Merge branch 'x86-acpi-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / block / loop.c
1 /*
2 * linux/drivers/block/loop.c
3 *
4 * Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/swap.h>
65 #include <linux/slab.h>
66 #include <linux/loop.h>
67 #include <linux/compat.h>
68 #include <linux/suspend.h>
69 #include <linux/freezer.h>
70 #include <linux/mutex.h>
71 #include <linux/writeback.h>
72 #include <linux/completion.h>
73 #include <linux/highmem.h>
74 #include <linux/kthread.h>
75 #include <linux/splice.h>
76 #include <linux/sysfs.h>
77 #include <linux/miscdevice.h>
78 #include <linux/falloc.h>
79
80 #include <asm/uaccess.h>
81
82 static DEFINE_IDR(loop_index_idr);
83 static DEFINE_MUTEX(loop_index_mutex);
84
85 static int max_part;
86 static int part_shift;
87
88 /*
89 * Transfer functions
90 */
91 static int transfer_none(struct loop_device *lo, int cmd,
92 struct page *raw_page, unsigned raw_off,
93 struct page *loop_page, unsigned loop_off,
94 int size, sector_t real_block)
95 {
96 char *raw_buf = kmap_atomic(raw_page) + raw_off;
97 char *loop_buf = kmap_atomic(loop_page) + loop_off;
98
99 if (cmd == READ)
100 memcpy(loop_buf, raw_buf, size);
101 else
102 memcpy(raw_buf, loop_buf, size);
103
104 kunmap_atomic(loop_buf);
105 kunmap_atomic(raw_buf);
106 cond_resched();
107 return 0;
108 }
109
110 static int transfer_xor(struct loop_device *lo, int cmd,
111 struct page *raw_page, unsigned raw_off,
112 struct page *loop_page, unsigned loop_off,
113 int size, sector_t real_block)
114 {
115 char *raw_buf = kmap_atomic(raw_page) + raw_off;
116 char *loop_buf = kmap_atomic(loop_page) + loop_off;
117 char *in, *out, *key;
118 int i, keysize;
119
120 if (cmd == READ) {
121 in = raw_buf;
122 out = loop_buf;
123 } else {
124 in = loop_buf;
125 out = raw_buf;
126 }
127
128 key = lo->lo_encrypt_key;
129 keysize = lo->lo_encrypt_key_size;
130 for (i = 0; i < size; i++)
131 *out++ = *in++ ^ key[(i & 511) % keysize];
132
133 kunmap_atomic(loop_buf);
134 kunmap_atomic(raw_buf);
135 cond_resched();
136 return 0;
137 }
138
139 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
140 {
141 if (unlikely(info->lo_encrypt_key_size <= 0))
142 return -EINVAL;
143 return 0;
144 }
145
146 static struct loop_func_table none_funcs = {
147 .number = LO_CRYPT_NONE,
148 .transfer = transfer_none,
149 };
150
151 static struct loop_func_table xor_funcs = {
152 .number = LO_CRYPT_XOR,
153 .transfer = transfer_xor,
154 .init = xor_init
155 };
156
157 /* xfer_funcs[0] is special - its release function is never called */
158 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
159 &none_funcs,
160 &xor_funcs
161 };
162
163 static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
164 {
165 loff_t size, loopsize;
166
167 /* Compute loopsize in bytes */
168 size = i_size_read(file->f_mapping->host);
169 loopsize = size - offset;
170 /* offset is beyond i_size, wierd but possible */
171 if (loopsize < 0)
172 return 0;
173
174 if (sizelimit > 0 && sizelimit < loopsize)
175 loopsize = sizelimit;
176 /*
177 * Unfortunately, if we want to do I/O on the device,
178 * the number of 512-byte sectors has to fit into a sector_t.
179 */
180 return loopsize >> 9;
181 }
182
183 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
184 {
185 return get_size(lo->lo_offset, lo->lo_sizelimit, file);
186 }
187
188 static int
189 figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
190 {
191 loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
192 sector_t x = (sector_t)size;
193
194 if (unlikely((loff_t)x != size))
195 return -EFBIG;
196 if (lo->lo_offset != offset)
197 lo->lo_offset = offset;
198 if (lo->lo_sizelimit != sizelimit)
199 lo->lo_sizelimit = sizelimit;
200 set_capacity(lo->lo_disk, x);
201 return 0;
202 }
203
204 static inline int
205 lo_do_transfer(struct loop_device *lo, int cmd,
206 struct page *rpage, unsigned roffs,
207 struct page *lpage, unsigned loffs,
208 int size, sector_t rblock)
209 {
210 if (unlikely(!lo->transfer))
211 return 0;
212
213 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
214 }
215
216 /**
217 * __do_lo_send_write - helper for writing data to a loop device
218 *
219 * This helper just factors out common code between do_lo_send_direct_write()
220 * and do_lo_send_write().
221 */
222 static int __do_lo_send_write(struct file *file,
223 u8 *buf, const int len, loff_t pos)
224 {
225 ssize_t bw;
226 mm_segment_t old_fs = get_fs();
227
228 set_fs(get_ds());
229 bw = file->f_op->write(file, buf, len, &pos);
230 set_fs(old_fs);
231 if (likely(bw == len))
232 return 0;
233 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
234 (unsigned long long)pos, len);
235 if (bw >= 0)
236 bw = -EIO;
237 return bw;
238 }
239
240 /**
241 * do_lo_send_direct_write - helper for writing data to a loop device
242 *
243 * This is the fast, non-transforming version that does not need double
244 * buffering.
245 */
246 static int do_lo_send_direct_write(struct loop_device *lo,
247 struct bio_vec *bvec, loff_t pos, struct page *page)
248 {
249 ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
250 kmap(bvec->bv_page) + bvec->bv_offset,
251 bvec->bv_len, pos);
252 kunmap(bvec->bv_page);
253 cond_resched();
254 return bw;
255 }
256
257 /**
258 * do_lo_send_write - helper for writing data to a loop device
259 *
260 * This is the slow, transforming version that needs to double buffer the
261 * data as it cannot do the transformations in place without having direct
262 * access to the destination pages of the backing file.
263 */
264 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
265 loff_t pos, struct page *page)
266 {
267 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
268 bvec->bv_offset, bvec->bv_len, pos >> 9);
269 if (likely(!ret))
270 return __do_lo_send_write(lo->lo_backing_file,
271 page_address(page), bvec->bv_len,
272 pos);
273 printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
274 "length %i.\n", (unsigned long long)pos, bvec->bv_len);
275 if (ret > 0)
276 ret = -EIO;
277 return ret;
278 }
279
280 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
281 {
282 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
283 struct page *page);
284 struct bio_vec *bvec;
285 struct page *page = NULL;
286 int i, ret = 0;
287
288 if (lo->transfer != transfer_none) {
289 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
290 if (unlikely(!page))
291 goto fail;
292 kmap(page);
293 do_lo_send = do_lo_send_write;
294 } else {
295 do_lo_send = do_lo_send_direct_write;
296 }
297
298 bio_for_each_segment(bvec, bio, i) {
299 ret = do_lo_send(lo, bvec, pos, page);
300 if (ret < 0)
301 break;
302 pos += bvec->bv_len;
303 }
304 if (page) {
305 kunmap(page);
306 __free_page(page);
307 }
308 out:
309 return ret;
310 fail:
311 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
312 ret = -ENOMEM;
313 goto out;
314 }
315
316 struct lo_read_data {
317 struct loop_device *lo;
318 struct page *page;
319 unsigned offset;
320 int bsize;
321 };
322
323 static int
324 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
325 struct splice_desc *sd)
326 {
327 struct lo_read_data *p = sd->u.data;
328 struct loop_device *lo = p->lo;
329 struct page *page = buf->page;
330 sector_t IV;
331 int size;
332
333 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
334 (buf->offset >> 9);
335 size = sd->len;
336 if (size > p->bsize)
337 size = p->bsize;
338
339 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
340 printk(KERN_ERR "loop: transfer error block %ld\n",
341 page->index);
342 size = -EINVAL;
343 }
344
345 flush_dcache_page(p->page);
346
347 if (size > 0)
348 p->offset += size;
349
350 return size;
351 }
352
353 static int
354 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
355 {
356 return __splice_from_pipe(pipe, sd, lo_splice_actor);
357 }
358
359 static ssize_t
360 do_lo_receive(struct loop_device *lo,
361 struct bio_vec *bvec, int bsize, loff_t pos)
362 {
363 struct lo_read_data cookie;
364 struct splice_desc sd;
365 struct file *file;
366 ssize_t retval;
367
368 cookie.lo = lo;
369 cookie.page = bvec->bv_page;
370 cookie.offset = bvec->bv_offset;
371 cookie.bsize = bsize;
372
373 sd.len = 0;
374 sd.total_len = bvec->bv_len;
375 sd.flags = 0;
376 sd.pos = pos;
377 sd.u.data = &cookie;
378
379 file = lo->lo_backing_file;
380 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
381
382 return retval;
383 }
384
385 static int
386 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
387 {
388 struct bio_vec *bvec;
389 ssize_t s;
390 int i;
391
392 bio_for_each_segment(bvec, bio, i) {
393 s = do_lo_receive(lo, bvec, bsize, pos);
394 if (s < 0)
395 return s;
396
397 if (s != bvec->bv_len) {
398 zero_fill_bio(bio);
399 break;
400 }
401 pos += bvec->bv_len;
402 }
403 return 0;
404 }
405
406 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
407 {
408 loff_t pos;
409 int ret;
410
411 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
412
413 if (bio_rw(bio) == WRITE) {
414 struct file *file = lo->lo_backing_file;
415
416 if (bio->bi_rw & REQ_FLUSH) {
417 ret = vfs_fsync(file, 0);
418 if (unlikely(ret && ret != -EINVAL)) {
419 ret = -EIO;
420 goto out;
421 }
422 }
423
424 /*
425 * We use punch hole to reclaim the free space used by the
426 * image a.k.a. discard. However we do not support discard if
427 * encryption is enabled, because it may give an attacker
428 * useful information.
429 */
430 if (bio->bi_rw & REQ_DISCARD) {
431 struct file *file = lo->lo_backing_file;
432 int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
433
434 if ((!file->f_op->fallocate) ||
435 lo->lo_encrypt_key_size) {
436 ret = -EOPNOTSUPP;
437 goto out;
438 }
439 ret = file->f_op->fallocate(file, mode, pos,
440 bio->bi_size);
441 if (unlikely(ret && ret != -EINVAL &&
442 ret != -EOPNOTSUPP))
443 ret = -EIO;
444 goto out;
445 }
446
447 ret = lo_send(lo, bio, pos);
448
449 if ((bio->bi_rw & REQ_FUA) && !ret) {
450 ret = vfs_fsync(file, 0);
451 if (unlikely(ret && ret != -EINVAL))
452 ret = -EIO;
453 }
454 } else
455 ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
456
457 out:
458 return ret;
459 }
460
461 /*
462 * Add bio to back of pending list
463 */
464 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
465 {
466 bio_list_add(&lo->lo_bio_list, bio);
467 }
468
469 /*
470 * Grab first pending buffer
471 */
472 static struct bio *loop_get_bio(struct loop_device *lo)
473 {
474 return bio_list_pop(&lo->lo_bio_list);
475 }
476
477 static void loop_make_request(struct request_queue *q, struct bio *old_bio)
478 {
479 struct loop_device *lo = q->queuedata;
480 int rw = bio_rw(old_bio);
481
482 if (rw == READA)
483 rw = READ;
484
485 BUG_ON(!lo || (rw != READ && rw != WRITE));
486
487 spin_lock_irq(&lo->lo_lock);
488 if (lo->lo_state != Lo_bound)
489 goto out;
490 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
491 goto out;
492 loop_add_bio(lo, old_bio);
493 wake_up(&lo->lo_event);
494 spin_unlock_irq(&lo->lo_lock);
495 return;
496
497 out:
498 spin_unlock_irq(&lo->lo_lock);
499 bio_io_error(old_bio);
500 }
501
502 struct switch_request {
503 struct file *file;
504 struct completion wait;
505 };
506
507 static void do_loop_switch(struct loop_device *, struct switch_request *);
508
509 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
510 {
511 if (unlikely(!bio->bi_bdev)) {
512 do_loop_switch(lo, bio->bi_private);
513 bio_put(bio);
514 } else {
515 int ret = do_bio_filebacked(lo, bio);
516 bio_endio(bio, ret);
517 }
518 }
519
520 /*
521 * worker thread that handles reads/writes to file backed loop devices,
522 * to avoid blocking in our make_request_fn. it also does loop decrypting
523 * on reads for block backed loop, as that is too heavy to do from
524 * b_end_io context where irqs may be disabled.
525 *
526 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
527 * calling kthread_stop(). Therefore once kthread_should_stop() is
528 * true, make_request will not place any more requests. Therefore
529 * once kthread_should_stop() is true and lo_bio is NULL, we are
530 * done with the loop.
531 */
532 static int loop_thread(void *data)
533 {
534 struct loop_device *lo = data;
535 struct bio *bio;
536
537 set_user_nice(current, -20);
538
539 while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
540
541 wait_event_interruptible(lo->lo_event,
542 !bio_list_empty(&lo->lo_bio_list) ||
543 kthread_should_stop());
544
545 if (bio_list_empty(&lo->lo_bio_list))
546 continue;
547 spin_lock_irq(&lo->lo_lock);
548 bio = loop_get_bio(lo);
549 spin_unlock_irq(&lo->lo_lock);
550
551 BUG_ON(!bio);
552 loop_handle_bio(lo, bio);
553 }
554
555 return 0;
556 }
557
558 /*
559 * loop_switch performs the hard work of switching a backing store.
560 * First it needs to flush existing IO, it does this by sending a magic
561 * BIO down the pipe. The completion of this BIO does the actual switch.
562 */
563 static int loop_switch(struct loop_device *lo, struct file *file)
564 {
565 struct switch_request w;
566 struct bio *bio = bio_alloc(GFP_KERNEL, 0);
567 if (!bio)
568 return -ENOMEM;
569 init_completion(&w.wait);
570 w.file = file;
571 bio->bi_private = &w;
572 bio->bi_bdev = NULL;
573 loop_make_request(lo->lo_queue, bio);
574 wait_for_completion(&w.wait);
575 return 0;
576 }
577
578 /*
579 * Helper to flush the IOs in loop, but keeping loop thread running
580 */
581 static int loop_flush(struct loop_device *lo)
582 {
583 /* loop not yet configured, no running thread, nothing to flush */
584 if (!lo->lo_thread)
585 return 0;
586
587 return loop_switch(lo, NULL);
588 }
589
590 /*
591 * Do the actual switch; called from the BIO completion routine
592 */
593 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
594 {
595 struct file *file = p->file;
596 struct file *old_file = lo->lo_backing_file;
597 struct address_space *mapping;
598
599 /* if no new file, only flush of queued bios requested */
600 if (!file)
601 goto out;
602
603 mapping = file->f_mapping;
604 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
605 lo->lo_backing_file = file;
606 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
607 mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
608 lo->old_gfp_mask = mapping_gfp_mask(mapping);
609 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
610 out:
611 complete(&p->wait);
612 }
613
614
615 /*
616 * loop_change_fd switched the backing store of a loopback device to
617 * a new file. This is useful for operating system installers to free up
618 * the original file and in High Availability environments to switch to
619 * an alternative location for the content in case of server meltdown.
620 * This can only work if the loop device is used read-only, and if the
621 * new backing store is the same size and type as the old backing store.
622 */
623 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
624 unsigned int arg)
625 {
626 struct file *file, *old_file;
627 struct inode *inode;
628 int error;
629
630 error = -ENXIO;
631 if (lo->lo_state != Lo_bound)
632 goto out;
633
634 /* the loop device has to be read-only */
635 error = -EINVAL;
636 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
637 goto out;
638
639 error = -EBADF;
640 file = fget(arg);
641 if (!file)
642 goto out;
643
644 inode = file->f_mapping->host;
645 old_file = lo->lo_backing_file;
646
647 error = -EINVAL;
648
649 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
650 goto out_putf;
651
652 /* size of the new backing store needs to be the same */
653 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
654 goto out_putf;
655
656 /* and ... switch */
657 error = loop_switch(lo, file);
658 if (error)
659 goto out_putf;
660
661 fput(old_file);
662 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
663 ioctl_by_bdev(bdev, BLKRRPART, 0);
664 return 0;
665
666 out_putf:
667 fput(file);
668 out:
669 return error;
670 }
671
672 static inline int is_loop_device(struct file *file)
673 {
674 struct inode *i = file->f_mapping->host;
675
676 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
677 }
678
679 /* loop sysfs attributes */
680
681 static ssize_t loop_attr_show(struct device *dev, char *page,
682 ssize_t (*callback)(struct loop_device *, char *))
683 {
684 struct gendisk *disk = dev_to_disk(dev);
685 struct loop_device *lo = disk->private_data;
686
687 return callback(lo, page);
688 }
689
690 #define LOOP_ATTR_RO(_name) \
691 static ssize_t loop_attr_##_name##_show(struct loop_device *, char *); \
692 static ssize_t loop_attr_do_show_##_name(struct device *d, \
693 struct device_attribute *attr, char *b) \
694 { \
695 return loop_attr_show(d, b, loop_attr_##_name##_show); \
696 } \
697 static struct device_attribute loop_attr_##_name = \
698 __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
699
700 static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
701 {
702 ssize_t ret;
703 char *p = NULL;
704
705 spin_lock_irq(&lo->lo_lock);
706 if (lo->lo_backing_file)
707 p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
708 spin_unlock_irq(&lo->lo_lock);
709
710 if (IS_ERR_OR_NULL(p))
711 ret = PTR_ERR(p);
712 else {
713 ret = strlen(p);
714 memmove(buf, p, ret);
715 buf[ret++] = '\n';
716 buf[ret] = 0;
717 }
718
719 return ret;
720 }
721
722 static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
723 {
724 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
725 }
726
727 static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
728 {
729 return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
730 }
731
732 static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
733 {
734 int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
735
736 return sprintf(buf, "%s\n", autoclear ? "1" : "0");
737 }
738
739 static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
740 {
741 int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
742
743 return sprintf(buf, "%s\n", partscan ? "1" : "0");
744 }
745
746 LOOP_ATTR_RO(backing_file);
747 LOOP_ATTR_RO(offset);
748 LOOP_ATTR_RO(sizelimit);
749 LOOP_ATTR_RO(autoclear);
750 LOOP_ATTR_RO(partscan);
751
752 static struct attribute *loop_attrs[] = {
753 &loop_attr_backing_file.attr,
754 &loop_attr_offset.attr,
755 &loop_attr_sizelimit.attr,
756 &loop_attr_autoclear.attr,
757 &loop_attr_partscan.attr,
758 NULL,
759 };
760
761 static struct attribute_group loop_attribute_group = {
762 .name = "loop",
763 .attrs= loop_attrs,
764 };
765
766 static int loop_sysfs_init(struct loop_device *lo)
767 {
768 return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
769 &loop_attribute_group);
770 }
771
772 static void loop_sysfs_exit(struct loop_device *lo)
773 {
774 sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
775 &loop_attribute_group);
776 }
777
778 static void loop_config_discard(struct loop_device *lo)
779 {
780 struct file *file = lo->lo_backing_file;
781 struct inode *inode = file->f_mapping->host;
782 struct request_queue *q = lo->lo_queue;
783
784 /*
785 * We use punch hole to reclaim the free space used by the
786 * image a.k.a. discard. However we do support discard if
787 * encryption is enabled, because it may give an attacker
788 * useful information.
789 */
790 if ((!file->f_op->fallocate) ||
791 lo->lo_encrypt_key_size) {
792 q->limits.discard_granularity = 0;
793 q->limits.discard_alignment = 0;
794 q->limits.max_discard_sectors = 0;
795 q->limits.discard_zeroes_data = 0;
796 queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
797 return;
798 }
799
800 q->limits.discard_granularity = inode->i_sb->s_blocksize;
801 q->limits.discard_alignment = 0;
802 q->limits.max_discard_sectors = UINT_MAX >> 9;
803 q->limits.discard_zeroes_data = 1;
804 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
805 }
806
807 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
808 struct block_device *bdev, unsigned int arg)
809 {
810 struct file *file, *f;
811 struct inode *inode;
812 struct address_space *mapping;
813 unsigned lo_blocksize;
814 int lo_flags = 0;
815 int error;
816 loff_t size;
817
818 /* This is safe, since we have a reference from open(). */
819 __module_get(THIS_MODULE);
820
821 error = -EBADF;
822 file = fget(arg);
823 if (!file)
824 goto out;
825
826 error = -EBUSY;
827 if (lo->lo_state != Lo_unbound)
828 goto out_putf;
829
830 /* Avoid recursion */
831 f = file;
832 while (is_loop_device(f)) {
833 struct loop_device *l;
834
835 if (f->f_mapping->host->i_bdev == bdev)
836 goto out_putf;
837
838 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
839 if (l->lo_state == Lo_unbound) {
840 error = -EINVAL;
841 goto out_putf;
842 }
843 f = l->lo_backing_file;
844 }
845
846 mapping = file->f_mapping;
847 inode = mapping->host;
848
849 error = -EINVAL;
850 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
851 goto out_putf;
852
853 if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
854 !file->f_op->write)
855 lo_flags |= LO_FLAGS_READ_ONLY;
856
857 lo_blocksize = S_ISBLK(inode->i_mode) ?
858 inode->i_bdev->bd_block_size : PAGE_SIZE;
859
860 error = -EFBIG;
861 size = get_loop_size(lo, file);
862 if ((loff_t)(sector_t)size != size)
863 goto out_putf;
864
865 error = 0;
866
867 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
868
869 lo->lo_blocksize = lo_blocksize;
870 lo->lo_device = bdev;
871 lo->lo_flags = lo_flags;
872 lo->lo_backing_file = file;
873 lo->transfer = transfer_none;
874 lo->ioctl = NULL;
875 lo->lo_sizelimit = 0;
876 lo->old_gfp_mask = mapping_gfp_mask(mapping);
877 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
878
879 bio_list_init(&lo->lo_bio_list);
880
881 /*
882 * set queue make_request_fn, and add limits based on lower level
883 * device
884 */
885 blk_queue_make_request(lo->lo_queue, loop_make_request);
886 lo->lo_queue->queuedata = lo;
887
888 if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
889 blk_queue_flush(lo->lo_queue, REQ_FLUSH);
890
891 set_capacity(lo->lo_disk, size);
892 bd_set_size(bdev, size << 9);
893 loop_sysfs_init(lo);
894 /* let user-space know about the new size */
895 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
896
897 set_blocksize(bdev, lo_blocksize);
898
899 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
900 lo->lo_number);
901 if (IS_ERR(lo->lo_thread)) {
902 error = PTR_ERR(lo->lo_thread);
903 goto out_clr;
904 }
905 lo->lo_state = Lo_bound;
906 wake_up_process(lo->lo_thread);
907 if (part_shift)
908 lo->lo_flags |= LO_FLAGS_PARTSCAN;
909 if (lo->lo_flags & LO_FLAGS_PARTSCAN)
910 ioctl_by_bdev(bdev, BLKRRPART, 0);
911 return 0;
912
913 out_clr:
914 loop_sysfs_exit(lo);
915 lo->lo_thread = NULL;
916 lo->lo_device = NULL;
917 lo->lo_backing_file = NULL;
918 lo->lo_flags = 0;
919 set_capacity(lo->lo_disk, 0);
920 invalidate_bdev(bdev);
921 bd_set_size(bdev, 0);
922 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
923 mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
924 lo->lo_state = Lo_unbound;
925 out_putf:
926 fput(file);
927 out:
928 /* This is safe: open() is still holding a reference. */
929 module_put(THIS_MODULE);
930 return error;
931 }
932
933 static int
934 loop_release_xfer(struct loop_device *lo)
935 {
936 int err = 0;
937 struct loop_func_table *xfer = lo->lo_encryption;
938
939 if (xfer) {
940 if (xfer->release)
941 err = xfer->release(lo);
942 lo->transfer = NULL;
943 lo->lo_encryption = NULL;
944 module_put(xfer->owner);
945 }
946 return err;
947 }
948
949 static int
950 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
951 const struct loop_info64 *i)
952 {
953 int err = 0;
954
955 if (xfer) {
956 struct module *owner = xfer->owner;
957
958 if (!try_module_get(owner))
959 return -EINVAL;
960 if (xfer->init)
961 err = xfer->init(lo, i);
962 if (err)
963 module_put(owner);
964 else
965 lo->lo_encryption = xfer;
966 }
967 return err;
968 }
969
970 static int loop_clr_fd(struct loop_device *lo)
971 {
972 struct file *filp = lo->lo_backing_file;
973 gfp_t gfp = lo->old_gfp_mask;
974 struct block_device *bdev = lo->lo_device;
975
976 if (lo->lo_state != Lo_bound)
977 return -ENXIO;
978
979 /*
980 * If we've explicitly asked to tear down the loop device,
981 * and it has an elevated reference count, set it for auto-teardown when
982 * the last reference goes away. This stops $!~#$@ udev from
983 * preventing teardown because it decided that it needs to run blkid on
984 * the loopback device whenever they appear. xfstests is notorious for
985 * failing tests because blkid via udev races with a losetup
986 * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
987 * command to fail with EBUSY.
988 */
989 if (lo->lo_refcnt > 1) {
990 lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
991 mutex_unlock(&lo->lo_ctl_mutex);
992 return 0;
993 }
994
995 if (filp == NULL)
996 return -EINVAL;
997
998 spin_lock_irq(&lo->lo_lock);
999 lo->lo_state = Lo_rundown;
1000 spin_unlock_irq(&lo->lo_lock);
1001
1002 kthread_stop(lo->lo_thread);
1003
1004 spin_lock_irq(&lo->lo_lock);
1005 lo->lo_backing_file = NULL;
1006 spin_unlock_irq(&lo->lo_lock);
1007
1008 loop_release_xfer(lo);
1009 lo->transfer = NULL;
1010 lo->ioctl = NULL;
1011 lo->lo_device = NULL;
1012 lo->lo_encryption = NULL;
1013 lo->lo_offset = 0;
1014 lo->lo_sizelimit = 0;
1015 lo->lo_encrypt_key_size = 0;
1016 lo->lo_thread = NULL;
1017 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1018 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1019 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1020 if (bdev)
1021 invalidate_bdev(bdev);
1022 set_capacity(lo->lo_disk, 0);
1023 loop_sysfs_exit(lo);
1024 if (bdev) {
1025 bd_set_size(bdev, 0);
1026 /* let user-space know about this change */
1027 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1028 }
1029 mapping_set_gfp_mask(filp->f_mapping, gfp);
1030 lo->lo_state = Lo_unbound;
1031 /* This is safe: open() is still holding a reference. */
1032 module_put(THIS_MODULE);
1033 if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1034 ioctl_by_bdev(bdev, BLKRRPART, 0);
1035 lo->lo_flags = 0;
1036 if (!part_shift)
1037 lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1038 mutex_unlock(&lo->lo_ctl_mutex);
1039 /*
1040 * Need not hold lo_ctl_mutex to fput backing file.
1041 * Calling fput holding lo_ctl_mutex triggers a circular
1042 * lock dependency possibility warning as fput can take
1043 * bd_mutex which is usually taken before lo_ctl_mutex.
1044 */
1045 fput(filp);
1046 return 0;
1047 }
1048
1049 static int
1050 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1051 {
1052 int err;
1053 struct loop_func_table *xfer;
1054 kuid_t uid = current_uid();
1055
1056 if (lo->lo_encrypt_key_size &&
1057 !uid_eq(lo->lo_key_owner, uid) &&
1058 !capable(CAP_SYS_ADMIN))
1059 return -EPERM;
1060 if (lo->lo_state != Lo_bound)
1061 return -ENXIO;
1062 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1063 return -EINVAL;
1064
1065 err = loop_release_xfer(lo);
1066 if (err)
1067 return err;
1068
1069 if (info->lo_encrypt_type) {
1070 unsigned int type = info->lo_encrypt_type;
1071
1072 if (type >= MAX_LO_CRYPT)
1073 return -EINVAL;
1074 xfer = xfer_funcs[type];
1075 if (xfer == NULL)
1076 return -EINVAL;
1077 } else
1078 xfer = NULL;
1079
1080 err = loop_init_xfer(lo, xfer, info);
1081 if (err)
1082 return err;
1083
1084 if (lo->lo_offset != info->lo_offset ||
1085 lo->lo_sizelimit != info->lo_sizelimit) {
1086 if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
1087 return -EFBIG;
1088 }
1089 loop_config_discard(lo);
1090
1091 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1092 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1093 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1094 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1095
1096 if (!xfer)
1097 xfer = &none_funcs;
1098 lo->transfer = xfer->transfer;
1099 lo->ioctl = xfer->ioctl;
1100
1101 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1102 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1103 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1104
1105 if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
1106 !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1107 lo->lo_flags |= LO_FLAGS_PARTSCAN;
1108 lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1109 ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
1110 }
1111
1112 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1113 lo->lo_init[0] = info->lo_init[0];
1114 lo->lo_init[1] = info->lo_init[1];
1115 if (info->lo_encrypt_key_size) {
1116 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1117 info->lo_encrypt_key_size);
1118 lo->lo_key_owner = uid;
1119 }
1120
1121 return 0;
1122 }
1123
1124 static int
1125 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1126 {
1127 struct file *file = lo->lo_backing_file;
1128 struct kstat stat;
1129 int error;
1130
1131 if (lo->lo_state != Lo_bound)
1132 return -ENXIO;
1133 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1134 if (error)
1135 return error;
1136 memset(info, 0, sizeof(*info));
1137 info->lo_number = lo->lo_number;
1138 info->lo_device = huge_encode_dev(stat.dev);
1139 info->lo_inode = stat.ino;
1140 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1141 info->lo_offset = lo->lo_offset;
1142 info->lo_sizelimit = lo->lo_sizelimit;
1143 info->lo_flags = lo->lo_flags;
1144 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1145 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1146 info->lo_encrypt_type =
1147 lo->lo_encryption ? lo->lo_encryption->number : 0;
1148 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1149 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1150 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1151 lo->lo_encrypt_key_size);
1152 }
1153 return 0;
1154 }
1155
1156 static void
1157 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1158 {
1159 memset(info64, 0, sizeof(*info64));
1160 info64->lo_number = info->lo_number;
1161 info64->lo_device = info->lo_device;
1162 info64->lo_inode = info->lo_inode;
1163 info64->lo_rdevice = info->lo_rdevice;
1164 info64->lo_offset = info->lo_offset;
1165 info64->lo_sizelimit = 0;
1166 info64->lo_encrypt_type = info->lo_encrypt_type;
1167 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1168 info64->lo_flags = info->lo_flags;
1169 info64->lo_init[0] = info->lo_init[0];
1170 info64->lo_init[1] = info->lo_init[1];
1171 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1172 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1173 else
1174 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1175 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1176 }
1177
1178 static int
1179 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1180 {
1181 memset(info, 0, sizeof(*info));
1182 info->lo_number = info64->lo_number;
1183 info->lo_device = info64->lo_device;
1184 info->lo_inode = info64->lo_inode;
1185 info->lo_rdevice = info64->lo_rdevice;
1186 info->lo_offset = info64->lo_offset;
1187 info->lo_encrypt_type = info64->lo_encrypt_type;
1188 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1189 info->lo_flags = info64->lo_flags;
1190 info->lo_init[0] = info64->lo_init[0];
1191 info->lo_init[1] = info64->lo_init[1];
1192 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1193 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1194 else
1195 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1196 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1197
1198 /* error in case values were truncated */
1199 if (info->lo_device != info64->lo_device ||
1200 info->lo_rdevice != info64->lo_rdevice ||
1201 info->lo_inode != info64->lo_inode ||
1202 info->lo_offset != info64->lo_offset)
1203 return -EOVERFLOW;
1204
1205 return 0;
1206 }
1207
1208 static int
1209 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1210 {
1211 struct loop_info info;
1212 struct loop_info64 info64;
1213
1214 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1215 return -EFAULT;
1216 loop_info64_from_old(&info, &info64);
1217 return loop_set_status(lo, &info64);
1218 }
1219
1220 static int
1221 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1222 {
1223 struct loop_info64 info64;
1224
1225 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1226 return -EFAULT;
1227 return loop_set_status(lo, &info64);
1228 }
1229
1230 static int
1231 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1232 struct loop_info info;
1233 struct loop_info64 info64;
1234 int err = 0;
1235
1236 if (!arg)
1237 err = -EINVAL;
1238 if (!err)
1239 err = loop_get_status(lo, &info64);
1240 if (!err)
1241 err = loop_info64_to_old(&info64, &info);
1242 if (!err && copy_to_user(arg, &info, sizeof(info)))
1243 err = -EFAULT;
1244
1245 return err;
1246 }
1247
1248 static int
1249 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1250 struct loop_info64 info64;
1251 int err = 0;
1252
1253 if (!arg)
1254 err = -EINVAL;
1255 if (!err)
1256 err = loop_get_status(lo, &info64);
1257 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1258 err = -EFAULT;
1259
1260 return err;
1261 }
1262
1263 static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1264 {
1265 int err;
1266 sector_t sec;
1267 loff_t sz;
1268
1269 err = -ENXIO;
1270 if (unlikely(lo->lo_state != Lo_bound))
1271 goto out;
1272 err = figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1273 if (unlikely(err))
1274 goto out;
1275 sec = get_capacity(lo->lo_disk);
1276 /* the width of sector_t may be narrow for bit-shift */
1277 sz = sec;
1278 sz <<= 9;
1279 mutex_lock(&bdev->bd_mutex);
1280 bd_set_size(bdev, sz);
1281 /* let user-space know about the new size */
1282 kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1283 mutex_unlock(&bdev->bd_mutex);
1284
1285 out:
1286 return err;
1287 }
1288
1289 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1290 unsigned int cmd, unsigned long arg)
1291 {
1292 struct loop_device *lo = bdev->bd_disk->private_data;
1293 int err;
1294
1295 mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1296 switch (cmd) {
1297 case LOOP_SET_FD:
1298 err = loop_set_fd(lo, mode, bdev, arg);
1299 break;
1300 case LOOP_CHANGE_FD:
1301 err = loop_change_fd(lo, bdev, arg);
1302 break;
1303 case LOOP_CLR_FD:
1304 /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1305 err = loop_clr_fd(lo);
1306 if (!err)
1307 goto out_unlocked;
1308 break;
1309 case LOOP_SET_STATUS:
1310 err = -EPERM;
1311 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1312 err = loop_set_status_old(lo,
1313 (struct loop_info __user *)arg);
1314 break;
1315 case LOOP_GET_STATUS:
1316 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1317 break;
1318 case LOOP_SET_STATUS64:
1319 err = -EPERM;
1320 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1321 err = loop_set_status64(lo,
1322 (struct loop_info64 __user *) arg);
1323 break;
1324 case LOOP_GET_STATUS64:
1325 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1326 break;
1327 case LOOP_SET_CAPACITY:
1328 err = -EPERM;
1329 if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1330 err = loop_set_capacity(lo, bdev);
1331 break;
1332 default:
1333 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1334 }
1335 mutex_unlock(&lo->lo_ctl_mutex);
1336
1337 out_unlocked:
1338 return err;
1339 }
1340
1341 #ifdef CONFIG_COMPAT
1342 struct compat_loop_info {
1343 compat_int_t lo_number; /* ioctl r/o */
1344 compat_dev_t lo_device; /* ioctl r/o */
1345 compat_ulong_t lo_inode; /* ioctl r/o */
1346 compat_dev_t lo_rdevice; /* ioctl r/o */
1347 compat_int_t lo_offset;
1348 compat_int_t lo_encrypt_type;
1349 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1350 compat_int_t lo_flags; /* ioctl r/o */
1351 char lo_name[LO_NAME_SIZE];
1352 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1353 compat_ulong_t lo_init[2];
1354 char reserved[4];
1355 };
1356
1357 /*
1358 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1359 * - noinlined to reduce stack space usage in main part of driver
1360 */
1361 static noinline int
1362 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1363 struct loop_info64 *info64)
1364 {
1365 struct compat_loop_info info;
1366
1367 if (copy_from_user(&info, arg, sizeof(info)))
1368 return -EFAULT;
1369
1370 memset(info64, 0, sizeof(*info64));
1371 info64->lo_number = info.lo_number;
1372 info64->lo_device = info.lo_device;
1373 info64->lo_inode = info.lo_inode;
1374 info64->lo_rdevice = info.lo_rdevice;
1375 info64->lo_offset = info.lo_offset;
1376 info64->lo_sizelimit = 0;
1377 info64->lo_encrypt_type = info.lo_encrypt_type;
1378 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1379 info64->lo_flags = info.lo_flags;
1380 info64->lo_init[0] = info.lo_init[0];
1381 info64->lo_init[1] = info.lo_init[1];
1382 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1383 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1384 else
1385 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1386 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1387 return 0;
1388 }
1389
1390 /*
1391 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1392 * - noinlined to reduce stack space usage in main part of driver
1393 */
1394 static noinline int
1395 loop_info64_to_compat(const struct loop_info64 *info64,
1396 struct compat_loop_info __user *arg)
1397 {
1398 struct compat_loop_info info;
1399
1400 memset(&info, 0, sizeof(info));
1401 info.lo_number = info64->lo_number;
1402 info.lo_device = info64->lo_device;
1403 info.lo_inode = info64->lo_inode;
1404 info.lo_rdevice = info64->lo_rdevice;
1405 info.lo_offset = info64->lo_offset;
1406 info.lo_encrypt_type = info64->lo_encrypt_type;
1407 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1408 info.lo_flags = info64->lo_flags;
1409 info.lo_init[0] = info64->lo_init[0];
1410 info.lo_init[1] = info64->lo_init[1];
1411 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1412 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1413 else
1414 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1415 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1416
1417 /* error in case values were truncated */
1418 if (info.lo_device != info64->lo_device ||
1419 info.lo_rdevice != info64->lo_rdevice ||
1420 info.lo_inode != info64->lo_inode ||
1421 info.lo_offset != info64->lo_offset ||
1422 info.lo_init[0] != info64->lo_init[0] ||
1423 info.lo_init[1] != info64->lo_init[1])
1424 return -EOVERFLOW;
1425
1426 if (copy_to_user(arg, &info, sizeof(info)))
1427 return -EFAULT;
1428 return 0;
1429 }
1430
1431 static int
1432 loop_set_status_compat(struct loop_device *lo,
1433 const struct compat_loop_info __user *arg)
1434 {
1435 struct loop_info64 info64;
1436 int ret;
1437
1438 ret = loop_info64_from_compat(arg, &info64);
1439 if (ret < 0)
1440 return ret;
1441 return loop_set_status(lo, &info64);
1442 }
1443
1444 static int
1445 loop_get_status_compat(struct loop_device *lo,
1446 struct compat_loop_info __user *arg)
1447 {
1448 struct loop_info64 info64;
1449 int err = 0;
1450
1451 if (!arg)
1452 err = -EINVAL;
1453 if (!err)
1454 err = loop_get_status(lo, &info64);
1455 if (!err)
1456 err = loop_info64_to_compat(&info64, arg);
1457 return err;
1458 }
1459
1460 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1461 unsigned int cmd, unsigned long arg)
1462 {
1463 struct loop_device *lo = bdev->bd_disk->private_data;
1464 int err;
1465
1466 switch(cmd) {
1467 case LOOP_SET_STATUS:
1468 mutex_lock(&lo->lo_ctl_mutex);
1469 err = loop_set_status_compat(
1470 lo, (const struct compat_loop_info __user *) arg);
1471 mutex_unlock(&lo->lo_ctl_mutex);
1472 break;
1473 case LOOP_GET_STATUS:
1474 mutex_lock(&lo->lo_ctl_mutex);
1475 err = loop_get_status_compat(
1476 lo, (struct compat_loop_info __user *) arg);
1477 mutex_unlock(&lo->lo_ctl_mutex);
1478 break;
1479 case LOOP_SET_CAPACITY:
1480 case LOOP_CLR_FD:
1481 case LOOP_GET_STATUS64:
1482 case LOOP_SET_STATUS64:
1483 arg = (unsigned long) compat_ptr(arg);
1484 case LOOP_SET_FD:
1485 case LOOP_CHANGE_FD:
1486 err = lo_ioctl(bdev, mode, cmd, arg);
1487 break;
1488 default:
1489 err = -ENOIOCTLCMD;
1490 break;
1491 }
1492 return err;
1493 }
1494 #endif
1495
1496 static int lo_open(struct block_device *bdev, fmode_t mode)
1497 {
1498 struct loop_device *lo;
1499 int err = 0;
1500
1501 mutex_lock(&loop_index_mutex);
1502 lo = bdev->bd_disk->private_data;
1503 if (!lo) {
1504 err = -ENXIO;
1505 goto out;
1506 }
1507
1508 mutex_lock(&lo->lo_ctl_mutex);
1509 lo->lo_refcnt++;
1510 mutex_unlock(&lo->lo_ctl_mutex);
1511 out:
1512 mutex_unlock(&loop_index_mutex);
1513 return err;
1514 }
1515
1516 static int lo_release(struct gendisk *disk, fmode_t mode)
1517 {
1518 struct loop_device *lo = disk->private_data;
1519 int err;
1520
1521 mutex_lock(&lo->lo_ctl_mutex);
1522
1523 if (--lo->lo_refcnt)
1524 goto out;
1525
1526 if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1527 /*
1528 * In autoclear mode, stop the loop thread
1529 * and remove configuration after last close.
1530 */
1531 err = loop_clr_fd(lo);
1532 if (!err)
1533 goto out_unlocked;
1534 } else {
1535 /*
1536 * Otherwise keep thread (if running) and config,
1537 * but flush possible ongoing bios in thread.
1538 */
1539 loop_flush(lo);
1540 }
1541
1542 out:
1543 mutex_unlock(&lo->lo_ctl_mutex);
1544 out_unlocked:
1545 return 0;
1546 }
1547
1548 static const struct block_device_operations lo_fops = {
1549 .owner = THIS_MODULE,
1550 .open = lo_open,
1551 .release = lo_release,
1552 .ioctl = lo_ioctl,
1553 #ifdef CONFIG_COMPAT
1554 .compat_ioctl = lo_compat_ioctl,
1555 #endif
1556 };
1557
1558 /*
1559 * And now the modules code and kernel interface.
1560 */
1561 static int max_loop;
1562 module_param(max_loop, int, S_IRUGO);
1563 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1564 module_param(max_part, int, S_IRUGO);
1565 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1566 MODULE_LICENSE("GPL");
1567 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1568
1569 int loop_register_transfer(struct loop_func_table *funcs)
1570 {
1571 unsigned int n = funcs->number;
1572
1573 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1574 return -EINVAL;
1575 xfer_funcs[n] = funcs;
1576 return 0;
1577 }
1578
1579 static int unregister_transfer_cb(int id, void *ptr, void *data)
1580 {
1581 struct loop_device *lo = ptr;
1582 struct loop_func_table *xfer = data;
1583
1584 mutex_lock(&lo->lo_ctl_mutex);
1585 if (lo->lo_encryption == xfer)
1586 loop_release_xfer(lo);
1587 mutex_unlock(&lo->lo_ctl_mutex);
1588 return 0;
1589 }
1590
1591 int loop_unregister_transfer(int number)
1592 {
1593 unsigned int n = number;
1594 struct loop_func_table *xfer;
1595
1596 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1597 return -EINVAL;
1598
1599 xfer_funcs[n] = NULL;
1600 idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1601 return 0;
1602 }
1603
1604 EXPORT_SYMBOL(loop_register_transfer);
1605 EXPORT_SYMBOL(loop_unregister_transfer);
1606
1607 static int loop_add(struct loop_device **l, int i)
1608 {
1609 struct loop_device *lo;
1610 struct gendisk *disk;
1611 int err;
1612
1613 err = -ENOMEM;
1614 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1615 if (!lo)
1616 goto out;
1617
1618 if (!idr_pre_get(&loop_index_idr, GFP_KERNEL))
1619 goto out_free_dev;
1620
1621 if (i >= 0) {
1622 int m;
1623
1624 /* create specific i in the index */
1625 err = idr_get_new_above(&loop_index_idr, lo, i, &m);
1626 if (err >= 0 && i != m) {
1627 idr_remove(&loop_index_idr, m);
1628 err = -EEXIST;
1629 }
1630 } else if (i == -1) {
1631 int m;
1632
1633 /* get next free nr */
1634 err = idr_get_new(&loop_index_idr, lo, &m);
1635 if (err >= 0)
1636 i = m;
1637 } else {
1638 err = -EINVAL;
1639 }
1640 if (err < 0)
1641 goto out_free_dev;
1642
1643 lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1644 if (!lo->lo_queue)
1645 goto out_free_dev;
1646
1647 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1648 if (!disk)
1649 goto out_free_queue;
1650
1651 /*
1652 * Disable partition scanning by default. The in-kernel partition
1653 * scanning can be requested individually per-device during its
1654 * setup. Userspace can always add and remove partitions from all
1655 * devices. The needed partition minors are allocated from the
1656 * extended minor space, the main loop device numbers will continue
1657 * to match the loop minors, regardless of the number of partitions
1658 * used.
1659 *
1660 * If max_part is given, partition scanning is globally enabled for
1661 * all loop devices. The minors for the main loop devices will be
1662 * multiples of max_part.
1663 *
1664 * Note: Global-for-all-devices, set-only-at-init, read-only module
1665 * parameteters like 'max_loop' and 'max_part' make things needlessly
1666 * complicated, are too static, inflexible and may surprise
1667 * userspace tools. Parameters like this in general should be avoided.
1668 */
1669 if (!part_shift)
1670 disk->flags |= GENHD_FL_NO_PART_SCAN;
1671 disk->flags |= GENHD_FL_EXT_DEVT;
1672 mutex_init(&lo->lo_ctl_mutex);
1673 lo->lo_number = i;
1674 lo->lo_thread = NULL;
1675 init_waitqueue_head(&lo->lo_event);
1676 spin_lock_init(&lo->lo_lock);
1677 disk->major = LOOP_MAJOR;
1678 disk->first_minor = i << part_shift;
1679 disk->fops = &lo_fops;
1680 disk->private_data = lo;
1681 disk->queue = lo->lo_queue;
1682 sprintf(disk->disk_name, "loop%d", i);
1683 add_disk(disk);
1684 *l = lo;
1685 return lo->lo_number;
1686
1687 out_free_queue:
1688 blk_cleanup_queue(lo->lo_queue);
1689 out_free_dev:
1690 kfree(lo);
1691 out:
1692 return err;
1693 }
1694
1695 static void loop_remove(struct loop_device *lo)
1696 {
1697 del_gendisk(lo->lo_disk);
1698 blk_cleanup_queue(lo->lo_queue);
1699 put_disk(lo->lo_disk);
1700 kfree(lo);
1701 }
1702
1703 static int find_free_cb(int id, void *ptr, void *data)
1704 {
1705 struct loop_device *lo = ptr;
1706 struct loop_device **l = data;
1707
1708 if (lo->lo_state == Lo_unbound) {
1709 *l = lo;
1710 return 1;
1711 }
1712 return 0;
1713 }
1714
1715 static int loop_lookup(struct loop_device **l, int i)
1716 {
1717 struct loop_device *lo;
1718 int ret = -ENODEV;
1719
1720 if (i < 0) {
1721 int err;
1722
1723 err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1724 if (err == 1) {
1725 *l = lo;
1726 ret = lo->lo_number;
1727 }
1728 goto out;
1729 }
1730
1731 /* lookup and return a specific i */
1732 lo = idr_find(&loop_index_idr, i);
1733 if (lo) {
1734 *l = lo;
1735 ret = lo->lo_number;
1736 }
1737 out:
1738 return ret;
1739 }
1740
1741 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1742 {
1743 struct loop_device *lo;
1744 struct kobject *kobj;
1745 int err;
1746
1747 mutex_lock(&loop_index_mutex);
1748 err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1749 if (err < 0)
1750 err = loop_add(&lo, MINOR(dev) >> part_shift);
1751 if (err < 0)
1752 kobj = ERR_PTR(err);
1753 else
1754 kobj = get_disk(lo->lo_disk);
1755 mutex_unlock(&loop_index_mutex);
1756
1757 *part = 0;
1758 return kobj;
1759 }
1760
1761 static long loop_control_ioctl(struct file *file, unsigned int cmd,
1762 unsigned long parm)
1763 {
1764 struct loop_device *lo;
1765 int ret = -ENOSYS;
1766
1767 mutex_lock(&loop_index_mutex);
1768 switch (cmd) {
1769 case LOOP_CTL_ADD:
1770 ret = loop_lookup(&lo, parm);
1771 if (ret >= 0) {
1772 ret = -EEXIST;
1773 break;
1774 }
1775 ret = loop_add(&lo, parm);
1776 break;
1777 case LOOP_CTL_REMOVE:
1778 ret = loop_lookup(&lo, parm);
1779 if (ret < 0)
1780 break;
1781 mutex_lock(&lo->lo_ctl_mutex);
1782 if (lo->lo_state != Lo_unbound) {
1783 ret = -EBUSY;
1784 mutex_unlock(&lo->lo_ctl_mutex);
1785 break;
1786 }
1787 if (lo->lo_refcnt > 0) {
1788 ret = -EBUSY;
1789 mutex_unlock(&lo->lo_ctl_mutex);
1790 break;
1791 }
1792 lo->lo_disk->private_data = NULL;
1793 mutex_unlock(&lo->lo_ctl_mutex);
1794 idr_remove(&loop_index_idr, lo->lo_number);
1795 loop_remove(lo);
1796 break;
1797 case LOOP_CTL_GET_FREE:
1798 ret = loop_lookup(&lo, -1);
1799 if (ret >= 0)
1800 break;
1801 ret = loop_add(&lo, -1);
1802 }
1803 mutex_unlock(&loop_index_mutex);
1804
1805 return ret;
1806 }
1807
1808 static const struct file_operations loop_ctl_fops = {
1809 .open = nonseekable_open,
1810 .unlocked_ioctl = loop_control_ioctl,
1811 .compat_ioctl = loop_control_ioctl,
1812 .owner = THIS_MODULE,
1813 .llseek = noop_llseek,
1814 };
1815
1816 static struct miscdevice loop_misc = {
1817 .minor = LOOP_CTRL_MINOR,
1818 .name = "loop-control",
1819 .fops = &loop_ctl_fops,
1820 };
1821
1822 MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1823 MODULE_ALIAS("devname:loop-control");
1824
1825 static int __init loop_init(void)
1826 {
1827 int i, nr;
1828 unsigned long range;
1829 struct loop_device *lo;
1830 int err;
1831
1832 err = misc_register(&loop_misc);
1833 if (err < 0)
1834 return err;
1835
1836 part_shift = 0;
1837 if (max_part > 0) {
1838 part_shift = fls(max_part);
1839
1840 /*
1841 * Adjust max_part according to part_shift as it is exported
1842 * to user space so that user can decide correct minor number
1843 * if [s]he want to create more devices.
1844 *
1845 * Note that -1 is required because partition 0 is reserved
1846 * for the whole disk.
1847 */
1848 max_part = (1UL << part_shift) - 1;
1849 }
1850
1851 if ((1UL << part_shift) > DISK_MAX_PARTS)
1852 return -EINVAL;
1853
1854 if (max_loop > 1UL << (MINORBITS - part_shift))
1855 return -EINVAL;
1856
1857 /*
1858 * If max_loop is specified, create that many devices upfront.
1859 * This also becomes a hard limit. If max_loop is not specified,
1860 * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1861 * init time. Loop devices can be requested on-demand with the
1862 * /dev/loop-control interface, or be instantiated by accessing
1863 * a 'dead' device node.
1864 */
1865 if (max_loop) {
1866 nr = max_loop;
1867 range = max_loop << part_shift;
1868 } else {
1869 nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1870 range = 1UL << MINORBITS;
1871 }
1872
1873 if (register_blkdev(LOOP_MAJOR, "loop"))
1874 return -EIO;
1875
1876 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1877 THIS_MODULE, loop_probe, NULL, NULL);
1878
1879 /* pre-create number of devices given by config or max_loop */
1880 mutex_lock(&loop_index_mutex);
1881 for (i = 0; i < nr; i++)
1882 loop_add(&lo, i);
1883 mutex_unlock(&loop_index_mutex);
1884
1885 printk(KERN_INFO "loop: module loaded\n");
1886 return 0;
1887 }
1888
1889 static int loop_exit_cb(int id, void *ptr, void *data)
1890 {
1891 struct loop_device *lo = ptr;
1892
1893 loop_remove(lo);
1894 return 0;
1895 }
1896
1897 static void __exit loop_exit(void)
1898 {
1899 unsigned long range;
1900
1901 range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1902
1903 idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1904 idr_remove_all(&loop_index_idr);
1905 idr_destroy(&loop_index_idr);
1906
1907 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1908 unregister_blkdev(LOOP_MAJOR, "loop");
1909
1910 misc_deregister(&loop_misc);
1911 }
1912
1913 module_init(loop_init);
1914 module_exit(loop_exit);
1915
1916 #ifndef MODULE
1917 static int __init max_loop_setup(char *str)
1918 {
1919 max_loop = simple_strtol(str, NULL, 0);
1920 return 1;
1921 }
1922
1923 __setup("max_loop=", max_loop_setup);
1924 #endif