d0cfb85d55823b1bb42ad3284bacd8b5fe8ac16e
[GitHub/moto-9609/android_kernel_motorola_exynos9610.git] / drivers / block / nvme-core.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 *
14 * You should have received a copy of the GNU General Public License along with
15 * this program; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19 #include <linux/nvme.h>
20 #include <linux/bio.h>
21 #include <linux/bitops.h>
22 #include <linux/blkdev.h>
23 #include <linux/delay.h>
24 #include <linux/errno.h>
25 #include <linux/fs.h>
26 #include <linux/genhd.h>
27 #include <linux/idr.h>
28 #include <linux/init.h>
29 #include <linux/interrupt.h>
30 #include <linux/io.h>
31 #include <linux/kdev_t.h>
32 #include <linux/kthread.h>
33 #include <linux/kernel.h>
34 #include <linux/mm.h>
35 #include <linux/module.h>
36 #include <linux/moduleparam.h>
37 #include <linux/pci.h>
38 #include <linux/poison.h>
39 #include <linux/sched.h>
40 #include <linux/slab.h>
41 #include <linux/types.h>
42
43 #include <asm-generic/io-64-nonatomic-lo-hi.h>
44
45 #define NVME_Q_DEPTH 1024
46 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
47 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
48 #define NVME_MINORS 64
49 #define ADMIN_TIMEOUT (60 * HZ)
50
51 static int nvme_major;
52 module_param(nvme_major, int, 0);
53
54 static int use_threaded_interrupts;
55 module_param(use_threaded_interrupts, int, 0);
56
57 static DEFINE_SPINLOCK(dev_list_lock);
58 static LIST_HEAD(dev_list);
59 static struct task_struct *nvme_thread;
60
61 /*
62 * An NVM Express queue. Each device has at least two (one for admin
63 * commands and one for I/O commands).
64 */
65 struct nvme_queue {
66 struct device *q_dmadev;
67 struct nvme_dev *dev;
68 spinlock_t q_lock;
69 struct nvme_command *sq_cmds;
70 volatile struct nvme_completion *cqes;
71 dma_addr_t sq_dma_addr;
72 dma_addr_t cq_dma_addr;
73 wait_queue_head_t sq_full;
74 wait_queue_t sq_cong_wait;
75 struct bio_list sq_cong;
76 u32 __iomem *q_db;
77 u16 q_depth;
78 u16 cq_vector;
79 u16 sq_head;
80 u16 sq_tail;
81 u16 cq_head;
82 u16 cq_phase;
83 unsigned long cmdid_data[];
84 };
85
86 /*
87 * Check we didin't inadvertently grow the command struct
88 */
89 static inline void _nvme_check_size(void)
90 {
91 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
92 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
93 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
94 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
95 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
96 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
97 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
98 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
99 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
100 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
101 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
102 }
103
104 typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
105 struct nvme_completion *);
106
107 struct nvme_cmd_info {
108 nvme_completion_fn fn;
109 void *ctx;
110 unsigned long timeout;
111 };
112
113 static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
114 {
115 return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
116 }
117
118 /**
119 * alloc_cmdid() - Allocate a Command ID
120 * @nvmeq: The queue that will be used for this command
121 * @ctx: A pointer that will be passed to the handler
122 * @handler: The function to call on completion
123 *
124 * Allocate a Command ID for a queue. The data passed in will
125 * be passed to the completion handler. This is implemented by using
126 * the bottom two bits of the ctx pointer to store the handler ID.
127 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
128 * We can change this if it becomes a problem.
129 *
130 * May be called with local interrupts disabled and the q_lock held,
131 * or with interrupts enabled and no locks held.
132 */
133 static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
134 nvme_completion_fn handler, unsigned timeout)
135 {
136 int depth = nvmeq->q_depth - 1;
137 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
138 int cmdid;
139
140 do {
141 cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
142 if (cmdid >= depth)
143 return -EBUSY;
144 } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
145
146 info[cmdid].fn = handler;
147 info[cmdid].ctx = ctx;
148 info[cmdid].timeout = jiffies + timeout;
149 return cmdid;
150 }
151
152 static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
153 nvme_completion_fn handler, unsigned timeout)
154 {
155 int cmdid;
156 wait_event_killable(nvmeq->sq_full,
157 (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
158 return (cmdid < 0) ? -EINTR : cmdid;
159 }
160
161 /* Special values must be less than 0x1000 */
162 #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
163 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
164 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
165 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
166 #define CMD_CTX_FLUSH (0x318 + CMD_CTX_BASE)
167
168 static void special_completion(struct nvme_dev *dev, void *ctx,
169 struct nvme_completion *cqe)
170 {
171 if (ctx == CMD_CTX_CANCELLED)
172 return;
173 if (ctx == CMD_CTX_FLUSH)
174 return;
175 if (ctx == CMD_CTX_COMPLETED) {
176 dev_warn(&dev->pci_dev->dev,
177 "completed id %d twice on queue %d\n",
178 cqe->command_id, le16_to_cpup(&cqe->sq_id));
179 return;
180 }
181 if (ctx == CMD_CTX_INVALID) {
182 dev_warn(&dev->pci_dev->dev,
183 "invalid id %d completed on queue %d\n",
184 cqe->command_id, le16_to_cpup(&cqe->sq_id));
185 return;
186 }
187
188 dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
189 }
190
191 /*
192 * Called with local interrupts disabled and the q_lock held. May not sleep.
193 */
194 static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
195 nvme_completion_fn *fn)
196 {
197 void *ctx;
198 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
199
200 if (cmdid >= nvmeq->q_depth) {
201 *fn = special_completion;
202 return CMD_CTX_INVALID;
203 }
204 if (fn)
205 *fn = info[cmdid].fn;
206 ctx = info[cmdid].ctx;
207 info[cmdid].fn = special_completion;
208 info[cmdid].ctx = CMD_CTX_COMPLETED;
209 clear_bit(cmdid, nvmeq->cmdid_data);
210 wake_up(&nvmeq->sq_full);
211 return ctx;
212 }
213
214 static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
215 nvme_completion_fn *fn)
216 {
217 void *ctx;
218 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
219 if (fn)
220 *fn = info[cmdid].fn;
221 ctx = info[cmdid].ctx;
222 info[cmdid].fn = special_completion;
223 info[cmdid].ctx = CMD_CTX_CANCELLED;
224 return ctx;
225 }
226
227 static struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
228 {
229 return dev->queues[get_cpu() + 1];
230 }
231
232 static void put_nvmeq(struct nvme_queue *nvmeq)
233 {
234 put_cpu();
235 }
236
237 /**
238 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
239 * @nvmeq: The queue to use
240 * @cmd: The command to send
241 *
242 * Safe to use from interrupt context
243 */
244 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
245 {
246 unsigned long flags;
247 u16 tail;
248 spin_lock_irqsave(&nvmeq->q_lock, flags);
249 tail = nvmeq->sq_tail;
250 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
251 if (++tail == nvmeq->q_depth)
252 tail = 0;
253 writel(tail, nvmeq->q_db);
254 nvmeq->sq_tail = tail;
255 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
256
257 return 0;
258 }
259
260 static __le64 **iod_list(struct nvme_iod *iod)
261 {
262 return ((void *)iod) + iod->offset;
263 }
264
265 /*
266 * Will slightly overestimate the number of pages needed. This is OK
267 * as it only leads to a small amount of wasted memory for the lifetime of
268 * the I/O.
269 */
270 static int nvme_npages(unsigned size)
271 {
272 unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
273 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
274 }
275
276 static struct nvme_iod *
277 nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
278 {
279 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
280 sizeof(__le64 *) * nvme_npages(nbytes) +
281 sizeof(struct scatterlist) * nseg, gfp);
282
283 if (iod) {
284 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
285 iod->npages = -1;
286 iod->length = nbytes;
287 iod->nents = 0;
288 }
289
290 return iod;
291 }
292
293 static void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
294 {
295 const int last_prp = PAGE_SIZE / 8 - 1;
296 int i;
297 __le64 **list = iod_list(iod);
298 dma_addr_t prp_dma = iod->first_dma;
299
300 if (iod->npages == 0)
301 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
302 for (i = 0; i < iod->npages; i++) {
303 __le64 *prp_list = list[i];
304 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
305 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
306 prp_dma = next_prp_dma;
307 }
308 kfree(iod);
309 }
310
311 static void requeue_bio(struct nvme_dev *dev, struct bio *bio)
312 {
313 struct nvme_queue *nvmeq = get_nvmeq(dev);
314 if (bio_list_empty(&nvmeq->sq_cong))
315 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
316 bio_list_add(&nvmeq->sq_cong, bio);
317 put_nvmeq(nvmeq);
318 wake_up_process(nvme_thread);
319 }
320
321 static void bio_completion(struct nvme_dev *dev, void *ctx,
322 struct nvme_completion *cqe)
323 {
324 struct nvme_iod *iod = ctx;
325 struct bio *bio = iod->private;
326 u16 status = le16_to_cpup(&cqe->status) >> 1;
327
328 if (iod->nents)
329 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
330 bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
331 nvme_free_iod(dev, iod);
332 if (status) {
333 bio_endio(bio, -EIO);
334 } else if (bio->bi_vcnt > bio->bi_idx) {
335 requeue_bio(dev, bio);
336 } else {
337 bio_endio(bio, 0);
338 }
339 }
340
341 /* length is in bytes. gfp flags indicates whether we may sleep. */
342 static int nvme_setup_prps(struct nvme_dev *dev,
343 struct nvme_common_command *cmd, struct nvme_iod *iod,
344 int total_len, gfp_t gfp)
345 {
346 struct dma_pool *pool;
347 int length = total_len;
348 struct scatterlist *sg = iod->sg;
349 int dma_len = sg_dma_len(sg);
350 u64 dma_addr = sg_dma_address(sg);
351 int offset = offset_in_page(dma_addr);
352 __le64 *prp_list;
353 __le64 **list = iod_list(iod);
354 dma_addr_t prp_dma;
355 int nprps, i;
356
357 cmd->prp1 = cpu_to_le64(dma_addr);
358 length -= (PAGE_SIZE - offset);
359 if (length <= 0)
360 return total_len;
361
362 dma_len -= (PAGE_SIZE - offset);
363 if (dma_len) {
364 dma_addr += (PAGE_SIZE - offset);
365 } else {
366 sg = sg_next(sg);
367 dma_addr = sg_dma_address(sg);
368 dma_len = sg_dma_len(sg);
369 }
370
371 if (length <= PAGE_SIZE) {
372 cmd->prp2 = cpu_to_le64(dma_addr);
373 return total_len;
374 }
375
376 nprps = DIV_ROUND_UP(length, PAGE_SIZE);
377 if (nprps <= (256 / 8)) {
378 pool = dev->prp_small_pool;
379 iod->npages = 0;
380 } else {
381 pool = dev->prp_page_pool;
382 iod->npages = 1;
383 }
384
385 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
386 if (!prp_list) {
387 cmd->prp2 = cpu_to_le64(dma_addr);
388 iod->npages = -1;
389 return (total_len - length) + PAGE_SIZE;
390 }
391 list[0] = prp_list;
392 iod->first_dma = prp_dma;
393 cmd->prp2 = cpu_to_le64(prp_dma);
394 i = 0;
395 for (;;) {
396 if (i == PAGE_SIZE / 8) {
397 __le64 *old_prp_list = prp_list;
398 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
399 if (!prp_list)
400 return total_len - length;
401 list[iod->npages++] = prp_list;
402 prp_list[0] = old_prp_list[i - 1];
403 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
404 i = 1;
405 }
406 prp_list[i++] = cpu_to_le64(dma_addr);
407 dma_len -= PAGE_SIZE;
408 dma_addr += PAGE_SIZE;
409 length -= PAGE_SIZE;
410 if (length <= 0)
411 break;
412 if (dma_len > 0)
413 continue;
414 BUG_ON(dma_len < 0);
415 sg = sg_next(sg);
416 dma_addr = sg_dma_address(sg);
417 dma_len = sg_dma_len(sg);
418 }
419
420 return total_len;
421 }
422
423 /* NVMe scatterlists require no holes in the virtual address */
424 #define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2) ((vec2)->bv_offset || \
425 (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
426
427 static int nvme_map_bio(struct device *dev, struct nvme_iod *iod,
428 struct bio *bio, enum dma_data_direction dma_dir, int psegs)
429 {
430 struct bio_vec *bvec, *bvprv = NULL;
431 struct scatterlist *sg = NULL;
432 int i, old_idx, length = 0, nsegs = 0;
433
434 sg_init_table(iod->sg, psegs);
435 old_idx = bio->bi_idx;
436 bio_for_each_segment(bvec, bio, i) {
437 if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
438 sg->length += bvec->bv_len;
439 } else {
440 if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
441 break;
442 sg = sg ? sg + 1 : iod->sg;
443 sg_set_page(sg, bvec->bv_page, bvec->bv_len,
444 bvec->bv_offset);
445 nsegs++;
446 }
447 length += bvec->bv_len;
448 bvprv = bvec;
449 }
450 bio->bi_idx = i;
451 iod->nents = nsegs;
452 sg_mark_end(sg);
453 if (dma_map_sg(dev, iod->sg, iod->nents, dma_dir) == 0) {
454 bio->bi_idx = old_idx;
455 return -ENOMEM;
456 }
457 return length;
458 }
459
460 /*
461 * We reuse the small pool to allocate the 16-byte range here as it is not
462 * worth having a special pool for these or additional cases to handle freeing
463 * the iod.
464 */
465 static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
466 struct bio *bio, struct nvme_iod *iod, int cmdid)
467 {
468 struct nvme_dsm_range *range;
469 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
470
471 range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
472 &iod->first_dma);
473 if (!range)
474 return -ENOMEM;
475
476 iod_list(iod)[0] = (__le64 *)range;
477 iod->npages = 0;
478
479 range->cattr = cpu_to_le32(0);
480 range->nlb = cpu_to_le32(bio->bi_size >> ns->lba_shift);
481 range->slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
482
483 memset(cmnd, 0, sizeof(*cmnd));
484 cmnd->dsm.opcode = nvme_cmd_dsm;
485 cmnd->dsm.command_id = cmdid;
486 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
487 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
488 cmnd->dsm.nr = 0;
489 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
490
491 if (++nvmeq->sq_tail == nvmeq->q_depth)
492 nvmeq->sq_tail = 0;
493 writel(nvmeq->sq_tail, nvmeq->q_db);
494
495 return 0;
496 }
497
498 static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
499 int cmdid)
500 {
501 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
502
503 memset(cmnd, 0, sizeof(*cmnd));
504 cmnd->common.opcode = nvme_cmd_flush;
505 cmnd->common.command_id = cmdid;
506 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
507
508 if (++nvmeq->sq_tail == nvmeq->q_depth)
509 nvmeq->sq_tail = 0;
510 writel(nvmeq->sq_tail, nvmeq->q_db);
511
512 return 0;
513 }
514
515 static int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
516 {
517 int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
518 special_completion, NVME_IO_TIMEOUT);
519 if (unlikely(cmdid < 0))
520 return cmdid;
521
522 return nvme_submit_flush(nvmeq, ns, cmdid);
523 }
524
525 /*
526 * Called with local interrupts disabled and the q_lock held. May not sleep.
527 */
528 static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
529 struct bio *bio)
530 {
531 struct nvme_command *cmnd;
532 struct nvme_iod *iod;
533 enum dma_data_direction dma_dir;
534 int cmdid, length, result = -ENOMEM;
535 u16 control;
536 u32 dsmgmt;
537 int psegs = bio_phys_segments(ns->queue, bio);
538
539 if ((bio->bi_rw & REQ_FLUSH) && psegs) {
540 result = nvme_submit_flush_data(nvmeq, ns);
541 if (result)
542 return result;
543 }
544
545 iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
546 if (!iod)
547 goto nomem;
548 iod->private = bio;
549
550 result = -EBUSY;
551 cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
552 if (unlikely(cmdid < 0))
553 goto free_iod;
554
555 if (bio->bi_rw & REQ_DISCARD) {
556 result = nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
557 if (result)
558 goto free_cmdid;
559 return result;
560 }
561 if ((bio->bi_rw & REQ_FLUSH) && !psegs)
562 return nvme_submit_flush(nvmeq, ns, cmdid);
563
564 control = 0;
565 if (bio->bi_rw & REQ_FUA)
566 control |= NVME_RW_FUA;
567 if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
568 control |= NVME_RW_LR;
569
570 dsmgmt = 0;
571 if (bio->bi_rw & REQ_RAHEAD)
572 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
573
574 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
575
576 memset(cmnd, 0, sizeof(*cmnd));
577 if (bio_data_dir(bio)) {
578 cmnd->rw.opcode = nvme_cmd_write;
579 dma_dir = DMA_TO_DEVICE;
580 } else {
581 cmnd->rw.opcode = nvme_cmd_read;
582 dma_dir = DMA_FROM_DEVICE;
583 }
584
585 result = nvme_map_bio(nvmeq->q_dmadev, iod, bio, dma_dir, psegs);
586 if (result < 0)
587 goto free_cmdid;
588 length = result;
589
590 cmnd->rw.command_id = cmdid;
591 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
592 length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
593 GFP_ATOMIC);
594 cmnd->rw.slba = cpu_to_le64(bio->bi_sector >> (ns->lba_shift - 9));
595 cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
596 cmnd->rw.control = cpu_to_le16(control);
597 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
598
599 bio->bi_sector += length >> 9;
600
601 if (++nvmeq->sq_tail == nvmeq->q_depth)
602 nvmeq->sq_tail = 0;
603 writel(nvmeq->sq_tail, nvmeq->q_db);
604
605 return 0;
606
607 free_cmdid:
608 free_cmdid(nvmeq, cmdid, NULL);
609 free_iod:
610 nvme_free_iod(nvmeq->dev, iod);
611 nomem:
612 return result;
613 }
614
615 static void nvme_make_request(struct request_queue *q, struct bio *bio)
616 {
617 struct nvme_ns *ns = q->queuedata;
618 struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
619 int result = -EBUSY;
620
621 spin_lock_irq(&nvmeq->q_lock);
622 if (bio_list_empty(&nvmeq->sq_cong))
623 result = nvme_submit_bio_queue(nvmeq, ns, bio);
624 if (unlikely(result)) {
625 if (bio_list_empty(&nvmeq->sq_cong))
626 add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
627 bio_list_add(&nvmeq->sq_cong, bio);
628 }
629
630 spin_unlock_irq(&nvmeq->q_lock);
631 put_nvmeq(nvmeq);
632 }
633
634 static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
635 {
636 u16 head, phase;
637
638 head = nvmeq->cq_head;
639 phase = nvmeq->cq_phase;
640
641 for (;;) {
642 void *ctx;
643 nvme_completion_fn fn;
644 struct nvme_completion cqe = nvmeq->cqes[head];
645 if ((le16_to_cpu(cqe.status) & 1) != phase)
646 break;
647 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
648 if (++head == nvmeq->q_depth) {
649 head = 0;
650 phase = !phase;
651 }
652
653 ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
654 fn(nvmeq->dev, ctx, &cqe);
655 }
656
657 /* If the controller ignores the cq head doorbell and continuously
658 * writes to the queue, it is theoretically possible to wrap around
659 * the queue twice and mistakenly return IRQ_NONE. Linux only
660 * requires that 0.1% of your interrupts are handled, so this isn't
661 * a big problem.
662 */
663 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
664 return IRQ_NONE;
665
666 writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
667 nvmeq->cq_head = head;
668 nvmeq->cq_phase = phase;
669
670 return IRQ_HANDLED;
671 }
672
673 static irqreturn_t nvme_irq(int irq, void *data)
674 {
675 irqreturn_t result;
676 struct nvme_queue *nvmeq = data;
677 spin_lock(&nvmeq->q_lock);
678 result = nvme_process_cq(nvmeq);
679 spin_unlock(&nvmeq->q_lock);
680 return result;
681 }
682
683 static irqreturn_t nvme_irq_check(int irq, void *data)
684 {
685 struct nvme_queue *nvmeq = data;
686 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
687 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
688 return IRQ_NONE;
689 return IRQ_WAKE_THREAD;
690 }
691
692 static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
693 {
694 spin_lock_irq(&nvmeq->q_lock);
695 cancel_cmdid(nvmeq, cmdid, NULL);
696 spin_unlock_irq(&nvmeq->q_lock);
697 }
698
699 struct sync_cmd_info {
700 struct task_struct *task;
701 u32 result;
702 int status;
703 };
704
705 static void sync_completion(struct nvme_dev *dev, void *ctx,
706 struct nvme_completion *cqe)
707 {
708 struct sync_cmd_info *cmdinfo = ctx;
709 cmdinfo->result = le32_to_cpup(&cqe->result);
710 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
711 wake_up_process(cmdinfo->task);
712 }
713
714 /*
715 * Returns 0 on success. If the result is negative, it's a Linux error code;
716 * if the result is positive, it's an NVM Express status code
717 */
718 static int nvme_submit_sync_cmd(struct nvme_queue *nvmeq,
719 struct nvme_command *cmd, u32 *result, unsigned timeout)
720 {
721 int cmdid;
722 struct sync_cmd_info cmdinfo;
723
724 cmdinfo.task = current;
725 cmdinfo.status = -EINTR;
726
727 cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
728 timeout);
729 if (cmdid < 0)
730 return cmdid;
731 cmd->common.command_id = cmdid;
732
733 set_current_state(TASK_KILLABLE);
734 nvme_submit_cmd(nvmeq, cmd);
735 schedule();
736
737 if (cmdinfo.status == -EINTR) {
738 nvme_abort_command(nvmeq, cmdid);
739 return -EINTR;
740 }
741
742 if (result)
743 *result = cmdinfo.result;
744
745 return cmdinfo.status;
746 }
747
748 static int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
749 u32 *result)
750 {
751 return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
752 }
753
754 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
755 {
756 int status;
757 struct nvme_command c;
758
759 memset(&c, 0, sizeof(c));
760 c.delete_queue.opcode = opcode;
761 c.delete_queue.qid = cpu_to_le16(id);
762
763 status = nvme_submit_admin_cmd(dev, &c, NULL);
764 if (status)
765 return -EIO;
766 return 0;
767 }
768
769 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
770 struct nvme_queue *nvmeq)
771 {
772 int status;
773 struct nvme_command c;
774 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
775
776 memset(&c, 0, sizeof(c));
777 c.create_cq.opcode = nvme_admin_create_cq;
778 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
779 c.create_cq.cqid = cpu_to_le16(qid);
780 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
781 c.create_cq.cq_flags = cpu_to_le16(flags);
782 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
783
784 status = nvme_submit_admin_cmd(dev, &c, NULL);
785 if (status)
786 return -EIO;
787 return 0;
788 }
789
790 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
791 struct nvme_queue *nvmeq)
792 {
793 int status;
794 struct nvme_command c;
795 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
796
797 memset(&c, 0, sizeof(c));
798 c.create_sq.opcode = nvme_admin_create_sq;
799 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
800 c.create_sq.sqid = cpu_to_le16(qid);
801 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
802 c.create_sq.sq_flags = cpu_to_le16(flags);
803 c.create_sq.cqid = cpu_to_le16(qid);
804
805 status = nvme_submit_admin_cmd(dev, &c, NULL);
806 if (status)
807 return -EIO;
808 return 0;
809 }
810
811 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
812 {
813 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
814 }
815
816 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
817 {
818 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
819 }
820
821 static int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
822 dma_addr_t dma_addr)
823 {
824 struct nvme_command c;
825
826 memset(&c, 0, sizeof(c));
827 c.identify.opcode = nvme_admin_identify;
828 c.identify.nsid = cpu_to_le32(nsid);
829 c.identify.prp1 = cpu_to_le64(dma_addr);
830 c.identify.cns = cpu_to_le32(cns);
831
832 return nvme_submit_admin_cmd(dev, &c, NULL);
833 }
834
835 static int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
836 dma_addr_t dma_addr, u32 *result)
837 {
838 struct nvme_command c;
839
840 memset(&c, 0, sizeof(c));
841 c.features.opcode = nvme_admin_get_features;
842 c.features.nsid = cpu_to_le32(nsid);
843 c.features.prp1 = cpu_to_le64(dma_addr);
844 c.features.fid = cpu_to_le32(fid);
845
846 return nvme_submit_admin_cmd(dev, &c, result);
847 }
848
849 static int nvme_set_features(struct nvme_dev *dev, unsigned fid,
850 unsigned dword11, dma_addr_t dma_addr, u32 *result)
851 {
852 struct nvme_command c;
853
854 memset(&c, 0, sizeof(c));
855 c.features.opcode = nvme_admin_set_features;
856 c.features.prp1 = cpu_to_le64(dma_addr);
857 c.features.fid = cpu_to_le32(fid);
858 c.features.dword11 = cpu_to_le32(dword11);
859
860 return nvme_submit_admin_cmd(dev, &c, result);
861 }
862
863 /**
864 * nvme_cancel_ios - Cancel outstanding I/Os
865 * @queue: The queue to cancel I/Os on
866 * @timeout: True to only cancel I/Os which have timed out
867 */
868 static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
869 {
870 int depth = nvmeq->q_depth - 1;
871 struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
872 unsigned long now = jiffies;
873 int cmdid;
874
875 for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
876 void *ctx;
877 nvme_completion_fn fn;
878 static struct nvme_completion cqe = {
879 .status = cpu_to_le16(NVME_SC_ABORT_REQ) << 1,
880 };
881
882 if (timeout && !time_after(now, info[cmdid].timeout))
883 continue;
884 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d\n", cmdid);
885 ctx = cancel_cmdid(nvmeq, cmdid, &fn);
886 fn(nvmeq->dev, ctx, &cqe);
887 }
888 }
889
890 static void nvme_free_queue_mem(struct nvme_queue *nvmeq)
891 {
892 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
893 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
894 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
895 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
896 kfree(nvmeq);
897 }
898
899 static void nvme_free_queue(struct nvme_dev *dev, int qid)
900 {
901 struct nvme_queue *nvmeq = dev->queues[qid];
902 int vector = dev->entry[nvmeq->cq_vector].vector;
903
904 spin_lock_irq(&nvmeq->q_lock);
905 nvme_cancel_ios(nvmeq, false);
906 while (bio_list_peek(&nvmeq->sq_cong)) {
907 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
908 bio_endio(bio, -EIO);
909 }
910 spin_unlock_irq(&nvmeq->q_lock);
911
912 irq_set_affinity_hint(vector, NULL);
913 free_irq(vector, nvmeq);
914
915 /* Don't tell the adapter to delete the admin queue */
916 if (qid) {
917 adapter_delete_sq(dev, qid);
918 adapter_delete_cq(dev, qid);
919 }
920
921 nvme_free_queue_mem(nvmeq);
922 }
923
924 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
925 int depth, int vector)
926 {
927 struct device *dmadev = &dev->pci_dev->dev;
928 unsigned extra = DIV_ROUND_UP(depth, 8) + (depth *
929 sizeof(struct nvme_cmd_info));
930 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
931 if (!nvmeq)
932 return NULL;
933
934 nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
935 &nvmeq->cq_dma_addr, GFP_KERNEL);
936 if (!nvmeq->cqes)
937 goto free_nvmeq;
938 memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
939
940 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
941 &nvmeq->sq_dma_addr, GFP_KERNEL);
942 if (!nvmeq->sq_cmds)
943 goto free_cqdma;
944
945 nvmeq->q_dmadev = dmadev;
946 nvmeq->dev = dev;
947 spin_lock_init(&nvmeq->q_lock);
948 nvmeq->cq_head = 0;
949 nvmeq->cq_phase = 1;
950 init_waitqueue_head(&nvmeq->sq_full);
951 init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
952 bio_list_init(&nvmeq->sq_cong);
953 nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
954 nvmeq->q_depth = depth;
955 nvmeq->cq_vector = vector;
956
957 return nvmeq;
958
959 free_cqdma:
960 dma_free_coherent(dmadev, CQ_SIZE(nvmeq->q_depth), (void *)nvmeq->cqes,
961 nvmeq->cq_dma_addr);
962 free_nvmeq:
963 kfree(nvmeq);
964 return NULL;
965 }
966
967 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
968 const char *name)
969 {
970 if (use_threaded_interrupts)
971 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
972 nvme_irq_check, nvme_irq,
973 IRQF_DISABLED | IRQF_SHARED,
974 name, nvmeq);
975 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
976 IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
977 }
978
979 static struct nvme_queue *nvme_create_queue(struct nvme_dev *dev, int qid,
980 int cq_size, int vector)
981 {
982 int result;
983 struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
984
985 if (!nvmeq)
986 return ERR_PTR(-ENOMEM);
987
988 result = adapter_alloc_cq(dev, qid, nvmeq);
989 if (result < 0)
990 goto free_nvmeq;
991
992 result = adapter_alloc_sq(dev, qid, nvmeq);
993 if (result < 0)
994 goto release_cq;
995
996 result = queue_request_irq(dev, nvmeq, "nvme");
997 if (result < 0)
998 goto release_sq;
999
1000 return nvmeq;
1001
1002 release_sq:
1003 adapter_delete_sq(dev, qid);
1004 release_cq:
1005 adapter_delete_cq(dev, qid);
1006 free_nvmeq:
1007 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1008 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1009 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1010 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1011 kfree(nvmeq);
1012 return ERR_PTR(result);
1013 }
1014
1015 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1016 {
1017 int result = 0;
1018 u32 aqa;
1019 u64 cap;
1020 unsigned long timeout;
1021 struct nvme_queue *nvmeq;
1022
1023 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1024
1025 nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
1026 if (!nvmeq)
1027 return -ENOMEM;
1028
1029 aqa = nvmeq->q_depth - 1;
1030 aqa |= aqa << 16;
1031
1032 dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1033 dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1034 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1035 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1036
1037 writel(0, &dev->bar->cc);
1038 writel(aqa, &dev->bar->aqa);
1039 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1040 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1041 writel(dev->ctrl_config, &dev->bar->cc);
1042
1043 cap = readq(&dev->bar->cap);
1044 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1045 dev->db_stride = NVME_CAP_STRIDE(cap);
1046
1047 while (!result && !(readl(&dev->bar->csts) & NVME_CSTS_RDY)) {
1048 msleep(100);
1049 if (fatal_signal_pending(current))
1050 result = -EINTR;
1051 if (time_after(jiffies, timeout)) {
1052 dev_err(&dev->pci_dev->dev,
1053 "Device not ready; aborting initialisation\n");
1054 result = -ENODEV;
1055 }
1056 }
1057
1058 if (result) {
1059 nvme_free_queue_mem(nvmeq);
1060 return result;
1061 }
1062
1063 result = queue_request_irq(dev, nvmeq, "nvme admin");
1064 dev->queues[0] = nvmeq;
1065 return result;
1066 }
1067
1068 static struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1069 unsigned long addr, unsigned length)
1070 {
1071 int i, err, count, nents, offset;
1072 struct scatterlist *sg;
1073 struct page **pages;
1074 struct nvme_iod *iod;
1075
1076 if (addr & 3)
1077 return ERR_PTR(-EINVAL);
1078 if (!length)
1079 return ERR_PTR(-EINVAL);
1080
1081 offset = offset_in_page(addr);
1082 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1083 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1084 if (!pages)
1085 return ERR_PTR(-ENOMEM);
1086
1087 err = get_user_pages_fast(addr, count, 1, pages);
1088 if (err < count) {
1089 count = err;
1090 err = -EFAULT;
1091 goto put_pages;
1092 }
1093
1094 iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1095 sg = iod->sg;
1096 sg_init_table(sg, count);
1097 for (i = 0; i < count; i++) {
1098 sg_set_page(&sg[i], pages[i],
1099 min_t(int, length, PAGE_SIZE - offset), offset);
1100 length -= (PAGE_SIZE - offset);
1101 offset = 0;
1102 }
1103 sg_mark_end(&sg[i - 1]);
1104 iod->nents = count;
1105
1106 err = -ENOMEM;
1107 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1108 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1109 if (!nents)
1110 goto free_iod;
1111
1112 kfree(pages);
1113 return iod;
1114
1115 free_iod:
1116 kfree(iod);
1117 put_pages:
1118 for (i = 0; i < count; i++)
1119 put_page(pages[i]);
1120 kfree(pages);
1121 return ERR_PTR(err);
1122 }
1123
1124 static void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1125 struct nvme_iod *iod)
1126 {
1127 int i;
1128
1129 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1130 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1131
1132 for (i = 0; i < iod->nents; i++)
1133 put_page(sg_page(&iod->sg[i]));
1134 }
1135
1136 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1137 {
1138 struct nvme_dev *dev = ns->dev;
1139 struct nvme_queue *nvmeq;
1140 struct nvme_user_io io;
1141 struct nvme_command c;
1142 unsigned length;
1143 int status;
1144 struct nvme_iod *iod;
1145
1146 if (copy_from_user(&io, uio, sizeof(io)))
1147 return -EFAULT;
1148 length = (io.nblocks + 1) << ns->lba_shift;
1149
1150 switch (io.opcode) {
1151 case nvme_cmd_write:
1152 case nvme_cmd_read:
1153 case nvme_cmd_compare:
1154 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1155 break;
1156 default:
1157 return -EINVAL;
1158 }
1159
1160 if (IS_ERR(iod))
1161 return PTR_ERR(iod);
1162
1163 memset(&c, 0, sizeof(c));
1164 c.rw.opcode = io.opcode;
1165 c.rw.flags = io.flags;
1166 c.rw.nsid = cpu_to_le32(ns->ns_id);
1167 c.rw.slba = cpu_to_le64(io.slba);
1168 c.rw.length = cpu_to_le16(io.nblocks);
1169 c.rw.control = cpu_to_le16(io.control);
1170 c.rw.dsmgmt = cpu_to_le16(io.dsmgmt);
1171 c.rw.reftag = io.reftag;
1172 c.rw.apptag = io.apptag;
1173 c.rw.appmask = io.appmask;
1174 /* XXX: metadata */
1175 length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
1176
1177 nvmeq = get_nvmeq(dev);
1178 /*
1179 * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1180 * disabled. We may be preempted at any point, and be rescheduled
1181 * to a different CPU. That will cause cacheline bouncing, but no
1182 * additional races since q_lock already protects against other CPUs.
1183 */
1184 put_nvmeq(nvmeq);
1185 if (length != (io.nblocks + 1) << ns->lba_shift)
1186 status = -ENOMEM;
1187 else
1188 status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
1189
1190 nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1191 nvme_free_iod(dev, iod);
1192 return status;
1193 }
1194
1195 static int nvme_user_admin_cmd(struct nvme_dev *dev,
1196 struct nvme_admin_cmd __user *ucmd)
1197 {
1198 struct nvme_admin_cmd cmd;
1199 struct nvme_command c;
1200 int status, length;
1201 struct nvme_iod *uninitialized_var(iod);
1202
1203 if (!capable(CAP_SYS_ADMIN))
1204 return -EACCES;
1205 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1206 return -EFAULT;
1207
1208 memset(&c, 0, sizeof(c));
1209 c.common.opcode = cmd.opcode;
1210 c.common.flags = cmd.flags;
1211 c.common.nsid = cpu_to_le32(cmd.nsid);
1212 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1213 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1214 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1215 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1216 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1217 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1218 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1219 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1220
1221 length = cmd.data_len;
1222 if (cmd.data_len) {
1223 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1224 length);
1225 if (IS_ERR(iod))
1226 return PTR_ERR(iod);
1227 length = nvme_setup_prps(dev, &c.common, iod, length,
1228 GFP_KERNEL);
1229 }
1230
1231 if (length != cmd.data_len)
1232 status = -ENOMEM;
1233 else
1234 status = nvme_submit_admin_cmd(dev, &c, &cmd.result);
1235
1236 if (cmd.data_len) {
1237 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1238 nvme_free_iod(dev, iod);
1239 }
1240
1241 if (!status && copy_to_user(&ucmd->result, &cmd.result,
1242 sizeof(cmd.result)))
1243 status = -EFAULT;
1244
1245 return status;
1246 }
1247
1248 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1249 unsigned long arg)
1250 {
1251 struct nvme_ns *ns = bdev->bd_disk->private_data;
1252
1253 switch (cmd) {
1254 case NVME_IOCTL_ID:
1255 return ns->ns_id;
1256 case NVME_IOCTL_ADMIN_CMD:
1257 return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
1258 case NVME_IOCTL_SUBMIT_IO:
1259 return nvme_submit_io(ns, (void __user *)arg);
1260 default:
1261 return -ENOTTY;
1262 }
1263 }
1264
1265 static const struct block_device_operations nvme_fops = {
1266 .owner = THIS_MODULE,
1267 .ioctl = nvme_ioctl,
1268 .compat_ioctl = nvme_ioctl,
1269 };
1270
1271 static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1272 {
1273 while (bio_list_peek(&nvmeq->sq_cong)) {
1274 struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1275 struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1276 if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1277 bio_list_add_head(&nvmeq->sq_cong, bio);
1278 break;
1279 }
1280 if (bio_list_empty(&nvmeq->sq_cong))
1281 remove_wait_queue(&nvmeq->sq_full,
1282 &nvmeq->sq_cong_wait);
1283 }
1284 }
1285
1286 static int nvme_kthread(void *data)
1287 {
1288 struct nvme_dev *dev;
1289
1290 while (!kthread_should_stop()) {
1291 __set_current_state(TASK_RUNNING);
1292 spin_lock(&dev_list_lock);
1293 list_for_each_entry(dev, &dev_list, node) {
1294 int i;
1295 for (i = 0; i < dev->queue_count; i++) {
1296 struct nvme_queue *nvmeq = dev->queues[i];
1297 if (!nvmeq)
1298 continue;
1299 spin_lock_irq(&nvmeq->q_lock);
1300 if (nvme_process_cq(nvmeq))
1301 printk("process_cq did something\n");
1302 nvme_cancel_ios(nvmeq, true);
1303 nvme_resubmit_bios(nvmeq);
1304 spin_unlock_irq(&nvmeq->q_lock);
1305 }
1306 }
1307 spin_unlock(&dev_list_lock);
1308 set_current_state(TASK_INTERRUPTIBLE);
1309 schedule_timeout(HZ);
1310 }
1311 return 0;
1312 }
1313
1314 static DEFINE_IDA(nvme_index_ida);
1315
1316 static int nvme_get_ns_idx(void)
1317 {
1318 int index, error;
1319
1320 do {
1321 if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1322 return -1;
1323
1324 spin_lock(&dev_list_lock);
1325 error = ida_get_new(&nvme_index_ida, &index);
1326 spin_unlock(&dev_list_lock);
1327 } while (error == -EAGAIN);
1328
1329 if (error)
1330 index = -1;
1331 return index;
1332 }
1333
1334 static void nvme_put_ns_idx(int index)
1335 {
1336 spin_lock(&dev_list_lock);
1337 ida_remove(&nvme_index_ida, index);
1338 spin_unlock(&dev_list_lock);
1339 }
1340
1341 static void nvme_config_discard(struct nvme_ns *ns)
1342 {
1343 u32 logical_block_size = queue_logical_block_size(ns->queue);
1344 ns->queue->limits.discard_zeroes_data = 0;
1345 ns->queue->limits.discard_alignment = logical_block_size;
1346 ns->queue->limits.discard_granularity = logical_block_size;
1347 ns->queue->limits.max_discard_sectors = 0xffffffff;
1348 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1349 }
1350
1351 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
1352 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1353 {
1354 struct nvme_ns *ns;
1355 struct gendisk *disk;
1356 int lbaf;
1357
1358 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1359 return NULL;
1360
1361 ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1362 if (!ns)
1363 return NULL;
1364 ns->queue = blk_alloc_queue(GFP_KERNEL);
1365 if (!ns->queue)
1366 goto out_free_ns;
1367 ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1368 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1369 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1370 blk_queue_make_request(ns->queue, nvme_make_request);
1371 ns->dev = dev;
1372 ns->queue->queuedata = ns;
1373
1374 disk = alloc_disk(NVME_MINORS);
1375 if (!disk)
1376 goto out_free_queue;
1377 ns->ns_id = nsid;
1378 ns->disk = disk;
1379 lbaf = id->flbas & 0xf;
1380 ns->lba_shift = id->lbaf[lbaf].ds;
1381 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1382 if (dev->max_hw_sectors)
1383 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
1384
1385 disk->major = nvme_major;
1386 disk->minors = NVME_MINORS;
1387 disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
1388 disk->fops = &nvme_fops;
1389 disk->private_data = ns;
1390 disk->queue = ns->queue;
1391 disk->driverfs_dev = &dev->pci_dev->dev;
1392 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1393 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1394
1395 if (dev->oncs & NVME_CTRL_ONCS_DSM)
1396 nvme_config_discard(ns);
1397
1398 return ns;
1399
1400 out_free_queue:
1401 blk_cleanup_queue(ns->queue);
1402 out_free_ns:
1403 kfree(ns);
1404 return NULL;
1405 }
1406
1407 static void nvme_ns_free(struct nvme_ns *ns)
1408 {
1409 int index = ns->disk->first_minor / NVME_MINORS;
1410 put_disk(ns->disk);
1411 nvme_put_ns_idx(index);
1412 blk_cleanup_queue(ns->queue);
1413 kfree(ns);
1414 }
1415
1416 static int set_queue_count(struct nvme_dev *dev, int count)
1417 {
1418 int status;
1419 u32 result;
1420 u32 q_count = (count - 1) | ((count - 1) << 16);
1421
1422 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1423 &result);
1424 if (status)
1425 return -EIO;
1426 return min(result & 0xffff, result >> 16) + 1;
1427 }
1428
1429 static int nvme_setup_io_queues(struct nvme_dev *dev)
1430 {
1431 int result, cpu, i, nr_io_queues, db_bar_size, q_depth;
1432
1433 nr_io_queues = num_online_cpus();
1434 result = set_queue_count(dev, nr_io_queues);
1435 if (result < 0)
1436 return result;
1437 if (result < nr_io_queues)
1438 nr_io_queues = result;
1439
1440 /* Deregister the admin queue's interrupt */
1441 free_irq(dev->entry[0].vector, dev->queues[0]);
1442
1443 db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1444 if (db_bar_size > 8192) {
1445 iounmap(dev->bar);
1446 dev->bar = ioremap(pci_resource_start(dev->pci_dev, 0),
1447 db_bar_size);
1448 dev->dbs = ((void __iomem *)dev->bar) + 4096;
1449 dev->queues[0]->q_db = dev->dbs;
1450 }
1451
1452 for (i = 0; i < nr_io_queues; i++)
1453 dev->entry[i].entry = i;
1454 for (;;) {
1455 result = pci_enable_msix(dev->pci_dev, dev->entry,
1456 nr_io_queues);
1457 if (result == 0) {
1458 break;
1459 } else if (result > 0) {
1460 nr_io_queues = result;
1461 continue;
1462 } else {
1463 nr_io_queues = 1;
1464 break;
1465 }
1466 }
1467
1468 result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1469 /* XXX: handle failure here */
1470
1471 cpu = cpumask_first(cpu_online_mask);
1472 for (i = 0; i < nr_io_queues; i++) {
1473 irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1474 cpu = cpumask_next(cpu, cpu_online_mask);
1475 }
1476
1477 q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1,
1478 NVME_Q_DEPTH);
1479 for (i = 0; i < nr_io_queues; i++) {
1480 dev->queues[i + 1] = nvme_create_queue(dev, i + 1, q_depth, i);
1481 if (IS_ERR(dev->queues[i + 1]))
1482 return PTR_ERR(dev->queues[i + 1]);
1483 dev->queue_count++;
1484 }
1485
1486 for (; i < num_possible_cpus(); i++) {
1487 int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1488 dev->queues[i + 1] = dev->queues[target + 1];
1489 }
1490
1491 return 0;
1492 }
1493
1494 static void nvme_free_queues(struct nvme_dev *dev)
1495 {
1496 int i;
1497
1498 for (i = dev->queue_count - 1; i >= 0; i--)
1499 nvme_free_queue(dev, i);
1500 }
1501
1502 static int nvme_dev_add(struct nvme_dev *dev)
1503 {
1504 int res, nn, i;
1505 struct nvme_ns *ns, *next;
1506 struct nvme_id_ctrl *ctrl;
1507 struct nvme_id_ns *id_ns;
1508 void *mem;
1509 dma_addr_t dma_addr;
1510
1511 res = nvme_setup_io_queues(dev);
1512 if (res)
1513 return res;
1514
1515 mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1516 GFP_KERNEL);
1517
1518 res = nvme_identify(dev, 0, 1, dma_addr);
1519 if (res) {
1520 res = -EIO;
1521 goto out_free;
1522 }
1523
1524 ctrl = mem;
1525 nn = le32_to_cpup(&ctrl->nn);
1526 dev->oncs = le16_to_cpup(&ctrl->oncs);
1527 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1528 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1529 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1530 if (ctrl->mdts) {
1531 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
1532 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
1533 }
1534
1535 id_ns = mem;
1536 for (i = 1; i <= nn; i++) {
1537 res = nvme_identify(dev, i, 0, dma_addr);
1538 if (res)
1539 continue;
1540
1541 if (id_ns->ncap == 0)
1542 continue;
1543
1544 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
1545 dma_addr + 4096, NULL);
1546 if (res)
1547 memset(mem + 4096, 0, 4096);
1548
1549 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
1550 if (ns)
1551 list_add_tail(&ns->list, &dev->namespaces);
1552 }
1553 list_for_each_entry(ns, &dev->namespaces, list)
1554 add_disk(ns->disk);
1555
1556 goto out;
1557
1558 out_free:
1559 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1560 list_del(&ns->list);
1561 nvme_ns_free(ns);
1562 }
1563
1564 out:
1565 dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
1566 return res;
1567 }
1568
1569 static int nvme_dev_remove(struct nvme_dev *dev)
1570 {
1571 struct nvme_ns *ns, *next;
1572
1573 spin_lock(&dev_list_lock);
1574 list_del(&dev->node);
1575 spin_unlock(&dev_list_lock);
1576
1577 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1578 list_del(&ns->list);
1579 del_gendisk(ns->disk);
1580 nvme_ns_free(ns);
1581 }
1582
1583 nvme_free_queues(dev);
1584
1585 return 0;
1586 }
1587
1588 static int nvme_setup_prp_pools(struct nvme_dev *dev)
1589 {
1590 struct device *dmadev = &dev->pci_dev->dev;
1591 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1592 PAGE_SIZE, PAGE_SIZE, 0);
1593 if (!dev->prp_page_pool)
1594 return -ENOMEM;
1595
1596 /* Optimisation for I/Os between 4k and 128k */
1597 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1598 256, 256, 0);
1599 if (!dev->prp_small_pool) {
1600 dma_pool_destroy(dev->prp_page_pool);
1601 return -ENOMEM;
1602 }
1603 return 0;
1604 }
1605
1606 static void nvme_release_prp_pools(struct nvme_dev *dev)
1607 {
1608 dma_pool_destroy(dev->prp_page_pool);
1609 dma_pool_destroy(dev->prp_small_pool);
1610 }
1611
1612 static DEFINE_IDA(nvme_instance_ida);
1613
1614 static int nvme_set_instance(struct nvme_dev *dev)
1615 {
1616 int instance, error;
1617
1618 do {
1619 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1620 return -ENODEV;
1621
1622 spin_lock(&dev_list_lock);
1623 error = ida_get_new(&nvme_instance_ida, &instance);
1624 spin_unlock(&dev_list_lock);
1625 } while (error == -EAGAIN);
1626
1627 if (error)
1628 return -ENODEV;
1629
1630 dev->instance = instance;
1631 return 0;
1632 }
1633
1634 static void nvme_release_instance(struct nvme_dev *dev)
1635 {
1636 spin_lock(&dev_list_lock);
1637 ida_remove(&nvme_instance_ida, dev->instance);
1638 spin_unlock(&dev_list_lock);
1639 }
1640
1641 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1642 {
1643 int bars, result = -ENOMEM;
1644 struct nvme_dev *dev;
1645
1646 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1647 if (!dev)
1648 return -ENOMEM;
1649 dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1650 GFP_KERNEL);
1651 if (!dev->entry)
1652 goto free;
1653 dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1654 GFP_KERNEL);
1655 if (!dev->queues)
1656 goto free;
1657
1658 if (pci_enable_device_mem(pdev))
1659 goto free;
1660 pci_set_master(pdev);
1661 bars = pci_select_bars(pdev, IORESOURCE_MEM);
1662 if (pci_request_selected_regions(pdev, bars, "nvme"))
1663 goto disable;
1664
1665 INIT_LIST_HEAD(&dev->namespaces);
1666 dev->pci_dev = pdev;
1667 pci_set_drvdata(pdev, dev);
1668 dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
1669 dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1670 result = nvme_set_instance(dev);
1671 if (result)
1672 goto disable;
1673
1674 dev->entry[0].vector = pdev->irq;
1675
1676 result = nvme_setup_prp_pools(dev);
1677 if (result)
1678 goto disable_msix;
1679
1680 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1681 if (!dev->bar) {
1682 result = -ENOMEM;
1683 goto disable_msix;
1684 }
1685
1686 result = nvme_configure_admin_queue(dev);
1687 if (result)
1688 goto unmap;
1689 dev->queue_count++;
1690
1691 spin_lock(&dev_list_lock);
1692 list_add(&dev->node, &dev_list);
1693 spin_unlock(&dev_list_lock);
1694
1695 result = nvme_dev_add(dev);
1696 if (result)
1697 goto delete;
1698
1699 return 0;
1700
1701 delete:
1702 spin_lock(&dev_list_lock);
1703 list_del(&dev->node);
1704 spin_unlock(&dev_list_lock);
1705
1706 nvme_free_queues(dev);
1707 unmap:
1708 iounmap(dev->bar);
1709 disable_msix:
1710 pci_disable_msix(pdev);
1711 nvme_release_instance(dev);
1712 nvme_release_prp_pools(dev);
1713 disable:
1714 pci_disable_device(pdev);
1715 pci_release_regions(pdev);
1716 free:
1717 kfree(dev->queues);
1718 kfree(dev->entry);
1719 kfree(dev);
1720 return result;
1721 }
1722
1723 static void nvme_remove(struct pci_dev *pdev)
1724 {
1725 struct nvme_dev *dev = pci_get_drvdata(pdev);
1726 nvme_dev_remove(dev);
1727 pci_disable_msix(pdev);
1728 iounmap(dev->bar);
1729 nvme_release_instance(dev);
1730 nvme_release_prp_pools(dev);
1731 pci_disable_device(pdev);
1732 pci_release_regions(pdev);
1733 kfree(dev->queues);
1734 kfree(dev->entry);
1735 kfree(dev);
1736 }
1737
1738 /* These functions are yet to be implemented */
1739 #define nvme_error_detected NULL
1740 #define nvme_dump_registers NULL
1741 #define nvme_link_reset NULL
1742 #define nvme_slot_reset NULL
1743 #define nvme_error_resume NULL
1744 #define nvme_suspend NULL
1745 #define nvme_resume NULL
1746
1747 static const struct pci_error_handlers nvme_err_handler = {
1748 .error_detected = nvme_error_detected,
1749 .mmio_enabled = nvme_dump_registers,
1750 .link_reset = nvme_link_reset,
1751 .slot_reset = nvme_slot_reset,
1752 .resume = nvme_error_resume,
1753 };
1754
1755 /* Move to pci_ids.h later */
1756 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
1757
1758 static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
1759 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
1760 { 0, }
1761 };
1762 MODULE_DEVICE_TABLE(pci, nvme_id_table);
1763
1764 static struct pci_driver nvme_driver = {
1765 .name = "nvme",
1766 .id_table = nvme_id_table,
1767 .probe = nvme_probe,
1768 .remove = nvme_remove,
1769 .suspend = nvme_suspend,
1770 .resume = nvme_resume,
1771 .err_handler = &nvme_err_handler,
1772 };
1773
1774 static int __init nvme_init(void)
1775 {
1776 int result;
1777
1778 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
1779 if (IS_ERR(nvme_thread))
1780 return PTR_ERR(nvme_thread);
1781
1782 result = register_blkdev(nvme_major, "nvme");
1783 if (result < 0)
1784 goto kill_kthread;
1785 else if (result > 0)
1786 nvme_major = result;
1787
1788 result = pci_register_driver(&nvme_driver);
1789 if (result)
1790 goto unregister_blkdev;
1791 return 0;
1792
1793 unregister_blkdev:
1794 unregister_blkdev(nvme_major, "nvme");
1795 kill_kthread:
1796 kthread_stop(nvme_thread);
1797 return result;
1798 }
1799
1800 static void __exit nvme_exit(void)
1801 {
1802 pci_unregister_driver(&nvme_driver);
1803 unregister_blkdev(nvme_major, "nvme");
1804 kthread_stop(nvme_thread);
1805 }
1806
1807 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
1808 MODULE_LICENSE("GPL");
1809 MODULE_VERSION("0.8");
1810 module_init(nvme_init);
1811 module_exit(nvme_exit);