tmp;
681
682 while (*p) {
683 parent = *p;
684 tmp = rb_entry(parent, struct pkt_rb_node, rb_node);
685 if (s < tmp->bio->bi_sector)
686 p = &(*p)->rb_left;
687 else
688 p = &(*p)->rb_right;
689 }
690 rb_link_node(&node->rb_node, parent, p);
691 rb_insert_color(&node->rb_node, &pd->bio_queue);
692 pd->bio_queue_size++;
693 }
694
695 /*
696 * Send a packet_command to the underlying block device and
697 * wait for completion.
698 */
699 static int pkt_generic_packet(struct pktcdvd_device *pd, struct packet_command *cgc)
700 {
701 struct request_queue *q = bdev_get_queue(pd->bdev);
702 struct request *rq;
703 int ret = 0;
704
705 rq = blk_get_request(q, (cgc->data_direction == CGC_DATA_WRITE) ?
706 WRITE : READ, __GFP_WAIT);
707
708 if (cgc->buflen) {
709 if (blk_rq_map_kern(q, rq, cgc->buffer, cgc->buflen, __GFP_WAIT))
710 goto out;
711 }
712
713 rq->cmd_len = COMMAND_SIZE(cgc->cmd[0]);
714 memcpy(rq->cmd, cgc->cmd, CDROM_PACKET_SIZE);
715
716 rq->timeout = 60*HZ;
717 rq->cmd_type = REQ_TYPE_BLOCK_PC;
718 if (cgc->quiet)
719 rq->cmd_flags |= REQ_QUIET;
720
721 blk_execute_rq(rq->q, pd->bdev->bd_disk, rq, 0);
722 if (rq->errors)
723 ret = -EIO;
724 out:
725 blk_put_request(rq);
726 return ret;
727 }
728
729 static const char *sense_key_string(__u8 index)
730 {
731 static const char * const info[] = {
732 "No sense", "Recovered error", "Not ready",
733 "Medium error", "Hardware error", "Illegal request",
734 "Unit attention", "Data protect", "Blank check",
735 };
736
737 return index < ARRAY_SIZE(info) ? info[index] : "INVALID";
738 }
739
740 /*
741 * A generic sense dump / resolve mechanism should be implemented across
742 * all ATAPI + SCSI devices.
743 */
744 static void pkt_dump_sense(struct pktcdvd_device *pd,
745 struct packet_command *cgc)
746 {
747 struct request_sense *sense = cgc->sense;
748
749 if (sense)
750 pkt_err(pd, "%*ph - sense %02x.%02x.%02x (%s)\n",
751 CDROM_PACKET_SIZE, cgc->cmd,
752 sense->sense_key, sense->asc, sense->ascq,
753 sense_key_string(sense->sense_key));
754 else
755 pkt_err(pd, "%*ph - no sense\n", CDROM_PACKET_SIZE, cgc->cmd);
756 }
757
758 /*
759 * flush the drive cache to media
760 */
761 static int pkt_flush_cache(struct pktcdvd_device *pd)
762 {
763 struct packet_command cgc;
764
765 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
766 cgc.cmd[0] = GPCMD_FLUSH_CACHE;
767 cgc.quiet = 1;
768
769 /*
770 * the IMMED bit -- we default to not setting it, although that
771 * would allow a much faster close, this is safer
772 */
773 #if 0
774 cgc.cmd[1] = 1 << 1;
775 #endif
776 return pkt_generic_packet(pd, &cgc);
777 }
778
779 /*
780 * speed is given as the normal factor, e.g. 4 for 4x
781 */
782 static noinline_for_stack int pkt_set_speed(struct pktcdvd_device *pd,
783 unsigned write_speed, unsigned read_speed)
784 {
785 struct packet_command cgc;
786 struct request_sense sense;
787 int ret;
788
789 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
790 cgc.sense = &sense;
791 cgc.cmd[0] = GPCMD_SET_SPEED;
792 cgc.cmd[2] = (read_speed >> 8) & 0xff;
793 cgc.cmd[3] = read_speed & 0xff;
794 cgc.cmd[4] = (write_speed >> 8) & 0xff;
795 cgc.cmd[5] = write_speed & 0xff;
796
797 if ((ret = pkt_generic_packet(pd, &cgc)))
798 pkt_dump_sense(pd, &cgc);
799
800 return ret;
801 }
802
803 /*
804 * Queue a bio for processing by the low-level CD device. Must be called
805 * from process context.
806 */
807 static void pkt_queue_bio(struct pktcdvd_device *pd, struct bio *bio)
808 {
809 spin_lock(&pd->iosched.lock);
810 if (bio_data_dir(bio) == READ)
811 bio_list_add(&pd->iosched.read_queue, bio);
812 else
813 bio_list_add(&pd->iosched.write_queue, bio);
814 spin_unlock(&pd->iosched.lock);
815
816 atomic_set(&pd->iosched.attention, 1);
817 wake_up(&pd->wqueue);
818 }
819
820 /*
821 * Process the queued read/write requests. This function handles special
822 * requirements for CDRW drives:
823 * - A cache flush command must be inserted before a read request if the
824 * previous request was a write.
825 * - Switching between reading and writing is slow, so don't do it more often
826 * than necessary.
827 * - Optimize for throughput at the expense of latency. This means that streaming
828 * writes will never be interrupted by a read, but if the drive has to seek
829 * before the next write, switch to reading instead if there are any pending
830 * read requests.
831 * - Set the read speed according to current usage pattern. When only reading
832 * from the device, it's best to use the highest possible read speed, but
833 * when switching often between reading and writing, it's better to have the
834 * same read and write speeds.
835 */
836 static void pkt_iosched_process_queue(struct pktcdvd_device *pd)
837 {
838
839 if (atomic_read(&pd->iosched.attention) == 0)
840 return;
841 atomic_set(&pd->iosched.attention, 0);
842
843 for (;;) {
844 struct bio *bio;
845 int reads_queued, writes_queued;
846
847 spin_lock(&pd->iosched.lock);
848 reads_queued = !bio_list_empty(&pd->iosched.read_queue);
849 writes_queued = !bio_list_empty(&pd->iosched.write_queue);
850 spin_unlock(&pd->iosched.lock);
851
852 if (!reads_queued && !writes_queued)
853 break;
854
855 if (pd->iosched.writing) {
856 int need_write_seek = 1;
857 spin_lock(&pd->iosched.lock);
858 bio = bio_list_peek(&pd->iosched.write_queue);
859 spin_unlock(&pd->iosched.lock);
860 if (bio && (bio->bi_sector == pd->iosched.last_write))
861 need_write_seek = 0;
862 if (need_write_seek && reads_queued) {
863 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
864 pkt_dbg(2, pd, "write, waiting\n");
865 break;
866 }
867 pkt_flush_cache(pd);
868 pd->iosched.writing = 0;
869 }
870 } else {
871 if (!reads_queued && writes_queued) {
872 if (atomic_read(&pd->cdrw.pending_bios) > 0) {
873 pkt_dbg(2, pd, "read, waiting\n");
874 break;
875 }
876 pd->iosched.writing = 1;
877 }
878 }
879
880 spin_lock(&pd->iosched.lock);
881 if (pd->iosched.writing)
882 bio = bio_list_pop(&pd->iosched.write_queue);
883 else
884 bio = bio_list_pop(&pd->iosched.read_queue);
885 spin_unlock(&pd->iosched.lock);
886
887 if (!bio)
888 continue;
889
890 if (bio_data_dir(bio) == READ)
891 pd->iosched.successive_reads += bio->bi_size >> 10;
892 else {
893 pd->iosched.successive_reads = 0;
894 pd->iosched.last_write = bio_end_sector(bio);
895 }
896 if (pd->iosched.successive_reads >= HI_SPEED_SWITCH) {
897 if (pd->read_speed == pd->write_speed) {
898 pd->read_speed = MAX_SPEED;
899 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
900 }
901 } else {
902 if (pd->read_speed != pd->write_speed) {
903 pd->read_speed = pd->write_speed;
904 pkt_set_speed(pd, pd->write_speed, pd->read_speed);
905 }
906 }
907
908 atomic_inc(&pd->cdrw.pending_bios);
909 generic_make_request(bio);
910 }
911 }
912
913 /*
914 * Special care is needed if the underlying block device has a small
915 * max_phys_segments value.
916 */
917 static int pkt_set_segment_merging(struct pktcdvd_device *pd, struct request_queue *q)
918 {
919 if ((pd->settings.size << 9) / CD_FRAMESIZE
920 <= queue_max_segments(q)) {
921 /*
922 * The cdrom device can handle one segment/frame
923 */
924 clear_bit(PACKET_MERGE_SEGS, &pd->flags);
925 return 0;
926 } else if ((pd->settings.size << 9) / PAGE_SIZE
927 <= queue_max_segments(q)) {
928 /*
929 * We can handle this case at the expense of some extra memory
930 * copies during write operations
931 */
932 set_bit(PACKET_MERGE_SEGS, &pd->flags);
933 return 0;
934 } else {
935 pkt_err(pd, "cdrom max_phys_segments too small\n");
936 return -EIO;
937 }
938 }
939
940 /*
941 * Copy all data for this packet to pkt->pages[], so that
942 * a) The number of required segments for the write bio is minimized, which
943 * is necessary for some scsi controllers.
944 * b) The data can be used as cache to avoid read requests if we receive a
945 * new write request for the same zone.
946 */
947 static void pkt_make_local_copy(struct packet_data *pkt, struct bio_vec *bvec)
948 {
949 int f, p, offs;
950
951 /* Copy all data to pkt->pages[] */
952 p = 0;
953 offs = 0;
954 for (f = 0; f < pkt->frames; f++) {
955 if (bvec[f].bv_page != pkt->pages[p]) {
956 void *vfrom = kmap_atomic(bvec[f].bv_page) + bvec[f].bv_offset;
957 void *vto = page_address(pkt->pages[p]) + offs;
958 memcpy(vto, vfrom, CD_FRAMESIZE);
959 kunmap_atomic(vfrom);
960 bvec[f].bv_page = pkt->pages[p];
961 bvec[f].bv_offset = offs;
962 } else {
963 BUG_ON(bvec[f].bv_offset != offs);
964 }
965 offs += CD_FRAMESIZE;
966 if (offs >= PAGE_SIZE) {
967 offs = 0;
968 p++;
969 }
970 }
971 }
972
973 static void pkt_end_io_read(struct bio *bio, int err)
974 {
975 struct packet_data *pkt = bio->bi_private;
976 struct pktcdvd_device *pd = pkt->pd;
977 BUG_ON(!pd);
978
979 pkt_dbg(2, pd, "bio=%p sec0=%llx sec=%llx err=%d\n",
980 bio, (unsigned long long)pkt->sector,
981 (unsigned long long)bio->bi_sector, err);
982
983 if (err)
984 atomic_inc(&pkt->io_errors);
985 if (atomic_dec_and_test(&pkt->io_wait)) {
986 atomic_inc(&pkt->run_sm);
987 wake_up(&pd->wqueue);
988 }
989 pkt_bio_finished(pd);
990 }
991
992 static void pkt_end_io_packet_write(struct bio *bio, int err)
993 {
994 struct packet_data *pkt = bio->bi_private;
995 struct pktcdvd_device *pd = pkt->pd;
996 BUG_ON(!pd);
997
998 pkt_dbg(2, pd, "id=%d, err=%d\n", pkt->id, err);
999
1000 pd->stats.pkt_ended++;
1001
1002 pkt_bio_finished(pd);
1003 atomic_dec(&pkt->io_wait);
1004 atomic_inc(&pkt->run_sm);
1005 wake_up(&pd->wqueue);
1006 }
1007
1008 /*
1009 * Schedule reads for the holes in a packet
1010 */
1011 static void pkt_gather_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1012 {
1013 int frames_read = 0;
1014 struct bio *bio;
1015 int f;
1016 char written[PACKET_MAX_SIZE];
1017
1018 BUG_ON(bio_list_empty(&pkt->orig_bios));
1019
1020 atomic_set(&pkt->io_wait, 0);
1021 atomic_set(&pkt->io_errors, 0);
1022
1023 /*
1024 * Figure out which frames we need to read before we can write.
1025 */
1026 memset(written, 0, sizeof(written));
1027 spin_lock(&pkt->lock);
1028 bio_list_for_each(bio, &pkt->orig_bios) {
1029 int first_frame = (bio->bi_sector - pkt->sector) / (CD_FRAMESIZE >> 9);
1030 int num_frames = bio->bi_size / CD_FRAMESIZE;
1031 pd->stats.secs_w += num_frames * (CD_FRAMESIZE >> 9);
1032 BUG_ON(first_frame < 0);
1033 BUG_ON(first_frame + num_frames > pkt->frames);
1034 for (f = first_frame; f < first_frame + num_frames; f++)
1035 written[f] = 1;
1036 }
1037 spin_unlock(&pkt->lock);
1038
1039 if (pkt->cache_valid) {
1040 pkt_dbg(2, pd, "zone %llx cached\n",
1041 (unsigned long long)pkt->sector);
1042 goto out_account;
1043 }
1044
1045 /*
1046 * Schedule reads for missing parts of the packet.
1047 */
1048 for (f = 0; f < pkt->frames; f++) {
1049 int p, offset;
1050
1051 if (written[f])
1052 continue;
1053
1054 bio = pkt->r_bios[f];
1055 bio_reset(bio);
1056 bio->bi_sector = pkt->sector + f * (CD_FRAMESIZE >> 9);
1057 bio->bi_bdev = pd->bdev;
1058 bio->bi_end_io = pkt_end_io_read;
1059 bio->bi_private = pkt;
1060
1061 p = (f * CD_FRAMESIZE) / PAGE_SIZE;
1062 offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1063 pkt_dbg(2, pd, "Adding frame %d, page:%p offs:%d\n",
1064 f, pkt->pages[p], offset);
1065 if (!bio_add_page(bio, pkt->pages[p], CD_FRAMESIZE, offset))
1066 BUG();
1067
1068 atomic_inc(&pkt->io_wait);
1069 bio->bi_rw = READ;
1070 pkt_queue_bio(pd, bio);
1071 frames_read++;
1072 }
1073
1074 out_account:
1075 pkt_dbg(2, pd, "need %d frames for zone %llx\n",
1076 frames_read, (unsigned long long)pkt->sector);
1077 pd->stats.pkt_started++;
1078 pd->stats.secs_rg += frames_read * (CD_FRAMESIZE >> 9);
1079 }
1080
1081 /*
1082 * Find a packet matching zone, or the least recently used packet if
1083 * there is no match.
1084 */
1085 static struct packet_data *pkt_get_packet_data(struct pktcdvd_device *pd, int zone)
1086 {
1087 struct packet_data *pkt;
1088
1089 list_for_each_entry(pkt, &pd->cdrw.pkt_free_list, list) {
1090 if (pkt->sector == zone || pkt->list.next == &pd->cdrw.pkt_free_list) {
1091 list_del_init(&pkt->list);
1092 if (pkt->sector != zone)
1093 pkt->cache_valid = 0;
1094 return pkt;
1095 }
1096 }
1097 BUG();
1098 return NULL;
1099 }
1100
1101 static void pkt_put_packet_data(struct pktcdvd_device *pd, struct packet_data *pkt)
1102 {
1103 if (pkt->cache_valid) {
1104 list_add(&pkt->list, &pd->cdrw.pkt_free_list);
1105 } else {
1106 list_add_tail(&pkt->list, &pd->cdrw.pkt_free_list);
1107 }
1108 }
1109
1110 /*
1111 * recover a failed write, query for relocation if possible
1112 *
1113 * returns 1 if recovery is possible, or 0 if not
1114 *
1115 */
1116 static int pkt_start_recovery(struct packet_data *pkt)
1117 {
1118 /*
1119 * FIXME. We need help from the file system to implement
1120 * recovery handling.
1121 */
1122 return 0;
1123 #if 0
1124 struct request *rq = pkt->rq;
1125 struct pktcdvd_device *pd = rq->rq_disk->private_data;
1126 struct block_device *pkt_bdev;
1127 struct super_block *sb = NULL;
1128 unsigned long old_block, new_block;
1129 sector_t new_sector;
1130
1131 pkt_bdev = bdget(kdev_t_to_nr(pd->pkt_dev));
1132 if (pkt_bdev) {
1133 sb = get_super(pkt_bdev);
1134 bdput(pkt_bdev);
1135 }
1136
1137 if (!sb)
1138 return 0;
1139
1140 if (!sb->s_op->relocate_blocks)
1141 goto out;
1142
1143 old_block = pkt->sector / (CD_FRAMESIZE >> 9);
1144 if (sb->s_op->relocate_blocks(sb, old_block, &new_block))
1145 goto out;
1146
1147 new_sector = new_block * (CD_FRAMESIZE >> 9);
1148 pkt->sector = new_sector;
1149
1150 bio_reset(pkt->bio);
1151 pkt->bio->bi_bdev = pd->bdev;
1152 pkt->bio->bi_rw = REQ_WRITE;
1153 pkt->bio->bi_sector = new_sector;
1154 pkt->bio->bi_size = pkt->frames * CD_FRAMESIZE;
1155 pkt->bio->bi_vcnt = pkt->frames;
1156
1157 pkt->bio->bi_end_io = pkt_end_io_packet_write;
1158 pkt->bio->bi_private = pkt;
1159
1160 drop_super(sb);
1161 return 1;
1162
1163 out:
1164 drop_super(sb);
1165 return 0;
1166 #endif
1167 }
1168
1169 static inline void pkt_set_state(struct packet_data *pkt, enum packet_data_state state)
1170 {
1171 #if PACKET_DEBUG > 1
1172 static const char *state_name[] = {
1173 "IDLE", "WAITING", "READ_WAIT", "WRITE_WAIT", "RECOVERY", "FINISHED"
1174 };
1175 enum packet_data_state old_state = pkt->state;
1176 pkt_dbg(2, pd, "pkt %2d : s=%6llx %s -> %s\n",
1177 pkt->id, (unsigned long long)pkt->sector,
1178 state_name[old_state], state_name[state]);
1179 #endif
1180 pkt->state = state;
1181 }
1182
1183 /*
1184 * Scan the work queue to see if we can start a new packet.
1185 * returns non-zero if any work was done.
1186 */
1187 static int pkt_handle_queue(struct pktcdvd_device *pd)
1188 {
1189 struct packet_data *pkt, *p;
1190 struct bio *bio = NULL;
1191 sector_t zone = 0; /* Suppress gcc warning */
1192 struct pkt_rb_node *node, *first_node;
1193 struct rb_node *n;
1194 int wakeup;
1195
1196 atomic_set(&pd->scan_queue, 0);
1197
1198 if (list_empty(&pd->cdrw.pkt_free_list)) {
1199 pkt_dbg(2, pd, "no pkt\n");
1200 return 0;
1201 }
1202
1203 /*
1204 * Try to find a zone we are not already working on.
1205 */
1206 spin_lock(&pd->lock);
1207 first_node = pkt_rbtree_find(pd, pd->current_sector);
1208 if (!first_node) {
1209 n = rb_first(&pd->bio_queue);
1210 if (n)
1211 first_node = rb_entry(n, struct pkt_rb_node, rb_node);
1212 }
1213 node = first_node;
1214 while (node) {
1215 bio = node->bio;
1216 zone = get_zone(bio->bi_sector, pd);
1217 list_for_each_entry(p, &pd->cdrw.pkt_active_list, list) {
1218 if (p->sector == zone) {
1219 bio = NULL;
1220 goto try_next_bio;
1221 }
1222 }
1223 break;
1224 try_next_bio:
1225 node = pkt_rbtree_next(node);
1226 if (!node) {
1227 n = rb_first(&pd->bio_queue);
1228 if (n)
1229 node = rb_entry(n, struct pkt_rb_node, rb_node);
1230 }
1231 if (node == first_node)
1232 node = NULL;
1233 }
1234 spin_unlock(&pd->lock);
1235 if (!bio) {
1236 pkt_dbg(2, pd, "no bio\n");
1237 return 0;
1238 }
1239
1240 pkt = pkt_get_packet_data(pd, zone);
1241
1242 pd->current_sector = zone + pd->settings.size;
1243 pkt->sector = zone;
1244 BUG_ON(pkt->frames != pd->settings.size >> 2);
1245 pkt->write_size = 0;
1246
1247 /*
1248 * Scan work queue for bios in the same zone and link them
1249 * to this packet.
1250 */
1251 spin_lock(&pd->lock);
1252 pkt_dbg(2, pd, "looking for zone %llx\n", (unsigned long long)zone);
1253 while ((node = pkt_rbtree_find(pd, zone)) != NULL) {
1254 bio = node->bio;
1255 pkt_dbg(2, pd, "found zone=%llx\n",
1256 (unsigned long long)get_zone(bio->bi_sector, pd));
1257 if (get_zone(bio->bi_sector, pd) != zone)
1258 break;
1259 pkt_rbtree_erase(pd, node);
1260 spin_lock(&pkt->lock);
1261 bio_list_add(&pkt->orig_bios, bio);
1262 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
1263 spin_unlock(&pkt->lock);
1264 }
1265 /* check write congestion marks, and if bio_queue_size is
1266 below, wake up any waiters */
1267 wakeup = (pd->write_congestion_on > 0
1268 && pd->bio_queue_size <= pd->write_congestion_off);
1269 spin_unlock(&pd->lock);
1270 if (wakeup) {
1271 clear_bdi_congested(&pd->disk->queue->backing_dev_info,
1272 BLK_RW_ASYNC);
1273 }
1274
1275 pkt->sleep_time = max(PACKET_WAIT_TIME, 1);
1276 pkt_set_state(pkt, PACKET_WAITING_STATE);
1277 atomic_set(&pkt->run_sm, 1);
1278
1279 spin_lock(&pd->cdrw.active_list_lock);
1280 list_add(&pkt->list, &pd->cdrw.pkt_active_list);
1281 spin_unlock(&pd->cdrw.active_list_lock);
1282
1283 return 1;
1284 }
1285
1286 /*
1287 * Assemble a bio to write one packet and queue the bio for processing
1288 * by the underlying block device.
1289 */
1290 static void pkt_start_write(struct pktcdvd_device *pd, struct packet_data *pkt)
1291 {
1292 int f;
1293 struct bio_vec *bvec = pkt->w_bio->bi_io_vec;
1294
1295 bio_reset(pkt->w_bio);
1296 pkt->w_bio->bi_sector = pkt->sector;
1297 pkt->w_bio->bi_bdev = pd->bdev;
1298 pkt->w_bio->bi_end_io = pkt_end_io_packet_write;
1299 pkt->w_bio->bi_private = pkt;
1300
1301 /* XXX: locking? */
1302 for (f = 0; f < pkt->frames; f++) {
1303 bvec[f].bv_page = pkt->pages[(f * CD_FRAMESIZE) / PAGE_SIZE];
1304 bvec[f].bv_offset = (f * CD_FRAMESIZE) % PAGE_SIZE;
1305 if (!bio_add_page(pkt->w_bio, bvec[f].bv_page, CD_FRAMESIZE, bvec[f].bv_offset))
1306 BUG();
1307 }
1308 pkt_dbg(2, pd, "vcnt=%d\n", pkt->w_bio->bi_vcnt);
1309
1310 /*
1311 * Fill-in bvec with data from orig_bios.
1312 */
1313 spin_lock(&pkt->lock);
1314 bio_copy_data(pkt->w_bio, pkt->orig_bios.head);
1315
1316 pkt_set_state(pkt, PACKET_WRITE_WAIT_STATE);
1317 spin_unlock(&pkt->lock);
1318
1319 pkt_dbg(2, pd, "Writing %d frames for zone %llx\n",
1320 pkt->write_size, (unsigned long long)pkt->sector);
1321
1322 if (test_bit(PACKET_MERGE_SEGS, &pd->flags) || (pkt->write_size < pkt->frames)) {
1323 pkt_make_local_copy(pkt, bvec);
1324 pkt->cache_valid = 1;
1325 } else {
1326 pkt->cache_valid = 0;
1327 }
1328
1329 /* Start the write request */
1330 atomic_set(&pkt->io_wait, 1);
1331 pkt->w_bio->bi_rw = WRITE;
1332 pkt_queue_bio(pd, pkt->w_bio);
1333 }
1334
1335 static void pkt_finish_packet(struct packet_data *pkt, int uptodate)
1336 {
1337 struct bio *bio;
1338
1339 if (!uptodate)
1340 pkt->cache_valid = 0;
1341
1342 /* Finish all bios corresponding to this packet */
1343 while ((bio = bio_list_pop(&pkt->orig_bios)))
1344 bio_endio(bio, uptodate ? 0 : -EIO);
1345 }
1346
1347 static void pkt_run_state_machine(struct pktcdvd_device *pd, struct packet_data *pkt)
1348 {
1349 int uptodate;
1350
1351 pkt_dbg(2, pd, "pkt %d\n", pkt->id);
1352
1353 for (;;) {
1354 switch (pkt->state) {
1355 case PACKET_WAITING_STATE:
1356 if ((pkt->write_size < pkt->frames) && (pkt->sleep_time > 0))
1357 return;
1358
1359 pkt->sleep_time = 0;
1360 pkt_gather_data(pd, pkt);
1361 pkt_set_state(pkt, PACKET_READ_WAIT_STATE);
1362 break;
1363
1364 case PACKET_READ_WAIT_STATE:
1365 if (atomic_read(&pkt->io_wait) > 0)
1366 return;
1367
1368 if (atomic_read(&pkt->io_errors) > 0) {
1369 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1370 } else {
1371 pkt_start_write(pd, pkt);
1372 }
1373 break;
1374
1375 case PACKET_WRITE_WAIT_STATE:
1376 if (atomic_read(&pkt->io_wait) > 0)
1377 return;
1378
1379 if (test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags)) {
1380 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1381 } else {
1382 pkt_set_state(pkt, PACKET_RECOVERY_STATE);
1383 }
1384 break;
1385
1386 case PACKET_RECOVERY_STATE:
1387 if (pkt_start_recovery(pkt)) {
1388 pkt_start_write(pd, pkt);
1389 } else {
1390 pkt_dbg(2, pd, "No recovery possible\n");
1391 pkt_set_state(pkt, PACKET_FINISHED_STATE);
1392 }
1393 break;
1394
1395 case PACKET_FINISHED_STATE:
1396 uptodate = test_bit(BIO_UPTODATE, &pkt->w_bio->bi_flags);
1397 pkt_finish_packet(pkt, uptodate);
1398 return;
1399
1400 default:
1401 BUG();
1402 break;
1403 }
1404 }
1405 }
1406
1407 static void pkt_handle_packets(struct pktcdvd_device *pd)
1408 {
1409 struct packet_data *pkt, *next;
1410
1411 /*
1412 * Run state machine for active packets
1413 */
1414 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1415 if (atomic_read(&pkt->run_sm) > 0) {
1416 atomic_set(&pkt->run_sm, 0);
1417 pkt_run_state_machine(pd, pkt);
1418 }
1419 }
1420
1421 /*
1422 * Move no longer active packets to the free list
1423 */
1424 spin_lock(&pd->cdrw.active_list_lock);
1425 list_for_each_entry_safe(pkt, next, &pd->cdrw.pkt_active_list, list) {
1426 if (pkt->state == PACKET_FINISHED_STATE) {
1427 list_del(&pkt->list);
1428 pkt_put_packet_data(pd, pkt);
1429 pkt_set_state(pkt, PACKET_IDLE_STATE);
1430 atomic_set(&pd->scan_queue, 1);
1431 }
1432 }
1433 spin_unlock(&pd->cdrw.active_list_lock);
1434 }
1435
1436 static void pkt_count_states(struct pktcdvd_device *pd, int *states)
1437 {
1438 struct packet_data *pkt;
1439 int i;
1440
1441 for (i = 0; i < PACKET_NUM_STATES; i++)
1442 states[i] = 0;
1443
1444 spin_lock(&pd->cdrw.active_list_lock);
1445 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1446 states[pkt->state]++;
1447 }
1448 spin_unlock(&pd->cdrw.active_list_lock);
1449 }
1450
1451 /*
1452 * kcdrwd is woken up when writes have been queued for one of our
1453 * registered devices
1454 */
1455 static int kcdrwd(void *foobar)
1456 {
1457 struct pktcdvd_device *pd = foobar;
1458 struct packet_data *pkt;
1459 long min_sleep_time, residue;
1460
1461 set_user_nice(current, -20);
1462 set_freezable();
1463
1464 for (;;) {
1465 DECLARE_WAITQUEUE(wait, current);
1466
1467 /*
1468 * Wait until there is something to do
1469 */
1470 add_wait_queue(&pd->wqueue, &wait);
1471 for (;;) {
1472 set_current_state(TASK_INTERRUPTIBLE);
1473
1474 /* Check if we need to run pkt_handle_queue */
1475 if (atomic_read(&pd->scan_queue) > 0)
1476 goto work_to_do;
1477
1478 /* Check if we need to run the state machine for some packet */
1479 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1480 if (atomic_read(&pkt->run_sm) > 0)
1481 goto work_to_do;
1482 }
1483
1484 /* Check if we need to process the iosched queues */
1485 if (atomic_read(&pd->iosched.attention) != 0)
1486 goto work_to_do;
1487
1488 /* Otherwise, go to sleep */
1489 if (PACKET_DEBUG > 1) {
1490 int states[PACKET_NUM_STATES];
1491 pkt_count_states(pd, states);
1492 pkt_dbg(2, pd, "i:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
1493 states[0], states[1], states[2],
1494 states[3], states[4], states[5]);
1495 }
1496
1497 min_sleep_time = MAX_SCHEDULE_TIMEOUT;
1498 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1499 if (pkt->sleep_time && pkt->sleep_time < min_sleep_time)
1500 min_sleep_time = pkt->sleep_time;
1501 }
1502
1503 pkt_dbg(2, pd, "sleeping\n");
1504 residue = schedule_timeout(min_sleep_time);
1505 pkt_dbg(2, pd, "wake up\n");
1506
1507 /* make swsusp happy with our thread */
1508 try_to_freeze();
1509
1510 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
1511 if (!pkt->sleep_time)
1512 continue;
1513 pkt->sleep_time -= min_sleep_time - residue;
1514 if (pkt->sleep_time <= 0) {
1515 pkt->sleep_time = 0;
1516 atomic_inc(&pkt->run_sm);
1517 }
1518 }
1519
1520 if (kthread_should_stop())
1521 break;
1522 }
1523 work_to_do:
1524 set_current_state(TASK_RUNNING);
1525 remove_wait_queue(&pd->wqueue, &wait);
1526
1527 if (kthread_should_stop())
1528 break;
1529
1530 /*
1531 * if pkt_handle_queue returns true, we can queue
1532 * another request.
1533 */
1534 while (pkt_handle_queue(pd))
1535 ;
1536
1537 /*
1538 * Handle packet state machine
1539 */
1540 pkt_handle_packets(pd);
1541
1542 /*
1543 * Handle iosched queues
1544 */
1545 pkt_iosched_process_queue(pd);
1546 }
1547
1548 return 0;
1549 }
1550
1551 static void pkt_print_settings(struct pktcdvd_device *pd)
1552 {
1553 pkt_info(pd, "%s packets, %u blocks, Mode-%c disc\n",
1554 pd->settings.fp ? "Fixed" : "Variable",
1555 pd->settings.size >> 2,
1556 pd->settings.block_mode == 8 ? '1' : '2');
1557 }
1558
1559 static int pkt_mode_sense(struct pktcdvd_device *pd, struct packet_command *cgc, int page_code, int page_control)
1560 {
1561 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1562
1563 cgc->cmd[0] = GPCMD_MODE_SENSE_10;
1564 cgc->cmd[2] = page_code | (page_control << 6);
1565 cgc->cmd[7] = cgc->buflen >> 8;
1566 cgc->cmd[8] = cgc->buflen & 0xff;
1567 cgc->data_direction = CGC_DATA_READ;
1568 return pkt_generic_packet(pd, cgc);
1569 }
1570
1571 static int pkt_mode_select(struct pktcdvd_device *pd, struct packet_command *cgc)
1572 {
1573 memset(cgc->cmd, 0, sizeof(cgc->cmd));
1574 memset(cgc->buffer, 0, 2);
1575 cgc->cmd[0] = GPCMD_MODE_SELECT_10;
1576 cgc->cmd[1] = 0x10; /* PF */
1577 cgc->cmd[7] = cgc->buflen >> 8;
1578 cgc->cmd[8] = cgc->buflen & 0xff;
1579 cgc->data_direction = CGC_DATA_WRITE;
1580 return pkt_generic_packet(pd, cgc);
1581 }
1582
1583 static int pkt_get_disc_info(struct pktcdvd_device *pd, disc_information *di)
1584 {
1585 struct packet_command cgc;
1586 int ret;
1587
1588 /* set up command and get the disc info */
1589 init_cdrom_command(&cgc, di, sizeof(*di), CGC_DATA_READ);
1590 cgc.cmd[0] = GPCMD_READ_DISC_INFO;
1591 cgc.cmd[8] = cgc.buflen = 2;
1592 cgc.quiet = 1;
1593
1594 if ((ret = pkt_generic_packet(pd, &cgc)))
1595 return ret;
1596
1597 /* not all drives have the same disc_info length, so requeue
1598 * packet with the length the drive tells us it can supply
1599 */
1600 cgc.buflen = be16_to_cpu(di->disc_information_length) +
1601 sizeof(di->disc_information_length);
1602
1603 if (cgc.buflen > sizeof(disc_information))
1604 cgc.buflen = sizeof(disc_information);
1605
1606 cgc.cmd[8] = cgc.buflen;
1607 return pkt_generic_packet(pd, &cgc);
1608 }
1609
1610 static int pkt_get_track_info(struct pktcdvd_device *pd, __u16 track, __u8 type, track_information *ti)
1611 {
1612 struct packet_command cgc;
1613 int ret;
1614
1615 init_cdrom_command(&cgc, ti, 8, CGC_DATA_READ);
1616 cgc.cmd[0] = GPCMD_READ_TRACK_RZONE_INFO;
1617 cgc.cmd[1] = type & 3;
1618 cgc.cmd[4] = (track & 0xff00) >> 8;
1619 cgc.cmd[5] = track & 0xff;
1620 cgc.cmd[8] = 8;
1621 cgc.quiet = 1;
1622
1623 if ((ret = pkt_generic_packet(pd, &cgc)))
1624 return ret;
1625
1626 cgc.buflen = be16_to_cpu(ti->track_information_length) +
1627 sizeof(ti->track_information_length);
1628
1629 if (cgc.buflen > sizeof(track_information))
1630 cgc.buflen = sizeof(track_information);
1631
1632 cgc.cmd[8] = cgc.buflen;
1633 return pkt_generic_packet(pd, &cgc);
1634 }
1635
1636 static noinline_for_stack int pkt_get_last_written(struct pktcdvd_device *pd,
1637 long *last_written)
1638 {
1639 disc_information di;
1640 track_information ti;
1641 __u32 last_track;
1642 int ret = -1;
1643
1644 if ((ret = pkt_get_disc_info(pd, &di)))
1645 return ret;
1646
1647 last_track = (di.last_track_msb << 8) | di.last_track_lsb;
1648 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1649 return ret;
1650
1651 /* if this track is blank, try the previous. */
1652 if (ti.blank) {
1653 last_track--;
1654 if ((ret = pkt_get_track_info(pd, last_track, 1, &ti)))
1655 return ret;
1656 }
1657
1658 /* if last recorded field is valid, return it. */
1659 if (ti.lra_v) {
1660 *last_written = be32_to_cpu(ti.last_rec_address);
1661 } else {
1662 /* make it up instead */
1663 *last_written = be32_to_cpu(ti.track_start) +
1664 be32_to_cpu(ti.track_size);
1665 if (ti.free_blocks)
1666 *last_written -= (be32_to_cpu(ti.free_blocks) + 7);
1667 }
1668 return 0;
1669 }
1670
1671 /*
1672 * write mode select package based on pd->settings
1673 */
1674 static noinline_for_stack int pkt_set_write_settings(struct pktcdvd_device *pd)
1675 {
1676 struct packet_command cgc;
1677 struct request_sense sense;
1678 write_param_page *wp;
1679 char buffer[128];
1680 int ret, size;
1681
1682 /* doesn't apply to DVD+RW or DVD-RAM */
1683 if ((pd->mmc3_profile == 0x1a) || (pd->mmc3_profile == 0x12))
1684 return 0;
1685
1686 memset(buffer, 0, sizeof(buffer));
1687 init_cdrom_command(&cgc, buffer, sizeof(*wp), CGC_DATA_READ);
1688 cgc.sense = &sense;
1689 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1690 pkt_dump_sense(pd, &cgc);
1691 return ret;
1692 }
1693
1694 size = 2 + ((buffer[0] << 8) | (buffer[1] & 0xff));
1695 pd->mode_offset = (buffer[6] << 8) | (buffer[7] & 0xff);
1696 if (size > sizeof(buffer))
1697 size = sizeof(buffer);
1698
1699 /*
1700 * now get it all
1701 */
1702 init_cdrom_command(&cgc, buffer, size, CGC_DATA_READ);
1703 cgc.sense = &sense;
1704 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WRITE_PARMS_PAGE, 0))) {
1705 pkt_dump_sense(pd, &cgc);
1706 return ret;
1707 }
1708
1709 /*
1710 * write page is offset header + block descriptor length
1711 */
1712 wp = (write_param_page *) &buffer[sizeof(struct mode_page_header) + pd->mode_offset];
1713
1714 wp->fp = pd->settings.fp;
1715 wp->track_mode = pd->settings.track_mode;
1716 wp->write_type = pd->settings.write_type;
1717 wp->data_block_type = pd->settings.block_mode;
1718
1719 wp->multi_session = 0;
1720
1721 #ifdef PACKET_USE_LS
1722 wp->link_size = 7;
1723 wp->ls_v = 1;
1724 #endif
1725
1726 if (wp->data_block_type == PACKET_BLOCK_MODE1) {
1727 wp->session_format = 0;
1728 wp->subhdr2 = 0x20;
1729 } else if (wp->data_block_type == PACKET_BLOCK_MODE2) {
1730 wp->session_format = 0x20;
1731 wp->subhdr2 = 8;
1732 #if 0
1733 wp->mcn[0] = 0x80;
1734 memcpy(&wp->mcn[1], PACKET_MCN, sizeof(wp->mcn) - 1);
1735 #endif
1736 } else {
1737 /*
1738 * paranoia
1739 */
1740 pkt_err(pd, "write mode wrong %d\n", wp->data_block_type);
1741 return 1;
1742 }
1743 wp->packet_size = cpu_to_be32(pd->settings.size >> 2);
1744
1745 cgc.buflen = cgc.cmd[8] = size;
1746 if ((ret = pkt_mode_select(pd, &cgc))) {
1747 pkt_dump_sense(pd, &cgc);
1748 return ret;
1749 }
1750
1751 pkt_print_settings(pd);
1752 return 0;
1753 }
1754
1755 /*
1756 * 1 -- we can write to this track, 0 -- we can't
1757 */
1758 static int pkt_writable_track(struct pktcdvd_device *pd, track_information *ti)
1759 {
1760 switch (pd->mmc3_profile) {
1761 case 0x1a: /* DVD+RW */
1762 case 0x12: /* DVD-RAM */
1763 /* The track is always writable on DVD+RW/DVD-RAM */
1764 return 1;
1765 default:
1766 break;
1767 }
1768
1769 if (!ti->packet || !ti->fp)
1770 return 0;
1771
1772 /*
1773 * "good" settings as per Mt Fuji.
1774 */
1775 if (ti->rt == 0 && ti->blank == 0)
1776 return 1;
1777
1778 if (ti->rt == 0 && ti->blank == 1)
1779 return 1;
1780
1781 if (ti->rt == 1 && ti->blank == 0)
1782 return 1;
1783
1784 pkt_err(pd, "bad state %d-%d-%d\n", ti->rt, ti->blank, ti->packet);
1785 return 0;
1786 }
1787
1788 /*
1789 * 1 -- we can write to this disc, 0 -- we can't
1790 */
1791 static int pkt_writable_disc(struct pktcdvd_device *pd, disc_information *di)
1792 {
1793 switch (pd->mmc3_profile) {
1794 case 0x0a: /* CD-RW */
1795 case 0xffff: /* MMC3 not supported */
1796 break;
1797 case 0x1a: /* DVD+RW */
1798 case 0x13: /* DVD-RW */
1799 case 0x12: /* DVD-RAM */
1800 return 1;
1801 default:
1802 pkt_dbg(2, pd, "Wrong disc profile (%x)\n",
1803 pd->mmc3_profile);
1804 return 0;
1805 }
1806
1807 /*
1808 * for disc type 0xff we should probably reserve a new track.
1809 * but i'm not sure, should we leave this to user apps? probably.
1810 */
1811 if (di->disc_type == 0xff) {
1812 pkt_notice(pd, "unknown disc - no track?\n");
1813 return 0;
1814 }
1815
1816 if (di->disc_type != 0x20 && di->disc_type != 0) {
1817 pkt_err(pd, "wrong disc type (%x)\n", di->disc_type);
1818 return 0;
1819 }
1820
1821 if (di->erasable == 0) {
1822 pkt_notice(pd, "disc not erasable\n");
1823 return 0;
1824 }
1825
1826 if (di->border_status == PACKET_SESSION_RESERVED) {
1827 pkt_err(pd, "can't write to last track (reserved)\n");
1828 return 0;
1829 }
1830
1831 return 1;
1832 }
1833
1834 static noinline_for_stack int pkt_probe_settings(struct pktcdvd_device *pd)
1835 {
1836 struct packet_command cgc;
1837 unsigned char buf[12];
1838 disc_information di;
1839 track_information ti;
1840 int ret, track;
1841
1842 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1843 cgc.cmd[0] = GPCMD_GET_CONFIGURATION;
1844 cgc.cmd[8] = 8;
1845 ret = pkt_generic_packet(pd, &cgc);
1846 pd->mmc3_profile = ret ? 0xffff : buf[6] << 8 | buf[7];
1847
1848 memset(&di, 0, sizeof(disc_information));
1849 memset(&ti, 0, sizeof(track_information));
1850
1851 if ((ret = pkt_get_disc_info(pd, &di))) {
1852 pkt_err(pd, "failed get_disc\n");
1853 return ret;
1854 }
1855
1856 if (!pkt_writable_disc(pd, &di))
1857 return -EROFS;
1858
1859 pd->type = di.erasable ? PACKET_CDRW : PACKET_CDR;
1860
1861 track = 1; /* (di.last_track_msb << 8) | di.last_track_lsb; */
1862 if ((ret = pkt_get_track_info(pd, track, 1, &ti))) {
1863 pkt_err(pd, "failed get_track\n");
1864 return ret;
1865 }
1866
1867 if (!pkt_writable_track(pd, &ti)) {
1868 pkt_err(pd, "can't write to this track\n");
1869 return -EROFS;
1870 }
1871
1872 /*
1873 * we keep packet size in 512 byte units, makes it easier to
1874 * deal with request calculations.
1875 */
1876 pd->settings.size = be32_to_cpu(ti.fixed_packet_size) << 2;
1877 if (pd->settings.size == 0) {
1878 pkt_notice(pd, "detected zero packet size!\n");
1879 return -ENXIO;
1880 }
1881 if (pd->settings.size > PACKET_MAX_SECTORS) {
1882 pkt_err(pd, "packet size is too big\n");
1883 return -EROFS;
1884 }
1885 pd->settings.fp = ti.fp;
1886 pd->offset = (be32_to_cpu(ti.track_start) << 2) & (pd->settings.size - 1);
1887
1888 if (ti.nwa_v) {
1889 pd->nwa = be32_to_cpu(ti.next_writable);
1890 set_bit(PACKET_NWA_VALID, &pd->flags);
1891 }
1892
1893 /*
1894 * in theory we could use lra on -RW media as well and just zero
1895 * blocks that haven't been written yet, but in practice that
1896 * is just a no-go. we'll use that for -R, naturally.
1897 */
1898 if (ti.lra_v) {
1899 pd->lra = be32_to_cpu(ti.last_rec_address);
1900 set_bit(PACKET_LRA_VALID, &pd->flags);
1901 } else {
1902 pd->lra = 0xffffffff;
1903 set_bit(PACKET_LRA_VALID, &pd->flags);
1904 }
1905
1906 /*
1907 * fine for now
1908 */
1909 pd->settings.link_loss = 7;
1910 pd->settings.write_type = 0; /* packet */
1911 pd->settings.track_mode = ti.track_mode;
1912
1913 /*
1914 * mode1 or mode2 disc
1915 */
1916 switch (ti.data_mode) {
1917 case PACKET_MODE1:
1918 pd->settings.block_mode = PACKET_BLOCK_MODE1;
1919 break;
1920 case PACKET_MODE2:
1921 pd->settings.block_mode = PACKET_BLOCK_MODE2;
1922 break;
1923 default:
1924 pkt_err(pd, "unknown data mode\n");
1925 return -EROFS;
1926 }
1927 return 0;
1928 }
1929
1930 /*
1931 * enable/disable write caching on drive
1932 */
1933 static noinline_for_stack int pkt_write_caching(struct pktcdvd_device *pd,
1934 int set)
1935 {
1936 struct packet_command cgc;
1937 struct request_sense sense;
1938 unsigned char buf[64];
1939 int ret;
1940
1941 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_READ);
1942 cgc.sense = &sense;
1943 cgc.buflen = pd->mode_offset + 12;
1944
1945 /*
1946 * caching mode page might not be there, so quiet this command
1947 */
1948 cgc.quiet = 1;
1949
1950 if ((ret = pkt_mode_sense(pd, &cgc, GPMODE_WCACHING_PAGE, 0)))
1951 return ret;
1952
1953 buf[pd->mode_offset + 10] |= (!!set << 2);
1954
1955 cgc.buflen = cgc.cmd[8] = 2 + ((buf[0] << 8) | (buf[1] & 0xff));
1956 ret = pkt_mode_select(pd, &cgc);
1957 if (ret) {
1958 pkt_err(pd, "write caching control failed\n");
1959 pkt_dump_sense(pd, &cgc);
1960 } else if (!ret && set)
1961 pkt_notice(pd, "enabled write caching\n");
1962 return ret;
1963 }
1964
1965 static int pkt_lock_door(struct pktcdvd_device *pd, int lockflag)
1966 {
1967 struct packet_command cgc;
1968
1969 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
1970 cgc.cmd[0] = GPCMD_PREVENT_ALLOW_MEDIUM_REMOVAL;
1971 cgc.cmd[4] = lockflag ? 1 : 0;
1972 return pkt_generic_packet(pd, &cgc);
1973 }
1974
1975 /*
1976 * Returns drive maximum write speed
1977 */
1978 static noinline_for_stack int pkt_get_max_speed(struct pktcdvd_device *pd,
1979 unsigned *write_speed)
1980 {
1981 struct packet_command cgc;
1982 struct request_sense sense;
1983 unsigned char buf[256+18];
1984 unsigned char *cap_buf;
1985 int ret, offset;
1986
1987 cap_buf = &buf[sizeof(struct mode_page_header) + pd->mode_offset];
1988 init_cdrom_command(&cgc, buf, sizeof(buf), CGC_DATA_UNKNOWN);
1989 cgc.sense = &sense;
1990
1991 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1992 if (ret) {
1993 cgc.buflen = pd->mode_offset + cap_buf[1] + 2 +
1994 sizeof(struct mode_page_header);
1995 ret = pkt_mode_sense(pd, &cgc, GPMODE_CAPABILITIES_PAGE, 0);
1996 if (ret) {
1997 pkt_dump_sense(pd, &cgc);
1998 return ret;
1999 }
2000 }
2001
2002 offset = 20; /* Obsoleted field, used by older drives */
2003 if (cap_buf[1] >= 28)
2004 offset = 28; /* Current write speed selected */
2005 if (cap_buf[1] >= 30) {
2006 /* If the drive reports at least one "Logical Unit Write
2007 * Speed Performance Descriptor Block", use the information
2008 * in the first block. (contains the highest speed)
2009 */
2010 int num_spdb = (cap_buf[30] << 8) + cap_buf[31];
2011 if (num_spdb > 0)
2012 offset = 34;
2013 }
2014
2015 *write_speed = (cap_buf[offset] << 8) | cap_buf[offset + 1];
2016 return 0;
2017 }
2018
2019 /* These tables from cdrecord - I don't have orange book */
2020 /* standard speed CD-RW (1-4x) */
2021 static char clv_to_speed[16] = {
2022 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2023 0, 2, 4, 6, 8, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2024 };
2025 /* high speed CD-RW (-10x) */
2026 static char hs_clv_to_speed[16] = {
2027 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2028 0, 2, 4, 6, 10, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
2029 };
2030 /* ultra high speed CD-RW */
2031 static char us_clv_to_speed[16] = {
2032 /* 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 */
2033 0, 2, 4, 8, 0, 0,16, 0,24,32,40,48, 0, 0, 0, 0
2034 };
2035
2036 /*
2037 * reads the maximum media speed from ATIP
2038 */
2039 static noinline_for_stack int pkt_media_speed(struct pktcdvd_device *pd,
2040 unsigned *speed)
2041 {
2042 struct packet_command cgc;
2043 struct request_sense sense;
2044 unsigned char buf[64];
2045 unsigned int size, st, sp;
2046 int ret;
2047
2048 init_cdrom_command(&cgc, buf, 2, CGC_DATA_READ);
2049 cgc.sense = &sense;
2050 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2051 cgc.cmd[1] = 2;
2052 cgc.cmd[2] = 4; /* READ ATIP */
2053 cgc.cmd[8] = 2;
2054 ret = pkt_generic_packet(pd, &cgc);
2055 if (ret) {
2056 pkt_dump_sense(pd, &cgc);
2057 return ret;
2058 }
2059 size = ((unsigned int) buf[0]<<8) + buf[1] + 2;
2060 if (size > sizeof(buf))
2061 size = sizeof(buf);
2062
2063 init_cdrom_command(&cgc, buf, size, CGC_DATA_READ);
2064 cgc.sense = &sense;
2065 cgc.cmd[0] = GPCMD_READ_TOC_PMA_ATIP;
2066 cgc.cmd[1] = 2;
2067 cgc.cmd[2] = 4;
2068 cgc.cmd[8] = size;
2069 ret = pkt_generic_packet(pd, &cgc);
2070 if (ret) {
2071 pkt_dump_sense(pd, &cgc);
2072 return ret;
2073 }
2074
2075 if (!(buf[6] & 0x40)) {
2076 pkt_notice(pd, "disc type is not CD-RW\n");
2077 return 1;
2078 }
2079 if (!(buf[6] & 0x4)) {
2080 pkt_notice(pd, "A1 values on media are not valid, maybe not CDRW?\n");
2081 return 1;
2082 }
2083
2084 st = (buf[6] >> 3) & 0x7; /* disc sub-type */
2085
2086 sp = buf[16] & 0xf; /* max speed from ATIP A1 field */
2087
2088 /* Info from cdrecord */
2089 switch (st) {
2090 case 0: /* standard speed */
2091 *speed = clv_to_speed[sp];
2092 break;
2093 case 1: /* high speed */
2094 *speed = hs_clv_to_speed[sp];
2095 break;
2096 case 2: /* ultra high speed */
2097 *speed = us_clv_to_speed[sp];
2098 break;
2099 default:
2100 pkt_notice(pd, "unknown disc sub-type %d\n", st);
2101 return 1;
2102 }
2103 if (*speed) {
2104 pkt_info(pd, "maximum media speed: %d\n", *speed);
2105 return 0;
2106 } else {
2107 pkt_notice(pd, "unknown speed %d for sub-type %d\n", sp, st);
2108 return 1;
2109 }
2110 }
2111
2112 static noinline_for_stack int pkt_perform_opc(struct pktcdvd_device *pd)
2113 {
2114 struct packet_command cgc;
2115 struct request_sense sense;
2116 int ret;
2117
2118 pkt_dbg(2, pd, "Performing OPC\n");
2119
2120 init_cdrom_command(&cgc, NULL, 0, CGC_DATA_NONE);
2121 cgc.sense = &sense;
2122 cgc.timeout = 60*HZ;
2123 cgc.cmd[0] = GPCMD_SEND_OPC;
2124 cgc.cmd[1] = 1;
2125 if ((ret = pkt_generic_packet(pd, &cgc)))
2126 pkt_dump_sense(pd, &cgc);
2127 return ret;
2128 }
2129
2130 static int pkt_open_write(struct pktcdvd_device *pd)
2131 {
2132 int ret;
2133 unsigned int write_speed, media_write_speed, read_speed;
2134
2135 if ((ret = pkt_probe_settings(pd))) {
2136 pkt_dbg(2, pd, "failed probe\n");
2137 return ret;
2138 }
2139
2140 if ((ret = pkt_set_write_settings(pd))) {
2141 pkt_dbg(1, pd, "failed saving write settings\n");
2142 return -EIO;
2143 }
2144
2145 pkt_write_caching(pd, USE_WCACHING);
2146
2147 if ((ret = pkt_get_max_speed(pd, &write_speed)))
2148 write_speed = 16 * 177;
2149 switch (pd->mmc3_profile) {
2150 case 0x13: /* DVD-RW */
2151 case 0x1a: /* DVD+RW */
2152 case 0x12: /* DVD-RAM */
2153 pkt_dbg(1, pd, "write speed %ukB/s\n", write_speed);
2154 break;
2155 default:
2156 if ((ret = pkt_media_speed(pd, &media_write_speed)))
2157 media_write_speed = 16;
2158 write_speed = min(write_speed, media_write_speed * 177);
2159 pkt_dbg(1, pd, "write speed %ux\n", write_speed / 176);
2160 break;
2161 }
2162 read_speed = write_speed;
2163
2164 if ((ret = pkt_set_speed(pd, write_speed, read_speed))) {
2165 pkt_dbg(1, pd, "couldn't set write speed\n");
2166 return -EIO;
2167 }
2168 pd->write_speed = write_speed;
2169 pd->read_speed = read_speed;
2170
2171 if ((ret = pkt_perform_opc(pd))) {
2172 pkt_dbg(1, pd, "Optimum Power Calibration failed\n");
2173 }
2174
2175 return 0;
2176 }
2177
2178 /*
2179 * called at open time.
2180 */
2181 static int pkt_open_dev(struct pktcdvd_device *pd, fmode_t write)
2182 {
2183 int ret;
2184 long lba;
2185 struct request_queue *q;
2186
2187 /*
2188 * We need to re-open the cdrom device without O_NONBLOCK to be able
2189 * to read/write from/to it. It is already opened in O_NONBLOCK mode
2190 * so bdget() can't fail.
2191 */
2192 bdget(pd->bdev->bd_dev);
2193 if ((ret = blkdev_get(pd->bdev, FMODE_READ | FMODE_EXCL, pd)))
2194 goto out;
2195
2196 if ((ret = pkt_get_last_written(pd, &lba))) {
2197 pkt_err(pd, "pkt_get_last_written failed\n");
2198 goto out_putdev;
2199 }
2200
2201 set_capacity(pd->disk, lba << 2);
2202 set_capacity(pd->bdev->bd_disk, lba << 2);
2203 bd_set_size(pd->bdev, (loff_t)lba << 11);
2204
2205 q = bdev_get_queue(pd->bdev);
2206 if (write) {
2207 if ((ret = pkt_open_write(pd)))
2208 goto out_putdev;
2209 /*
2210 * Some CDRW drives can not handle writes larger than one packet,
2211 * even if the size is a multiple of the packet size.
2212 */
2213 spin_lock_irq(q->queue_lock);
2214 blk_queue_max_hw_sectors(q, pd->settings.size);
2215 spin_unlock_irq(q->queue_lock);
2216 set_bit(PACKET_WRITABLE, &pd->flags);
2217 } else {
2218 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2219 clear_bit(PACKET_WRITABLE, &pd->flags);
2220 }
2221
2222 if ((ret = pkt_set_segment_merging(pd, q)))
2223 goto out_putdev;
2224
2225 if (write) {
2226 if (!pkt_grow_pktlist(pd, CONFIG_CDROM_PKTCDVD_BUFFERS)) {
2227 pkt_err(pd, "not enough memory for buffers\n");
2228 ret = -ENOMEM;
2229 goto out_putdev;
2230 }
2231 pkt_info(pd, "%lukB available on disc\n", lba << 1);
2232 }
2233
2234 return 0;
2235
2236 out_putdev:
2237 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2238 out:
2239 return ret;
2240 }
2241
2242 /*
2243 * called when the device is closed. makes sure that the device flushes
2244 * the internal cache before we close.
2245 */
2246 static void pkt_release_dev(struct pktcdvd_device *pd, int flush)
2247 {
2248 if (flush && pkt_flush_cache(pd))
2249 pkt_dbg(1, pd, "not flushing cache\n");
2250
2251 pkt_lock_door(pd, 0);
2252
2253 pkt_set_speed(pd, MAX_SPEED, MAX_SPEED);
2254 blkdev_put(pd->bdev, FMODE_READ | FMODE_EXCL);
2255
2256 pkt_shrink_pktlist(pd);
2257 }
2258
2259 static struct pktcdvd_device *pkt_find_dev_from_minor(unsigned int dev_minor)
2260 {
2261 if (dev_minor >= MAX_WRITERS)
2262 return NULL;
2263 return pkt_devs[dev_minor];
2264 }
2265
2266 static int pkt_open(struct block_device *bdev, fmode_t mode)
2267 {
2268 struct pktcdvd_device *pd = NULL;
2269 int ret;
2270
2271 mutex_lock(&pktcdvd_mutex);
2272 mutex_lock(&ctl_mutex);
2273 pd = pkt_find_dev_from_minor(MINOR(bdev->bd_dev));
2274 if (!pd) {
2275 ret = -ENODEV;
2276 goto out;
2277 }
2278 BUG_ON(pd->refcnt < 0);
2279
2280 pd->refcnt++;
2281 if (pd->refcnt > 1) {
2282 if ((mode & FMODE_WRITE) &&
2283 !test_bit(PACKET_WRITABLE, &pd->flags)) {
2284 ret = -EBUSY;
2285 goto out_dec;
2286 }
2287 } else {
2288 ret = pkt_open_dev(pd, mode & FMODE_WRITE);
2289 if (ret)
2290 goto out_dec;
2291 /*
2292 * needed here as well, since ext2 (among others) may change
2293 * the blocksize at mount time
2294 */
2295 set_blocksize(bdev, CD_FRAMESIZE);
2296 }
2297
2298 mutex_unlock(&ctl_mutex);
2299 mutex_unlock(&pktcdvd_mutex);
2300 return 0;
2301
2302 out_dec:
2303 pd->refcnt--;
2304 out:
2305 mutex_unlock(&ctl_mutex);
2306 mutex_unlock(&pktcdvd_mutex);
2307 return ret;
2308 }
2309
2310 static void pkt_close(struct gendisk *disk, fmode_t mode)
2311 {
2312 struct pktcdvd_device *pd = disk->private_data;
2313
2314 mutex_lock(&pktcdvd_mutex);
2315 mutex_lock(&ctl_mutex);
2316 pd->refcnt--;
2317 BUG_ON(pd->refcnt < 0);
2318 if (pd->refcnt == 0) {
2319 int flush = test_bit(PACKET_WRITABLE, &pd->flags);
2320 pkt_release_dev(pd, flush);
2321 }
2322 mutex_unlock(&ctl_mutex);
2323 mutex_unlock(&pktcdvd_mutex);
2324 }
2325
2326
2327 static void pkt_end_io_read_cloned(struct bio *bio, int err)
2328 {
2329 struct packet_stacked_data *psd = bio->bi_private;
2330 struct pktcdvd_device *pd = psd->pd;
2331
2332 bio_put(bio);
2333 bio_endio(psd->bio, err);
2334 mempool_free(psd, psd_pool);
2335 pkt_bio_finished(pd);
2336 }
2337
2338 static void pkt_make_request(struct request_queue *q, struct bio *bio)
2339 {
2340 struct pktcdvd_device *pd;
2341 char b[BDEVNAME_SIZE];
2342 sector_t zone;
2343 struct packet_data *pkt;
2344 int was_empty, blocked_bio;
2345 struct pkt_rb_node *node;
2346
2347 pd = q->queuedata;
2348 if (!pd) {
2349 pr_err("%s incorrect request queue\n",
2350 bdevname(bio->bi_bdev, b));
2351 goto end_io;
2352 }
2353
2354 /*
2355 * Clone READ bios so we can have our own bi_end_io callback.
2356 */
2357 if (bio_data_dir(bio) == READ) {
2358 struct bio *cloned_bio = bio_clone(bio, GFP_NOIO);
2359 struct packet_stacked_data *psd = mempool_alloc(psd_pool, GFP_NOIO);
2360
2361 psd->pd = pd;
2362 psd->bio = bio;
2363 cloned_bio->bi_bdev = pd->bdev;
2364 cloned_bio->bi_private = psd;
2365 cloned_bio->bi_end_io = pkt_end_io_read_cloned;
2366 pd->stats.secs_r += bio_sectors(bio);
2367 pkt_queue_bio(pd, cloned_bio);
2368 return;
2369 }
2370
2371 if (!test_bit(PACKET_WRITABLE, &pd->flags)) {
2372 pkt_notice(pd, "WRITE for ro device (%llu)\n",
2373 (unsigned long long)bio->bi_sector);
2374 goto end_io;
2375 }
2376
2377 if (!bio->bi_size || (bio->bi_size % CD_FRAMESIZE)) {
2378 pkt_err(pd, "wrong bio size\n");
2379 goto end_io;
2380 }
2381
2382 blk_queue_bounce(q, &bio);
2383
2384 zone = get_zone(bio->bi_sector, pd);
2385 pkt_dbg(2, pd, "start = %6llx stop = %6llx\n",
2386 (unsigned long long)bio->bi_sector,
2387 (unsigned long long)bio_end_sector(bio));
2388
2389 /* Check if we have to split the bio */
2390 {
2391 struct bio_pair *bp;
2392 sector_t last_zone;
2393 int first_sectors;
2394
2395 last_zone = get_zone(bio_end_sector(bio) - 1, pd);
2396 if (last_zone != zone) {
2397 BUG_ON(last_zone != zone + pd->settings.size);
2398 first_sectors = last_zone - bio->bi_sector;
2399 bp = bio_split(bio, first_sectors);
2400 BUG_ON(!bp);
2401 pkt_make_request(q, &bp->bio1);
2402 pkt_make_request(q, &bp->bio2);
2403 bio_pair_release(bp);
2404 return;
2405 }
2406 }
2407
2408 /*
2409 * If we find a matching packet in state WAITING or READ_WAIT, we can
2410 * just append this bio to that packet.
2411 */
2412 spin_lock(&pd->cdrw.active_list_lock);
2413 blocked_bio = 0;
2414 list_for_each_entry(pkt, &pd->cdrw.pkt_active_list, list) {
2415 if (pkt->sector == zone) {
2416 spin_lock(&pkt->lock);
2417 if ((pkt->state == PACKET_WAITING_STATE) ||
2418 (pkt->state == PACKET_READ_WAIT_STATE)) {
2419 bio_list_add(&pkt->orig_bios, bio);
2420 pkt->write_size += bio->bi_size / CD_FRAMESIZE;
2421 if ((pkt->write_size >= pkt->frames) &&
2422 (pkt->state == PACKET_WAITING_STATE)) {
2423 atomic_inc(&pkt->run_sm);
2424 wake_up(&pd->wqueue);
2425 }
2426 spin_unlock(&pkt->lock);
2427 spin_unlock(&pd->cdrw.active_list_lock);
2428 return;
2429 } else {
2430 blocked_bio = 1;
2431 }
2432 spin_unlock(&pkt->lock);
2433 }
2434 }
2435 spin_unlock(&pd->cdrw.active_list_lock);
2436
2437 /*
2438 * Test if there is enough room left in the bio work queue
2439 * (queue size >= congestion on mark).
2440 * If not, wait till the work queue size is below the congestion off mark.
2441 */
2442 spin_lock(&pd->lock);
2443 if (pd->write_congestion_on > 0
2444 && pd->bio_queue_size >= pd->write_congestion_on) {
2445 set_bdi_congested(&q->backing_dev_info, BLK_RW_ASYNC);
2446 do {
2447 spin_unlock(&pd->lock);
2448 congestion_wait(BLK_RW_ASYNC, HZ);
2449 spin_lock(&pd->lock);
2450 } while(pd->bio_queue_size > pd->write_congestion_off);
2451 }
2452 spin_unlock(&pd->lock);
2453
2454 /*
2455 * No matching packet found. Store the bio in the work queue.
2456 */
2457 node = mempool_alloc(pd->rb_pool, GFP_NOIO);
2458 node->bio = bio;
2459 spin_lock(&pd->lock);
2460 BUG_ON(pd->bio_queue_size < 0);
2461 was_empty = (pd->bio_queue_size == 0);
2462 pkt_rbtree_insert(pd, node);
2463 spin_unlock(&pd->lock);
2464
2465 /*
2466 * Wake up the worker thread.
2467 */
2468 atomic_set(&pd->scan_queue, 1);
2469 if (was_empty) {
2470 /* This wake_up is required for correct operation */
2471 wake_up(&pd->wqueue);
2472 } else if (!list_empty(&pd->cdrw.pkt_free_list) && !blocked_bio) {
2473 /*
2474 * This wake up is not required for correct operation,
2475 * but improves performance in some cases.
2476 */
2477 wake_up(&pd->wqueue);
2478 }
2479 return;
2480 end_io:
2481 bio_io_error(bio);
2482 }
2483
2484
2485
2486 static int pkt_merge_bvec(struct request_queue *q, struct bvec_merge_data *bmd,
2487 struct bio_vec *bvec)
2488 {
2489 struct pktcdvd_device *pd = q->queuedata;
2490 sector_t zone = get_zone(bmd->bi_sector, pd);
2491 int used = ((bmd->bi_sector - zone) << 9) + bmd->bi_size;
2492 int remaining = (pd->settings.size << 9) - used;
2493 int remaining2;
2494
2495 /*
2496 * A bio <= PAGE_SIZE must be allowed. If it crosses a packet
2497 * boundary, pkt_make_request() will split the bio.
2498 */
2499 remaining2 = PAGE_SIZE - bmd->bi_size;
2500 remaining = max(remaining, remaining2);
2501
2502 BUG_ON(remaining < 0);
2503 return remaining;
2504 }
2505
2506 static void pkt_init_queue(struct pktcdvd_device *pd)
2507 {
2508 struct request_queue *q = pd->disk->queue;
2509
2510 blk_queue_make_request(q, pkt_make_request);
2511 blk_queue_logical_block_size(q, CD_FRAMESIZE);
2512 blk_queue_max_hw_sectors(q, PACKET_MAX_SECTORS);
2513 blk_queue_merge_bvec(q, pkt_merge_bvec);
2514 q->queuedata = pd;
2515 }
2516
2517 static int pkt_seq_show(struct seq_file *m, void *p)
2518 {
2519 struct pktcdvd_device *pd = m->private;
2520 char *msg;
2521 char bdev_buf[BDEVNAME_SIZE];
2522 int states[PACKET_NUM_STATES];
2523
2524 seq_printf(m, "Writer %s mapped to %s:\n", pd->name,
2525 bdevname(pd->bdev, bdev_buf));
2526
2527 seq_printf(m, "\nSettings:\n");
2528 seq_printf(m, "\tpacket size:\t\t%dkB\n", pd->settings.size / 2);
2529
2530 if (pd->settings.write_type == 0)
2531 msg = "Packet";
2532 else
2533 msg = "Unknown";
2534 seq_printf(m, "\twrite type:\t\t%s\n", msg);
2535
2536 seq_printf(m, "\tpacket type:\t\t%s\n", pd->settings.fp ? "Fixed" : "Variable");
2537 seq_printf(m, "\tlink loss:\t\t%d\n", pd->settings.link_loss);
2538
2539 seq_printf(m, "\ttrack mode:\t\t%d\n", pd->settings.track_mode);
2540
2541 if (pd->settings.block_mode == PACKET_BLOCK_MODE1)
2542 msg = "Mode 1";
2543 else if (pd->settings.block_mode == PACKET_BLOCK_MODE2)
2544 msg = "Mode 2";
2545 else
2546 msg = "Unknown";
2547 seq_printf(m, "\tblock mode:\t\t%s\n", msg);
2548
2549 seq_printf(m, "\nStatistics:\n");
2550 seq_printf(m, "\tpackets started:\t%lu\n", pd->stats.pkt_started);
2551 seq_printf(m, "\tpackets ended:\t\t%lu\n", pd->stats.pkt_ended);
2552 seq_printf(m, "\twritten:\t\t%lukB\n", pd->stats.secs_w >> 1);
2553 seq_printf(m, "\tread gather:\t\t%lukB\n", pd->stats.secs_rg >> 1);
2554 seq_printf(m, "\tread:\t\t\t%lukB\n", pd->stats.secs_r >> 1);
2555
2556 seq_printf(m, "\nMisc:\n");
2557 seq_printf(m, "\treference count:\t%d\n", pd->refcnt);
2558 seq_printf(m, "\tflags:\t\t\t0x%lx\n", pd->flags);
2559 seq_printf(m, "\tread speed:\t\t%ukB/s\n", pd->read_speed);
2560 seq_printf(m, "\twrite speed:\t\t%ukB/s\n", pd->write_speed);
2561 seq_printf(m, "\tstart offset:\t\t%lu\n", pd->offset);
2562 seq_printf(m, "\tmode page offset:\t%u\n", pd->mode_offset);
2563
2564 seq_printf(m, "\nQueue state:\n");
2565 seq_printf(m, "\tbios queued:\t\t%d\n", pd->bio_queue_size);
2566 seq_printf(m, "\tbios pending:\t\t%d\n", atomic_read(&pd->cdrw.pending_bios));
2567 seq_printf(m, "\tcurrent sector:\t\t0x%llx\n", (unsigned long long)pd->current_sector);
2568
2569 pkt_count_states(pd, states);
2570 seq_printf(m, "\tstate:\t\t\ti:%d ow:%d rw:%d ww:%d rec:%d fin:%d\n",
2571 states[0], states[1], states[2], states[3], states[4], states[5]);
2572
2573 seq_printf(m, "\twrite congestion marks:\toff=%d on=%d\n",
2574 pd->write_congestion_off,
2575 pd->write_congestion_on);
2576 return 0;
2577 }
2578
2579 static int pkt_seq_open(struct inode *inode, struct file *file)
2580 {
2581 return single_open(file, pkt_seq_show, PDE_DATA(inode));
2582 }
2583
2584 static const struct file_operations pkt_proc_fops = {
2585 .open = pkt_seq_open,
2586 .read = seq_read,
2587 .llseek = seq_lseek,
2588 .release = single_release
2589 };
2590
2591 static int pkt_new_dev(struct pktcdvd_device *pd, dev_t dev)
2592 {
2593 int i;
2594 int ret = 0;
2595 char b[BDEVNAME_SIZE];
2596 struct block_device *bdev;
2597
2598 if (pd->pkt_dev == dev) {
2599 pkt_err(pd, "recursive setup not allowed\n");
2600 return -EBUSY;
2601 }
2602 for (i = 0; i < MAX_WRITERS; i++) {
2603 struct pktcdvd_device *pd2 = pkt_devs[i];
2604 if (!pd2)
2605 continue;
2606 if (pd2->bdev->bd_dev == dev) {
2607 pkt_err(pd, "%s already setup\n",
2608 bdevname(pd2->bdev, b));
2609 return -EBUSY;
2610 }
2611 if (pd2->pkt_dev == dev) {
2612 pkt_err(pd, "can't chain pktcdvd devices\n");
2613 return -EBUSY;
2614 }
2615 }
2616
2617 bdev = bdget(dev);
2618 if (!bdev)
2619 return -ENOMEM;
2620 ret = blkdev_get(bdev, FMODE_READ | FMODE_NDELAY, NULL);
2621 if (ret)
2622 return ret;
2623
2624 /* This is safe, since we have a reference from open(). */
2625 __module_get(THIS_MODULE);
2626
2627 pd->bdev = bdev;
2628 set_blocksize(bdev, CD_FRAMESIZE);
2629
2630 pkt_init_queue(pd);
2631
2632 atomic_set(&pd->cdrw.pending_bios, 0);
2633 pd->cdrw.thread = kthread_run(kcdrwd, pd, "%s", pd->name);
2634 if (IS_ERR(pd->cdrw.thread)) {
2635 pkt_err(pd, "can't start kernel thread\n");
2636 ret = -ENOMEM;
2637 goto out_mem;
2638 }
2639
2640 proc_create_data(pd->name, 0, pkt_proc, &pkt_proc_fops, pd);
2641 pkt_dbg(1, pd, "writer mapped to %s\n", bdevname(bdev, b));
2642 return 0;
2643
2644 out_mem:
2645 blkdev_put(bdev, FMODE_READ | FMODE_NDELAY);
2646 /* This is safe: open() is still holding a reference. */
2647 module_put(THIS_MODULE);
2648 return ret;
2649 }
2650
2651 static int pkt_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd, unsigned long arg)
2652 {
2653 struct pktcdvd_device *pd = bdev->bd_disk->private_data;
2654 int ret;
2655
2656 pkt_dbg(2, pd, "cmd %x, dev %d:%d\n",
2657 cmd, MAJOR(bdev->bd_dev), MINOR(bdev->bd_dev));
2658
2659 mutex_lock(&pktcdvd_mutex);
2660 switch (cmd) {
2661 case CDROMEJECT:
2662 /*
2663 * The door gets locked when the device is opened, so we
2664 * have to unlock it or else the eject command fails.
2665 */
2666 if (pd->refcnt == 1)
2667 pkt_lock_door(pd, 0);
2668 /* fallthru */
2669 /*
2670 * forward selected CDROM ioctls to CD-ROM, for UDF
2671 */
2672 case CDROMMULTISESSION:
2673 case CDROMREADTOCENTRY:
2674 case CDROM_LAST_WRITTEN:
2675 case CDROM_SEND_PACKET:
2676 case SCSI_IOCTL_SEND_COMMAND:
2677 ret = __blkdev_driver_ioctl(pd->bdev, mode, cmd, arg);
2678 break;
2679
2680 default:
2681 pkt_dbg(2, pd, "Unknown ioctl (%x)\n", cmd);
2682 ret = -ENOTTY;
2683 }
2684 mutex_unlock(&pktcdvd_mutex);
2685
2686 return ret;
2687 }
2688
2689 static unsigned int pkt_check_events(struct gendisk *disk,
2690 unsigned int clearing)
2691 {
2692 struct pktcdvd_device *pd = disk->private_data;
2693 struct gendisk *attached_disk;
2694
2695 if (!pd)
2696 return 0;
2697 if (!pd->bdev)
2698 return 0;
2699 attached_disk = pd->bdev->bd_disk;
2700 if (!attached_disk || !attached_disk->fops->check_events)
2701 return 0;
2702 return attached_disk->fops->check_events(attached_disk, clearing);
2703 }
2704
2705 static const struct block_device_operations pktcdvd_ops = {
2706 .owner = THIS_MODULE,
2707 .open = pkt_open,
2708 .release = pkt_close,
2709 .ioctl = pkt_ioctl,
2710 .check_events = pkt_check_events,
2711 };
2712
2713 static char *pktcdvd_devnode(struct gendisk *gd, umode_t *mode)
2714 {
2715 return kasprintf(GFP_KERNEL, "pktcdvd/%s", gd->disk_name);
2716 }
2717
2718 /*
2719 * Set up mapping from pktcdvd device to CD-ROM device.
2720 */
2721 static int pkt_setup_dev(dev_t dev, dev_t* pkt_dev)
2722 {
2723 int idx;
2724 int ret = -ENOMEM;
2725 struct pktcdvd_device *pd;
2726 struct gendisk *disk;
2727
2728 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2729
2730 for (idx = 0; idx < MAX_WRITERS; idx++)
2731 if (!pkt_devs[idx])
2732 break;
2733 if (idx == MAX_WRITERS) {
2734 pr_err("max %d writers supported\n", MAX_WRITERS);
2735 ret = -EBUSY;
2736 goto out_mutex;
2737 }
2738
2739 pd = kzalloc(sizeof(struct pktcdvd_device), GFP_KERNEL);
2740 if (!pd)
2741 goto out_mutex;
2742
2743 pd->rb_pool = mempool_create_kmalloc_pool(PKT_RB_POOL_SIZE,
2744 sizeof(struct pkt_rb_node));
2745 if (!pd->rb_pool)
2746 goto out_mem;
2747
2748 INIT_LIST_HEAD(&pd->cdrw.pkt_free_list);
2749 INIT_LIST_HEAD(&pd->cdrw.pkt_active_list);
2750 spin_lock_init(&pd->cdrw.active_list_lock);
2751
2752 spin_lock_init(&pd->lock);
2753 spin_lock_init(&pd->iosched.lock);
2754 bio_list_init(&pd->iosched.read_queue);
2755 bio_list_init(&pd->iosched.write_queue);
2756 sprintf(pd->name, DRIVER_NAME"%d", idx);
2757 init_waitqueue_head(&pd->wqueue);
2758 pd->bio_queue = RB_ROOT;
2759
2760 pd->write_congestion_on = write_congestion_on;
2761 pd->write_congestion_off = write_congestion_off;
2762
2763 disk = alloc_disk(1);
2764 if (!disk)
2765 goto out_mem;
2766 pd->disk = disk;
2767 disk->major = pktdev_major;
2768 disk->first_minor = idx;
2769 disk->fops = &pktcdvd_ops;
2770 disk->flags = GENHD_FL_REMOVABLE;
2771 strcpy(disk->disk_name, pd->name);
2772 disk->devnode = pktcdvd_devnode;
2773 disk->private_data = pd;
2774 disk->queue = blk_alloc_queue(GFP_KERNEL);
2775 if (!disk->queue)
2776 goto out_mem2;
2777
2778 pd->pkt_dev = MKDEV(pktdev_major, idx);
2779 ret = pkt_new_dev(pd, dev);
2780 if (ret)
2781 goto out_new_dev;
2782
2783 /* inherit events of the host device */
2784 disk->events = pd->bdev->bd_disk->events;
2785 disk->async_events = pd->bdev->bd_disk->async_events;
2786
2787 add_disk(disk);
2788
2789 pkt_sysfs_dev_new(pd);
2790 pkt_debugfs_dev_new(pd);
2791
2792 pkt_devs[idx] = pd;
2793 if (pkt_dev)
2794 *pkt_dev = pd->pkt_dev;
2795
2796 mutex_unlock(&ctl_mutex);
2797 return 0;
2798
2799 out_new_dev:
2800 blk_cleanup_queue(disk->queue);
2801 out_mem2:
2802 put_disk(disk);
2803 out_mem:
2804 if (pd->rb_pool)
2805 mempool_destroy(pd->rb_pool);
2806 kfree(pd);
2807 out_mutex:
2808 mutex_unlock(&ctl_mutex);
2809 pr_err("setup of pktcdvd device failed\n");
2810 return ret;
2811 }
2812
2813 /*
2814 * Tear down mapping from pktcdvd device to CD-ROM device.
2815 */
2816 static int pkt_remove_dev(dev_t pkt_dev)
2817 {
2818 struct pktcdvd_device *pd;
2819 int idx;
2820 int ret = 0;
2821
2822 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2823
2824 for (idx = 0; idx < MAX_WRITERS; idx++) {
2825 pd = pkt_devs[idx];
2826 if (pd && (pd->pkt_dev == pkt_dev))
2827 break;
2828 }
2829 if (idx == MAX_WRITERS) {
2830 pr_debug("dev not setup\n");
2831 ret = -ENXIO;
2832 goto out;
2833 }
2834
2835 if (pd->refcnt > 0) {
2836 ret = -EBUSY;
2837 goto out;
2838 }
2839 if (!IS_ERR(pd->cdrw.thread))
2840 kthread_stop(pd->cdrw.thread);
2841
2842 pkt_devs[idx] = NULL;
2843
2844 pkt_debugfs_dev_remove(pd);
2845 pkt_sysfs_dev_remove(pd);
2846
2847 blkdev_put(pd->bdev, FMODE_READ | FMODE_NDELAY);
2848
2849 remove_proc_entry(pd->name, pkt_proc);
2850 pkt_dbg(1, pd, "writer unmapped\n");
2851
2852 del_gendisk(pd->disk);
2853 blk_cleanup_queue(pd->disk->queue);
2854 put_disk(pd->disk);
2855
2856 mempool_destroy(pd->rb_pool);
2857 kfree(pd);
2858
2859 /* This is safe: open() is still holding a reference. */
2860 module_put(THIS_MODULE);
2861
2862 out:
2863 mutex_unlock(&ctl_mutex);
2864 return ret;
2865 }
2866
2867 static void pkt_get_status(struct pkt_ctrl_command *ctrl_cmd)
2868 {
2869 struct pktcdvd_device *pd;
2870
2871 mutex_lock_nested(&ctl_mutex, SINGLE_DEPTH_NESTING);
2872
2873 pd = pkt_find_dev_from_minor(ctrl_cmd->dev_index);
2874 if (pd) {
2875 ctrl_cmd->dev = new_encode_dev(pd->bdev->bd_dev);
2876 ctrl_cmd->pkt_dev = new_encode_dev(pd->pkt_dev);
2877 } else {
2878 ctrl_cmd->dev = 0;
2879 ctrl_cmd->pkt_dev = 0;
2880 }
2881 ctrl_cmd->num_devices = MAX_WRITERS;
2882
2883 mutex_unlock(&ctl_mutex);
2884 }
2885
2886 static long pkt_ctl_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2887 {
2888 void __user *argp = (void __user *)arg;
2889 struct pkt_ctrl_command ctrl_cmd;
2890 int ret = 0;
2891 dev_t pkt_dev = 0;
2892
2893 if (cmd != PACKET_CTRL_CMD)
2894 return -ENOTTY;
2895
2896 if (copy_from_user(&ctrl_cmd, argp, sizeof(struct pkt_ctrl_command)))
2897 return -EFAULT;
2898
2899 switch (ctrl_cmd.command) {
2900 case PKT_CTRL_CMD_SETUP:
2901 if (!capable(CAP_SYS_ADMIN))
2902 return -EPERM;
2903 ret = pkt_setup_dev(new_decode_dev(ctrl_cmd.dev), &pkt_dev);
2904 ctrl_cmd.pkt_dev = new_encode_dev(pkt_dev);
2905 break;
2906 case PKT_CTRL_CMD_TEARDOWN:
2907 if (!capable(CAP_SYS_ADMIN))
2908 return -EPERM;
2909 ret = pkt_remove_dev(new_decode_dev(ctrl_cmd.pkt_dev));
2910 break;
2911 case PKT_CTRL_CMD_STATUS:
2912 pkt_get_status(&ctrl_cmd);
2913 break;
2914 default:
2915 return -ENOTTY;
2916 }
2917
2918 if (copy_to_user(argp, &ctrl_cmd, sizeof(struct pkt_ctrl_command)))
2919 return -EFAULT;
2920 return ret;
2921 }
2922
2923 #ifdef CONFIG_COMPAT
2924 static long pkt_ctl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2925 {
2926 return pkt_ctl_ioctl(file, cmd, (unsigned long)compat_ptr(arg));
2927 }
2928 #endif
2929
2930 static const struct file_operations pkt_ctl_fops = {
2931 .open = nonseekable_open,
2932 .unlocked_ioctl = pkt_ctl_ioctl,
2933 #ifdef CONFIG_COMPAT
2934 .compat_ioctl = pkt_ctl_compat_ioctl,
2935 #endif
2936 .owner = THIS_MODULE,
2937 .llseek = no_llseek,
2938 };
2939
2940 static struct miscdevice pkt_misc = {
2941 .minor = MISC_DYNAMIC_MINOR,
2942 .name = DRIVER_NAME,
2943 .nodename = "pktcdvd/control",
2944 .fops = &pkt_ctl_fops
2945 };
2946
2947 static int __init pkt_init(void)
2948 {
2949 int ret;
2950
2951 mutex_init(&ctl_mutex);
2952
2953 psd_pool = mempool_create_kmalloc_pool(PSD_POOL_SIZE,
2954 sizeof(struct packet_stacked_data));
2955 if (!psd_pool)
2956 return -ENOMEM;
2957
2958 ret = register_blkdev(pktdev_major, DRIVER_NAME);
2959 if (ret < 0) {
2960 pr_err("unable to register block device\n");
2961 goto out2;
2962 }
2963 if (!pktdev_major)
2964 pktdev_major = ret;
2965
2966 ret = pkt_sysfs_init();
2967 if (ret)
2968 goto out;
2969
2970 pkt_debugfs_init();
2971
2972 ret = misc_register(&pkt_misc);
2973 if (ret) {
2974 pr_err("unable to register misc device\n");
2975 goto out_misc;
2976 }
2977
2978 pkt_proc = proc_mkdir("driver/"DRIVER_NAME, NULL);
2979
2980 return 0;
2981
2982 out_misc:
2983 pkt_debugfs_cleanup();
2984 pkt_sysfs_cleanup();
2985 out:
2986 unregister_blkdev(pktdev_major, DRIVER_NAME);
2987 out2:
2988 mempool_destroy(psd_pool);
2989 return ret;
2990 }
2991
2992 static void __exit pkt_exit(void)
2993 {
2994 remove_proc_entry("driver/"DRIVER_NAME, NULL);
2995 misc_deregister(&pkt_misc);
2996
2997 pkt_debugfs_cleanup();
2998 pkt_sysfs_cleanup();
2999
3000 unregister_blkdev(pktdev_major, DRIVER_NAME);
3001 mempool_destroy(psd_pool);
3002 }
3003
3004 MODULE_DESCRIPTION("Packet writing layer for CD/DVD drives");
3005 MODULE_AUTHOR("Jens Axboe <axboe@suse.de>");
3006 MODULE_LICENSE("GPL");
3007
3008 module_init(pkt_init);
3009 module_exit(pkt_exit);