alpha: remove dead BIO_VMERGE_BOUNDARY
[GitHub/exynos8895/android_kernel_samsung_universal8895.git] / drivers / block / loop.c
1 /*
2 * linux/drivers/block/loop.c
3 *
4 * Written by Theodore Ts'o, 3/29/93
5 *
6 * Copyright 1993 by Theodore Ts'o. Redistribution of this file is
7 * permitted under the GNU General Public License.
8 *
9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
11 *
12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
14 *
15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
16 *
17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
18 *
19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
20 *
21 * Loadable modules and other fixes by AK, 1998
22 *
23 * Make real block number available to downstream transfer functions, enables
24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
25 * Reed H. Petty, rhp@draper.net
26 *
27 * Maximum number of loop devices now dynamic via max_loop module parameter.
28 * Russell Kroll <rkroll@exploits.org> 19990701
29 *
30 * Maximum number of loop devices when compiled-in now selectable by passing
31 * max_loop=<1-255> to the kernel on boot.
32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
33 *
34 * Completely rewrite request handling to be make_request_fn style and
35 * non blocking, pushing work to a helper thread. Lots of fixes from
36 * Al Viro too.
37 * Jens Axboe <axboe@suse.de>, Nov 2000
38 *
39 * Support up to 256 loop devices
40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
41 *
42 * Support for falling back on the write file operation when the address space
43 * operations write_begin is not available on the backing filesystem.
44 * Anton Altaparmakov, 16 Feb 2005
45 *
46 * Still To Fix:
47 * - Advisory locking is ignored here.
48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
49 *
50 */
51
52 #include <linux/module.h>
53 #include <linux/moduleparam.h>
54 #include <linux/sched.h>
55 #include <linux/fs.h>
56 #include <linux/file.h>
57 #include <linux/stat.h>
58 #include <linux/errno.h>
59 #include <linux/major.h>
60 #include <linux/wait.h>
61 #include <linux/blkdev.h>
62 #include <linux/blkpg.h>
63 #include <linux/init.h>
64 #include <linux/smp_lock.h>
65 #include <linux/swap.h>
66 #include <linux/slab.h>
67 #include <linux/loop.h>
68 #include <linux/compat.h>
69 #include <linux/suspend.h>
70 #include <linux/freezer.h>
71 #include <linux/writeback.h>
72 #include <linux/buffer_head.h> /* for invalidate_bdev() */
73 #include <linux/completion.h>
74 #include <linux/highmem.h>
75 #include <linux/gfp.h>
76 #include <linux/kthread.h>
77 #include <linux/splice.h>
78
79 #include <asm/uaccess.h>
80
81 static LIST_HEAD(loop_devices);
82 static DEFINE_MUTEX(loop_devices_mutex);
83
84 static int max_part;
85 static int part_shift;
86
87 /*
88 * Transfer functions
89 */
90 static int transfer_none(struct loop_device *lo, int cmd,
91 struct page *raw_page, unsigned raw_off,
92 struct page *loop_page, unsigned loop_off,
93 int size, sector_t real_block)
94 {
95 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
96 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
97
98 if (cmd == READ)
99 memcpy(loop_buf, raw_buf, size);
100 else
101 memcpy(raw_buf, loop_buf, size);
102
103 kunmap_atomic(raw_buf, KM_USER0);
104 kunmap_atomic(loop_buf, KM_USER1);
105 cond_resched();
106 return 0;
107 }
108
109 static int transfer_xor(struct loop_device *lo, int cmd,
110 struct page *raw_page, unsigned raw_off,
111 struct page *loop_page, unsigned loop_off,
112 int size, sector_t real_block)
113 {
114 char *raw_buf = kmap_atomic(raw_page, KM_USER0) + raw_off;
115 char *loop_buf = kmap_atomic(loop_page, KM_USER1) + loop_off;
116 char *in, *out, *key;
117 int i, keysize;
118
119 if (cmd == READ) {
120 in = raw_buf;
121 out = loop_buf;
122 } else {
123 in = loop_buf;
124 out = raw_buf;
125 }
126
127 key = lo->lo_encrypt_key;
128 keysize = lo->lo_encrypt_key_size;
129 for (i = 0; i < size; i++)
130 *out++ = *in++ ^ key[(i & 511) % keysize];
131
132 kunmap_atomic(raw_buf, KM_USER0);
133 kunmap_atomic(loop_buf, KM_USER1);
134 cond_resched();
135 return 0;
136 }
137
138 static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
139 {
140 if (unlikely(info->lo_encrypt_key_size <= 0))
141 return -EINVAL;
142 return 0;
143 }
144
145 static struct loop_func_table none_funcs = {
146 .number = LO_CRYPT_NONE,
147 .transfer = transfer_none,
148 };
149
150 static struct loop_func_table xor_funcs = {
151 .number = LO_CRYPT_XOR,
152 .transfer = transfer_xor,
153 .init = xor_init
154 };
155
156 /* xfer_funcs[0] is special - its release function is never called */
157 static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
158 &none_funcs,
159 &xor_funcs
160 };
161
162 static loff_t get_loop_size(struct loop_device *lo, struct file *file)
163 {
164 loff_t size, offset, loopsize;
165
166 /* Compute loopsize in bytes */
167 size = i_size_read(file->f_mapping->host);
168 offset = lo->lo_offset;
169 loopsize = size - offset;
170 if (lo->lo_sizelimit > 0 && lo->lo_sizelimit < loopsize)
171 loopsize = lo->lo_sizelimit;
172
173 /*
174 * Unfortunately, if we want to do I/O on the device,
175 * the number of 512-byte sectors has to fit into a sector_t.
176 */
177 return loopsize >> 9;
178 }
179
180 static int
181 figure_loop_size(struct loop_device *lo)
182 {
183 loff_t size = get_loop_size(lo, lo->lo_backing_file);
184 sector_t x = (sector_t)size;
185
186 if (unlikely((loff_t)x != size))
187 return -EFBIG;
188
189 set_capacity(lo->lo_disk, x);
190 return 0;
191 }
192
193 static inline int
194 lo_do_transfer(struct loop_device *lo, int cmd,
195 struct page *rpage, unsigned roffs,
196 struct page *lpage, unsigned loffs,
197 int size, sector_t rblock)
198 {
199 if (unlikely(!lo->transfer))
200 return 0;
201
202 return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
203 }
204
205 /**
206 * do_lo_send_aops - helper for writing data to a loop device
207 *
208 * This is the fast version for backing filesystems which implement the address
209 * space operations write_begin and write_end.
210 */
211 static int do_lo_send_aops(struct loop_device *lo, struct bio_vec *bvec,
212 loff_t pos, struct page *unused)
213 {
214 struct file *file = lo->lo_backing_file; /* kudos to NFsckingS */
215 struct address_space *mapping = file->f_mapping;
216 pgoff_t index;
217 unsigned offset, bv_offs;
218 int len, ret;
219
220 mutex_lock(&mapping->host->i_mutex);
221 index = pos >> PAGE_CACHE_SHIFT;
222 offset = pos & ((pgoff_t)PAGE_CACHE_SIZE - 1);
223 bv_offs = bvec->bv_offset;
224 len = bvec->bv_len;
225 while (len > 0) {
226 sector_t IV;
227 unsigned size, copied;
228 int transfer_result;
229 struct page *page;
230 void *fsdata;
231
232 IV = ((sector_t)index << (PAGE_CACHE_SHIFT - 9))+(offset >> 9);
233 size = PAGE_CACHE_SIZE - offset;
234 if (size > len)
235 size = len;
236
237 ret = pagecache_write_begin(file, mapping, pos, size, 0,
238 &page, &fsdata);
239 if (ret)
240 goto fail;
241
242 transfer_result = lo_do_transfer(lo, WRITE, page, offset,
243 bvec->bv_page, bv_offs, size, IV);
244 copied = size;
245 if (unlikely(transfer_result))
246 copied = 0;
247
248 ret = pagecache_write_end(file, mapping, pos, size, copied,
249 page, fsdata);
250 if (ret < 0 || ret != copied)
251 goto fail;
252
253 if (unlikely(transfer_result))
254 goto fail;
255
256 bv_offs += copied;
257 len -= copied;
258 offset = 0;
259 index++;
260 pos += copied;
261 }
262 ret = 0;
263 out:
264 mutex_unlock(&mapping->host->i_mutex);
265 return ret;
266 fail:
267 ret = -1;
268 goto out;
269 }
270
271 /**
272 * __do_lo_send_write - helper for writing data to a loop device
273 *
274 * This helper just factors out common code between do_lo_send_direct_write()
275 * and do_lo_send_write().
276 */
277 static int __do_lo_send_write(struct file *file,
278 u8 *buf, const int len, loff_t pos)
279 {
280 ssize_t bw;
281 mm_segment_t old_fs = get_fs();
282
283 set_fs(get_ds());
284 bw = file->f_op->write(file, buf, len, &pos);
285 set_fs(old_fs);
286 if (likely(bw == len))
287 return 0;
288 printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
289 (unsigned long long)pos, len);
290 if (bw >= 0)
291 bw = -EIO;
292 return bw;
293 }
294
295 /**
296 * do_lo_send_direct_write - helper for writing data to a loop device
297 *
298 * This is the fast, non-transforming version for backing filesystems which do
299 * not implement the address space operations write_begin and write_end.
300 * It uses the write file operation which should be present on all writeable
301 * filesystems.
302 */
303 static int do_lo_send_direct_write(struct loop_device *lo,
304 struct bio_vec *bvec, loff_t pos, struct page *page)
305 {
306 ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
307 kmap(bvec->bv_page) + bvec->bv_offset,
308 bvec->bv_len, pos);
309 kunmap(bvec->bv_page);
310 cond_resched();
311 return bw;
312 }
313
314 /**
315 * do_lo_send_write - helper for writing data to a loop device
316 *
317 * This is the slow, transforming version for filesystems which do not
318 * implement the address space operations write_begin and write_end. It
319 * uses the write file operation which should be present on all writeable
320 * filesystems.
321 *
322 * Using fops->write is slower than using aops->{prepare,commit}_write in the
323 * transforming case because we need to double buffer the data as we cannot do
324 * the transformations in place as we do not have direct access to the
325 * destination pages of the backing file.
326 */
327 static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
328 loff_t pos, struct page *page)
329 {
330 int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
331 bvec->bv_offset, bvec->bv_len, pos >> 9);
332 if (likely(!ret))
333 return __do_lo_send_write(lo->lo_backing_file,
334 page_address(page), bvec->bv_len,
335 pos);
336 printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
337 "length %i.\n", (unsigned long long)pos, bvec->bv_len);
338 if (ret > 0)
339 ret = -EIO;
340 return ret;
341 }
342
343 static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
344 {
345 int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
346 struct page *page);
347 struct bio_vec *bvec;
348 struct page *page = NULL;
349 int i, ret = 0;
350
351 do_lo_send = do_lo_send_aops;
352 if (!(lo->lo_flags & LO_FLAGS_USE_AOPS)) {
353 do_lo_send = do_lo_send_direct_write;
354 if (lo->transfer != transfer_none) {
355 page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
356 if (unlikely(!page))
357 goto fail;
358 kmap(page);
359 do_lo_send = do_lo_send_write;
360 }
361 }
362 bio_for_each_segment(bvec, bio, i) {
363 ret = do_lo_send(lo, bvec, pos, page);
364 if (ret < 0)
365 break;
366 pos += bvec->bv_len;
367 }
368 if (page) {
369 kunmap(page);
370 __free_page(page);
371 }
372 out:
373 return ret;
374 fail:
375 printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
376 ret = -ENOMEM;
377 goto out;
378 }
379
380 struct lo_read_data {
381 struct loop_device *lo;
382 struct page *page;
383 unsigned offset;
384 int bsize;
385 };
386
387 static int
388 lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
389 struct splice_desc *sd)
390 {
391 struct lo_read_data *p = sd->u.data;
392 struct loop_device *lo = p->lo;
393 struct page *page = buf->page;
394 sector_t IV;
395 size_t size;
396 int ret;
397
398 ret = buf->ops->confirm(pipe, buf);
399 if (unlikely(ret))
400 return ret;
401
402 IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
403 (buf->offset >> 9);
404 size = sd->len;
405 if (size > p->bsize)
406 size = p->bsize;
407
408 if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
409 printk(KERN_ERR "loop: transfer error block %ld\n",
410 page->index);
411 size = -EINVAL;
412 }
413
414 flush_dcache_page(p->page);
415
416 if (size > 0)
417 p->offset += size;
418
419 return size;
420 }
421
422 static int
423 lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
424 {
425 return __splice_from_pipe(pipe, sd, lo_splice_actor);
426 }
427
428 static int
429 do_lo_receive(struct loop_device *lo,
430 struct bio_vec *bvec, int bsize, loff_t pos)
431 {
432 struct lo_read_data cookie;
433 struct splice_desc sd;
434 struct file *file;
435 long retval;
436
437 cookie.lo = lo;
438 cookie.page = bvec->bv_page;
439 cookie.offset = bvec->bv_offset;
440 cookie.bsize = bsize;
441
442 sd.len = 0;
443 sd.total_len = bvec->bv_len;
444 sd.flags = 0;
445 sd.pos = pos;
446 sd.u.data = &cookie;
447
448 file = lo->lo_backing_file;
449 retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
450
451 if (retval < 0)
452 return retval;
453
454 return 0;
455 }
456
457 static int
458 lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
459 {
460 struct bio_vec *bvec;
461 int i, ret = 0;
462
463 bio_for_each_segment(bvec, bio, i) {
464 ret = do_lo_receive(lo, bvec, bsize, pos);
465 if (ret < 0)
466 break;
467 pos += bvec->bv_len;
468 }
469 return ret;
470 }
471
472 static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
473 {
474 loff_t pos;
475 int ret;
476
477 pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
478 if (bio_rw(bio) == WRITE)
479 ret = lo_send(lo, bio, pos);
480 else
481 ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
482 return ret;
483 }
484
485 /*
486 * Add bio to back of pending list
487 */
488 static void loop_add_bio(struct loop_device *lo, struct bio *bio)
489 {
490 if (lo->lo_biotail) {
491 lo->lo_biotail->bi_next = bio;
492 lo->lo_biotail = bio;
493 } else
494 lo->lo_bio = lo->lo_biotail = bio;
495 }
496
497 /*
498 * Grab first pending buffer
499 */
500 static struct bio *loop_get_bio(struct loop_device *lo)
501 {
502 struct bio *bio;
503
504 if ((bio = lo->lo_bio)) {
505 if (bio == lo->lo_biotail)
506 lo->lo_biotail = NULL;
507 lo->lo_bio = bio->bi_next;
508 bio->bi_next = NULL;
509 }
510
511 return bio;
512 }
513
514 static int loop_make_request(struct request_queue *q, struct bio *old_bio)
515 {
516 struct loop_device *lo = q->queuedata;
517 int rw = bio_rw(old_bio);
518
519 if (rw == READA)
520 rw = READ;
521
522 BUG_ON(!lo || (rw != READ && rw != WRITE));
523
524 spin_lock_irq(&lo->lo_lock);
525 if (lo->lo_state != Lo_bound)
526 goto out;
527 if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
528 goto out;
529 loop_add_bio(lo, old_bio);
530 wake_up(&lo->lo_event);
531 spin_unlock_irq(&lo->lo_lock);
532 return 0;
533
534 out:
535 spin_unlock_irq(&lo->lo_lock);
536 bio_io_error(old_bio);
537 return 0;
538 }
539
540 /*
541 * kick off io on the underlying address space
542 */
543 static void loop_unplug(struct request_queue *q)
544 {
545 struct loop_device *lo = q->queuedata;
546
547 queue_flag_clear_unlocked(QUEUE_FLAG_PLUGGED, q);
548 blk_run_address_space(lo->lo_backing_file->f_mapping);
549 }
550
551 struct switch_request {
552 struct file *file;
553 struct completion wait;
554 };
555
556 static void do_loop_switch(struct loop_device *, struct switch_request *);
557
558 static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
559 {
560 if (unlikely(!bio->bi_bdev)) {
561 do_loop_switch(lo, bio->bi_private);
562 bio_put(bio);
563 } else {
564 int ret = do_bio_filebacked(lo, bio);
565 bio_endio(bio, ret);
566 }
567 }
568
569 /*
570 * worker thread that handles reads/writes to file backed loop devices,
571 * to avoid blocking in our make_request_fn. it also does loop decrypting
572 * on reads for block backed loop, as that is too heavy to do from
573 * b_end_io context where irqs may be disabled.
574 *
575 * Loop explanation: loop_clr_fd() sets lo_state to Lo_rundown before
576 * calling kthread_stop(). Therefore once kthread_should_stop() is
577 * true, make_request will not place any more requests. Therefore
578 * once kthread_should_stop() is true and lo_bio is NULL, we are
579 * done with the loop.
580 */
581 static int loop_thread(void *data)
582 {
583 struct loop_device *lo = data;
584 struct bio *bio;
585
586 set_user_nice(current, -20);
587
588 while (!kthread_should_stop() || lo->lo_bio) {
589
590 wait_event_interruptible(lo->lo_event,
591 lo->lo_bio || kthread_should_stop());
592
593 if (!lo->lo_bio)
594 continue;
595 spin_lock_irq(&lo->lo_lock);
596 bio = loop_get_bio(lo);
597 spin_unlock_irq(&lo->lo_lock);
598
599 BUG_ON(!bio);
600 loop_handle_bio(lo, bio);
601 }
602
603 return 0;
604 }
605
606 /*
607 * loop_switch performs the hard work of switching a backing store.
608 * First it needs to flush existing IO, it does this by sending a magic
609 * BIO down the pipe. The completion of this BIO does the actual switch.
610 */
611 static int loop_switch(struct loop_device *lo, struct file *file)
612 {
613 struct switch_request w;
614 struct bio *bio = bio_alloc(GFP_KERNEL, 0);
615 if (!bio)
616 return -ENOMEM;
617 init_completion(&w.wait);
618 w.file = file;
619 bio->bi_private = &w;
620 bio->bi_bdev = NULL;
621 loop_make_request(lo->lo_queue, bio);
622 wait_for_completion(&w.wait);
623 return 0;
624 }
625
626 /*
627 * Do the actual switch; called from the BIO completion routine
628 */
629 static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
630 {
631 struct file *file = p->file;
632 struct file *old_file = lo->lo_backing_file;
633 struct address_space *mapping = file->f_mapping;
634
635 mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
636 lo->lo_backing_file = file;
637 lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
638 mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
639 lo->old_gfp_mask = mapping_gfp_mask(mapping);
640 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
641 complete(&p->wait);
642 }
643
644
645 /*
646 * loop_change_fd switched the backing store of a loopback device to
647 * a new file. This is useful for operating system installers to free up
648 * the original file and in High Availability environments to switch to
649 * an alternative location for the content in case of server meltdown.
650 * This can only work if the loop device is used read-only, and if the
651 * new backing store is the same size and type as the old backing store.
652 */
653 static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
654 unsigned int arg)
655 {
656 struct file *file, *old_file;
657 struct inode *inode;
658 int error;
659
660 error = -ENXIO;
661 if (lo->lo_state != Lo_bound)
662 goto out;
663
664 /* the loop device has to be read-only */
665 error = -EINVAL;
666 if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
667 goto out;
668
669 error = -EBADF;
670 file = fget(arg);
671 if (!file)
672 goto out;
673
674 inode = file->f_mapping->host;
675 old_file = lo->lo_backing_file;
676
677 error = -EINVAL;
678
679 if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
680 goto out_putf;
681
682 /* new backing store needs to support loop (eg splice_read) */
683 if (!inode->i_fop->splice_read)
684 goto out_putf;
685
686 /* size of the new backing store needs to be the same */
687 if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
688 goto out_putf;
689
690 /* and ... switch */
691 error = loop_switch(lo, file);
692 if (error)
693 goto out_putf;
694
695 fput(old_file);
696 if (max_part > 0)
697 ioctl_by_bdev(bdev, BLKRRPART, 0);
698 return 0;
699
700 out_putf:
701 fput(file);
702 out:
703 return error;
704 }
705
706 static inline int is_loop_device(struct file *file)
707 {
708 struct inode *i = file->f_mapping->host;
709
710 return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
711 }
712
713 static int loop_set_fd(struct loop_device *lo, fmode_t mode,
714 struct block_device *bdev, unsigned int arg)
715 {
716 struct file *file, *f;
717 struct inode *inode;
718 struct address_space *mapping;
719 unsigned lo_blocksize;
720 int lo_flags = 0;
721 int error;
722 loff_t size;
723
724 /* This is safe, since we have a reference from open(). */
725 __module_get(THIS_MODULE);
726
727 error = -EBADF;
728 file = fget(arg);
729 if (!file)
730 goto out;
731
732 error = -EBUSY;
733 if (lo->lo_state != Lo_unbound)
734 goto out_putf;
735
736 /* Avoid recursion */
737 f = file;
738 while (is_loop_device(f)) {
739 struct loop_device *l;
740
741 if (f->f_mapping->host->i_bdev == bdev)
742 goto out_putf;
743
744 l = f->f_mapping->host->i_bdev->bd_disk->private_data;
745 if (l->lo_state == Lo_unbound) {
746 error = -EINVAL;
747 goto out_putf;
748 }
749 f = l->lo_backing_file;
750 }
751
752 mapping = file->f_mapping;
753 inode = mapping->host;
754
755 if (!(file->f_mode & FMODE_WRITE))
756 lo_flags |= LO_FLAGS_READ_ONLY;
757
758 error = -EINVAL;
759 if (S_ISREG(inode->i_mode) || S_ISBLK(inode->i_mode)) {
760 const struct address_space_operations *aops = mapping->a_ops;
761 /*
762 * If we can't read - sorry. If we only can't write - well,
763 * it's going to be read-only.
764 */
765 if (!file->f_op->splice_read)
766 goto out_putf;
767 if (aops->write_begin)
768 lo_flags |= LO_FLAGS_USE_AOPS;
769 if (!(lo_flags & LO_FLAGS_USE_AOPS) && !file->f_op->write)
770 lo_flags |= LO_FLAGS_READ_ONLY;
771
772 lo_blocksize = S_ISBLK(inode->i_mode) ?
773 inode->i_bdev->bd_block_size : PAGE_SIZE;
774
775 error = 0;
776 } else {
777 goto out_putf;
778 }
779
780 size = get_loop_size(lo, file);
781
782 if ((loff_t)(sector_t)size != size) {
783 error = -EFBIG;
784 goto out_putf;
785 }
786
787 if (!(mode & FMODE_WRITE))
788 lo_flags |= LO_FLAGS_READ_ONLY;
789
790 set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
791
792 lo->lo_blocksize = lo_blocksize;
793 lo->lo_device = bdev;
794 lo->lo_flags = lo_flags;
795 lo->lo_backing_file = file;
796 lo->transfer = transfer_none;
797 lo->ioctl = NULL;
798 lo->lo_sizelimit = 0;
799 lo->old_gfp_mask = mapping_gfp_mask(mapping);
800 mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
801
802 lo->lo_bio = lo->lo_biotail = NULL;
803
804 /*
805 * set queue make_request_fn, and add limits based on lower level
806 * device
807 */
808 blk_queue_make_request(lo->lo_queue, loop_make_request);
809 lo->lo_queue->queuedata = lo;
810 lo->lo_queue->unplug_fn = loop_unplug;
811
812 set_capacity(lo->lo_disk, size);
813 bd_set_size(bdev, size << 9);
814
815 set_blocksize(bdev, lo_blocksize);
816
817 lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
818 lo->lo_number);
819 if (IS_ERR(lo->lo_thread)) {
820 error = PTR_ERR(lo->lo_thread);
821 goto out_clr;
822 }
823 lo->lo_state = Lo_bound;
824 wake_up_process(lo->lo_thread);
825 if (max_part > 0)
826 ioctl_by_bdev(bdev, BLKRRPART, 0);
827 return 0;
828
829 out_clr:
830 lo->lo_thread = NULL;
831 lo->lo_device = NULL;
832 lo->lo_backing_file = NULL;
833 lo->lo_flags = 0;
834 set_capacity(lo->lo_disk, 0);
835 invalidate_bdev(bdev);
836 bd_set_size(bdev, 0);
837 mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
838 lo->lo_state = Lo_unbound;
839 out_putf:
840 fput(file);
841 out:
842 /* This is safe: open() is still holding a reference. */
843 module_put(THIS_MODULE);
844 return error;
845 }
846
847 static int
848 loop_release_xfer(struct loop_device *lo)
849 {
850 int err = 0;
851 struct loop_func_table *xfer = lo->lo_encryption;
852
853 if (xfer) {
854 if (xfer->release)
855 err = xfer->release(lo);
856 lo->transfer = NULL;
857 lo->lo_encryption = NULL;
858 module_put(xfer->owner);
859 }
860 return err;
861 }
862
863 static int
864 loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
865 const struct loop_info64 *i)
866 {
867 int err = 0;
868
869 if (xfer) {
870 struct module *owner = xfer->owner;
871
872 if (!try_module_get(owner))
873 return -EINVAL;
874 if (xfer->init)
875 err = xfer->init(lo, i);
876 if (err)
877 module_put(owner);
878 else
879 lo->lo_encryption = xfer;
880 }
881 return err;
882 }
883
884 static int loop_clr_fd(struct loop_device *lo, struct block_device *bdev)
885 {
886 struct file *filp = lo->lo_backing_file;
887 gfp_t gfp = lo->old_gfp_mask;
888
889 if (lo->lo_state != Lo_bound)
890 return -ENXIO;
891
892 if (lo->lo_refcnt > 1) /* we needed one fd for the ioctl */
893 return -EBUSY;
894
895 if (filp == NULL)
896 return -EINVAL;
897
898 spin_lock_irq(&lo->lo_lock);
899 lo->lo_state = Lo_rundown;
900 spin_unlock_irq(&lo->lo_lock);
901
902 kthread_stop(lo->lo_thread);
903
904 lo->lo_backing_file = NULL;
905
906 loop_release_xfer(lo);
907 lo->transfer = NULL;
908 lo->ioctl = NULL;
909 lo->lo_device = NULL;
910 lo->lo_encryption = NULL;
911 lo->lo_offset = 0;
912 lo->lo_sizelimit = 0;
913 lo->lo_encrypt_key_size = 0;
914 lo->lo_flags = 0;
915 lo->lo_thread = NULL;
916 memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
917 memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
918 memset(lo->lo_file_name, 0, LO_NAME_SIZE);
919 if (bdev)
920 invalidate_bdev(bdev);
921 set_capacity(lo->lo_disk, 0);
922 if (bdev)
923 bd_set_size(bdev, 0);
924 mapping_set_gfp_mask(filp->f_mapping, gfp);
925 lo->lo_state = Lo_unbound;
926 fput(filp);
927 /* This is safe: open() is still holding a reference. */
928 module_put(THIS_MODULE);
929 if (max_part > 0)
930 ioctl_by_bdev(bdev, BLKRRPART, 0);
931 return 0;
932 }
933
934 static int
935 loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
936 {
937 int err;
938 struct loop_func_table *xfer;
939 uid_t uid = current_uid();
940
941 if (lo->lo_encrypt_key_size &&
942 lo->lo_key_owner != uid &&
943 !capable(CAP_SYS_ADMIN))
944 return -EPERM;
945 if (lo->lo_state != Lo_bound)
946 return -ENXIO;
947 if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
948 return -EINVAL;
949
950 err = loop_release_xfer(lo);
951 if (err)
952 return err;
953
954 if (info->lo_encrypt_type) {
955 unsigned int type = info->lo_encrypt_type;
956
957 if (type >= MAX_LO_CRYPT)
958 return -EINVAL;
959 xfer = xfer_funcs[type];
960 if (xfer == NULL)
961 return -EINVAL;
962 } else
963 xfer = NULL;
964
965 err = loop_init_xfer(lo, xfer, info);
966 if (err)
967 return err;
968
969 if (lo->lo_offset != info->lo_offset ||
970 lo->lo_sizelimit != info->lo_sizelimit) {
971 lo->lo_offset = info->lo_offset;
972 lo->lo_sizelimit = info->lo_sizelimit;
973 if (figure_loop_size(lo))
974 return -EFBIG;
975 }
976
977 memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
978 memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
979 lo->lo_file_name[LO_NAME_SIZE-1] = 0;
980 lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
981
982 if (!xfer)
983 xfer = &none_funcs;
984 lo->transfer = xfer->transfer;
985 lo->ioctl = xfer->ioctl;
986
987 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
988 (info->lo_flags & LO_FLAGS_AUTOCLEAR))
989 lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
990
991 lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
992 lo->lo_init[0] = info->lo_init[0];
993 lo->lo_init[1] = info->lo_init[1];
994 if (info->lo_encrypt_key_size) {
995 memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
996 info->lo_encrypt_key_size);
997 lo->lo_key_owner = uid;
998 }
999
1000 return 0;
1001 }
1002
1003 static int
1004 loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1005 {
1006 struct file *file = lo->lo_backing_file;
1007 struct kstat stat;
1008 int error;
1009
1010 if (lo->lo_state != Lo_bound)
1011 return -ENXIO;
1012 error = vfs_getattr(file->f_path.mnt, file->f_path.dentry, &stat);
1013 if (error)
1014 return error;
1015 memset(info, 0, sizeof(*info));
1016 info->lo_number = lo->lo_number;
1017 info->lo_device = huge_encode_dev(stat.dev);
1018 info->lo_inode = stat.ino;
1019 info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1020 info->lo_offset = lo->lo_offset;
1021 info->lo_sizelimit = lo->lo_sizelimit;
1022 info->lo_flags = lo->lo_flags;
1023 memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1024 memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1025 info->lo_encrypt_type =
1026 lo->lo_encryption ? lo->lo_encryption->number : 0;
1027 if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1028 info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1029 memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1030 lo->lo_encrypt_key_size);
1031 }
1032 return 0;
1033 }
1034
1035 static void
1036 loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1037 {
1038 memset(info64, 0, sizeof(*info64));
1039 info64->lo_number = info->lo_number;
1040 info64->lo_device = info->lo_device;
1041 info64->lo_inode = info->lo_inode;
1042 info64->lo_rdevice = info->lo_rdevice;
1043 info64->lo_offset = info->lo_offset;
1044 info64->lo_sizelimit = 0;
1045 info64->lo_encrypt_type = info->lo_encrypt_type;
1046 info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1047 info64->lo_flags = info->lo_flags;
1048 info64->lo_init[0] = info->lo_init[0];
1049 info64->lo_init[1] = info->lo_init[1];
1050 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1051 memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1052 else
1053 memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1054 memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1055 }
1056
1057 static int
1058 loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1059 {
1060 memset(info, 0, sizeof(*info));
1061 info->lo_number = info64->lo_number;
1062 info->lo_device = info64->lo_device;
1063 info->lo_inode = info64->lo_inode;
1064 info->lo_rdevice = info64->lo_rdevice;
1065 info->lo_offset = info64->lo_offset;
1066 info->lo_encrypt_type = info64->lo_encrypt_type;
1067 info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1068 info->lo_flags = info64->lo_flags;
1069 info->lo_init[0] = info64->lo_init[0];
1070 info->lo_init[1] = info64->lo_init[1];
1071 if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1072 memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1073 else
1074 memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1075 memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1076
1077 /* error in case values were truncated */
1078 if (info->lo_device != info64->lo_device ||
1079 info->lo_rdevice != info64->lo_rdevice ||
1080 info->lo_inode != info64->lo_inode ||
1081 info->lo_offset != info64->lo_offset)
1082 return -EOVERFLOW;
1083
1084 return 0;
1085 }
1086
1087 static int
1088 loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1089 {
1090 struct loop_info info;
1091 struct loop_info64 info64;
1092
1093 if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1094 return -EFAULT;
1095 loop_info64_from_old(&info, &info64);
1096 return loop_set_status(lo, &info64);
1097 }
1098
1099 static int
1100 loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1101 {
1102 struct loop_info64 info64;
1103
1104 if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1105 return -EFAULT;
1106 return loop_set_status(lo, &info64);
1107 }
1108
1109 static int
1110 loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1111 struct loop_info info;
1112 struct loop_info64 info64;
1113 int err = 0;
1114
1115 if (!arg)
1116 err = -EINVAL;
1117 if (!err)
1118 err = loop_get_status(lo, &info64);
1119 if (!err)
1120 err = loop_info64_to_old(&info64, &info);
1121 if (!err && copy_to_user(arg, &info, sizeof(info)))
1122 err = -EFAULT;
1123
1124 return err;
1125 }
1126
1127 static int
1128 loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1129 struct loop_info64 info64;
1130 int err = 0;
1131
1132 if (!arg)
1133 err = -EINVAL;
1134 if (!err)
1135 err = loop_get_status(lo, &info64);
1136 if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1137 err = -EFAULT;
1138
1139 return err;
1140 }
1141
1142 static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1143 unsigned int cmd, unsigned long arg)
1144 {
1145 struct loop_device *lo = bdev->bd_disk->private_data;
1146 int err;
1147
1148 mutex_lock(&lo->lo_ctl_mutex);
1149 switch (cmd) {
1150 case LOOP_SET_FD:
1151 err = loop_set_fd(lo, mode, bdev, arg);
1152 break;
1153 case LOOP_CHANGE_FD:
1154 err = loop_change_fd(lo, bdev, arg);
1155 break;
1156 case LOOP_CLR_FD:
1157 err = loop_clr_fd(lo, bdev);
1158 break;
1159 case LOOP_SET_STATUS:
1160 err = loop_set_status_old(lo, (struct loop_info __user *) arg);
1161 break;
1162 case LOOP_GET_STATUS:
1163 err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1164 break;
1165 case LOOP_SET_STATUS64:
1166 err = loop_set_status64(lo, (struct loop_info64 __user *) arg);
1167 break;
1168 case LOOP_GET_STATUS64:
1169 err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1170 break;
1171 default:
1172 err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1173 }
1174 mutex_unlock(&lo->lo_ctl_mutex);
1175 return err;
1176 }
1177
1178 #ifdef CONFIG_COMPAT
1179 struct compat_loop_info {
1180 compat_int_t lo_number; /* ioctl r/o */
1181 compat_dev_t lo_device; /* ioctl r/o */
1182 compat_ulong_t lo_inode; /* ioctl r/o */
1183 compat_dev_t lo_rdevice; /* ioctl r/o */
1184 compat_int_t lo_offset;
1185 compat_int_t lo_encrypt_type;
1186 compat_int_t lo_encrypt_key_size; /* ioctl w/o */
1187 compat_int_t lo_flags; /* ioctl r/o */
1188 char lo_name[LO_NAME_SIZE];
1189 unsigned char lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1190 compat_ulong_t lo_init[2];
1191 char reserved[4];
1192 };
1193
1194 /*
1195 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1196 * - noinlined to reduce stack space usage in main part of driver
1197 */
1198 static noinline int
1199 loop_info64_from_compat(const struct compat_loop_info __user *arg,
1200 struct loop_info64 *info64)
1201 {
1202 struct compat_loop_info info;
1203
1204 if (copy_from_user(&info, arg, sizeof(info)))
1205 return -EFAULT;
1206
1207 memset(info64, 0, sizeof(*info64));
1208 info64->lo_number = info.lo_number;
1209 info64->lo_device = info.lo_device;
1210 info64->lo_inode = info.lo_inode;
1211 info64->lo_rdevice = info.lo_rdevice;
1212 info64->lo_offset = info.lo_offset;
1213 info64->lo_sizelimit = 0;
1214 info64->lo_encrypt_type = info.lo_encrypt_type;
1215 info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1216 info64->lo_flags = info.lo_flags;
1217 info64->lo_init[0] = info.lo_init[0];
1218 info64->lo_init[1] = info.lo_init[1];
1219 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1220 memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1221 else
1222 memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1223 memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1224 return 0;
1225 }
1226
1227 /*
1228 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1229 * - noinlined to reduce stack space usage in main part of driver
1230 */
1231 static noinline int
1232 loop_info64_to_compat(const struct loop_info64 *info64,
1233 struct compat_loop_info __user *arg)
1234 {
1235 struct compat_loop_info info;
1236
1237 memset(&info, 0, sizeof(info));
1238 info.lo_number = info64->lo_number;
1239 info.lo_device = info64->lo_device;
1240 info.lo_inode = info64->lo_inode;
1241 info.lo_rdevice = info64->lo_rdevice;
1242 info.lo_offset = info64->lo_offset;
1243 info.lo_encrypt_type = info64->lo_encrypt_type;
1244 info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1245 info.lo_flags = info64->lo_flags;
1246 info.lo_init[0] = info64->lo_init[0];
1247 info.lo_init[1] = info64->lo_init[1];
1248 if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1249 memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1250 else
1251 memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1252 memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1253
1254 /* error in case values were truncated */
1255 if (info.lo_device != info64->lo_device ||
1256 info.lo_rdevice != info64->lo_rdevice ||
1257 info.lo_inode != info64->lo_inode ||
1258 info.lo_offset != info64->lo_offset ||
1259 info.lo_init[0] != info64->lo_init[0] ||
1260 info.lo_init[1] != info64->lo_init[1])
1261 return -EOVERFLOW;
1262
1263 if (copy_to_user(arg, &info, sizeof(info)))
1264 return -EFAULT;
1265 return 0;
1266 }
1267
1268 static int
1269 loop_set_status_compat(struct loop_device *lo,
1270 const struct compat_loop_info __user *arg)
1271 {
1272 struct loop_info64 info64;
1273 int ret;
1274
1275 ret = loop_info64_from_compat(arg, &info64);
1276 if (ret < 0)
1277 return ret;
1278 return loop_set_status(lo, &info64);
1279 }
1280
1281 static int
1282 loop_get_status_compat(struct loop_device *lo,
1283 struct compat_loop_info __user *arg)
1284 {
1285 struct loop_info64 info64;
1286 int err = 0;
1287
1288 if (!arg)
1289 err = -EINVAL;
1290 if (!err)
1291 err = loop_get_status(lo, &info64);
1292 if (!err)
1293 err = loop_info64_to_compat(&info64, arg);
1294 return err;
1295 }
1296
1297 static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1298 unsigned int cmd, unsigned long arg)
1299 {
1300 struct loop_device *lo = bdev->bd_disk->private_data;
1301 int err;
1302
1303 switch(cmd) {
1304 case LOOP_SET_STATUS:
1305 mutex_lock(&lo->lo_ctl_mutex);
1306 err = loop_set_status_compat(
1307 lo, (const struct compat_loop_info __user *) arg);
1308 mutex_unlock(&lo->lo_ctl_mutex);
1309 break;
1310 case LOOP_GET_STATUS:
1311 mutex_lock(&lo->lo_ctl_mutex);
1312 err = loop_get_status_compat(
1313 lo, (struct compat_loop_info __user *) arg);
1314 mutex_unlock(&lo->lo_ctl_mutex);
1315 break;
1316 case LOOP_CLR_FD:
1317 case LOOP_GET_STATUS64:
1318 case LOOP_SET_STATUS64:
1319 arg = (unsigned long) compat_ptr(arg);
1320 case LOOP_SET_FD:
1321 case LOOP_CHANGE_FD:
1322 err = lo_ioctl(bdev, mode, cmd, arg);
1323 break;
1324 default:
1325 err = -ENOIOCTLCMD;
1326 break;
1327 }
1328 return err;
1329 }
1330 #endif
1331
1332 static int lo_open(struct block_device *bdev, fmode_t mode)
1333 {
1334 struct loop_device *lo = bdev->bd_disk->private_data;
1335
1336 mutex_lock(&lo->lo_ctl_mutex);
1337 lo->lo_refcnt++;
1338 mutex_unlock(&lo->lo_ctl_mutex);
1339
1340 return 0;
1341 }
1342
1343 static int lo_release(struct gendisk *disk, fmode_t mode)
1344 {
1345 struct loop_device *lo = disk->private_data;
1346
1347 mutex_lock(&lo->lo_ctl_mutex);
1348 --lo->lo_refcnt;
1349
1350 if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) && !lo->lo_refcnt)
1351 loop_clr_fd(lo, NULL);
1352
1353 mutex_unlock(&lo->lo_ctl_mutex);
1354
1355 return 0;
1356 }
1357
1358 static struct block_device_operations lo_fops = {
1359 .owner = THIS_MODULE,
1360 .open = lo_open,
1361 .release = lo_release,
1362 .ioctl = lo_ioctl,
1363 #ifdef CONFIG_COMPAT
1364 .compat_ioctl = lo_compat_ioctl,
1365 #endif
1366 };
1367
1368 /*
1369 * And now the modules code and kernel interface.
1370 */
1371 static int max_loop;
1372 module_param(max_loop, int, 0);
1373 MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1374 module_param(max_part, int, 0);
1375 MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1376 MODULE_LICENSE("GPL");
1377 MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1378
1379 int loop_register_transfer(struct loop_func_table *funcs)
1380 {
1381 unsigned int n = funcs->number;
1382
1383 if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1384 return -EINVAL;
1385 xfer_funcs[n] = funcs;
1386 return 0;
1387 }
1388
1389 int loop_unregister_transfer(int number)
1390 {
1391 unsigned int n = number;
1392 struct loop_device *lo;
1393 struct loop_func_table *xfer;
1394
1395 if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1396 return -EINVAL;
1397
1398 xfer_funcs[n] = NULL;
1399
1400 list_for_each_entry(lo, &loop_devices, lo_list) {
1401 mutex_lock(&lo->lo_ctl_mutex);
1402
1403 if (lo->lo_encryption == xfer)
1404 loop_release_xfer(lo);
1405
1406 mutex_unlock(&lo->lo_ctl_mutex);
1407 }
1408
1409 return 0;
1410 }
1411
1412 EXPORT_SYMBOL(loop_register_transfer);
1413 EXPORT_SYMBOL(loop_unregister_transfer);
1414
1415 static struct loop_device *loop_alloc(int i)
1416 {
1417 struct loop_device *lo;
1418 struct gendisk *disk;
1419
1420 lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1421 if (!lo)
1422 goto out;
1423
1424 lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1425 if (!lo->lo_queue)
1426 goto out_free_dev;
1427
1428 disk = lo->lo_disk = alloc_disk(1 << part_shift);
1429 if (!disk)
1430 goto out_free_queue;
1431
1432 mutex_init(&lo->lo_ctl_mutex);
1433 lo->lo_number = i;
1434 lo->lo_thread = NULL;
1435 init_waitqueue_head(&lo->lo_event);
1436 spin_lock_init(&lo->lo_lock);
1437 disk->major = LOOP_MAJOR;
1438 disk->first_minor = i << part_shift;
1439 disk->fops = &lo_fops;
1440 disk->private_data = lo;
1441 disk->queue = lo->lo_queue;
1442 sprintf(disk->disk_name, "loop%d", i);
1443 return lo;
1444
1445 out_free_queue:
1446 blk_cleanup_queue(lo->lo_queue);
1447 out_free_dev:
1448 kfree(lo);
1449 out:
1450 return NULL;
1451 }
1452
1453 static void loop_free(struct loop_device *lo)
1454 {
1455 blk_cleanup_queue(lo->lo_queue);
1456 put_disk(lo->lo_disk);
1457 list_del(&lo->lo_list);
1458 kfree(lo);
1459 }
1460
1461 static struct loop_device *loop_init_one(int i)
1462 {
1463 struct loop_device *lo;
1464
1465 list_for_each_entry(lo, &loop_devices, lo_list) {
1466 if (lo->lo_number == i)
1467 return lo;
1468 }
1469
1470 lo = loop_alloc(i);
1471 if (lo) {
1472 add_disk(lo->lo_disk);
1473 list_add_tail(&lo->lo_list, &loop_devices);
1474 }
1475 return lo;
1476 }
1477
1478 static void loop_del_one(struct loop_device *lo)
1479 {
1480 del_gendisk(lo->lo_disk);
1481 loop_free(lo);
1482 }
1483
1484 static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1485 {
1486 struct loop_device *lo;
1487 struct kobject *kobj;
1488
1489 mutex_lock(&loop_devices_mutex);
1490 lo = loop_init_one(dev & MINORMASK);
1491 kobj = lo ? get_disk(lo->lo_disk) : ERR_PTR(-ENOMEM);
1492 mutex_unlock(&loop_devices_mutex);
1493
1494 *part = 0;
1495 return kobj;
1496 }
1497
1498 static int __init loop_init(void)
1499 {
1500 int i, nr;
1501 unsigned long range;
1502 struct loop_device *lo, *next;
1503
1504 /*
1505 * loop module now has a feature to instantiate underlying device
1506 * structure on-demand, provided that there is an access dev node.
1507 * However, this will not work well with user space tool that doesn't
1508 * know about such "feature". In order to not break any existing
1509 * tool, we do the following:
1510 *
1511 * (1) if max_loop is specified, create that many upfront, and this
1512 * also becomes a hard limit.
1513 * (2) if max_loop is not specified, create 8 loop device on module
1514 * load, user can further extend loop device by create dev node
1515 * themselves and have kernel automatically instantiate actual
1516 * device on-demand.
1517 */
1518
1519 part_shift = 0;
1520 if (max_part > 0)
1521 part_shift = fls(max_part);
1522
1523 if (max_loop > 1UL << (MINORBITS - part_shift))
1524 return -EINVAL;
1525
1526 if (max_loop) {
1527 nr = max_loop;
1528 range = max_loop;
1529 } else {
1530 nr = 8;
1531 range = 1UL << (MINORBITS - part_shift);
1532 }
1533
1534 if (register_blkdev(LOOP_MAJOR, "loop"))
1535 return -EIO;
1536
1537 for (i = 0; i < nr; i++) {
1538 lo = loop_alloc(i);
1539 if (!lo)
1540 goto Enomem;
1541 list_add_tail(&lo->lo_list, &loop_devices);
1542 }
1543
1544 /* point of no return */
1545
1546 list_for_each_entry(lo, &loop_devices, lo_list)
1547 add_disk(lo->lo_disk);
1548
1549 blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1550 THIS_MODULE, loop_probe, NULL, NULL);
1551
1552 printk(KERN_INFO "loop: module loaded\n");
1553 return 0;
1554
1555 Enomem:
1556 printk(KERN_INFO "loop: out of memory\n");
1557
1558 list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1559 loop_free(lo);
1560
1561 unregister_blkdev(LOOP_MAJOR, "loop");
1562 return -ENOMEM;
1563 }
1564
1565 static void __exit loop_exit(void)
1566 {
1567 unsigned long range;
1568 struct loop_device *lo, *next;
1569
1570 range = max_loop ? max_loop : 1UL << (MINORBITS - part_shift);
1571
1572 list_for_each_entry_safe(lo, next, &loop_devices, lo_list)
1573 loop_del_one(lo);
1574
1575 blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1576 unregister_blkdev(LOOP_MAJOR, "loop");
1577 }
1578
1579 module_init(loop_init);
1580 module_exit(loop_exit);
1581
1582 #ifndef MODULE
1583 static int __init max_loop_setup(char *str)
1584 {
1585 max_loop = simple_strtol(str, NULL, 0);
1586 return 1;
1587 }
1588
1589 __setup("max_loop=", max_loop_setup);
1590 #endif