xen-blkback: default to X86_32 ABI on x86
[GitHub/LineageOS/android_kernel_motorola_exynos9610.git] / drivers / block / nvme-core.c
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
4 *
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
13 */
14
15 #include <linux/nvme.h>
16 #include <linux/bitops.h>
17 #include <linux/blkdev.h>
18 #include <linux/blk-mq.h>
19 #include <linux/cpu.h>
20 #include <linux/delay.h>
21 #include <linux/errno.h>
22 #include <linux/fs.h>
23 #include <linux/genhd.h>
24 #include <linux/hdreg.h>
25 #include <linux/idr.h>
26 #include <linux/init.h>
27 #include <linux/interrupt.h>
28 #include <linux/io.h>
29 #include <linux/kdev_t.h>
30 #include <linux/kthread.h>
31 #include <linux/kernel.h>
32 #include <linux/mm.h>
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/pci.h>
36 #include <linux/poison.h>
37 #include <linux/ptrace.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/types.h>
41 #include <scsi/sg.h>
42 #include <asm-generic/io-64-nonatomic-lo-hi.h>
43
44 #define NVME_Q_DEPTH 1024
45 #define NVME_AQ_DEPTH 64
46 #define SQ_SIZE(depth) (depth * sizeof(struct nvme_command))
47 #define CQ_SIZE(depth) (depth * sizeof(struct nvme_completion))
48 #define ADMIN_TIMEOUT (admin_timeout * HZ)
49 #define SHUTDOWN_TIMEOUT (shutdown_timeout * HZ)
50 #define IOD_TIMEOUT (retry_time * HZ)
51
52 static unsigned char admin_timeout = 60;
53 module_param(admin_timeout, byte, 0644);
54 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
55
56 unsigned char nvme_io_timeout = 30;
57 module_param_named(io_timeout, nvme_io_timeout, byte, 0644);
58 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
59
60 static unsigned char retry_time = 30;
61 module_param(retry_time, byte, 0644);
62 MODULE_PARM_DESC(retry_time, "time in seconds to retry failed I/O");
63
64 static unsigned char shutdown_timeout = 5;
65 module_param(shutdown_timeout, byte, 0644);
66 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
67
68 static int nvme_major;
69 module_param(nvme_major, int, 0);
70
71 static int use_threaded_interrupts;
72 module_param(use_threaded_interrupts, int, 0);
73
74 static DEFINE_SPINLOCK(dev_list_lock);
75 static LIST_HEAD(dev_list);
76 static struct task_struct *nvme_thread;
77 static struct workqueue_struct *nvme_workq;
78 static wait_queue_head_t nvme_kthread_wait;
79 static struct notifier_block nvme_nb;
80
81 static void nvme_reset_failed_dev(struct work_struct *ws);
82 static int nvme_process_cq(struct nvme_queue *nvmeq);
83
84 struct async_cmd_info {
85 struct kthread_work work;
86 struct kthread_worker *worker;
87 struct request *req;
88 u32 result;
89 int status;
90 void *ctx;
91 };
92
93 /*
94 * An NVM Express queue. Each device has at least two (one for admin
95 * commands and one for I/O commands).
96 */
97 struct nvme_queue {
98 struct llist_node node;
99 struct device *q_dmadev;
100 struct nvme_dev *dev;
101 char irqname[24]; /* nvme4294967295-65535\0 */
102 spinlock_t q_lock;
103 struct nvme_command *sq_cmds;
104 volatile struct nvme_completion *cqes;
105 dma_addr_t sq_dma_addr;
106 dma_addr_t cq_dma_addr;
107 u32 __iomem *q_db;
108 u16 q_depth;
109 u16 cq_vector;
110 u16 sq_head;
111 u16 sq_tail;
112 u16 cq_head;
113 u16 qid;
114 u8 cq_phase;
115 u8 cqe_seen;
116 struct async_cmd_info cmdinfo;
117 struct blk_mq_hw_ctx *hctx;
118 };
119
120 /*
121 * Check we didin't inadvertently grow the command struct
122 */
123 static inline void _nvme_check_size(void)
124 {
125 BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
126 BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
127 BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
128 BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
129 BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
130 BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
131 BUILD_BUG_ON(sizeof(struct nvme_abort_cmd) != 64);
132 BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
133 BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
134 BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
135 BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
136 BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
137 }
138
139 typedef void (*nvme_completion_fn)(struct nvme_queue *, void *,
140 struct nvme_completion *);
141
142 struct nvme_cmd_info {
143 nvme_completion_fn fn;
144 void *ctx;
145 int aborted;
146 struct nvme_queue *nvmeq;
147 struct nvme_iod iod[0];
148 };
149
150 /*
151 * Max size of iod being embedded in the request payload
152 */
153 #define NVME_INT_PAGES 2
154 #define NVME_INT_BYTES(dev) (NVME_INT_PAGES * (dev)->page_size)
155
156 /*
157 * Will slightly overestimate the number of pages needed. This is OK
158 * as it only leads to a small amount of wasted memory for the lifetime of
159 * the I/O.
160 */
161 static int nvme_npages(unsigned size, struct nvme_dev *dev)
162 {
163 unsigned nprps = DIV_ROUND_UP(size + dev->page_size, dev->page_size);
164 return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
165 }
166
167 static unsigned int nvme_cmd_size(struct nvme_dev *dev)
168 {
169 unsigned int ret = sizeof(struct nvme_cmd_info);
170
171 ret += sizeof(struct nvme_iod);
172 ret += sizeof(__le64 *) * nvme_npages(NVME_INT_BYTES(dev), dev);
173 ret += sizeof(struct scatterlist) * NVME_INT_PAGES;
174
175 return ret;
176 }
177
178 static int nvme_admin_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
179 unsigned int hctx_idx)
180 {
181 struct nvme_dev *dev = data;
182 struct nvme_queue *nvmeq = dev->queues[0];
183
184 WARN_ON(nvmeq->hctx);
185 nvmeq->hctx = hctx;
186 hctx->driver_data = nvmeq;
187 return 0;
188 }
189
190 static int nvme_admin_init_request(void *data, struct request *req,
191 unsigned int hctx_idx, unsigned int rq_idx,
192 unsigned int numa_node)
193 {
194 struct nvme_dev *dev = data;
195 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
196 struct nvme_queue *nvmeq = dev->queues[0];
197
198 BUG_ON(!nvmeq);
199 cmd->nvmeq = nvmeq;
200 return 0;
201 }
202
203 static void nvme_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
204 {
205 struct nvme_queue *nvmeq = hctx->driver_data;
206
207 nvmeq->hctx = NULL;
208 }
209
210 static int nvme_init_hctx(struct blk_mq_hw_ctx *hctx, void *data,
211 unsigned int hctx_idx)
212 {
213 struct nvme_dev *dev = data;
214 struct nvme_queue *nvmeq = dev->queues[
215 (hctx_idx % dev->queue_count) + 1];
216
217 if (!nvmeq->hctx)
218 nvmeq->hctx = hctx;
219
220 /* nvmeq queues are shared between namespaces. We assume here that
221 * blk-mq map the tags so they match up with the nvme queue tags. */
222 WARN_ON(nvmeq->hctx->tags != hctx->tags);
223
224 hctx->driver_data = nvmeq;
225 return 0;
226 }
227
228 static int nvme_init_request(void *data, struct request *req,
229 unsigned int hctx_idx, unsigned int rq_idx,
230 unsigned int numa_node)
231 {
232 struct nvme_dev *dev = data;
233 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
234 struct nvme_queue *nvmeq = dev->queues[hctx_idx + 1];
235
236 BUG_ON(!nvmeq);
237 cmd->nvmeq = nvmeq;
238 return 0;
239 }
240
241 static void nvme_set_info(struct nvme_cmd_info *cmd, void *ctx,
242 nvme_completion_fn handler)
243 {
244 cmd->fn = handler;
245 cmd->ctx = ctx;
246 cmd->aborted = 0;
247 }
248
249 static void *iod_get_private(struct nvme_iod *iod)
250 {
251 return (void *) (iod->private & ~0x1UL);
252 }
253
254 /*
255 * If bit 0 is set, the iod is embedded in the request payload.
256 */
257 static bool iod_should_kfree(struct nvme_iod *iod)
258 {
259 return (iod->private & 0x01) == 0;
260 }
261
262 /* Special values must be less than 0x1000 */
263 #define CMD_CTX_BASE ((void *)POISON_POINTER_DELTA)
264 #define CMD_CTX_CANCELLED (0x30C + CMD_CTX_BASE)
265 #define CMD_CTX_COMPLETED (0x310 + CMD_CTX_BASE)
266 #define CMD_CTX_INVALID (0x314 + CMD_CTX_BASE)
267
268 static void special_completion(struct nvme_queue *nvmeq, void *ctx,
269 struct nvme_completion *cqe)
270 {
271 if (ctx == CMD_CTX_CANCELLED)
272 return;
273 if (ctx == CMD_CTX_COMPLETED) {
274 dev_warn(nvmeq->q_dmadev,
275 "completed id %d twice on queue %d\n",
276 cqe->command_id, le16_to_cpup(&cqe->sq_id));
277 return;
278 }
279 if (ctx == CMD_CTX_INVALID) {
280 dev_warn(nvmeq->q_dmadev,
281 "invalid id %d completed on queue %d\n",
282 cqe->command_id, le16_to_cpup(&cqe->sq_id));
283 return;
284 }
285 dev_warn(nvmeq->q_dmadev, "Unknown special completion %p\n", ctx);
286 }
287
288 static void *cancel_cmd_info(struct nvme_cmd_info *cmd, nvme_completion_fn *fn)
289 {
290 void *ctx;
291
292 if (fn)
293 *fn = cmd->fn;
294 ctx = cmd->ctx;
295 cmd->fn = special_completion;
296 cmd->ctx = CMD_CTX_CANCELLED;
297 return ctx;
298 }
299
300 static void async_req_completion(struct nvme_queue *nvmeq, void *ctx,
301 struct nvme_completion *cqe)
302 {
303 struct request *req = ctx;
304
305 u32 result = le32_to_cpup(&cqe->result);
306 u16 status = le16_to_cpup(&cqe->status) >> 1;
307
308 if (status == NVME_SC_SUCCESS || status == NVME_SC_ABORT_REQ)
309 ++nvmeq->dev->event_limit;
310 if (status == NVME_SC_SUCCESS)
311 dev_warn(nvmeq->q_dmadev,
312 "async event result %08x\n", result);
313
314 blk_mq_free_hctx_request(nvmeq->hctx, req);
315 }
316
317 static void abort_completion(struct nvme_queue *nvmeq, void *ctx,
318 struct nvme_completion *cqe)
319 {
320 struct request *req = ctx;
321
322 u16 status = le16_to_cpup(&cqe->status) >> 1;
323 u32 result = le32_to_cpup(&cqe->result);
324
325 blk_mq_free_hctx_request(nvmeq->hctx, req);
326
327 dev_warn(nvmeq->q_dmadev, "Abort status:%x result:%x", status, result);
328 ++nvmeq->dev->abort_limit;
329 }
330
331 static void async_completion(struct nvme_queue *nvmeq, void *ctx,
332 struct nvme_completion *cqe)
333 {
334 struct async_cmd_info *cmdinfo = ctx;
335 cmdinfo->result = le32_to_cpup(&cqe->result);
336 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
337 queue_kthread_work(cmdinfo->worker, &cmdinfo->work);
338 blk_mq_free_hctx_request(nvmeq->hctx, cmdinfo->req);
339 }
340
341 static inline struct nvme_cmd_info *get_cmd_from_tag(struct nvme_queue *nvmeq,
342 unsigned int tag)
343 {
344 struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
345 struct request *req = blk_mq_tag_to_rq(hctx->tags, tag);
346
347 return blk_mq_rq_to_pdu(req);
348 }
349
350 /*
351 * Called with local interrupts disabled and the q_lock held. May not sleep.
352 */
353 static void *nvme_finish_cmd(struct nvme_queue *nvmeq, int tag,
354 nvme_completion_fn *fn)
355 {
356 struct nvme_cmd_info *cmd = get_cmd_from_tag(nvmeq, tag);
357 void *ctx;
358 if (tag >= nvmeq->q_depth) {
359 *fn = special_completion;
360 return CMD_CTX_INVALID;
361 }
362 if (fn)
363 *fn = cmd->fn;
364 ctx = cmd->ctx;
365 cmd->fn = special_completion;
366 cmd->ctx = CMD_CTX_COMPLETED;
367 return ctx;
368 }
369
370 /**
371 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
372 * @nvmeq: The queue to use
373 * @cmd: The command to send
374 *
375 * Safe to use from interrupt context
376 */
377 static int __nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
378 {
379 u16 tail = nvmeq->sq_tail;
380
381 memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
382 if (++tail == nvmeq->q_depth)
383 tail = 0;
384 writel(tail, nvmeq->q_db);
385 nvmeq->sq_tail = tail;
386
387 return 0;
388 }
389
390 static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
391 {
392 unsigned long flags;
393 int ret;
394 spin_lock_irqsave(&nvmeq->q_lock, flags);
395 ret = __nvme_submit_cmd(nvmeq, cmd);
396 spin_unlock_irqrestore(&nvmeq->q_lock, flags);
397 return ret;
398 }
399
400 static __le64 **iod_list(struct nvme_iod *iod)
401 {
402 return ((void *)iod) + iod->offset;
403 }
404
405 static inline void iod_init(struct nvme_iod *iod, unsigned nbytes,
406 unsigned nseg, unsigned long private)
407 {
408 iod->private = private;
409 iod->offset = offsetof(struct nvme_iod, sg[nseg]);
410 iod->npages = -1;
411 iod->length = nbytes;
412 iod->nents = 0;
413 }
414
415 static struct nvme_iod *
416 __nvme_alloc_iod(unsigned nseg, unsigned bytes, struct nvme_dev *dev,
417 unsigned long priv, gfp_t gfp)
418 {
419 struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
420 sizeof(__le64 *) * nvme_npages(bytes, dev) +
421 sizeof(struct scatterlist) * nseg, gfp);
422
423 if (iod)
424 iod_init(iod, bytes, nseg, priv);
425
426 return iod;
427 }
428
429 static struct nvme_iod *nvme_alloc_iod(struct request *rq, struct nvme_dev *dev,
430 gfp_t gfp)
431 {
432 unsigned size = !(rq->cmd_flags & REQ_DISCARD) ? blk_rq_bytes(rq) :
433 sizeof(struct nvme_dsm_range);
434 unsigned long mask = 0;
435 struct nvme_iod *iod;
436
437 if (rq->nr_phys_segments <= NVME_INT_PAGES &&
438 size <= NVME_INT_BYTES(dev)) {
439 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(rq);
440
441 iod = cmd->iod;
442 mask = 0x01;
443 iod_init(iod, size, rq->nr_phys_segments,
444 (unsigned long) rq | 0x01);
445 return iod;
446 }
447
448 return __nvme_alloc_iod(rq->nr_phys_segments, size, dev,
449 (unsigned long) rq, gfp);
450 }
451
452 void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
453 {
454 const int last_prp = dev->page_size / 8 - 1;
455 int i;
456 __le64 **list = iod_list(iod);
457 dma_addr_t prp_dma = iod->first_dma;
458
459 if (iod->npages == 0)
460 dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
461 for (i = 0; i < iod->npages; i++) {
462 __le64 *prp_list = list[i];
463 dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
464 dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
465 prp_dma = next_prp_dma;
466 }
467
468 if (iod_should_kfree(iod))
469 kfree(iod);
470 }
471
472 static int nvme_error_status(u16 status)
473 {
474 switch (status & 0x7ff) {
475 case NVME_SC_SUCCESS:
476 return 0;
477 case NVME_SC_CAP_EXCEEDED:
478 return -ENOSPC;
479 default:
480 return -EIO;
481 }
482 }
483
484 static void req_completion(struct nvme_queue *nvmeq, void *ctx,
485 struct nvme_completion *cqe)
486 {
487 struct nvme_iod *iod = ctx;
488 struct request *req = iod_get_private(iod);
489 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
490
491 u16 status = le16_to_cpup(&cqe->status) >> 1;
492
493 if (unlikely(status)) {
494 if (!(status & NVME_SC_DNR || blk_noretry_request(req))
495 && (jiffies - req->start_time) < req->timeout) {
496 blk_mq_requeue_request(req);
497 blk_mq_kick_requeue_list(req->q);
498 return;
499 }
500 req->errors = nvme_error_status(status);
501 } else
502 req->errors = 0;
503
504 if (cmd_rq->aborted)
505 dev_warn(&nvmeq->dev->pci_dev->dev,
506 "completing aborted command with status:%04x\n",
507 status);
508
509 if (iod->nents)
510 dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg, iod->nents,
511 rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
512 nvme_free_iod(nvmeq->dev, iod);
513
514 blk_mq_complete_request(req);
515 }
516
517 /* length is in bytes. gfp flags indicates whether we may sleep. */
518 int nvme_setup_prps(struct nvme_dev *dev, struct nvme_iod *iod, int total_len,
519 gfp_t gfp)
520 {
521 struct dma_pool *pool;
522 int length = total_len;
523 struct scatterlist *sg = iod->sg;
524 int dma_len = sg_dma_len(sg);
525 u64 dma_addr = sg_dma_address(sg);
526 int offset = offset_in_page(dma_addr);
527 __le64 *prp_list;
528 __le64 **list = iod_list(iod);
529 dma_addr_t prp_dma;
530 int nprps, i;
531 u32 page_size = dev->page_size;
532
533 length -= (page_size - offset);
534 if (length <= 0)
535 return total_len;
536
537 dma_len -= (page_size - offset);
538 if (dma_len) {
539 dma_addr += (page_size - offset);
540 } else {
541 sg = sg_next(sg);
542 dma_addr = sg_dma_address(sg);
543 dma_len = sg_dma_len(sg);
544 }
545
546 if (length <= page_size) {
547 iod->first_dma = dma_addr;
548 return total_len;
549 }
550
551 nprps = DIV_ROUND_UP(length, page_size);
552 if (nprps <= (256 / 8)) {
553 pool = dev->prp_small_pool;
554 iod->npages = 0;
555 } else {
556 pool = dev->prp_page_pool;
557 iod->npages = 1;
558 }
559
560 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
561 if (!prp_list) {
562 iod->first_dma = dma_addr;
563 iod->npages = -1;
564 return (total_len - length) + page_size;
565 }
566 list[0] = prp_list;
567 iod->first_dma = prp_dma;
568 i = 0;
569 for (;;) {
570 if (i == page_size >> 3) {
571 __le64 *old_prp_list = prp_list;
572 prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
573 if (!prp_list)
574 return total_len - length;
575 list[iod->npages++] = prp_list;
576 prp_list[0] = old_prp_list[i - 1];
577 old_prp_list[i - 1] = cpu_to_le64(prp_dma);
578 i = 1;
579 }
580 prp_list[i++] = cpu_to_le64(dma_addr);
581 dma_len -= page_size;
582 dma_addr += page_size;
583 length -= page_size;
584 if (length <= 0)
585 break;
586 if (dma_len > 0)
587 continue;
588 BUG_ON(dma_len < 0);
589 sg = sg_next(sg);
590 dma_addr = sg_dma_address(sg);
591 dma_len = sg_dma_len(sg);
592 }
593
594 return total_len;
595 }
596
597 /*
598 * We reuse the small pool to allocate the 16-byte range here as it is not
599 * worth having a special pool for these or additional cases to handle freeing
600 * the iod.
601 */
602 static void nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
603 struct request *req, struct nvme_iod *iod)
604 {
605 struct nvme_dsm_range *range =
606 (struct nvme_dsm_range *)iod_list(iod)[0];
607 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
608
609 range->cattr = cpu_to_le32(0);
610 range->nlb = cpu_to_le32(blk_rq_bytes(req) >> ns->lba_shift);
611 range->slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
612
613 memset(cmnd, 0, sizeof(*cmnd));
614 cmnd->dsm.opcode = nvme_cmd_dsm;
615 cmnd->dsm.command_id = req->tag;
616 cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
617 cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
618 cmnd->dsm.nr = 0;
619 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
620
621 if (++nvmeq->sq_tail == nvmeq->q_depth)
622 nvmeq->sq_tail = 0;
623 writel(nvmeq->sq_tail, nvmeq->q_db);
624 }
625
626 static void nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
627 int cmdid)
628 {
629 struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
630
631 memset(cmnd, 0, sizeof(*cmnd));
632 cmnd->common.opcode = nvme_cmd_flush;
633 cmnd->common.command_id = cmdid;
634 cmnd->common.nsid = cpu_to_le32(ns->ns_id);
635
636 if (++nvmeq->sq_tail == nvmeq->q_depth)
637 nvmeq->sq_tail = 0;
638 writel(nvmeq->sq_tail, nvmeq->q_db);
639 }
640
641 static int nvme_submit_iod(struct nvme_queue *nvmeq, struct nvme_iod *iod,
642 struct nvme_ns *ns)
643 {
644 struct request *req = iod_get_private(iod);
645 struct nvme_command *cmnd;
646 u16 control = 0;
647 u32 dsmgmt = 0;
648
649 if (req->cmd_flags & REQ_FUA)
650 control |= NVME_RW_FUA;
651 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
652 control |= NVME_RW_LR;
653
654 if (req->cmd_flags & REQ_RAHEAD)
655 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
656
657 cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
658 memset(cmnd, 0, sizeof(*cmnd));
659
660 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
661 cmnd->rw.command_id = req->tag;
662 cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
663 cmnd->rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
664 cmnd->rw.prp2 = cpu_to_le64(iod->first_dma);
665 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
666 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
667 cmnd->rw.control = cpu_to_le16(control);
668 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
669
670 if (++nvmeq->sq_tail == nvmeq->q_depth)
671 nvmeq->sq_tail = 0;
672 writel(nvmeq->sq_tail, nvmeq->q_db);
673
674 return 0;
675 }
676
677 static int nvme_queue_rq(struct blk_mq_hw_ctx *hctx,
678 const struct blk_mq_queue_data *bd)
679 {
680 struct nvme_ns *ns = hctx->queue->queuedata;
681 struct nvme_queue *nvmeq = hctx->driver_data;
682 struct request *req = bd->rq;
683 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
684 struct nvme_iod *iod;
685 enum dma_data_direction dma_dir;
686
687 iod = nvme_alloc_iod(req, ns->dev, GFP_ATOMIC);
688 if (!iod)
689 return BLK_MQ_RQ_QUEUE_BUSY;
690
691 if (req->cmd_flags & REQ_DISCARD) {
692 void *range;
693 /*
694 * We reuse the small pool to allocate the 16-byte range here
695 * as it is not worth having a special pool for these or
696 * additional cases to handle freeing the iod.
697 */
698 range = dma_pool_alloc(nvmeq->dev->prp_small_pool,
699 GFP_ATOMIC,
700 &iod->first_dma);
701 if (!range)
702 goto retry_cmd;
703 iod_list(iod)[0] = (__le64 *)range;
704 iod->npages = 0;
705 } else if (req->nr_phys_segments) {
706 dma_dir = rq_data_dir(req) ? DMA_TO_DEVICE : DMA_FROM_DEVICE;
707
708 sg_init_table(iod->sg, req->nr_phys_segments);
709 iod->nents = blk_rq_map_sg(req->q, req, iod->sg);
710 if (!iod->nents)
711 goto error_cmd;
712
713 if (!dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir))
714 goto retry_cmd;
715
716 if (blk_rq_bytes(req) !=
717 nvme_setup_prps(nvmeq->dev, iod, blk_rq_bytes(req), GFP_ATOMIC)) {
718 dma_unmap_sg(&nvmeq->dev->pci_dev->dev, iod->sg,
719 iod->nents, dma_dir);
720 goto retry_cmd;
721 }
722 }
723
724 blk_mq_start_request(req);
725
726 nvme_set_info(cmd, iod, req_completion);
727 spin_lock_irq(&nvmeq->q_lock);
728 if (req->cmd_flags & REQ_DISCARD)
729 nvme_submit_discard(nvmeq, ns, req, iod);
730 else if (req->cmd_flags & REQ_FLUSH)
731 nvme_submit_flush(nvmeq, ns, req->tag);
732 else
733 nvme_submit_iod(nvmeq, iod, ns);
734
735 nvme_process_cq(nvmeq);
736 spin_unlock_irq(&nvmeq->q_lock);
737 return BLK_MQ_RQ_QUEUE_OK;
738
739 error_cmd:
740 nvme_free_iod(nvmeq->dev, iod);
741 return BLK_MQ_RQ_QUEUE_ERROR;
742 retry_cmd:
743 nvme_free_iod(nvmeq->dev, iod);
744 return BLK_MQ_RQ_QUEUE_BUSY;
745 }
746
747 static int nvme_process_cq(struct nvme_queue *nvmeq)
748 {
749 u16 head, phase;
750
751 head = nvmeq->cq_head;
752 phase = nvmeq->cq_phase;
753
754 for (;;) {
755 void *ctx;
756 nvme_completion_fn fn;
757 struct nvme_completion cqe = nvmeq->cqes[head];
758 if ((le16_to_cpu(cqe.status) & 1) != phase)
759 break;
760 nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
761 if (++head == nvmeq->q_depth) {
762 head = 0;
763 phase = !phase;
764 }
765 ctx = nvme_finish_cmd(nvmeq, cqe.command_id, &fn);
766 fn(nvmeq, ctx, &cqe);
767 }
768
769 /* If the controller ignores the cq head doorbell and continuously
770 * writes to the queue, it is theoretically possible to wrap around
771 * the queue twice and mistakenly return IRQ_NONE. Linux only
772 * requires that 0.1% of your interrupts are handled, so this isn't
773 * a big problem.
774 */
775 if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
776 return 0;
777
778 writel(head, nvmeq->q_db + nvmeq->dev->db_stride);
779 nvmeq->cq_head = head;
780 nvmeq->cq_phase = phase;
781
782 nvmeq->cqe_seen = 1;
783 return 1;
784 }
785
786 /* Admin queue isn't initialized as a request queue. If at some point this
787 * happens anyway, make sure to notify the user */
788 static int nvme_admin_queue_rq(struct blk_mq_hw_ctx *hctx,
789 const struct blk_mq_queue_data *bd)
790 {
791 WARN_ON_ONCE(1);
792 return BLK_MQ_RQ_QUEUE_ERROR;
793 }
794
795 static irqreturn_t nvme_irq(int irq, void *data)
796 {
797 irqreturn_t result;
798 struct nvme_queue *nvmeq = data;
799 spin_lock(&nvmeq->q_lock);
800 nvme_process_cq(nvmeq);
801 result = nvmeq->cqe_seen ? IRQ_HANDLED : IRQ_NONE;
802 nvmeq->cqe_seen = 0;
803 spin_unlock(&nvmeq->q_lock);
804 return result;
805 }
806
807 static irqreturn_t nvme_irq_check(int irq, void *data)
808 {
809 struct nvme_queue *nvmeq = data;
810 struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
811 if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
812 return IRQ_NONE;
813 return IRQ_WAKE_THREAD;
814 }
815
816 static void nvme_abort_cmd_info(struct nvme_queue *nvmeq, struct nvme_cmd_info *
817 cmd_info)
818 {
819 spin_lock_irq(&nvmeq->q_lock);
820 cancel_cmd_info(cmd_info, NULL);
821 spin_unlock_irq(&nvmeq->q_lock);
822 }
823
824 struct sync_cmd_info {
825 struct task_struct *task;
826 u32 result;
827 int status;
828 };
829
830 static void sync_completion(struct nvme_queue *nvmeq, void *ctx,
831 struct nvme_completion *cqe)
832 {
833 struct sync_cmd_info *cmdinfo = ctx;
834 cmdinfo->result = le32_to_cpup(&cqe->result);
835 cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
836 wake_up_process(cmdinfo->task);
837 }
838
839 /*
840 * Returns 0 on success. If the result is negative, it's a Linux error code;
841 * if the result is positive, it's an NVM Express status code
842 */
843 static int nvme_submit_sync_cmd(struct request *req, struct nvme_command *cmd,
844 u32 *result, unsigned timeout)
845 {
846 int ret;
847 struct sync_cmd_info cmdinfo;
848 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
849 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
850
851 cmdinfo.task = current;
852 cmdinfo.status = -EINTR;
853
854 cmd->common.command_id = req->tag;
855
856 nvme_set_info(cmd_rq, &cmdinfo, sync_completion);
857
858 set_current_state(TASK_KILLABLE);
859 ret = nvme_submit_cmd(nvmeq, cmd);
860 if (ret) {
861 nvme_finish_cmd(nvmeq, req->tag, NULL);
862 set_current_state(TASK_RUNNING);
863 }
864 ret = schedule_timeout(timeout);
865
866 /*
867 * Ensure that sync_completion has either run, or that it will
868 * never run.
869 */
870 nvme_abort_cmd_info(nvmeq, blk_mq_rq_to_pdu(req));
871
872 /*
873 * We never got the completion
874 */
875 if (cmdinfo.status == -EINTR)
876 return -EINTR;
877
878 if (result)
879 *result = cmdinfo.result;
880
881 return cmdinfo.status;
882 }
883
884 static int nvme_submit_async_admin_req(struct nvme_dev *dev)
885 {
886 struct nvme_queue *nvmeq = dev->queues[0];
887 struct nvme_command c;
888 struct nvme_cmd_info *cmd_info;
889 struct request *req;
890
891 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC, false);
892 if (IS_ERR(req))
893 return PTR_ERR(req);
894
895 cmd_info = blk_mq_rq_to_pdu(req);
896 nvme_set_info(cmd_info, req, async_req_completion);
897
898 memset(&c, 0, sizeof(c));
899 c.common.opcode = nvme_admin_async_event;
900 c.common.command_id = req->tag;
901
902 return __nvme_submit_cmd(nvmeq, &c);
903 }
904
905 static int nvme_submit_admin_async_cmd(struct nvme_dev *dev,
906 struct nvme_command *cmd,
907 struct async_cmd_info *cmdinfo, unsigned timeout)
908 {
909 struct nvme_queue *nvmeq = dev->queues[0];
910 struct request *req;
911 struct nvme_cmd_info *cmd_rq;
912
913 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
914 if (IS_ERR(req))
915 return PTR_ERR(req);
916
917 req->timeout = timeout;
918 cmd_rq = blk_mq_rq_to_pdu(req);
919 cmdinfo->req = req;
920 nvme_set_info(cmd_rq, cmdinfo, async_completion);
921 cmdinfo->status = -EINTR;
922
923 cmd->common.command_id = req->tag;
924
925 return nvme_submit_cmd(nvmeq, cmd);
926 }
927
928 static int __nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
929 u32 *result, unsigned timeout)
930 {
931 int res;
932 struct request *req;
933
934 req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_KERNEL, false);
935 if (IS_ERR(req))
936 return PTR_ERR(req);
937 res = nvme_submit_sync_cmd(req, cmd, result, timeout);
938 blk_mq_free_request(req);
939 return res;
940 }
941
942 int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
943 u32 *result)
944 {
945 return __nvme_submit_admin_cmd(dev, cmd, result, ADMIN_TIMEOUT);
946 }
947
948 int nvme_submit_io_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
949 struct nvme_command *cmd, u32 *result)
950 {
951 int res;
952 struct request *req;
953
954 req = blk_mq_alloc_request(ns->queue, WRITE, (GFP_KERNEL|__GFP_WAIT),
955 false);
956 if (IS_ERR(req))
957 return PTR_ERR(req);
958 res = nvme_submit_sync_cmd(req, cmd, result, NVME_IO_TIMEOUT);
959 blk_mq_free_request(req);
960 return res;
961 }
962
963 static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
964 {
965 struct nvme_command c;
966
967 memset(&c, 0, sizeof(c));
968 c.delete_queue.opcode = opcode;
969 c.delete_queue.qid = cpu_to_le16(id);
970
971 return nvme_submit_admin_cmd(dev, &c, NULL);
972 }
973
974 static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
975 struct nvme_queue *nvmeq)
976 {
977 struct nvme_command c;
978 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
979
980 memset(&c, 0, sizeof(c));
981 c.create_cq.opcode = nvme_admin_create_cq;
982 c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
983 c.create_cq.cqid = cpu_to_le16(qid);
984 c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
985 c.create_cq.cq_flags = cpu_to_le16(flags);
986 c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
987
988 return nvme_submit_admin_cmd(dev, &c, NULL);
989 }
990
991 static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
992 struct nvme_queue *nvmeq)
993 {
994 struct nvme_command c;
995 int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
996
997 memset(&c, 0, sizeof(c));
998 c.create_sq.opcode = nvme_admin_create_sq;
999 c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
1000 c.create_sq.sqid = cpu_to_le16(qid);
1001 c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
1002 c.create_sq.sq_flags = cpu_to_le16(flags);
1003 c.create_sq.cqid = cpu_to_le16(qid);
1004
1005 return nvme_submit_admin_cmd(dev, &c, NULL);
1006 }
1007
1008 static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
1009 {
1010 return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
1011 }
1012
1013 static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
1014 {
1015 return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
1016 }
1017
1018 int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
1019 dma_addr_t dma_addr)
1020 {
1021 struct nvme_command c;
1022
1023 memset(&c, 0, sizeof(c));
1024 c.identify.opcode = nvme_admin_identify;
1025 c.identify.nsid = cpu_to_le32(nsid);
1026 c.identify.prp1 = cpu_to_le64(dma_addr);
1027 c.identify.cns = cpu_to_le32(cns);
1028
1029 return nvme_submit_admin_cmd(dev, &c, NULL);
1030 }
1031
1032 int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
1033 dma_addr_t dma_addr, u32 *result)
1034 {
1035 struct nvme_command c;
1036
1037 memset(&c, 0, sizeof(c));
1038 c.features.opcode = nvme_admin_get_features;
1039 c.features.nsid = cpu_to_le32(nsid);
1040 c.features.prp1 = cpu_to_le64(dma_addr);
1041 c.features.fid = cpu_to_le32(fid);
1042
1043 return nvme_submit_admin_cmd(dev, &c, result);
1044 }
1045
1046 int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
1047 dma_addr_t dma_addr, u32 *result)
1048 {
1049 struct nvme_command c;
1050
1051 memset(&c, 0, sizeof(c));
1052 c.features.opcode = nvme_admin_set_features;
1053 c.features.prp1 = cpu_to_le64(dma_addr);
1054 c.features.fid = cpu_to_le32(fid);
1055 c.features.dword11 = cpu_to_le32(dword11);
1056
1057 return nvme_submit_admin_cmd(dev, &c, result);
1058 }
1059
1060 /**
1061 * nvme_abort_req - Attempt aborting a request
1062 *
1063 * Schedule controller reset if the command was already aborted once before and
1064 * still hasn't been returned to the driver, or if this is the admin queue.
1065 */
1066 static void nvme_abort_req(struct request *req)
1067 {
1068 struct nvme_cmd_info *cmd_rq = blk_mq_rq_to_pdu(req);
1069 struct nvme_queue *nvmeq = cmd_rq->nvmeq;
1070 struct nvme_dev *dev = nvmeq->dev;
1071 struct request *abort_req;
1072 struct nvme_cmd_info *abort_cmd;
1073 struct nvme_command cmd;
1074
1075 if (!nvmeq->qid || cmd_rq->aborted) {
1076 if (work_busy(&dev->reset_work))
1077 return;
1078 list_del_init(&dev->node);
1079 dev_warn(&dev->pci_dev->dev,
1080 "I/O %d QID %d timeout, reset controller\n",
1081 req->tag, nvmeq->qid);
1082 dev->reset_workfn = nvme_reset_failed_dev;
1083 queue_work(nvme_workq, &dev->reset_work);
1084 return;
1085 }
1086
1087 if (!dev->abort_limit)
1088 return;
1089
1090 abort_req = blk_mq_alloc_request(dev->admin_q, WRITE, GFP_ATOMIC,
1091 false);
1092 if (IS_ERR(abort_req))
1093 return;
1094
1095 abort_cmd = blk_mq_rq_to_pdu(abort_req);
1096 nvme_set_info(abort_cmd, abort_req, abort_completion);
1097
1098 memset(&cmd, 0, sizeof(cmd));
1099 cmd.abort.opcode = nvme_admin_abort_cmd;
1100 cmd.abort.cid = req->tag;
1101 cmd.abort.sqid = cpu_to_le16(nvmeq->qid);
1102 cmd.abort.command_id = abort_req->tag;
1103
1104 --dev->abort_limit;
1105 cmd_rq->aborted = 1;
1106
1107 dev_warn(nvmeq->q_dmadev, "Aborting I/O %d QID %d\n", req->tag,
1108 nvmeq->qid);
1109 if (nvme_submit_cmd(dev->queues[0], &cmd) < 0) {
1110 dev_warn(nvmeq->q_dmadev,
1111 "Could not abort I/O %d QID %d",
1112 req->tag, nvmeq->qid);
1113 blk_mq_free_request(abort_req);
1114 }
1115 }
1116
1117 static void nvme_cancel_queue_ios(struct blk_mq_hw_ctx *hctx,
1118 struct request *req, void *data, bool reserved)
1119 {
1120 struct nvme_queue *nvmeq = data;
1121 void *ctx;
1122 nvme_completion_fn fn;
1123 struct nvme_cmd_info *cmd;
1124 static struct nvme_completion cqe = {
1125 .status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
1126 };
1127
1128 cmd = blk_mq_rq_to_pdu(req);
1129
1130 if (cmd->ctx == CMD_CTX_CANCELLED)
1131 return;
1132
1133 dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d QID %d\n",
1134 req->tag, nvmeq->qid);
1135 ctx = cancel_cmd_info(cmd, &fn);
1136 fn(nvmeq, ctx, &cqe);
1137 }
1138
1139 static enum blk_eh_timer_return nvme_timeout(struct request *req, bool reserved)
1140 {
1141 struct nvme_cmd_info *cmd = blk_mq_rq_to_pdu(req);
1142 struct nvme_queue *nvmeq = cmd->nvmeq;
1143
1144 dev_warn(nvmeq->q_dmadev, "Timeout I/O %d QID %d\n", req->tag,
1145 nvmeq->qid);
1146 if (nvmeq->dev->initialized)
1147 nvme_abort_req(req);
1148
1149 /*
1150 * The aborted req will be completed on receiving the abort req.
1151 * We enable the timer again. If hit twice, it'll cause a device reset,
1152 * as the device then is in a faulty state.
1153 */
1154 return BLK_EH_RESET_TIMER;
1155 }
1156
1157 static void nvme_free_queue(struct nvme_queue *nvmeq)
1158 {
1159 dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1160 (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1161 dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1162 nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1163 kfree(nvmeq);
1164 }
1165
1166 static void nvme_free_queues(struct nvme_dev *dev, int lowest)
1167 {
1168 int i;
1169
1170 for (i = dev->queue_count - 1; i >= lowest; i--) {
1171 struct nvme_queue *nvmeq = dev->queues[i];
1172 dev->queue_count--;
1173 dev->queues[i] = NULL;
1174 nvme_free_queue(nvmeq);
1175 }
1176 }
1177
1178 /**
1179 * nvme_suspend_queue - put queue into suspended state
1180 * @nvmeq - queue to suspend
1181 */
1182 static int nvme_suspend_queue(struct nvme_queue *nvmeq)
1183 {
1184 int vector;
1185
1186 spin_lock_irq(&nvmeq->q_lock);
1187 if (nvmeq->cq_vector == -1) {
1188 spin_unlock_irq(&nvmeq->q_lock);
1189 return 1;
1190 }
1191 vector = nvmeq->dev->entry[nvmeq->cq_vector].vector;
1192 nvmeq->dev->online_queues--;
1193 nvmeq->cq_vector = -1;
1194 spin_unlock_irq(&nvmeq->q_lock);
1195
1196 irq_set_affinity_hint(vector, NULL);
1197 free_irq(vector, nvmeq);
1198
1199 return 0;
1200 }
1201
1202 static void nvme_clear_queue(struct nvme_queue *nvmeq)
1203 {
1204 struct blk_mq_hw_ctx *hctx = nvmeq->hctx;
1205
1206 spin_lock_irq(&nvmeq->q_lock);
1207 nvme_process_cq(nvmeq);
1208 if (hctx && hctx->tags)
1209 blk_mq_tag_busy_iter(hctx, nvme_cancel_queue_ios, nvmeq);
1210 spin_unlock_irq(&nvmeq->q_lock);
1211 }
1212
1213 static void nvme_disable_queue(struct nvme_dev *dev, int qid)
1214 {
1215 struct nvme_queue *nvmeq = dev->queues[qid];
1216
1217 if (!nvmeq)
1218 return;
1219 if (nvme_suspend_queue(nvmeq))
1220 return;
1221
1222 /* Don't tell the adapter to delete the admin queue.
1223 * Don't tell a removed adapter to delete IO queues. */
1224 if (qid && readl(&dev->bar->csts) != -1) {
1225 adapter_delete_sq(dev, qid);
1226 adapter_delete_cq(dev, qid);
1227 }
1228 nvme_clear_queue(nvmeq);
1229 }
1230
1231 static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1232 int depth)
1233 {
1234 struct device *dmadev = &dev->pci_dev->dev;
1235 struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq), GFP_KERNEL);
1236 if (!nvmeq)
1237 return NULL;
1238
1239 nvmeq->cqes = dma_zalloc_coherent(dmadev, CQ_SIZE(depth),
1240 &nvmeq->cq_dma_addr, GFP_KERNEL);
1241 if (!nvmeq->cqes)
1242 goto free_nvmeq;
1243
1244 nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1245 &nvmeq->sq_dma_addr, GFP_KERNEL);
1246 if (!nvmeq->sq_cmds)
1247 goto free_cqdma;
1248
1249 nvmeq->q_dmadev = dmadev;
1250 nvmeq->dev = dev;
1251 snprintf(nvmeq->irqname, sizeof(nvmeq->irqname), "nvme%dq%d",
1252 dev->instance, qid);
1253 spin_lock_init(&nvmeq->q_lock);
1254 nvmeq->cq_head = 0;
1255 nvmeq->cq_phase = 1;
1256 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1257 nvmeq->q_depth = depth;
1258 nvmeq->qid = qid;
1259 dev->queue_count++;
1260 dev->queues[qid] = nvmeq;
1261
1262 return nvmeq;
1263
1264 free_cqdma:
1265 dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1266 nvmeq->cq_dma_addr);
1267 free_nvmeq:
1268 kfree(nvmeq);
1269 return NULL;
1270 }
1271
1272 static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1273 const char *name)
1274 {
1275 if (use_threaded_interrupts)
1276 return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1277 nvme_irq_check, nvme_irq, IRQF_SHARED,
1278 name, nvmeq);
1279 return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1280 IRQF_SHARED, name, nvmeq);
1281 }
1282
1283 static void nvme_init_queue(struct nvme_queue *nvmeq, u16 qid)
1284 {
1285 struct nvme_dev *dev = nvmeq->dev;
1286
1287 spin_lock_irq(&nvmeq->q_lock);
1288 nvmeq->sq_tail = 0;
1289 nvmeq->cq_head = 0;
1290 nvmeq->cq_phase = 1;
1291 nvmeq->q_db = &dev->dbs[qid * 2 * dev->db_stride];
1292 memset((void *)nvmeq->cqes, 0, CQ_SIZE(nvmeq->q_depth));
1293 dev->online_queues++;
1294 spin_unlock_irq(&nvmeq->q_lock);
1295 }
1296
1297 static int nvme_create_queue(struct nvme_queue *nvmeq, int qid)
1298 {
1299 struct nvme_dev *dev = nvmeq->dev;
1300 int result;
1301
1302 nvmeq->cq_vector = qid - 1;
1303 result = adapter_alloc_cq(dev, qid, nvmeq);
1304 if (result < 0)
1305 return result;
1306
1307 result = adapter_alloc_sq(dev, qid, nvmeq);
1308 if (result < 0)
1309 goto release_cq;
1310
1311 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1312 if (result < 0)
1313 goto release_sq;
1314
1315 nvme_init_queue(nvmeq, qid);
1316 return result;
1317
1318 release_sq:
1319 adapter_delete_sq(dev, qid);
1320 release_cq:
1321 adapter_delete_cq(dev, qid);
1322 return result;
1323 }
1324
1325 static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1326 {
1327 unsigned long timeout;
1328 u32 bit = enabled ? NVME_CSTS_RDY : 0;
1329
1330 timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1331
1332 while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1333 msleep(100);
1334 if (fatal_signal_pending(current))
1335 return -EINTR;
1336 if (time_after(jiffies, timeout)) {
1337 dev_err(&dev->pci_dev->dev,
1338 "Device not ready; aborting %s\n", enabled ?
1339 "initialisation" : "reset");
1340 return -ENODEV;
1341 }
1342 }
1343
1344 return 0;
1345 }
1346
1347 /*
1348 * If the device has been passed off to us in an enabled state, just clear
1349 * the enabled bit. The spec says we should set the 'shutdown notification
1350 * bits', but doing so may cause the device to complete commands to the
1351 * admin queue ... and we don't know what memory that might be pointing at!
1352 */
1353 static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1354 {
1355 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1356 dev->ctrl_config &= ~NVME_CC_ENABLE;
1357 writel(dev->ctrl_config, &dev->bar->cc);
1358
1359 return nvme_wait_ready(dev, cap, false);
1360 }
1361
1362 static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1363 {
1364 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1365 dev->ctrl_config |= NVME_CC_ENABLE;
1366 writel(dev->ctrl_config, &dev->bar->cc);
1367
1368 return nvme_wait_ready(dev, cap, true);
1369 }
1370
1371 static int nvme_shutdown_ctrl(struct nvme_dev *dev)
1372 {
1373 unsigned long timeout;
1374
1375 dev->ctrl_config &= ~NVME_CC_SHN_MASK;
1376 dev->ctrl_config |= NVME_CC_SHN_NORMAL;
1377
1378 writel(dev->ctrl_config, &dev->bar->cc);
1379
1380 timeout = SHUTDOWN_TIMEOUT + jiffies;
1381 while ((readl(&dev->bar->csts) & NVME_CSTS_SHST_MASK) !=
1382 NVME_CSTS_SHST_CMPLT) {
1383 msleep(100);
1384 if (fatal_signal_pending(current))
1385 return -EINTR;
1386 if (time_after(jiffies, timeout)) {
1387 dev_err(&dev->pci_dev->dev,
1388 "Device shutdown incomplete; abort shutdown\n");
1389 return -ENODEV;
1390 }
1391 }
1392
1393 return 0;
1394 }
1395
1396 static struct blk_mq_ops nvme_mq_admin_ops = {
1397 .queue_rq = nvme_admin_queue_rq,
1398 .map_queue = blk_mq_map_queue,
1399 .init_hctx = nvme_admin_init_hctx,
1400 .exit_hctx = nvme_exit_hctx,
1401 .init_request = nvme_admin_init_request,
1402 .timeout = nvme_timeout,
1403 };
1404
1405 static struct blk_mq_ops nvme_mq_ops = {
1406 .queue_rq = nvme_queue_rq,
1407 .map_queue = blk_mq_map_queue,
1408 .init_hctx = nvme_init_hctx,
1409 .exit_hctx = nvme_exit_hctx,
1410 .init_request = nvme_init_request,
1411 .timeout = nvme_timeout,
1412 };
1413
1414 static int nvme_alloc_admin_tags(struct nvme_dev *dev)
1415 {
1416 if (!dev->admin_q) {
1417 dev->admin_tagset.ops = &nvme_mq_admin_ops;
1418 dev->admin_tagset.nr_hw_queues = 1;
1419 dev->admin_tagset.queue_depth = NVME_AQ_DEPTH - 1;
1420 dev->admin_tagset.timeout = ADMIN_TIMEOUT;
1421 dev->admin_tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
1422 dev->admin_tagset.cmd_size = nvme_cmd_size(dev);
1423 dev->admin_tagset.driver_data = dev;
1424
1425 if (blk_mq_alloc_tag_set(&dev->admin_tagset))
1426 return -ENOMEM;
1427
1428 dev->admin_q = blk_mq_init_queue(&dev->admin_tagset);
1429 if (IS_ERR(dev->admin_q)) {
1430 blk_mq_free_tag_set(&dev->admin_tagset);
1431 return -ENOMEM;
1432 }
1433 }
1434
1435 return 0;
1436 }
1437
1438 static void nvme_free_admin_tags(struct nvme_dev *dev)
1439 {
1440 if (dev->admin_q)
1441 blk_mq_free_tag_set(&dev->admin_tagset);
1442 }
1443
1444 static int nvme_configure_admin_queue(struct nvme_dev *dev)
1445 {
1446 int result;
1447 u32 aqa;
1448 u64 cap = readq(&dev->bar->cap);
1449 struct nvme_queue *nvmeq;
1450 unsigned page_shift = PAGE_SHIFT;
1451 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12;
1452 unsigned dev_page_max = NVME_CAP_MPSMAX(cap) + 12;
1453
1454 if (page_shift < dev_page_min) {
1455 dev_err(&dev->pci_dev->dev,
1456 "Minimum device page size (%u) too large for "
1457 "host (%u)\n", 1 << dev_page_min,
1458 1 << page_shift);
1459 return -ENODEV;
1460 }
1461 if (page_shift > dev_page_max) {
1462 dev_info(&dev->pci_dev->dev,
1463 "Device maximum page size (%u) smaller than "
1464 "host (%u); enabling work-around\n",
1465 1 << dev_page_max, 1 << page_shift);
1466 page_shift = dev_page_max;
1467 }
1468
1469 result = nvme_disable_ctrl(dev, cap);
1470 if (result < 0)
1471 return result;
1472
1473 nvmeq = dev->queues[0];
1474 if (!nvmeq) {
1475 nvmeq = nvme_alloc_queue(dev, 0, NVME_AQ_DEPTH);
1476 if (!nvmeq)
1477 return -ENOMEM;
1478 }
1479
1480 aqa = nvmeq->q_depth - 1;
1481 aqa |= aqa << 16;
1482
1483 dev->page_size = 1 << page_shift;
1484
1485 dev->ctrl_config = NVME_CC_CSS_NVM;
1486 dev->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1487 dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1488 dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1489
1490 writel(aqa, &dev->bar->aqa);
1491 writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1492 writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1493
1494 result = nvme_enable_ctrl(dev, cap);
1495 if (result)
1496 goto free_nvmeq;
1497
1498 result = nvme_alloc_admin_tags(dev);
1499 if (result)
1500 goto free_nvmeq;
1501
1502 nvmeq->cq_vector = 0;
1503 result = queue_request_irq(dev, nvmeq, nvmeq->irqname);
1504 if (result)
1505 goto free_tags;
1506
1507 return result;
1508
1509 free_tags:
1510 nvme_free_admin_tags(dev);
1511 free_nvmeq:
1512 nvme_free_queues(dev, 0);
1513 return result;
1514 }
1515
1516 struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1517 unsigned long addr, unsigned length)
1518 {
1519 int i, err, count, nents, offset;
1520 struct scatterlist *sg;
1521 struct page **pages;
1522 struct nvme_iod *iod;
1523
1524 if (addr & 3)
1525 return ERR_PTR(-EINVAL);
1526 if (!length || length > INT_MAX - PAGE_SIZE)
1527 return ERR_PTR(-EINVAL);
1528
1529 offset = offset_in_page(addr);
1530 count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1531 pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1532 if (!pages)
1533 return ERR_PTR(-ENOMEM);
1534
1535 err = get_user_pages_fast(addr, count, 1, pages);
1536 if (err < count) {
1537 count = err;
1538 err = -EFAULT;
1539 goto put_pages;
1540 }
1541
1542 err = -ENOMEM;
1543 iod = __nvme_alloc_iod(count, length, dev, 0, GFP_KERNEL);
1544 if (!iod)
1545 goto put_pages;
1546
1547 sg = iod->sg;
1548 sg_init_table(sg, count);
1549 for (i = 0; i < count; i++) {
1550 sg_set_page(&sg[i], pages[i],
1551 min_t(unsigned, length, PAGE_SIZE - offset),
1552 offset);
1553 length -= (PAGE_SIZE - offset);
1554 offset = 0;
1555 }
1556 sg_mark_end(&sg[i - 1]);
1557 iod->nents = count;
1558
1559 nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1560 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1561 if (!nents)
1562 goto free_iod;
1563
1564 kfree(pages);
1565 return iod;
1566
1567 free_iod:
1568 kfree(iod);
1569 put_pages:
1570 for (i = 0; i < count; i++)
1571 put_page(pages[i]);
1572 kfree(pages);
1573 return ERR_PTR(err);
1574 }
1575
1576 void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1577 struct nvme_iod *iod)
1578 {
1579 int i;
1580
1581 dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1582 write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1583
1584 for (i = 0; i < iod->nents; i++)
1585 put_page(sg_page(&iod->sg[i]));
1586 }
1587
1588 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1589 {
1590 struct nvme_dev *dev = ns->dev;
1591 struct nvme_user_io io;
1592 struct nvme_command c;
1593 unsigned length, meta_len;
1594 int status, i;
1595 struct nvme_iod *iod, *meta_iod = NULL;
1596 dma_addr_t meta_dma_addr;
1597 void *meta, *uninitialized_var(meta_mem);
1598
1599 if (copy_from_user(&io, uio, sizeof(io)))
1600 return -EFAULT;
1601 length = (io.nblocks + 1) << ns->lba_shift;
1602 meta_len = (io.nblocks + 1) * ns->ms;
1603
1604 if (meta_len && ((io.metadata & 3) || !io.metadata))
1605 return -EINVAL;
1606
1607 switch (io.opcode) {
1608 case nvme_cmd_write:
1609 case nvme_cmd_read:
1610 case nvme_cmd_compare:
1611 iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1612 break;
1613 default:
1614 return -EINVAL;
1615 }
1616
1617 if (IS_ERR(iod))
1618 return PTR_ERR(iod);
1619
1620 memset(&c, 0, sizeof(c));
1621 c.rw.opcode = io.opcode;
1622 c.rw.flags = io.flags;
1623 c.rw.nsid = cpu_to_le32(ns->ns_id);
1624 c.rw.slba = cpu_to_le64(io.slba);
1625 c.rw.length = cpu_to_le16(io.nblocks);
1626 c.rw.control = cpu_to_le16(io.control);
1627 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1628 c.rw.reftag = cpu_to_le32(io.reftag);
1629 c.rw.apptag = cpu_to_le16(io.apptag);
1630 c.rw.appmask = cpu_to_le16(io.appmask);
1631
1632 if (meta_len) {
1633 meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata,
1634 meta_len);
1635 if (IS_ERR(meta_iod)) {
1636 status = PTR_ERR(meta_iod);
1637 meta_iod = NULL;
1638 goto unmap;
1639 }
1640
1641 meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1642 &meta_dma_addr, GFP_KERNEL);
1643 if (!meta_mem) {
1644 status = -ENOMEM;
1645 goto unmap;
1646 }
1647
1648 if (io.opcode & 1) {
1649 int meta_offset = 0;
1650
1651 for (i = 0; i < meta_iod->nents; i++) {
1652 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1653 meta_iod->sg[i].offset;
1654 memcpy(meta_mem + meta_offset, meta,
1655 meta_iod->sg[i].length);
1656 kunmap_atomic(meta);
1657 meta_offset += meta_iod->sg[i].length;
1658 }
1659 }
1660
1661 c.rw.metadata = cpu_to_le64(meta_dma_addr);
1662 }
1663
1664 length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1665 c.rw.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1666 c.rw.prp2 = cpu_to_le64(iod->first_dma);
1667
1668 if (length != (io.nblocks + 1) << ns->lba_shift)
1669 status = -ENOMEM;
1670 else
1671 status = nvme_submit_io_cmd(dev, ns, &c, NULL);
1672
1673 if (meta_len) {
1674 if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1675 int meta_offset = 0;
1676
1677 for (i = 0; i < meta_iod->nents; i++) {
1678 meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1679 meta_iod->sg[i].offset;
1680 memcpy(meta, meta_mem + meta_offset,
1681 meta_iod->sg[i].length);
1682 kunmap_atomic(meta);
1683 meta_offset += meta_iod->sg[i].length;
1684 }
1685 }
1686
1687 dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1688 meta_dma_addr);
1689 }
1690
1691 unmap:
1692 nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1693 nvme_free_iod(dev, iod);
1694
1695 if (meta_iod) {
1696 nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1697 nvme_free_iod(dev, meta_iod);
1698 }
1699
1700 return status;
1701 }
1702
1703 static int nvme_user_cmd(struct nvme_dev *dev, struct nvme_ns *ns,
1704 struct nvme_passthru_cmd __user *ucmd)
1705 {
1706 struct nvme_passthru_cmd cmd;
1707 struct nvme_command c;
1708 int status, length;
1709 struct nvme_iod *uninitialized_var(iod);
1710 unsigned timeout;
1711
1712 if (!capable(CAP_SYS_ADMIN))
1713 return -EACCES;
1714 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1715 return -EFAULT;
1716
1717 memset(&c, 0, sizeof(c));
1718 c.common.opcode = cmd.opcode;
1719 c.common.flags = cmd.flags;
1720 c.common.nsid = cpu_to_le32(cmd.nsid);
1721 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1722 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1723 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1724 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1725 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1726 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1727 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1728 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1729
1730 length = cmd.data_len;
1731 if (cmd.data_len) {
1732 iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1733 length);
1734 if (IS_ERR(iod))
1735 return PTR_ERR(iod);
1736 length = nvme_setup_prps(dev, iod, length, GFP_KERNEL);
1737 c.common.prp1 = cpu_to_le64(sg_dma_address(iod->sg));
1738 c.common.prp2 = cpu_to_le64(iod->first_dma);
1739 }
1740
1741 timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1742 ADMIN_TIMEOUT;
1743
1744 if (length != cmd.data_len)
1745 status = -ENOMEM;
1746 else if (ns) {
1747 struct request *req;
1748
1749 req = blk_mq_alloc_request(ns->queue, WRITE,
1750 (GFP_KERNEL|__GFP_WAIT), false);
1751 if (IS_ERR(req))
1752 status = PTR_ERR(req);
1753 else {
1754 status = nvme_submit_sync_cmd(req, &c, &cmd.result,
1755 timeout);
1756 blk_mq_free_request(req);
1757 }
1758 } else
1759 status = __nvme_submit_admin_cmd(dev, &c, &cmd.result, timeout);
1760
1761 if (cmd.data_len) {
1762 nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1763 nvme_free_iod(dev, iod);
1764 }
1765
1766 if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1767 sizeof(cmd.result)))
1768 status = -EFAULT;
1769
1770 return status;
1771 }
1772
1773 static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1774 unsigned long arg)
1775 {
1776 struct nvme_ns *ns = bdev->bd_disk->private_data;
1777
1778 switch (cmd) {
1779 case NVME_IOCTL_ID:
1780 force_successful_syscall_return();
1781 return ns->ns_id;
1782 case NVME_IOCTL_ADMIN_CMD:
1783 return nvme_user_cmd(ns->dev, NULL, (void __user *)arg);
1784 case NVME_IOCTL_IO_CMD:
1785 return nvme_user_cmd(ns->dev, ns, (void __user *)arg);
1786 case NVME_IOCTL_SUBMIT_IO:
1787 return nvme_submit_io(ns, (void __user *)arg);
1788 case SG_GET_VERSION_NUM:
1789 return nvme_sg_get_version_num((void __user *)arg);
1790 case SG_IO:
1791 return nvme_sg_io(ns, (void __user *)arg);
1792 default:
1793 return -ENOTTY;
1794 }
1795 }
1796
1797 #ifdef CONFIG_COMPAT
1798 static int nvme_compat_ioctl(struct block_device *bdev, fmode_t mode,
1799 unsigned int cmd, unsigned long arg)
1800 {
1801 switch (cmd) {
1802 case SG_IO:
1803 return -ENOIOCTLCMD;
1804 }
1805 return nvme_ioctl(bdev, mode, cmd, arg);
1806 }
1807 #else
1808 #define nvme_compat_ioctl NULL
1809 #endif
1810
1811 static int nvme_open(struct block_device *bdev, fmode_t mode)
1812 {
1813 int ret = 0;
1814 struct nvme_ns *ns;
1815
1816 spin_lock(&dev_list_lock);
1817 ns = bdev->bd_disk->private_data;
1818 if (!ns)
1819 ret = -ENXIO;
1820 else if (!kref_get_unless_zero(&ns->dev->kref))
1821 ret = -ENXIO;
1822 spin_unlock(&dev_list_lock);
1823
1824 return ret;
1825 }
1826
1827 static void nvme_free_dev(struct kref *kref);
1828
1829 static void nvme_release(struct gendisk *disk, fmode_t mode)
1830 {
1831 struct nvme_ns *ns = disk->private_data;
1832 struct nvme_dev *dev = ns->dev;
1833
1834 kref_put(&dev->kref, nvme_free_dev);
1835 }
1836
1837 static int nvme_getgeo(struct block_device *bd, struct hd_geometry *geo)
1838 {
1839 /* some standard values */
1840 geo->heads = 1 << 6;
1841 geo->sectors = 1 << 5;
1842 geo->cylinders = get_capacity(bd->bd_disk) >> 11;
1843 return 0;
1844 }
1845
1846 static int nvme_revalidate_disk(struct gendisk *disk)
1847 {
1848 struct nvme_ns *ns = disk->private_data;
1849 struct nvme_dev *dev = ns->dev;
1850 struct nvme_id_ns *id;
1851 dma_addr_t dma_addr;
1852 int lbaf;
1853
1854 id = dma_alloc_coherent(&dev->pci_dev->dev, 4096, &dma_addr,
1855 GFP_KERNEL);
1856 if (!id) {
1857 dev_warn(&dev->pci_dev->dev, "%s: Memory alocation failure\n",
1858 __func__);
1859 return 0;
1860 }
1861
1862 if (nvme_identify(dev, ns->ns_id, 0, dma_addr))
1863 goto free;
1864
1865 lbaf = id->flbas & 0xf;
1866 ns->lba_shift = id->lbaf[lbaf].ds;
1867
1868 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1869 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1870 free:
1871 dma_free_coherent(&dev->pci_dev->dev, 4096, id, dma_addr);
1872 return 0;
1873 }
1874
1875 static const struct block_device_operations nvme_fops = {
1876 .owner = THIS_MODULE,
1877 .ioctl = nvme_ioctl,
1878 .compat_ioctl = nvme_compat_ioctl,
1879 .open = nvme_open,
1880 .release = nvme_release,
1881 .getgeo = nvme_getgeo,
1882 .revalidate_disk= nvme_revalidate_disk,
1883 };
1884
1885 static int nvme_kthread(void *data)
1886 {
1887 struct nvme_dev *dev, *next;
1888
1889 while (!kthread_should_stop()) {
1890 set_current_state(TASK_INTERRUPTIBLE);
1891 spin_lock(&dev_list_lock);
1892 list_for_each_entry_safe(dev, next, &dev_list, node) {
1893 int i;
1894 if (readl(&dev->bar->csts) & NVME_CSTS_CFS &&
1895 dev->initialized) {
1896 if (work_busy(&dev->reset_work))
1897 continue;
1898 list_del_init(&dev->node);
1899 dev_warn(&dev->pci_dev->dev,
1900 "Failed status: %x, reset controller\n",
1901 readl(&dev->bar->csts));
1902 dev->reset_workfn = nvme_reset_failed_dev;
1903 queue_work(nvme_workq, &dev->reset_work);
1904 continue;
1905 }
1906 for (i = 0; i < dev->queue_count; i++) {
1907 struct nvme_queue *nvmeq = dev->queues[i];
1908 if (!nvmeq)
1909 continue;
1910 spin_lock_irq(&nvmeq->q_lock);
1911 nvme_process_cq(nvmeq);
1912
1913 while ((i == 0) && (dev->event_limit > 0)) {
1914 if (nvme_submit_async_admin_req(dev))
1915 break;
1916 dev->event_limit--;
1917 }
1918 spin_unlock_irq(&nvmeq->q_lock);
1919 }
1920 }
1921 spin_unlock(&dev_list_lock);
1922 schedule_timeout(round_jiffies_relative(HZ));
1923 }
1924 return 0;
1925 }
1926
1927 static void nvme_config_discard(struct nvme_ns *ns)
1928 {
1929 u32 logical_block_size = queue_logical_block_size(ns->queue);
1930 ns->queue->limits.discard_zeroes_data = 0;
1931 ns->queue->limits.discard_alignment = logical_block_size;
1932 ns->queue->limits.discard_granularity = logical_block_size;
1933 ns->queue->limits.max_discard_sectors = 0xffffffff;
1934 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1935 }
1936
1937 static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, unsigned nsid,
1938 struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1939 {
1940 struct nvme_ns *ns;
1941 struct gendisk *disk;
1942 int node = dev_to_node(&dev->pci_dev->dev);
1943 int lbaf;
1944
1945 if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1946 return NULL;
1947
1948 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
1949 if (!ns)
1950 return NULL;
1951 ns->queue = blk_mq_init_queue(&dev->tagset);
1952 if (IS_ERR(ns->queue))
1953 goto out_free_ns;
1954 queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1955 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1956 queue_flag_set_unlocked(QUEUE_FLAG_SG_GAPS, ns->queue);
1957 ns->dev = dev;
1958 ns->queue->queuedata = ns;
1959
1960 disk = alloc_disk_node(0, node);
1961 if (!disk)
1962 goto out_free_queue;
1963
1964 ns->ns_id = nsid;
1965 ns->disk = disk;
1966 lbaf = id->flbas & 0xf;
1967 ns->lba_shift = id->lbaf[lbaf].ds;
1968 ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1969 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1970 if (dev->max_hw_sectors)
1971 blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
1972 if (dev->stripe_size)
1973 blk_queue_chunk_sectors(ns->queue, dev->stripe_size >> 9);
1974 if (dev->vwc & NVME_CTRL_VWC_PRESENT)
1975 blk_queue_flush(ns->queue, REQ_FLUSH | REQ_FUA);
1976
1977 disk->major = nvme_major;
1978 disk->first_minor = 0;
1979 disk->fops = &nvme_fops;
1980 disk->private_data = ns;
1981 disk->queue = ns->queue;
1982 disk->driverfs_dev = &dev->pci_dev->dev;
1983 disk->flags = GENHD_FL_EXT_DEVT;
1984 sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1985 set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1986
1987 if (dev->oncs & NVME_CTRL_ONCS_DSM)
1988 nvme_config_discard(ns);
1989
1990 return ns;
1991
1992 out_free_queue:
1993 blk_cleanup_queue(ns->queue);
1994 out_free_ns:
1995 kfree(ns);
1996 return NULL;
1997 }
1998
1999 static void nvme_create_io_queues(struct nvme_dev *dev)
2000 {
2001 unsigned i;
2002
2003 for (i = dev->queue_count; i <= dev->max_qid; i++)
2004 if (!nvme_alloc_queue(dev, i, dev->q_depth))
2005 break;
2006
2007 for (i = dev->online_queues; i <= dev->queue_count - 1; i++)
2008 if (nvme_create_queue(dev->queues[i], i))
2009 break;
2010 }
2011
2012 static int set_queue_count(struct nvme_dev *dev, int count)
2013 {
2014 int status;
2015 u32 result;
2016 u32 q_count = (count - 1) | ((count - 1) << 16);
2017
2018 status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
2019 &result);
2020 if (status < 0)
2021 return status;
2022 if (status > 0) {
2023 dev_err(&dev->pci_dev->dev, "Could not set queue count (%d)\n",
2024 status);
2025 return 0;
2026 }
2027 return min(result & 0xffff, result >> 16) + 1;
2028 }
2029
2030 static size_t db_bar_size(struct nvme_dev *dev, unsigned nr_io_queues)
2031 {
2032 return 4096 + ((nr_io_queues + 1) * 8 * dev->db_stride);
2033 }
2034
2035 static int nvme_setup_io_queues(struct nvme_dev *dev)
2036 {
2037 struct nvme_queue *adminq = dev->queues[0];
2038 struct pci_dev *pdev = dev->pci_dev;
2039 int result, i, vecs, nr_io_queues, size;
2040
2041 nr_io_queues = num_possible_cpus();
2042 result = set_queue_count(dev, nr_io_queues);
2043 if (result <= 0)
2044 return result;
2045 if (result < nr_io_queues)
2046 nr_io_queues = result;
2047
2048 size = db_bar_size(dev, nr_io_queues);
2049 if (size > 8192) {
2050 iounmap(dev->bar);
2051 do {
2052 dev->bar = ioremap(pci_resource_start(pdev, 0), size);
2053 if (dev->bar)
2054 break;
2055 if (!--nr_io_queues)
2056 return -ENOMEM;
2057 size = db_bar_size(dev, nr_io_queues);
2058 } while (1);
2059 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2060 adminq->q_db = dev->dbs;
2061 }
2062
2063 /* Deregister the admin queue's interrupt */
2064 free_irq(dev->entry[0].vector, adminq);
2065
2066 /*
2067 * If we enable msix early due to not intx, disable it again before
2068 * setting up the full range we need.
2069 */
2070 if (!pdev->irq)
2071 pci_disable_msix(pdev);
2072
2073 for (i = 0; i < nr_io_queues; i++)
2074 dev->entry[i].entry = i;
2075 vecs = pci_enable_msix_range(pdev, dev->entry, 1, nr_io_queues);
2076 if (vecs < 0) {
2077 vecs = pci_enable_msi_range(pdev, 1, min(nr_io_queues, 32));
2078 if (vecs < 0) {
2079 vecs = 1;
2080 } else {
2081 for (i = 0; i < vecs; i++)
2082 dev->entry[i].vector = i + pdev->irq;
2083 }
2084 }
2085
2086 /*
2087 * Should investigate if there's a performance win from allocating
2088 * more queues than interrupt vectors; it might allow the submission
2089 * path to scale better, even if the receive path is limited by the
2090 * number of interrupts.
2091 */
2092 nr_io_queues = vecs;
2093 dev->max_qid = nr_io_queues;
2094
2095 result = queue_request_irq(dev, adminq, adminq->irqname);
2096 if (result)
2097 goto free_queues;
2098
2099 /* Free previously allocated queues that are no longer usable */
2100 nvme_free_queues(dev, nr_io_queues + 1);
2101 nvme_create_io_queues(dev);
2102
2103 return 0;
2104
2105 free_queues:
2106 nvme_free_queues(dev, 1);
2107 return result;
2108 }
2109
2110 /*
2111 * Return: error value if an error occurred setting up the queues or calling
2112 * Identify Device. 0 if these succeeded, even if adding some of the
2113 * namespaces failed. At the moment, these failures are silent. TBD which
2114 * failures should be reported.
2115 */
2116 static int nvme_dev_add(struct nvme_dev *dev)
2117 {
2118 struct pci_dev *pdev = dev->pci_dev;
2119 int res;
2120 unsigned nn, i;
2121 struct nvme_ns *ns;
2122 struct nvme_id_ctrl *ctrl;
2123 struct nvme_id_ns *id_ns;
2124 void *mem;
2125 dma_addr_t dma_addr;
2126 int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
2127
2128 mem = dma_alloc_coherent(&pdev->dev, 8192, &dma_addr, GFP_KERNEL);
2129 if (!mem)
2130 return -ENOMEM;
2131
2132 res = nvme_identify(dev, 0, 1, dma_addr);
2133 if (res) {
2134 dev_err(&pdev->dev, "Identify Controller failed (%d)\n", res);
2135 res = -EIO;
2136 goto out;
2137 }
2138
2139 ctrl = mem;
2140 nn = le32_to_cpup(&ctrl->nn);
2141 dev->oncs = le16_to_cpup(&ctrl->oncs);
2142 dev->abort_limit = ctrl->acl + 1;
2143 dev->vwc = ctrl->vwc;
2144 dev->event_limit = min(ctrl->aerl + 1, 8);
2145 memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
2146 memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
2147 memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
2148 if (ctrl->mdts)
2149 dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
2150 if ((pdev->vendor == PCI_VENDOR_ID_INTEL) &&
2151 (pdev->device == 0x0953) && ctrl->vs[3]) {
2152 unsigned int max_hw_sectors;
2153
2154 dev->stripe_size = 1 << (ctrl->vs[3] + shift);
2155 max_hw_sectors = dev->stripe_size >> (shift - 9);
2156 if (dev->max_hw_sectors) {
2157 dev->max_hw_sectors = min(max_hw_sectors,
2158 dev->max_hw_sectors);
2159 } else
2160 dev->max_hw_sectors = max_hw_sectors;
2161 }
2162
2163 dev->tagset.ops = &nvme_mq_ops;
2164 dev->tagset.nr_hw_queues = dev->online_queues - 1;
2165 dev->tagset.timeout = NVME_IO_TIMEOUT;
2166 dev->tagset.numa_node = dev_to_node(&dev->pci_dev->dev);
2167 dev->tagset.queue_depth =
2168 min_t(int, dev->q_depth, BLK_MQ_MAX_DEPTH) - 1;
2169 dev->tagset.cmd_size = nvme_cmd_size(dev);
2170 dev->tagset.flags = BLK_MQ_F_SHOULD_MERGE;
2171 dev->tagset.driver_data = dev;
2172
2173 if (blk_mq_alloc_tag_set(&dev->tagset))
2174 goto out;
2175
2176 id_ns = mem;
2177 for (i = 1; i <= nn; i++) {
2178 res = nvme_identify(dev, i, 0, dma_addr);
2179 if (res)
2180 continue;
2181
2182 if (id_ns->ncap == 0)
2183 continue;
2184
2185 res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
2186 dma_addr + 4096, NULL);
2187 if (res)
2188 memset(mem + 4096, 0, 4096);
2189
2190 ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
2191 if (ns)
2192 list_add_tail(&ns->list, &dev->namespaces);
2193 }
2194 list_for_each_entry(ns, &dev->namespaces, list)
2195 add_disk(ns->disk);
2196 res = 0;
2197
2198 out:
2199 dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
2200 return res;
2201 }
2202
2203 static int nvme_dev_map(struct nvme_dev *dev)
2204 {
2205 u64 cap;
2206 int bars, result = -ENOMEM;
2207 struct pci_dev *pdev = dev->pci_dev;
2208
2209 if (pci_enable_device_mem(pdev))
2210 return result;
2211
2212 dev->entry[0].vector = pdev->irq;
2213 pci_set_master(pdev);
2214 bars = pci_select_bars(pdev, IORESOURCE_MEM);
2215 if (!bars)
2216 goto disable_pci;
2217
2218 if (pci_request_selected_regions(pdev, bars, "nvme"))
2219 goto disable_pci;
2220
2221 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
2222 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32)))
2223 goto disable;
2224
2225 dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
2226 if (!dev->bar)
2227 goto disable;
2228
2229 if (readl(&dev->bar->csts) == -1) {
2230 result = -ENODEV;
2231 goto unmap;
2232 }
2233
2234 /*
2235 * Some devices don't advertse INTx interrupts, pre-enable a single
2236 * MSIX vec for setup. We'll adjust this later.
2237 */
2238 if (!pdev->irq) {
2239 result = pci_enable_msix(pdev, dev->entry, 1);
2240 if (result < 0)
2241 goto unmap;
2242 }
2243
2244 cap = readq(&dev->bar->cap);
2245 dev->q_depth = min_t(int, NVME_CAP_MQES(cap) + 1, NVME_Q_DEPTH);
2246 dev->db_stride = 1 << NVME_CAP_STRIDE(cap);
2247 dev->dbs = ((void __iomem *)dev->bar) + 4096;
2248
2249 return 0;
2250
2251 unmap:
2252 iounmap(dev->bar);
2253 dev->bar = NULL;
2254 disable:
2255 pci_release_regions(pdev);
2256 disable_pci:
2257 pci_disable_device(pdev);
2258 return result;
2259 }
2260
2261 static void nvme_dev_unmap(struct nvme_dev *dev)
2262 {
2263 if (dev->pci_dev->msi_enabled)
2264 pci_disable_msi(dev->pci_dev);
2265 else if (dev->pci_dev->msix_enabled)
2266 pci_disable_msix(dev->pci_dev);
2267
2268 if (dev->bar) {
2269 iounmap(dev->bar);
2270 dev->bar = NULL;
2271 pci_release_regions(dev->pci_dev);
2272 }
2273
2274 if (pci_is_enabled(dev->pci_dev))
2275 pci_disable_device(dev->pci_dev);
2276 }
2277
2278 struct nvme_delq_ctx {
2279 struct task_struct *waiter;
2280 struct kthread_worker *worker;
2281 atomic_t refcount;
2282 };
2283
2284 static void nvme_wait_dq(struct nvme_delq_ctx *dq, struct nvme_dev *dev)
2285 {
2286 dq->waiter = current;
2287 mb();
2288
2289 for (;;) {
2290 set_current_state(TASK_KILLABLE);
2291 if (!atomic_read(&dq->refcount))
2292 break;
2293 if (!schedule_timeout(ADMIN_TIMEOUT) ||
2294 fatal_signal_pending(current)) {
2295 set_current_state(TASK_RUNNING);
2296
2297 nvme_disable_ctrl(dev, readq(&dev->bar->cap));
2298 nvme_disable_queue(dev, 0);
2299
2300 send_sig(SIGKILL, dq->worker->task, 1);
2301 flush_kthread_worker(dq->worker);
2302 return;
2303 }
2304 }
2305 set_current_state(TASK_RUNNING);
2306 }
2307
2308 static void nvme_put_dq(struct nvme_delq_ctx *dq)
2309 {
2310 atomic_dec(&dq->refcount);
2311 if (dq->waiter)
2312 wake_up_process(dq->waiter);
2313 }
2314
2315 static struct nvme_delq_ctx *nvme_get_dq(struct nvme_delq_ctx *dq)
2316 {
2317 atomic_inc(&dq->refcount);
2318 return dq;
2319 }
2320
2321 static void nvme_del_queue_end(struct nvme_queue *nvmeq)
2322 {
2323 struct nvme_delq_ctx *dq = nvmeq->cmdinfo.ctx;
2324
2325 nvme_clear_queue(nvmeq);
2326 nvme_put_dq(dq);
2327 }
2328
2329 static int adapter_async_del_queue(struct nvme_queue *nvmeq, u8 opcode,
2330 kthread_work_func_t fn)
2331 {
2332 struct nvme_command c;
2333
2334 memset(&c, 0, sizeof(c));
2335 c.delete_queue.opcode = opcode;
2336 c.delete_queue.qid = cpu_to_le16(nvmeq->qid);
2337
2338 init_kthread_work(&nvmeq->cmdinfo.work, fn);
2339 return nvme_submit_admin_async_cmd(nvmeq->dev, &c, &nvmeq->cmdinfo,
2340 ADMIN_TIMEOUT);
2341 }
2342
2343 static void nvme_del_cq_work_handler(struct kthread_work *work)
2344 {
2345 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2346 cmdinfo.work);
2347 nvme_del_queue_end(nvmeq);
2348 }
2349
2350 static int nvme_delete_cq(struct nvme_queue *nvmeq)
2351 {
2352 return adapter_async_del_queue(nvmeq, nvme_admin_delete_cq,
2353 nvme_del_cq_work_handler);
2354 }
2355
2356 static void nvme_del_sq_work_handler(struct kthread_work *work)
2357 {
2358 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2359 cmdinfo.work);
2360 int status = nvmeq->cmdinfo.status;
2361
2362 if (!status)
2363 status = nvme_delete_cq(nvmeq);
2364 if (status)
2365 nvme_del_queue_end(nvmeq);
2366 }
2367
2368 static int nvme_delete_sq(struct nvme_queue *nvmeq)
2369 {
2370 return adapter_async_del_queue(nvmeq, nvme_admin_delete_sq,
2371 nvme_del_sq_work_handler);
2372 }
2373
2374 static void nvme_del_queue_start(struct kthread_work *work)
2375 {
2376 struct nvme_queue *nvmeq = container_of(work, struct nvme_queue,
2377 cmdinfo.work);
2378 allow_signal(SIGKILL);
2379 if (nvme_delete_sq(nvmeq))
2380 nvme_del_queue_end(nvmeq);
2381 }
2382
2383 static void nvme_disable_io_queues(struct nvme_dev *dev)
2384 {
2385 int i;
2386 DEFINE_KTHREAD_WORKER_ONSTACK(worker);
2387 struct nvme_delq_ctx dq;
2388 struct task_struct *kworker_task = kthread_run(kthread_worker_fn,
2389 &worker, "nvme%d", dev->instance);
2390
2391 if (IS_ERR(kworker_task)) {
2392 dev_err(&dev->pci_dev->dev,
2393 "Failed to create queue del task\n");
2394 for (i = dev->queue_count - 1; i > 0; i--)
2395 nvme_disable_queue(dev, i);
2396 return;
2397 }
2398
2399 dq.waiter = NULL;
2400 atomic_set(&dq.refcount, 0);
2401 dq.worker = &worker;
2402 for (i = dev->queue_count - 1; i > 0; i--) {
2403 struct nvme_queue *nvmeq = dev->queues[i];
2404
2405 if (nvme_suspend_queue(nvmeq))
2406 continue;
2407 nvmeq->cmdinfo.ctx = nvme_get_dq(&dq);
2408 nvmeq->cmdinfo.worker = dq.worker;
2409 init_kthread_work(&nvmeq->cmdinfo.work, nvme_del_queue_start);
2410 queue_kthread_work(dq.worker, &nvmeq->cmdinfo.work);
2411 }
2412 nvme_wait_dq(&dq, dev);
2413 kthread_stop(kworker_task);
2414 }
2415
2416 /*
2417 * Remove the node from the device list and check
2418 * for whether or not we need to stop the nvme_thread.
2419 */
2420 static void nvme_dev_list_remove(struct nvme_dev *dev)
2421 {
2422 struct task_struct *tmp = NULL;
2423
2424 spin_lock(&dev_list_lock);
2425 list_del_init(&dev->node);
2426 if (list_empty(&dev_list) && !IS_ERR_OR_NULL(nvme_thread)) {
2427 tmp = nvme_thread;
2428 nvme_thread = NULL;
2429 }
2430 spin_unlock(&dev_list_lock);
2431
2432 if (tmp)
2433 kthread_stop(tmp);
2434 }
2435
2436 static void nvme_dev_shutdown(struct nvme_dev *dev)
2437 {
2438 int i;
2439 u32 csts = -1;
2440
2441 dev->initialized = 0;
2442 nvme_dev_list_remove(dev);
2443
2444 if (dev->bar)
2445 csts = readl(&dev->bar->csts);
2446 if (csts & NVME_CSTS_CFS || !(csts & NVME_CSTS_RDY)) {
2447 for (i = dev->queue_count - 1; i >= 0; i--) {
2448 struct nvme_queue *nvmeq = dev->queues[i];
2449 nvme_suspend_queue(nvmeq);
2450 nvme_clear_queue(nvmeq);
2451 }
2452 } else {
2453 nvme_disable_io_queues(dev);
2454 nvme_shutdown_ctrl(dev);
2455 nvme_disable_queue(dev, 0);
2456 }
2457 nvme_dev_unmap(dev);
2458 }
2459
2460 static void nvme_dev_remove_admin(struct nvme_dev *dev)
2461 {
2462 if (dev->admin_q && !blk_queue_dying(dev->admin_q))
2463 blk_cleanup_queue(dev->admin_q);
2464 }
2465
2466 static void nvme_dev_remove(struct nvme_dev *dev)
2467 {
2468 struct nvme_ns *ns;
2469
2470 list_for_each_entry(ns, &dev->namespaces, list) {
2471 if (ns->disk->flags & GENHD_FL_UP)
2472 del_gendisk(ns->disk);
2473 if (!blk_queue_dying(ns->queue))
2474 blk_cleanup_queue(ns->queue);
2475 }
2476 }
2477
2478 static int nvme_setup_prp_pools(struct nvme_dev *dev)
2479 {
2480 struct device *dmadev = &dev->pci_dev->dev;
2481 dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
2482 PAGE_SIZE, PAGE_SIZE, 0);
2483 if (!dev->prp_page_pool)
2484 return -ENOMEM;
2485
2486 /* Optimisation for I/Os between 4k and 128k */
2487 dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
2488 256, 256, 0);
2489 if (!dev->prp_small_pool) {
2490 dma_pool_destroy(dev->prp_page_pool);
2491 return -ENOMEM;
2492 }
2493 return 0;
2494 }
2495
2496 static void nvme_release_prp_pools(struct nvme_dev *dev)
2497 {
2498 dma_pool_destroy(dev->prp_page_pool);
2499 dma_pool_destroy(dev->prp_small_pool);
2500 }
2501
2502 static DEFINE_IDA(nvme_instance_ida);
2503
2504 static int nvme_set_instance(struct nvme_dev *dev)
2505 {
2506 int instance, error;
2507
2508 do {
2509 if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
2510 return -ENODEV;
2511
2512 spin_lock(&dev_list_lock);
2513 error = ida_get_new(&nvme_instance_ida, &instance);
2514 spin_unlock(&dev_list_lock);
2515 } while (error == -EAGAIN);
2516
2517 if (error)
2518 return -ENODEV;
2519
2520 dev->instance = instance;
2521 return 0;
2522 }
2523
2524 static void nvme_release_instance(struct nvme_dev *dev)
2525 {
2526 spin_lock(&dev_list_lock);
2527 ida_remove(&nvme_instance_ida, dev->instance);
2528 spin_unlock(&dev_list_lock);
2529 }
2530
2531 static void nvme_free_namespaces(struct nvme_dev *dev)
2532 {
2533 struct nvme_ns *ns, *next;
2534
2535 list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
2536 list_del(&ns->list);
2537
2538 spin_lock(&dev_list_lock);
2539 ns->disk->private_data = NULL;
2540 spin_unlock(&dev_list_lock);
2541
2542 put_disk(ns->disk);
2543 kfree(ns);
2544 }
2545 }
2546
2547 static void nvme_free_dev(struct kref *kref)
2548 {
2549 struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
2550
2551 pci_dev_put(dev->pci_dev);
2552 nvme_free_namespaces(dev);
2553 nvme_release_instance(dev);
2554 blk_mq_free_tag_set(&dev->tagset);
2555 kfree(dev->queues);
2556 kfree(dev->entry);
2557 kfree(dev);
2558 }
2559
2560 static int nvme_dev_open(struct inode *inode, struct file *f)
2561 {
2562 struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
2563 miscdev);
2564 kref_get(&dev->kref);
2565 f->private_data = dev;
2566 return 0;
2567 }
2568
2569 static int nvme_dev_release(struct inode *inode, struct file *f)
2570 {
2571 struct nvme_dev *dev = f->private_data;
2572 kref_put(&dev->kref, nvme_free_dev);
2573 return 0;
2574 }
2575
2576 static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
2577 {
2578 struct nvme_dev *dev = f->private_data;
2579 struct nvme_ns *ns;
2580
2581 switch (cmd) {
2582 case NVME_IOCTL_ADMIN_CMD:
2583 return nvme_user_cmd(dev, NULL, (void __user *)arg);
2584 case NVME_IOCTL_IO_CMD:
2585 if (list_empty(&dev->namespaces))
2586 return -ENOTTY;
2587 ns = list_first_entry(&dev->namespaces, struct nvme_ns, list);
2588 return nvme_user_cmd(dev, ns, (void __user *)arg);
2589 default:
2590 return -ENOTTY;
2591 }
2592 }
2593
2594 static const struct file_operations nvme_dev_fops = {
2595 .owner = THIS_MODULE,
2596 .open = nvme_dev_open,
2597 .release = nvme_dev_release,
2598 .unlocked_ioctl = nvme_dev_ioctl,
2599 .compat_ioctl = nvme_dev_ioctl,
2600 };
2601
2602 static void nvme_set_irq_hints(struct nvme_dev *dev)
2603 {
2604 struct nvme_queue *nvmeq;
2605 int i;
2606
2607 for (i = 0; i < dev->online_queues; i++) {
2608 nvmeq = dev->queues[i];
2609
2610 if (!nvmeq->hctx)
2611 continue;
2612
2613 irq_set_affinity_hint(dev->entry[nvmeq->cq_vector].vector,
2614 nvmeq->hctx->cpumask);
2615 }
2616 }
2617
2618 static int nvme_dev_start(struct nvme_dev *dev)
2619 {
2620 int result;
2621 bool start_thread = false;
2622
2623 result = nvme_dev_map(dev);
2624 if (result)
2625 return result;
2626
2627 result = nvme_configure_admin_queue(dev);
2628 if (result)
2629 goto unmap;
2630
2631 spin_lock(&dev_list_lock);
2632 if (list_empty(&dev_list) && IS_ERR_OR_NULL(nvme_thread)) {
2633 start_thread = true;
2634 nvme_thread = NULL;
2635 }
2636 list_add(&dev->node, &dev_list);
2637 spin_unlock(&dev_list_lock);
2638
2639 if (start_thread) {
2640 nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2641 wake_up_all(&nvme_kthread_wait);
2642 } else
2643 wait_event_killable(nvme_kthread_wait, nvme_thread);
2644
2645 if (IS_ERR_OR_NULL(nvme_thread)) {
2646 result = nvme_thread ? PTR_ERR(nvme_thread) : -EINTR;
2647 goto disable;
2648 }
2649
2650 nvme_init_queue(dev->queues[0], 0);
2651
2652 result = nvme_setup_io_queues(dev);
2653 if (result)
2654 goto disable;
2655
2656 nvme_set_irq_hints(dev);
2657
2658 return result;
2659
2660 disable:
2661 nvme_disable_queue(dev, 0);
2662 nvme_dev_list_remove(dev);
2663 unmap:
2664 nvme_dev_unmap(dev);
2665 return result;
2666 }
2667
2668 static int nvme_remove_dead_ctrl(void *arg)
2669 {
2670 struct nvme_dev *dev = (struct nvme_dev *)arg;
2671 struct pci_dev *pdev = dev->pci_dev;
2672
2673 if (pci_get_drvdata(pdev))
2674 pci_stop_and_remove_bus_device_locked(pdev);
2675 kref_put(&dev->kref, nvme_free_dev);
2676 return 0;
2677 }
2678
2679 static void nvme_remove_disks(struct work_struct *ws)
2680 {
2681 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2682
2683 nvme_free_queues(dev, 1);
2684 nvme_dev_remove(dev);
2685 }
2686
2687 static int nvme_dev_resume(struct nvme_dev *dev)
2688 {
2689 int ret;
2690
2691 ret = nvme_dev_start(dev);
2692 if (ret)
2693 return ret;
2694 if (dev->online_queues < 2) {
2695 spin_lock(&dev_list_lock);
2696 dev->reset_workfn = nvme_remove_disks;
2697 queue_work(nvme_workq, &dev->reset_work);
2698 spin_unlock(&dev_list_lock);
2699 }
2700 dev->initialized = 1;
2701 return 0;
2702 }
2703
2704 static void nvme_dev_reset(struct nvme_dev *dev)
2705 {
2706 nvme_dev_shutdown(dev);
2707 if (nvme_dev_resume(dev)) {
2708 dev_warn(&dev->pci_dev->dev, "Device failed to resume\n");
2709 kref_get(&dev->kref);
2710 if (IS_ERR(kthread_run(nvme_remove_dead_ctrl, dev, "nvme%d",
2711 dev->instance))) {
2712 dev_err(&dev->pci_dev->dev,
2713 "Failed to start controller remove task\n");
2714 kref_put(&dev->kref, nvme_free_dev);
2715 }
2716 }
2717 }
2718
2719 static void nvme_reset_failed_dev(struct work_struct *ws)
2720 {
2721 struct nvme_dev *dev = container_of(ws, struct nvme_dev, reset_work);
2722 nvme_dev_reset(dev);
2723 }
2724
2725 static void nvme_reset_workfn(struct work_struct *work)
2726 {
2727 struct nvme_dev *dev = container_of(work, struct nvme_dev, reset_work);
2728 dev->reset_workfn(work);
2729 }
2730
2731 static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
2732 {
2733 int node, result = -ENOMEM;
2734 struct nvme_dev *dev;
2735
2736 node = dev_to_node(&pdev->dev);
2737 if (node == NUMA_NO_NODE)
2738 set_dev_node(&pdev->dev, 0);
2739
2740 dev = kzalloc_node(sizeof(*dev), GFP_KERNEL, node);
2741 if (!dev)
2742 return -ENOMEM;
2743 dev->entry = kzalloc_node(num_possible_cpus() * sizeof(*dev->entry),
2744 GFP_KERNEL, node);
2745 if (!dev->entry)
2746 goto free;
2747 dev->queues = kzalloc_node((num_possible_cpus() + 1) * sizeof(void *),
2748 GFP_KERNEL, node);
2749 if (!dev->queues)
2750 goto free;
2751
2752 INIT_LIST_HEAD(&dev->namespaces);
2753 dev->reset_workfn = nvme_reset_failed_dev;
2754 INIT_WORK(&dev->reset_work, nvme_reset_workfn);
2755 dev->pci_dev = pci_dev_get(pdev);
2756 pci_set_drvdata(pdev, dev);
2757 result = nvme_set_instance(dev);
2758 if (result)
2759 goto put_pci;
2760
2761 result = nvme_setup_prp_pools(dev);
2762 if (result)
2763 goto release;
2764
2765 kref_init(&dev->kref);
2766 result = nvme_dev_start(dev);
2767 if (result)
2768 goto release_pools;
2769
2770 if (dev->online_queues > 1)
2771 result = nvme_dev_add(dev);
2772 if (result)
2773 goto shutdown;
2774
2775 scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
2776 dev->miscdev.minor = MISC_DYNAMIC_MINOR;
2777 dev->miscdev.parent = &pdev->dev;
2778 dev->miscdev.name = dev->name;
2779 dev->miscdev.fops = &nvme_dev_fops;
2780 result = misc_register(&dev->miscdev);
2781 if (result)
2782 goto remove;
2783
2784 nvme_set_irq_hints(dev);
2785
2786 dev->initialized = 1;
2787 return 0;
2788
2789 remove:
2790 nvme_dev_remove(dev);
2791 nvme_dev_remove_admin(dev);
2792 nvme_free_namespaces(dev);
2793 shutdown:
2794 nvme_dev_shutdown(dev);
2795 release_pools:
2796 nvme_free_queues(dev, 0);
2797 nvme_release_prp_pools(dev);
2798 release:
2799 nvme_release_instance(dev);
2800 put_pci:
2801 pci_dev_put(dev->pci_dev);
2802 free:
2803 kfree(dev->queues);
2804 kfree(dev->entry);
2805 kfree(dev);
2806 return result;
2807 }
2808
2809 static void nvme_reset_notify(struct pci_dev *pdev, bool prepare)
2810 {
2811 struct nvme_dev *dev = pci_get_drvdata(pdev);
2812
2813 if (prepare)
2814 nvme_dev_shutdown(dev);
2815 else
2816 nvme_dev_resume(dev);
2817 }
2818
2819 static void nvme_shutdown(struct pci_dev *pdev)
2820 {
2821 struct nvme_dev *dev = pci_get_drvdata(pdev);
2822 nvme_dev_shutdown(dev);
2823 }
2824
2825 static void nvme_remove(struct pci_dev *pdev)
2826 {
2827 struct nvme_dev *dev = pci_get_drvdata(pdev);
2828
2829 spin_lock(&dev_list_lock);
2830 list_del_init(&dev->node);
2831 spin_unlock(&dev_list_lock);
2832
2833 pci_set_drvdata(pdev, NULL);
2834 flush_work(&dev->reset_work);
2835 misc_deregister(&dev->miscdev);
2836 nvme_dev_remove(dev);
2837 nvme_dev_shutdown(dev);
2838 nvme_dev_remove_admin(dev);
2839 nvme_free_queues(dev, 0);
2840 nvme_free_admin_tags(dev);
2841 nvme_release_prp_pools(dev);
2842 kref_put(&dev->kref, nvme_free_dev);
2843 }
2844
2845 /* These functions are yet to be implemented */
2846 #define nvme_error_detected NULL
2847 #define nvme_dump_registers NULL
2848 #define nvme_link_reset NULL
2849 #define nvme_slot_reset NULL
2850 #define nvme_error_resume NULL
2851
2852 #ifdef CONFIG_PM_SLEEP
2853 static int nvme_suspend(struct device *dev)
2854 {
2855 struct pci_dev *pdev = to_pci_dev(dev);
2856 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2857
2858 nvme_dev_shutdown(ndev);
2859 return 0;
2860 }
2861
2862 static int nvme_resume(struct device *dev)
2863 {
2864 struct pci_dev *pdev = to_pci_dev(dev);
2865 struct nvme_dev *ndev = pci_get_drvdata(pdev);
2866
2867 if (nvme_dev_resume(ndev) && !work_busy(&ndev->reset_work)) {
2868 ndev->reset_workfn = nvme_reset_failed_dev;
2869 queue_work(nvme_workq, &ndev->reset_work);
2870 }
2871 return 0;
2872 }
2873 #endif
2874
2875 static SIMPLE_DEV_PM_OPS(nvme_dev_pm_ops, nvme_suspend, nvme_resume);
2876
2877 static const struct pci_error_handlers nvme_err_handler = {
2878 .error_detected = nvme_error_detected,
2879 .mmio_enabled = nvme_dump_registers,
2880 .link_reset = nvme_link_reset,
2881 .slot_reset = nvme_slot_reset,
2882 .resume = nvme_error_resume,
2883 .reset_notify = nvme_reset_notify,
2884 };
2885
2886 /* Move to pci_ids.h later */
2887 #define PCI_CLASS_STORAGE_EXPRESS 0x010802
2888
2889 static const struct pci_device_id nvme_id_table[] = {
2890 { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2891 { 0, }
2892 };
2893 MODULE_DEVICE_TABLE(pci, nvme_id_table);
2894
2895 static struct pci_driver nvme_driver = {
2896 .name = "nvme",
2897 .id_table = nvme_id_table,
2898 .probe = nvme_probe,
2899 .remove = nvme_remove,
2900 .shutdown = nvme_shutdown,
2901 .driver = {
2902 .pm = &nvme_dev_pm_ops,
2903 },
2904 .err_handler = &nvme_err_handler,
2905 };
2906
2907 static int __init nvme_init(void)
2908 {
2909 int result;
2910
2911 init_waitqueue_head(&nvme_kthread_wait);
2912
2913 nvme_workq = create_singlethread_workqueue("nvme");
2914 if (!nvme_workq)
2915 return -ENOMEM;
2916
2917 result = register_blkdev(nvme_major, "nvme");
2918 if (result < 0)
2919 goto kill_workq;
2920 else if (result > 0)
2921 nvme_major = result;
2922
2923 result = pci_register_driver(&nvme_driver);
2924 if (result)
2925 goto unregister_blkdev;
2926 return 0;
2927
2928 unregister_blkdev:
2929 unregister_blkdev(nvme_major, "nvme");
2930 kill_workq:
2931 destroy_workqueue(nvme_workq);
2932 return result;
2933 }
2934
2935 static void __exit nvme_exit(void)
2936 {
2937 pci_unregister_driver(&nvme_driver);
2938 unregister_hotcpu_notifier(&nvme_nb);
2939 unregister_blkdev(nvme_major, "nvme");
2940 destroy_workqueue(nvme_workq);
2941 BUG_ON(nvme_thread && !IS_ERR(nvme_thread));
2942 _nvme_check_size();
2943 }
2944
2945 MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2946 MODULE_LICENSE("GPL");
2947 MODULE_VERSION("1.0");
2948 module_init(nvme_init);
2949 module_exit(nvme_exit);