Merge tag 'v3.10.60' into update
[GitHub/mt8127/android_kernel_alcatel_ttab.git] / drivers / block / drbd / drbd_main.c
1 /*
2 drbd.c
3
4 This file is part of DRBD by Philipp Reisner and Lars Ellenberg.
5
6 Copyright (C) 2001-2008, LINBIT Information Technologies GmbH.
7 Copyright (C) 1999-2008, Philipp Reisner <philipp.reisner@linbit.com>.
8 Copyright (C) 2002-2008, Lars Ellenberg <lars.ellenberg@linbit.com>.
9
10 Thanks to Carter Burden, Bart Grantham and Gennadiy Nerubayev
11 from Logicworks, Inc. for making SDP replication support possible.
12
13 drbd is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 2, or (at your option)
16 any later version.
17
18 drbd is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with drbd; see the file COPYING. If not, write to
25 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
26
27 */
28
29 #include <linux/module.h>
30 #include <linux/drbd.h>
31 #include <asm/uaccess.h>
32 #include <asm/types.h>
33 #include <net/sock.h>
34 #include <linux/ctype.h>
35 #include <linux/mutex.h>
36 #include <linux/fs.h>
37 #include <linux/file.h>
38 #include <linux/proc_fs.h>
39 #include <linux/init.h>
40 #include <linux/mm.h>
41 #include <linux/memcontrol.h>
42 #include <linux/mm_inline.h>
43 #include <linux/slab.h>
44 #include <linux/random.h>
45 #include <linux/reboot.h>
46 #include <linux/notifier.h>
47 #include <linux/kthread.h>
48 #include <linux/workqueue.h>
49 #define __KERNEL_SYSCALLS__
50 #include <linux/unistd.h>
51 #include <linux/vmalloc.h>
52
53 #include <linux/drbd_limits.h>
54 #include "drbd_int.h"
55 #include "drbd_req.h" /* only for _req_mod in tl_release and tl_clear */
56
57 #include "drbd_vli.h"
58
59 static DEFINE_MUTEX(drbd_main_mutex);
60 int drbdd_init(struct drbd_thread *);
61 int drbd_worker(struct drbd_thread *);
62 int drbd_asender(struct drbd_thread *);
63
64 int drbd_init(void);
65 static int drbd_open(struct block_device *bdev, fmode_t mode);
66 static void drbd_release(struct gendisk *gd, fmode_t mode);
67 static int w_md_sync(struct drbd_work *w, int unused);
68 static void md_sync_timer_fn(unsigned long data);
69 static int w_bitmap_io(struct drbd_work *w, int unused);
70 static int w_go_diskless(struct drbd_work *w, int unused);
71
72 MODULE_AUTHOR("Philipp Reisner <phil@linbit.com>, "
73 "Lars Ellenberg <lars@linbit.com>");
74 MODULE_DESCRIPTION("drbd - Distributed Replicated Block Device v" REL_VERSION);
75 MODULE_VERSION(REL_VERSION);
76 MODULE_LICENSE("GPL");
77 MODULE_PARM_DESC(minor_count, "Approximate number of drbd devices ("
78 __stringify(DRBD_MINOR_COUNT_MIN) "-" __stringify(DRBD_MINOR_COUNT_MAX) ")");
79 MODULE_ALIAS_BLOCKDEV_MAJOR(DRBD_MAJOR);
80
81 #include <linux/moduleparam.h>
82 /* allow_open_on_secondary */
83 MODULE_PARM_DESC(allow_oos, "DONT USE!");
84 /* thanks to these macros, if compiled into the kernel (not-module),
85 * this becomes the boot parameter drbd.minor_count */
86 module_param(minor_count, uint, 0444);
87 module_param(disable_sendpage, bool, 0644);
88 module_param(allow_oos, bool, 0);
89 module_param(proc_details, int, 0644);
90
91 #ifdef CONFIG_DRBD_FAULT_INJECTION
92 int enable_faults;
93 int fault_rate;
94 static int fault_count;
95 int fault_devs;
96 /* bitmap of enabled faults */
97 module_param(enable_faults, int, 0664);
98 /* fault rate % value - applies to all enabled faults */
99 module_param(fault_rate, int, 0664);
100 /* count of faults inserted */
101 module_param(fault_count, int, 0664);
102 /* bitmap of devices to insert faults on */
103 module_param(fault_devs, int, 0644);
104 #endif
105
106 /* module parameter, defined */
107 unsigned int minor_count = DRBD_MINOR_COUNT_DEF;
108 bool disable_sendpage;
109 bool allow_oos;
110 int proc_details; /* Detail level in proc drbd*/
111
112 /* Module parameter for setting the user mode helper program
113 * to run. Default is /sbin/drbdadm */
114 char usermode_helper[80] = "/sbin/drbdadm";
115
116 module_param_string(usermode_helper, usermode_helper, sizeof(usermode_helper), 0644);
117
118 /* in 2.6.x, our device mapping and config info contains our virtual gendisks
119 * as member "struct gendisk *vdisk;"
120 */
121 struct idr minors;
122 struct list_head drbd_tconns; /* list of struct drbd_tconn */
123
124 struct kmem_cache *drbd_request_cache;
125 struct kmem_cache *drbd_ee_cache; /* peer requests */
126 struct kmem_cache *drbd_bm_ext_cache; /* bitmap extents */
127 struct kmem_cache *drbd_al_ext_cache; /* activity log extents */
128 mempool_t *drbd_request_mempool;
129 mempool_t *drbd_ee_mempool;
130 mempool_t *drbd_md_io_page_pool;
131 struct bio_set *drbd_md_io_bio_set;
132
133 /* I do not use a standard mempool, because:
134 1) I want to hand out the pre-allocated objects first.
135 2) I want to be able to interrupt sleeping allocation with a signal.
136 Note: This is a single linked list, the next pointer is the private
137 member of struct page.
138 */
139 struct page *drbd_pp_pool;
140 spinlock_t drbd_pp_lock;
141 int drbd_pp_vacant;
142 wait_queue_head_t drbd_pp_wait;
143
144 DEFINE_RATELIMIT_STATE(drbd_ratelimit_state, 5 * HZ, 5);
145
146 static const struct block_device_operations drbd_ops = {
147 .owner = THIS_MODULE,
148 .open = drbd_open,
149 .release = drbd_release,
150 };
151
152 struct bio *bio_alloc_drbd(gfp_t gfp_mask)
153 {
154 struct bio *bio;
155
156 if (!drbd_md_io_bio_set)
157 return bio_alloc(gfp_mask, 1);
158
159 bio = bio_alloc_bioset(gfp_mask, 1, drbd_md_io_bio_set);
160 if (!bio)
161 return NULL;
162 return bio;
163 }
164
165 #ifdef __CHECKER__
166 /* When checking with sparse, and this is an inline function, sparse will
167 give tons of false positives. When this is a real functions sparse works.
168 */
169 int _get_ldev_if_state(struct drbd_conf *mdev, enum drbd_disk_state mins)
170 {
171 int io_allowed;
172
173 atomic_inc(&mdev->local_cnt);
174 io_allowed = (mdev->state.disk >= mins);
175 if (!io_allowed) {
176 if (atomic_dec_and_test(&mdev->local_cnt))
177 wake_up(&mdev->misc_wait);
178 }
179 return io_allowed;
180 }
181
182 #endif
183
184 /**
185 * tl_release() - mark as BARRIER_ACKED all requests in the corresponding transfer log epoch
186 * @tconn: DRBD connection.
187 * @barrier_nr: Expected identifier of the DRBD write barrier packet.
188 * @set_size: Expected number of requests before that barrier.
189 *
190 * In case the passed barrier_nr or set_size does not match the oldest
191 * epoch of not yet barrier-acked requests, this function will cause a
192 * termination of the connection.
193 */
194 void tl_release(struct drbd_tconn *tconn, unsigned int barrier_nr,
195 unsigned int set_size)
196 {
197 struct drbd_request *r;
198 struct drbd_request *req = NULL;
199 int expect_epoch = 0;
200 int expect_size = 0;
201
202 spin_lock_irq(&tconn->req_lock);
203
204 /* find oldest not yet barrier-acked write request,
205 * count writes in its epoch. */
206 list_for_each_entry(r, &tconn->transfer_log, tl_requests) {
207 const unsigned s = r->rq_state;
208 if (!req) {
209 if (!(s & RQ_WRITE))
210 continue;
211 if (!(s & RQ_NET_MASK))
212 continue;
213 if (s & RQ_NET_DONE)
214 continue;
215 req = r;
216 expect_epoch = req->epoch;
217 expect_size ++;
218 } else {
219 if (r->epoch != expect_epoch)
220 break;
221 if (!(s & RQ_WRITE))
222 continue;
223 /* if (s & RQ_DONE): not expected */
224 /* if (!(s & RQ_NET_MASK)): not expected */
225 expect_size++;
226 }
227 }
228
229 /* first some paranoia code */
230 if (req == NULL) {
231 conn_err(tconn, "BAD! BarrierAck #%u received, but no epoch in tl!?\n",
232 barrier_nr);
233 goto bail;
234 }
235 if (expect_epoch != barrier_nr) {
236 conn_err(tconn, "BAD! BarrierAck #%u received, expected #%u!\n",
237 barrier_nr, expect_epoch);
238 goto bail;
239 }
240
241 if (expect_size != set_size) {
242 conn_err(tconn, "BAD! BarrierAck #%u received with n_writes=%u, expected n_writes=%u!\n",
243 barrier_nr, set_size, expect_size);
244 goto bail;
245 }
246
247 /* Clean up list of requests processed during current epoch. */
248 /* this extra list walk restart is paranoia,
249 * to catch requests being barrier-acked "unexpectedly".
250 * It usually should find the same req again, or some READ preceding it. */
251 list_for_each_entry(req, &tconn->transfer_log, tl_requests)
252 if (req->epoch == expect_epoch)
253 break;
254 list_for_each_entry_safe_from(req, r, &tconn->transfer_log, tl_requests) {
255 if (req->epoch != expect_epoch)
256 break;
257 _req_mod(req, BARRIER_ACKED);
258 }
259 spin_unlock_irq(&tconn->req_lock);
260
261 return;
262
263 bail:
264 spin_unlock_irq(&tconn->req_lock);
265 conn_request_state(tconn, NS(conn, C_PROTOCOL_ERROR), CS_HARD);
266 }
267
268
269 /**
270 * _tl_restart() - Walks the transfer log, and applies an action to all requests
271 * @mdev: DRBD device.
272 * @what: The action/event to perform with all request objects
273 *
274 * @what might be one of CONNECTION_LOST_WHILE_PENDING, RESEND, FAIL_FROZEN_DISK_IO,
275 * RESTART_FROZEN_DISK_IO.
276 */
277 /* must hold resource->req_lock */
278 void _tl_restart(struct drbd_tconn *tconn, enum drbd_req_event what)
279 {
280 struct drbd_request *req, *r;
281
282 list_for_each_entry_safe(req, r, &tconn->transfer_log, tl_requests)
283 _req_mod(req, what);
284 }
285
286 void tl_restart(struct drbd_tconn *tconn, enum drbd_req_event what)
287 {
288 spin_lock_irq(&tconn->req_lock);
289 _tl_restart(tconn, what);
290 spin_unlock_irq(&tconn->req_lock);
291 }
292
293 /**
294 * tl_clear() - Clears all requests and &struct drbd_tl_epoch objects out of the TL
295 * @mdev: DRBD device.
296 *
297 * This is called after the connection to the peer was lost. The storage covered
298 * by the requests on the transfer gets marked as our of sync. Called from the
299 * receiver thread and the worker thread.
300 */
301 void tl_clear(struct drbd_tconn *tconn)
302 {
303 tl_restart(tconn, CONNECTION_LOST_WHILE_PENDING);
304 }
305
306 /**
307 * tl_abort_disk_io() - Abort disk I/O for all requests for a certain mdev in the TL
308 * @mdev: DRBD device.
309 */
310 void tl_abort_disk_io(struct drbd_conf *mdev)
311 {
312 struct drbd_tconn *tconn = mdev->tconn;
313 struct drbd_request *req, *r;
314
315 spin_lock_irq(&tconn->req_lock);
316 list_for_each_entry_safe(req, r, &tconn->transfer_log, tl_requests) {
317 if (!(req->rq_state & RQ_LOCAL_PENDING))
318 continue;
319 if (req->w.mdev != mdev)
320 continue;
321 _req_mod(req, ABORT_DISK_IO);
322 }
323 spin_unlock_irq(&tconn->req_lock);
324 }
325
326 static int drbd_thread_setup(void *arg)
327 {
328 struct drbd_thread *thi = (struct drbd_thread *) arg;
329 struct drbd_tconn *tconn = thi->tconn;
330 unsigned long flags;
331 int retval;
332
333 snprintf(current->comm, sizeof(current->comm), "drbd_%c_%s",
334 thi->name[0], thi->tconn->name);
335
336 restart:
337 retval = thi->function(thi);
338
339 spin_lock_irqsave(&thi->t_lock, flags);
340
341 /* if the receiver has been "EXITING", the last thing it did
342 * was set the conn state to "StandAlone",
343 * if now a re-connect request comes in, conn state goes C_UNCONNECTED,
344 * and receiver thread will be "started".
345 * drbd_thread_start needs to set "RESTARTING" in that case.
346 * t_state check and assignment needs to be within the same spinlock,
347 * so either thread_start sees EXITING, and can remap to RESTARTING,
348 * or thread_start see NONE, and can proceed as normal.
349 */
350
351 if (thi->t_state == RESTARTING) {
352 conn_info(tconn, "Restarting %s thread\n", thi->name);
353 thi->t_state = RUNNING;
354 spin_unlock_irqrestore(&thi->t_lock, flags);
355 goto restart;
356 }
357
358 thi->task = NULL;
359 thi->t_state = NONE;
360 smp_mb();
361 complete_all(&thi->stop);
362 spin_unlock_irqrestore(&thi->t_lock, flags);
363
364 conn_info(tconn, "Terminating %s\n", current->comm);
365
366 /* Release mod reference taken when thread was started */
367
368 kref_put(&tconn->kref, &conn_destroy);
369 module_put(THIS_MODULE);
370 return retval;
371 }
372
373 static void drbd_thread_init(struct drbd_tconn *tconn, struct drbd_thread *thi,
374 int (*func) (struct drbd_thread *), char *name)
375 {
376 spin_lock_init(&thi->t_lock);
377 thi->task = NULL;
378 thi->t_state = NONE;
379 thi->function = func;
380 thi->tconn = tconn;
381 strncpy(thi->name, name, ARRAY_SIZE(thi->name));
382 }
383
384 int drbd_thread_start(struct drbd_thread *thi)
385 {
386 struct drbd_tconn *tconn = thi->tconn;
387 struct task_struct *nt;
388 unsigned long flags;
389
390 /* is used from state engine doing drbd_thread_stop_nowait,
391 * while holding the req lock irqsave */
392 spin_lock_irqsave(&thi->t_lock, flags);
393
394 switch (thi->t_state) {
395 case NONE:
396 conn_info(tconn, "Starting %s thread (from %s [%d])\n",
397 thi->name, current->comm, current->pid);
398
399 /* Get ref on module for thread - this is released when thread exits */
400 if (!try_module_get(THIS_MODULE)) {
401 conn_err(tconn, "Failed to get module reference in drbd_thread_start\n");
402 spin_unlock_irqrestore(&thi->t_lock, flags);
403 return false;
404 }
405
406 kref_get(&thi->tconn->kref);
407
408 init_completion(&thi->stop);
409 thi->reset_cpu_mask = 1;
410 thi->t_state = RUNNING;
411 spin_unlock_irqrestore(&thi->t_lock, flags);
412 flush_signals(current); /* otherw. may get -ERESTARTNOINTR */
413
414 nt = kthread_create(drbd_thread_setup, (void *) thi,
415 "drbd_%c_%s", thi->name[0], thi->tconn->name);
416
417 if (IS_ERR(nt)) {
418 conn_err(tconn, "Couldn't start thread\n");
419
420 kref_put(&tconn->kref, &conn_destroy);
421 module_put(THIS_MODULE);
422 return false;
423 }
424 spin_lock_irqsave(&thi->t_lock, flags);
425 thi->task = nt;
426 thi->t_state = RUNNING;
427 spin_unlock_irqrestore(&thi->t_lock, flags);
428 wake_up_process(nt);
429 break;
430 case EXITING:
431 thi->t_state = RESTARTING;
432 conn_info(tconn, "Restarting %s thread (from %s [%d])\n",
433 thi->name, current->comm, current->pid);
434 /* fall through */
435 case RUNNING:
436 case RESTARTING:
437 default:
438 spin_unlock_irqrestore(&thi->t_lock, flags);
439 break;
440 }
441
442 return true;
443 }
444
445
446 void _drbd_thread_stop(struct drbd_thread *thi, int restart, int wait)
447 {
448 unsigned long flags;
449
450 enum drbd_thread_state ns = restart ? RESTARTING : EXITING;
451
452 /* may be called from state engine, holding the req lock irqsave */
453 spin_lock_irqsave(&thi->t_lock, flags);
454
455 if (thi->t_state == NONE) {
456 spin_unlock_irqrestore(&thi->t_lock, flags);
457 if (restart)
458 drbd_thread_start(thi);
459 return;
460 }
461
462 if (thi->t_state != ns) {
463 if (thi->task == NULL) {
464 spin_unlock_irqrestore(&thi->t_lock, flags);
465 return;
466 }
467
468 thi->t_state = ns;
469 smp_mb();
470 init_completion(&thi->stop);
471 if (thi->task != current)
472 force_sig(DRBD_SIGKILL, thi->task);
473 }
474
475 spin_unlock_irqrestore(&thi->t_lock, flags);
476
477 if (wait)
478 wait_for_completion(&thi->stop);
479 }
480
481 static struct drbd_thread *drbd_task_to_thread(struct drbd_tconn *tconn, struct task_struct *task)
482 {
483 struct drbd_thread *thi =
484 task == tconn->receiver.task ? &tconn->receiver :
485 task == tconn->asender.task ? &tconn->asender :
486 task == tconn->worker.task ? &tconn->worker : NULL;
487
488 return thi;
489 }
490
491 char *drbd_task_to_thread_name(struct drbd_tconn *tconn, struct task_struct *task)
492 {
493 struct drbd_thread *thi = drbd_task_to_thread(tconn, task);
494 return thi ? thi->name : task->comm;
495 }
496
497 int conn_lowest_minor(struct drbd_tconn *tconn)
498 {
499 struct drbd_conf *mdev;
500 int vnr = 0, m;
501
502 rcu_read_lock();
503 mdev = idr_get_next(&tconn->volumes, &vnr);
504 m = mdev ? mdev_to_minor(mdev) : -1;
505 rcu_read_unlock();
506
507 return m;
508 }
509
510 #ifdef CONFIG_SMP
511 /**
512 * drbd_calc_cpu_mask() - Generate CPU masks, spread over all CPUs
513 * @mdev: DRBD device.
514 *
515 * Forces all threads of a device onto the same CPU. This is beneficial for
516 * DRBD's performance. May be overwritten by user's configuration.
517 */
518 void drbd_calc_cpu_mask(struct drbd_tconn *tconn)
519 {
520 int ord, cpu;
521
522 /* user override. */
523 if (cpumask_weight(tconn->cpu_mask))
524 return;
525
526 ord = conn_lowest_minor(tconn) % cpumask_weight(cpu_online_mask);
527 for_each_online_cpu(cpu) {
528 if (ord-- == 0) {
529 cpumask_set_cpu(cpu, tconn->cpu_mask);
530 return;
531 }
532 }
533 /* should not be reached */
534 cpumask_setall(tconn->cpu_mask);
535 }
536
537 /**
538 * drbd_thread_current_set_cpu() - modifies the cpu mask of the _current_ thread
539 * @mdev: DRBD device.
540 * @thi: drbd_thread object
541 *
542 * call in the "main loop" of _all_ threads, no need for any mutex, current won't die
543 * prematurely.
544 */
545 void drbd_thread_current_set_cpu(struct drbd_thread *thi)
546 {
547 struct task_struct *p = current;
548
549 if (!thi->reset_cpu_mask)
550 return;
551 thi->reset_cpu_mask = 0;
552 set_cpus_allowed_ptr(p, thi->tconn->cpu_mask);
553 }
554 #endif
555
556 /**
557 * drbd_header_size - size of a packet header
558 *
559 * The header size is a multiple of 8, so any payload following the header is
560 * word aligned on 64-bit architectures. (The bitmap send and receive code
561 * relies on this.)
562 */
563 unsigned int drbd_header_size(struct drbd_tconn *tconn)
564 {
565 if (tconn->agreed_pro_version >= 100) {
566 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header100), 8));
567 return sizeof(struct p_header100);
568 } else {
569 BUILD_BUG_ON(sizeof(struct p_header80) !=
570 sizeof(struct p_header95));
571 BUILD_BUG_ON(!IS_ALIGNED(sizeof(struct p_header80), 8));
572 return sizeof(struct p_header80);
573 }
574 }
575
576 static unsigned int prepare_header80(struct p_header80 *h, enum drbd_packet cmd, int size)
577 {
578 h->magic = cpu_to_be32(DRBD_MAGIC);
579 h->command = cpu_to_be16(cmd);
580 h->length = cpu_to_be16(size);
581 return sizeof(struct p_header80);
582 }
583
584 static unsigned int prepare_header95(struct p_header95 *h, enum drbd_packet cmd, int size)
585 {
586 h->magic = cpu_to_be16(DRBD_MAGIC_BIG);
587 h->command = cpu_to_be16(cmd);
588 h->length = cpu_to_be32(size);
589 return sizeof(struct p_header95);
590 }
591
592 static unsigned int prepare_header100(struct p_header100 *h, enum drbd_packet cmd,
593 int size, int vnr)
594 {
595 h->magic = cpu_to_be32(DRBD_MAGIC_100);
596 h->volume = cpu_to_be16(vnr);
597 h->command = cpu_to_be16(cmd);
598 h->length = cpu_to_be32(size);
599 h->pad = 0;
600 return sizeof(struct p_header100);
601 }
602
603 static unsigned int prepare_header(struct drbd_tconn *tconn, int vnr,
604 void *buffer, enum drbd_packet cmd, int size)
605 {
606 if (tconn->agreed_pro_version >= 100)
607 return prepare_header100(buffer, cmd, size, vnr);
608 else if (tconn->agreed_pro_version >= 95 &&
609 size > DRBD_MAX_SIZE_H80_PACKET)
610 return prepare_header95(buffer, cmd, size);
611 else
612 return prepare_header80(buffer, cmd, size);
613 }
614
615 static void *__conn_prepare_command(struct drbd_tconn *tconn,
616 struct drbd_socket *sock)
617 {
618 if (!sock->socket)
619 return NULL;
620 return sock->sbuf + drbd_header_size(tconn);
621 }
622
623 void *conn_prepare_command(struct drbd_tconn *tconn, struct drbd_socket *sock)
624 {
625 void *p;
626
627 mutex_lock(&sock->mutex);
628 p = __conn_prepare_command(tconn, sock);
629 if (!p)
630 mutex_unlock(&sock->mutex);
631
632 return p;
633 }
634
635 void *drbd_prepare_command(struct drbd_conf *mdev, struct drbd_socket *sock)
636 {
637 return conn_prepare_command(mdev->tconn, sock);
638 }
639
640 static int __send_command(struct drbd_tconn *tconn, int vnr,
641 struct drbd_socket *sock, enum drbd_packet cmd,
642 unsigned int header_size, void *data,
643 unsigned int size)
644 {
645 int msg_flags;
646 int err;
647
648 /*
649 * Called with @data == NULL and the size of the data blocks in @size
650 * for commands that send data blocks. For those commands, omit the
651 * MSG_MORE flag: this will increase the likelihood that data blocks
652 * which are page aligned on the sender will end up page aligned on the
653 * receiver.
654 */
655 msg_flags = data ? MSG_MORE : 0;
656
657 header_size += prepare_header(tconn, vnr, sock->sbuf, cmd,
658 header_size + size);
659 err = drbd_send_all(tconn, sock->socket, sock->sbuf, header_size,
660 msg_flags);
661 if (data && !err)
662 err = drbd_send_all(tconn, sock->socket, data, size, 0);
663 return err;
664 }
665
666 static int __conn_send_command(struct drbd_tconn *tconn, struct drbd_socket *sock,
667 enum drbd_packet cmd, unsigned int header_size,
668 void *data, unsigned int size)
669 {
670 return __send_command(tconn, 0, sock, cmd, header_size, data, size);
671 }
672
673 int conn_send_command(struct drbd_tconn *tconn, struct drbd_socket *sock,
674 enum drbd_packet cmd, unsigned int header_size,
675 void *data, unsigned int size)
676 {
677 int err;
678
679 err = __conn_send_command(tconn, sock, cmd, header_size, data, size);
680 mutex_unlock(&sock->mutex);
681 return err;
682 }
683
684 int drbd_send_command(struct drbd_conf *mdev, struct drbd_socket *sock,
685 enum drbd_packet cmd, unsigned int header_size,
686 void *data, unsigned int size)
687 {
688 int err;
689
690 err = __send_command(mdev->tconn, mdev->vnr, sock, cmd, header_size,
691 data, size);
692 mutex_unlock(&sock->mutex);
693 return err;
694 }
695
696 int drbd_send_ping(struct drbd_tconn *tconn)
697 {
698 struct drbd_socket *sock;
699
700 sock = &tconn->meta;
701 if (!conn_prepare_command(tconn, sock))
702 return -EIO;
703 return conn_send_command(tconn, sock, P_PING, 0, NULL, 0);
704 }
705
706 int drbd_send_ping_ack(struct drbd_tconn *tconn)
707 {
708 struct drbd_socket *sock;
709
710 sock = &tconn->meta;
711 if (!conn_prepare_command(tconn, sock))
712 return -EIO;
713 return conn_send_command(tconn, sock, P_PING_ACK, 0, NULL, 0);
714 }
715
716 int drbd_send_sync_param(struct drbd_conf *mdev)
717 {
718 struct drbd_socket *sock;
719 struct p_rs_param_95 *p;
720 int size;
721 const int apv = mdev->tconn->agreed_pro_version;
722 enum drbd_packet cmd;
723 struct net_conf *nc;
724 struct disk_conf *dc;
725
726 sock = &mdev->tconn->data;
727 p = drbd_prepare_command(mdev, sock);
728 if (!p)
729 return -EIO;
730
731 rcu_read_lock();
732 nc = rcu_dereference(mdev->tconn->net_conf);
733
734 size = apv <= 87 ? sizeof(struct p_rs_param)
735 : apv == 88 ? sizeof(struct p_rs_param)
736 + strlen(nc->verify_alg) + 1
737 : apv <= 94 ? sizeof(struct p_rs_param_89)
738 : /* apv >= 95 */ sizeof(struct p_rs_param_95);
739
740 cmd = apv >= 89 ? P_SYNC_PARAM89 : P_SYNC_PARAM;
741
742 /* initialize verify_alg and csums_alg */
743 memset(p->verify_alg, 0, 2 * SHARED_SECRET_MAX);
744
745 if (get_ldev(mdev)) {
746 dc = rcu_dereference(mdev->ldev->disk_conf);
747 p->resync_rate = cpu_to_be32(dc->resync_rate);
748 p->c_plan_ahead = cpu_to_be32(dc->c_plan_ahead);
749 p->c_delay_target = cpu_to_be32(dc->c_delay_target);
750 p->c_fill_target = cpu_to_be32(dc->c_fill_target);
751 p->c_max_rate = cpu_to_be32(dc->c_max_rate);
752 put_ldev(mdev);
753 } else {
754 p->resync_rate = cpu_to_be32(DRBD_RESYNC_RATE_DEF);
755 p->c_plan_ahead = cpu_to_be32(DRBD_C_PLAN_AHEAD_DEF);
756 p->c_delay_target = cpu_to_be32(DRBD_C_DELAY_TARGET_DEF);
757 p->c_fill_target = cpu_to_be32(DRBD_C_FILL_TARGET_DEF);
758 p->c_max_rate = cpu_to_be32(DRBD_C_MAX_RATE_DEF);
759 }
760
761 if (apv >= 88)
762 strcpy(p->verify_alg, nc->verify_alg);
763 if (apv >= 89)
764 strcpy(p->csums_alg, nc->csums_alg);
765 rcu_read_unlock();
766
767 return drbd_send_command(mdev, sock, cmd, size, NULL, 0);
768 }
769
770 int __drbd_send_protocol(struct drbd_tconn *tconn, enum drbd_packet cmd)
771 {
772 struct drbd_socket *sock;
773 struct p_protocol *p;
774 struct net_conf *nc;
775 int size, cf;
776
777 sock = &tconn->data;
778 p = __conn_prepare_command(tconn, sock);
779 if (!p)
780 return -EIO;
781
782 rcu_read_lock();
783 nc = rcu_dereference(tconn->net_conf);
784
785 if (nc->tentative && tconn->agreed_pro_version < 92) {
786 rcu_read_unlock();
787 mutex_unlock(&sock->mutex);
788 conn_err(tconn, "--dry-run is not supported by peer");
789 return -EOPNOTSUPP;
790 }
791
792 size = sizeof(*p);
793 if (tconn->agreed_pro_version >= 87)
794 size += strlen(nc->integrity_alg) + 1;
795
796 p->protocol = cpu_to_be32(nc->wire_protocol);
797 p->after_sb_0p = cpu_to_be32(nc->after_sb_0p);
798 p->after_sb_1p = cpu_to_be32(nc->after_sb_1p);
799 p->after_sb_2p = cpu_to_be32(nc->after_sb_2p);
800 p->two_primaries = cpu_to_be32(nc->two_primaries);
801 cf = 0;
802 if (nc->discard_my_data)
803 cf |= CF_DISCARD_MY_DATA;
804 if (nc->tentative)
805 cf |= CF_DRY_RUN;
806 p->conn_flags = cpu_to_be32(cf);
807
808 if (tconn->agreed_pro_version >= 87)
809 strcpy(p->integrity_alg, nc->integrity_alg);
810 rcu_read_unlock();
811
812 return __conn_send_command(tconn, sock, cmd, size, NULL, 0);
813 }
814
815 int drbd_send_protocol(struct drbd_tconn *tconn)
816 {
817 int err;
818
819 mutex_lock(&tconn->data.mutex);
820 err = __drbd_send_protocol(tconn, P_PROTOCOL);
821 mutex_unlock(&tconn->data.mutex);
822
823 return err;
824 }
825
826 int _drbd_send_uuids(struct drbd_conf *mdev, u64 uuid_flags)
827 {
828 struct drbd_socket *sock;
829 struct p_uuids *p;
830 int i;
831
832 if (!get_ldev_if_state(mdev, D_NEGOTIATING))
833 return 0;
834
835 sock = &mdev->tconn->data;
836 p = drbd_prepare_command(mdev, sock);
837 if (!p) {
838 put_ldev(mdev);
839 return -EIO;
840 }
841 spin_lock_irq(&mdev->ldev->md.uuid_lock);
842 for (i = UI_CURRENT; i < UI_SIZE; i++)
843 p->uuid[i] = cpu_to_be64(mdev->ldev->md.uuid[i]);
844 spin_unlock_irq(&mdev->ldev->md.uuid_lock);
845
846 mdev->comm_bm_set = drbd_bm_total_weight(mdev);
847 p->uuid[UI_SIZE] = cpu_to_be64(mdev->comm_bm_set);
848 rcu_read_lock();
849 uuid_flags |= rcu_dereference(mdev->tconn->net_conf)->discard_my_data ? 1 : 0;
850 rcu_read_unlock();
851 uuid_flags |= test_bit(CRASHED_PRIMARY, &mdev->flags) ? 2 : 0;
852 uuid_flags |= mdev->new_state_tmp.disk == D_INCONSISTENT ? 4 : 0;
853 p->uuid[UI_FLAGS] = cpu_to_be64(uuid_flags);
854
855 put_ldev(mdev);
856 return drbd_send_command(mdev, sock, P_UUIDS, sizeof(*p), NULL, 0);
857 }
858
859 int drbd_send_uuids(struct drbd_conf *mdev)
860 {
861 return _drbd_send_uuids(mdev, 0);
862 }
863
864 int drbd_send_uuids_skip_initial_sync(struct drbd_conf *mdev)
865 {
866 return _drbd_send_uuids(mdev, 8);
867 }
868
869 void drbd_print_uuids(struct drbd_conf *mdev, const char *text)
870 {
871 if (get_ldev_if_state(mdev, D_NEGOTIATING)) {
872 u64 *uuid = mdev->ldev->md.uuid;
873 dev_info(DEV, "%s %016llX:%016llX:%016llX:%016llX\n",
874 text,
875 (unsigned long long)uuid[UI_CURRENT],
876 (unsigned long long)uuid[UI_BITMAP],
877 (unsigned long long)uuid[UI_HISTORY_START],
878 (unsigned long long)uuid[UI_HISTORY_END]);
879 put_ldev(mdev);
880 } else {
881 dev_info(DEV, "%s effective data uuid: %016llX\n",
882 text,
883 (unsigned long long)mdev->ed_uuid);
884 }
885 }
886
887 void drbd_gen_and_send_sync_uuid(struct drbd_conf *mdev)
888 {
889 struct drbd_socket *sock;
890 struct p_rs_uuid *p;
891 u64 uuid;
892
893 D_ASSERT(mdev->state.disk == D_UP_TO_DATE);
894
895 uuid = mdev->ldev->md.uuid[UI_BITMAP];
896 if (uuid && uuid != UUID_JUST_CREATED)
897 uuid = uuid + UUID_NEW_BM_OFFSET;
898 else
899 get_random_bytes(&uuid, sizeof(u64));
900 drbd_uuid_set(mdev, UI_BITMAP, uuid);
901 drbd_print_uuids(mdev, "updated sync UUID");
902 drbd_md_sync(mdev);
903
904 sock = &mdev->tconn->data;
905 p = drbd_prepare_command(mdev, sock);
906 if (p) {
907 p->uuid = cpu_to_be64(uuid);
908 drbd_send_command(mdev, sock, P_SYNC_UUID, sizeof(*p), NULL, 0);
909 }
910 }
911
912 int drbd_send_sizes(struct drbd_conf *mdev, int trigger_reply, enum dds_flags flags)
913 {
914 struct drbd_socket *sock;
915 struct p_sizes *p;
916 sector_t d_size, u_size;
917 int q_order_type;
918 unsigned int max_bio_size;
919
920 if (get_ldev_if_state(mdev, D_NEGOTIATING)) {
921 D_ASSERT(mdev->ldev->backing_bdev);
922 d_size = drbd_get_max_capacity(mdev->ldev);
923 rcu_read_lock();
924 u_size = rcu_dereference(mdev->ldev->disk_conf)->disk_size;
925 rcu_read_unlock();
926 q_order_type = drbd_queue_order_type(mdev);
927 max_bio_size = queue_max_hw_sectors(mdev->ldev->backing_bdev->bd_disk->queue) << 9;
928 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE);
929 put_ldev(mdev);
930 } else {
931 d_size = 0;
932 u_size = 0;
933 q_order_type = QUEUE_ORDERED_NONE;
934 max_bio_size = DRBD_MAX_BIO_SIZE; /* ... multiple BIOs per peer_request */
935 }
936
937 sock = &mdev->tconn->data;
938 p = drbd_prepare_command(mdev, sock);
939 if (!p)
940 return -EIO;
941
942 if (mdev->tconn->agreed_pro_version <= 94)
943 max_bio_size = min(max_bio_size, DRBD_MAX_SIZE_H80_PACKET);
944 else if (mdev->tconn->agreed_pro_version < 100)
945 max_bio_size = min(max_bio_size, DRBD_MAX_BIO_SIZE_P95);
946
947 p->d_size = cpu_to_be64(d_size);
948 p->u_size = cpu_to_be64(u_size);
949 p->c_size = cpu_to_be64(trigger_reply ? 0 : drbd_get_capacity(mdev->this_bdev));
950 p->max_bio_size = cpu_to_be32(max_bio_size);
951 p->queue_order_type = cpu_to_be16(q_order_type);
952 p->dds_flags = cpu_to_be16(flags);
953 return drbd_send_command(mdev, sock, P_SIZES, sizeof(*p), NULL, 0);
954 }
955
956 /**
957 * drbd_send_current_state() - Sends the drbd state to the peer
958 * @mdev: DRBD device.
959 */
960 int drbd_send_current_state(struct drbd_conf *mdev)
961 {
962 struct drbd_socket *sock;
963 struct p_state *p;
964
965 sock = &mdev->tconn->data;
966 p = drbd_prepare_command(mdev, sock);
967 if (!p)
968 return -EIO;
969 p->state = cpu_to_be32(mdev->state.i); /* Within the send mutex */
970 return drbd_send_command(mdev, sock, P_STATE, sizeof(*p), NULL, 0);
971 }
972
973 /**
974 * drbd_send_state() - After a state change, sends the new state to the peer
975 * @mdev: DRBD device.
976 * @state: the state to send, not necessarily the current state.
977 *
978 * Each state change queues an "after_state_ch" work, which will eventually
979 * send the resulting new state to the peer. If more state changes happen
980 * between queuing and processing of the after_state_ch work, we still
981 * want to send each intermediary state in the order it occurred.
982 */
983 int drbd_send_state(struct drbd_conf *mdev, union drbd_state state)
984 {
985 struct drbd_socket *sock;
986 struct p_state *p;
987
988 sock = &mdev->tconn->data;
989 p = drbd_prepare_command(mdev, sock);
990 if (!p)
991 return -EIO;
992 p->state = cpu_to_be32(state.i); /* Within the send mutex */
993 return drbd_send_command(mdev, sock, P_STATE, sizeof(*p), NULL, 0);
994 }
995
996 int drbd_send_state_req(struct drbd_conf *mdev, union drbd_state mask, union drbd_state val)
997 {
998 struct drbd_socket *sock;
999 struct p_req_state *p;
1000
1001 sock = &mdev->tconn->data;
1002 p = drbd_prepare_command(mdev, sock);
1003 if (!p)
1004 return -EIO;
1005 p->mask = cpu_to_be32(mask.i);
1006 p->val = cpu_to_be32(val.i);
1007 return drbd_send_command(mdev, sock, P_STATE_CHG_REQ, sizeof(*p), NULL, 0);
1008 }
1009
1010 int conn_send_state_req(struct drbd_tconn *tconn, union drbd_state mask, union drbd_state val)
1011 {
1012 enum drbd_packet cmd;
1013 struct drbd_socket *sock;
1014 struct p_req_state *p;
1015
1016 cmd = tconn->agreed_pro_version < 100 ? P_STATE_CHG_REQ : P_CONN_ST_CHG_REQ;
1017 sock = &tconn->data;
1018 p = conn_prepare_command(tconn, sock);
1019 if (!p)
1020 return -EIO;
1021 p->mask = cpu_to_be32(mask.i);
1022 p->val = cpu_to_be32(val.i);
1023 return conn_send_command(tconn, sock, cmd, sizeof(*p), NULL, 0);
1024 }
1025
1026 void drbd_send_sr_reply(struct drbd_conf *mdev, enum drbd_state_rv retcode)
1027 {
1028 struct drbd_socket *sock;
1029 struct p_req_state_reply *p;
1030
1031 sock = &mdev->tconn->meta;
1032 p = drbd_prepare_command(mdev, sock);
1033 if (p) {
1034 p->retcode = cpu_to_be32(retcode);
1035 drbd_send_command(mdev, sock, P_STATE_CHG_REPLY, sizeof(*p), NULL, 0);
1036 }
1037 }
1038
1039 void conn_send_sr_reply(struct drbd_tconn *tconn, enum drbd_state_rv retcode)
1040 {
1041 struct drbd_socket *sock;
1042 struct p_req_state_reply *p;
1043 enum drbd_packet cmd = tconn->agreed_pro_version < 100 ? P_STATE_CHG_REPLY : P_CONN_ST_CHG_REPLY;
1044
1045 sock = &tconn->meta;
1046 p = conn_prepare_command(tconn, sock);
1047 if (p) {
1048 p->retcode = cpu_to_be32(retcode);
1049 conn_send_command(tconn, sock, cmd, sizeof(*p), NULL, 0);
1050 }
1051 }
1052
1053 static void dcbp_set_code(struct p_compressed_bm *p, enum drbd_bitmap_code code)
1054 {
1055 BUG_ON(code & ~0xf);
1056 p->encoding = (p->encoding & ~0xf) | code;
1057 }
1058
1059 static void dcbp_set_start(struct p_compressed_bm *p, int set)
1060 {
1061 p->encoding = (p->encoding & ~0x80) | (set ? 0x80 : 0);
1062 }
1063
1064 static void dcbp_set_pad_bits(struct p_compressed_bm *p, int n)
1065 {
1066 BUG_ON(n & ~0x7);
1067 p->encoding = (p->encoding & (~0x7 << 4)) | (n << 4);
1068 }
1069
1070 int fill_bitmap_rle_bits(struct drbd_conf *mdev,
1071 struct p_compressed_bm *p,
1072 unsigned int size,
1073 struct bm_xfer_ctx *c)
1074 {
1075 struct bitstream bs;
1076 unsigned long plain_bits;
1077 unsigned long tmp;
1078 unsigned long rl;
1079 unsigned len;
1080 unsigned toggle;
1081 int bits, use_rle;
1082
1083 /* may we use this feature? */
1084 rcu_read_lock();
1085 use_rle = rcu_dereference(mdev->tconn->net_conf)->use_rle;
1086 rcu_read_unlock();
1087 if (!use_rle || mdev->tconn->agreed_pro_version < 90)
1088 return 0;
1089
1090 if (c->bit_offset >= c->bm_bits)
1091 return 0; /* nothing to do. */
1092
1093 /* use at most thus many bytes */
1094 bitstream_init(&bs, p->code, size, 0);
1095 memset(p->code, 0, size);
1096 /* plain bits covered in this code string */
1097 plain_bits = 0;
1098
1099 /* p->encoding & 0x80 stores whether the first run length is set.
1100 * bit offset is implicit.
1101 * start with toggle == 2 to be able to tell the first iteration */
1102 toggle = 2;
1103
1104 /* see how much plain bits we can stuff into one packet
1105 * using RLE and VLI. */
1106 do {
1107 tmp = (toggle == 0) ? _drbd_bm_find_next_zero(mdev, c->bit_offset)
1108 : _drbd_bm_find_next(mdev, c->bit_offset);
1109 if (tmp == -1UL)
1110 tmp = c->bm_bits;
1111 rl = tmp - c->bit_offset;
1112
1113 if (toggle == 2) { /* first iteration */
1114 if (rl == 0) {
1115 /* the first checked bit was set,
1116 * store start value, */
1117 dcbp_set_start(p, 1);
1118 /* but skip encoding of zero run length */
1119 toggle = !toggle;
1120 continue;
1121 }
1122 dcbp_set_start(p, 0);
1123 }
1124
1125 /* paranoia: catch zero runlength.
1126 * can only happen if bitmap is modified while we scan it. */
1127 if (rl == 0) {
1128 dev_err(DEV, "unexpected zero runlength while encoding bitmap "
1129 "t:%u bo:%lu\n", toggle, c->bit_offset);
1130 return -1;
1131 }
1132
1133 bits = vli_encode_bits(&bs, rl);
1134 if (bits == -ENOBUFS) /* buffer full */
1135 break;
1136 if (bits <= 0) {
1137 dev_err(DEV, "error while encoding bitmap: %d\n", bits);
1138 return 0;
1139 }
1140
1141 toggle = !toggle;
1142 plain_bits += rl;
1143 c->bit_offset = tmp;
1144 } while (c->bit_offset < c->bm_bits);
1145
1146 len = bs.cur.b - p->code + !!bs.cur.bit;
1147
1148 if (plain_bits < (len << 3)) {
1149 /* incompressible with this method.
1150 * we need to rewind both word and bit position. */
1151 c->bit_offset -= plain_bits;
1152 bm_xfer_ctx_bit_to_word_offset(c);
1153 c->bit_offset = c->word_offset * BITS_PER_LONG;
1154 return 0;
1155 }
1156
1157 /* RLE + VLI was able to compress it just fine.
1158 * update c->word_offset. */
1159 bm_xfer_ctx_bit_to_word_offset(c);
1160
1161 /* store pad_bits */
1162 dcbp_set_pad_bits(p, (8 - bs.cur.bit) & 0x7);
1163
1164 return len;
1165 }
1166
1167 /**
1168 * send_bitmap_rle_or_plain
1169 *
1170 * Return 0 when done, 1 when another iteration is needed, and a negative error
1171 * code upon failure.
1172 */
1173 static int
1174 send_bitmap_rle_or_plain(struct drbd_conf *mdev, struct bm_xfer_ctx *c)
1175 {
1176 struct drbd_socket *sock = &mdev->tconn->data;
1177 unsigned int header_size = drbd_header_size(mdev->tconn);
1178 struct p_compressed_bm *p = sock->sbuf + header_size;
1179 int len, err;
1180
1181 len = fill_bitmap_rle_bits(mdev, p,
1182 DRBD_SOCKET_BUFFER_SIZE - header_size - sizeof(*p), c);
1183 if (len < 0)
1184 return -EIO;
1185
1186 if (len) {
1187 dcbp_set_code(p, RLE_VLI_Bits);
1188 err = __send_command(mdev->tconn, mdev->vnr, sock,
1189 P_COMPRESSED_BITMAP, sizeof(*p) + len,
1190 NULL, 0);
1191 c->packets[0]++;
1192 c->bytes[0] += header_size + sizeof(*p) + len;
1193
1194 if (c->bit_offset >= c->bm_bits)
1195 len = 0; /* DONE */
1196 } else {
1197 /* was not compressible.
1198 * send a buffer full of plain text bits instead. */
1199 unsigned int data_size;
1200 unsigned long num_words;
1201 unsigned long *p = sock->sbuf + header_size;
1202
1203 data_size = DRBD_SOCKET_BUFFER_SIZE - header_size;
1204 num_words = min_t(size_t, data_size / sizeof(*p),
1205 c->bm_words - c->word_offset);
1206 len = num_words * sizeof(*p);
1207 if (len)
1208 drbd_bm_get_lel(mdev, c->word_offset, num_words, p);
1209 err = __send_command(mdev->tconn, mdev->vnr, sock, P_BITMAP, len, NULL, 0);
1210 c->word_offset += num_words;
1211 c->bit_offset = c->word_offset * BITS_PER_LONG;
1212
1213 c->packets[1]++;
1214 c->bytes[1] += header_size + len;
1215
1216 if (c->bit_offset > c->bm_bits)
1217 c->bit_offset = c->bm_bits;
1218 }
1219 if (!err) {
1220 if (len == 0) {
1221 INFO_bm_xfer_stats(mdev, "send", c);
1222 return 0;
1223 } else
1224 return 1;
1225 }
1226 return -EIO;
1227 }
1228
1229 /* See the comment at receive_bitmap() */
1230 static int _drbd_send_bitmap(struct drbd_conf *mdev)
1231 {
1232 struct bm_xfer_ctx c;
1233 int err;
1234
1235 if (!expect(mdev->bitmap))
1236 return false;
1237
1238 if (get_ldev(mdev)) {
1239 if (drbd_md_test_flag(mdev->ldev, MDF_FULL_SYNC)) {
1240 dev_info(DEV, "Writing the whole bitmap, MDF_FullSync was set.\n");
1241 drbd_bm_set_all(mdev);
1242 if (drbd_bm_write(mdev)) {
1243 /* write_bm did fail! Leave full sync flag set in Meta P_DATA
1244 * but otherwise process as per normal - need to tell other
1245 * side that a full resync is required! */
1246 dev_err(DEV, "Failed to write bitmap to disk!\n");
1247 } else {
1248 drbd_md_clear_flag(mdev, MDF_FULL_SYNC);
1249 drbd_md_sync(mdev);
1250 }
1251 }
1252 put_ldev(mdev);
1253 }
1254
1255 c = (struct bm_xfer_ctx) {
1256 .bm_bits = drbd_bm_bits(mdev),
1257 .bm_words = drbd_bm_words(mdev),
1258 };
1259
1260 do {
1261 err = send_bitmap_rle_or_plain(mdev, &c);
1262 } while (err > 0);
1263
1264 return err == 0;
1265 }
1266
1267 int drbd_send_bitmap(struct drbd_conf *mdev)
1268 {
1269 struct drbd_socket *sock = &mdev->tconn->data;
1270 int err = -1;
1271
1272 mutex_lock(&sock->mutex);
1273 if (sock->socket)
1274 err = !_drbd_send_bitmap(mdev);
1275 mutex_unlock(&sock->mutex);
1276 return err;
1277 }
1278
1279 void drbd_send_b_ack(struct drbd_tconn *tconn, u32 barrier_nr, u32 set_size)
1280 {
1281 struct drbd_socket *sock;
1282 struct p_barrier_ack *p;
1283
1284 if (tconn->cstate < C_WF_REPORT_PARAMS)
1285 return;
1286
1287 sock = &tconn->meta;
1288 p = conn_prepare_command(tconn, sock);
1289 if (!p)
1290 return;
1291 p->barrier = barrier_nr;
1292 p->set_size = cpu_to_be32(set_size);
1293 conn_send_command(tconn, sock, P_BARRIER_ACK, sizeof(*p), NULL, 0);
1294 }
1295
1296 /**
1297 * _drbd_send_ack() - Sends an ack packet
1298 * @mdev: DRBD device.
1299 * @cmd: Packet command code.
1300 * @sector: sector, needs to be in big endian byte order
1301 * @blksize: size in byte, needs to be in big endian byte order
1302 * @block_id: Id, big endian byte order
1303 */
1304 static int _drbd_send_ack(struct drbd_conf *mdev, enum drbd_packet cmd,
1305 u64 sector, u32 blksize, u64 block_id)
1306 {
1307 struct drbd_socket *sock;
1308 struct p_block_ack *p;
1309
1310 if (mdev->state.conn < C_CONNECTED)
1311 return -EIO;
1312
1313 sock = &mdev->tconn->meta;
1314 p = drbd_prepare_command(mdev, sock);
1315 if (!p)
1316 return -EIO;
1317 p->sector = sector;
1318 p->block_id = block_id;
1319 p->blksize = blksize;
1320 p->seq_num = cpu_to_be32(atomic_inc_return(&mdev->packet_seq));
1321 return drbd_send_command(mdev, sock, cmd, sizeof(*p), NULL, 0);
1322 }
1323
1324 /* dp->sector and dp->block_id already/still in network byte order,
1325 * data_size is payload size according to dp->head,
1326 * and may need to be corrected for digest size. */
1327 void drbd_send_ack_dp(struct drbd_conf *mdev, enum drbd_packet cmd,
1328 struct p_data *dp, int data_size)
1329 {
1330 if (mdev->tconn->peer_integrity_tfm)
1331 data_size -= crypto_hash_digestsize(mdev->tconn->peer_integrity_tfm);
1332 _drbd_send_ack(mdev, cmd, dp->sector, cpu_to_be32(data_size),
1333 dp->block_id);
1334 }
1335
1336 void drbd_send_ack_rp(struct drbd_conf *mdev, enum drbd_packet cmd,
1337 struct p_block_req *rp)
1338 {
1339 _drbd_send_ack(mdev, cmd, rp->sector, rp->blksize, rp->block_id);
1340 }
1341
1342 /**
1343 * drbd_send_ack() - Sends an ack packet
1344 * @mdev: DRBD device
1345 * @cmd: packet command code
1346 * @peer_req: peer request
1347 */
1348 int drbd_send_ack(struct drbd_conf *mdev, enum drbd_packet cmd,
1349 struct drbd_peer_request *peer_req)
1350 {
1351 return _drbd_send_ack(mdev, cmd,
1352 cpu_to_be64(peer_req->i.sector),
1353 cpu_to_be32(peer_req->i.size),
1354 peer_req->block_id);
1355 }
1356
1357 /* This function misuses the block_id field to signal if the blocks
1358 * are is sync or not. */
1359 int drbd_send_ack_ex(struct drbd_conf *mdev, enum drbd_packet cmd,
1360 sector_t sector, int blksize, u64 block_id)
1361 {
1362 return _drbd_send_ack(mdev, cmd,
1363 cpu_to_be64(sector),
1364 cpu_to_be32(blksize),
1365 cpu_to_be64(block_id));
1366 }
1367
1368 int drbd_send_drequest(struct drbd_conf *mdev, int cmd,
1369 sector_t sector, int size, u64 block_id)
1370 {
1371 struct drbd_socket *sock;
1372 struct p_block_req *p;
1373
1374 sock = &mdev->tconn->data;
1375 p = drbd_prepare_command(mdev, sock);
1376 if (!p)
1377 return -EIO;
1378 p->sector = cpu_to_be64(sector);
1379 p->block_id = block_id;
1380 p->blksize = cpu_to_be32(size);
1381 return drbd_send_command(mdev, sock, cmd, sizeof(*p), NULL, 0);
1382 }
1383
1384 int drbd_send_drequest_csum(struct drbd_conf *mdev, sector_t sector, int size,
1385 void *digest, int digest_size, enum drbd_packet cmd)
1386 {
1387 struct drbd_socket *sock;
1388 struct p_block_req *p;
1389
1390 /* FIXME: Put the digest into the preallocated socket buffer. */
1391
1392 sock = &mdev->tconn->data;
1393 p = drbd_prepare_command(mdev, sock);
1394 if (!p)
1395 return -EIO;
1396 p->sector = cpu_to_be64(sector);
1397 p->block_id = ID_SYNCER /* unused */;
1398 p->blksize = cpu_to_be32(size);
1399 return drbd_send_command(mdev, sock, cmd, sizeof(*p),
1400 digest, digest_size);
1401 }
1402
1403 int drbd_send_ov_request(struct drbd_conf *mdev, sector_t sector, int size)
1404 {
1405 struct drbd_socket *sock;
1406 struct p_block_req *p;
1407
1408 sock = &mdev->tconn->data;
1409 p = drbd_prepare_command(mdev, sock);
1410 if (!p)
1411 return -EIO;
1412 p->sector = cpu_to_be64(sector);
1413 p->block_id = ID_SYNCER /* unused */;
1414 p->blksize = cpu_to_be32(size);
1415 return drbd_send_command(mdev, sock, P_OV_REQUEST, sizeof(*p), NULL, 0);
1416 }
1417
1418 /* called on sndtimeo
1419 * returns false if we should retry,
1420 * true if we think connection is dead
1421 */
1422 static int we_should_drop_the_connection(struct drbd_tconn *tconn, struct socket *sock)
1423 {
1424 int drop_it;
1425 /* long elapsed = (long)(jiffies - mdev->last_received); */
1426
1427 drop_it = tconn->meta.socket == sock
1428 || !tconn->asender.task
1429 || get_t_state(&tconn->asender) != RUNNING
1430 || tconn->cstate < C_WF_REPORT_PARAMS;
1431
1432 if (drop_it)
1433 return true;
1434
1435 drop_it = !--tconn->ko_count;
1436 if (!drop_it) {
1437 conn_err(tconn, "[%s/%d] sock_sendmsg time expired, ko = %u\n",
1438 current->comm, current->pid, tconn->ko_count);
1439 request_ping(tconn);
1440 }
1441
1442 return drop_it; /* && (mdev->state == R_PRIMARY) */;
1443 }
1444
1445 static void drbd_update_congested(struct drbd_tconn *tconn)
1446 {
1447 struct sock *sk = tconn->data.socket->sk;
1448 if (sk->sk_wmem_queued > sk->sk_sndbuf * 4 / 5)
1449 set_bit(NET_CONGESTED, &tconn->flags);
1450 }
1451
1452 /* The idea of sendpage seems to be to put some kind of reference
1453 * to the page into the skb, and to hand it over to the NIC. In
1454 * this process get_page() gets called.
1455 *
1456 * As soon as the page was really sent over the network put_page()
1457 * gets called by some part of the network layer. [ NIC driver? ]
1458 *
1459 * [ get_page() / put_page() increment/decrement the count. If count
1460 * reaches 0 the page will be freed. ]
1461 *
1462 * This works nicely with pages from FSs.
1463 * But this means that in protocol A we might signal IO completion too early!
1464 *
1465 * In order not to corrupt data during a resync we must make sure
1466 * that we do not reuse our own buffer pages (EEs) to early, therefore
1467 * we have the net_ee list.
1468 *
1469 * XFS seems to have problems, still, it submits pages with page_count == 0!
1470 * As a workaround, we disable sendpage on pages
1471 * with page_count == 0 or PageSlab.
1472 */
1473 static int _drbd_no_send_page(struct drbd_conf *mdev, struct page *page,
1474 int offset, size_t size, unsigned msg_flags)
1475 {
1476 struct socket *socket;
1477 void *addr;
1478 int err;
1479
1480 socket = mdev->tconn->data.socket;
1481 addr = kmap(page) + offset;
1482 err = drbd_send_all(mdev->tconn, socket, addr, size, msg_flags);
1483 kunmap(page);
1484 if (!err)
1485 mdev->send_cnt += size >> 9;
1486 return err;
1487 }
1488
1489 static int _drbd_send_page(struct drbd_conf *mdev, struct page *page,
1490 int offset, size_t size, unsigned msg_flags)
1491 {
1492 struct socket *socket = mdev->tconn->data.socket;
1493 mm_segment_t oldfs = get_fs();
1494 int len = size;
1495 int err = -EIO;
1496
1497 /* e.g. XFS meta- & log-data is in slab pages, which have a
1498 * page_count of 0 and/or have PageSlab() set.
1499 * we cannot use send_page for those, as that does get_page();
1500 * put_page(); and would cause either a VM_BUG directly, or
1501 * __page_cache_release a page that would actually still be referenced
1502 * by someone, leading to some obscure delayed Oops somewhere else. */
1503 if (disable_sendpage || (page_count(page) < 1) || PageSlab(page))
1504 return _drbd_no_send_page(mdev, page, offset, size, msg_flags);
1505
1506 msg_flags |= MSG_NOSIGNAL;
1507 drbd_update_congested(mdev->tconn);
1508 set_fs(KERNEL_DS);
1509 do {
1510 int sent;
1511
1512 sent = socket->ops->sendpage(socket, page, offset, len, msg_flags);
1513 if (sent <= 0) {
1514 if (sent == -EAGAIN) {
1515 if (we_should_drop_the_connection(mdev->tconn, socket))
1516 break;
1517 continue;
1518 }
1519 dev_warn(DEV, "%s: size=%d len=%d sent=%d\n",
1520 __func__, (int)size, len, sent);
1521 if (sent < 0)
1522 err = sent;
1523 break;
1524 }
1525 len -= sent;
1526 offset += sent;
1527 } while (len > 0 /* THINK && mdev->cstate >= C_CONNECTED*/);
1528 set_fs(oldfs);
1529 clear_bit(NET_CONGESTED, &mdev->tconn->flags);
1530
1531 if (len == 0) {
1532 err = 0;
1533 mdev->send_cnt += size >> 9;
1534 }
1535 return err;
1536 }
1537
1538 static int _drbd_send_bio(struct drbd_conf *mdev, struct bio *bio)
1539 {
1540 struct bio_vec *bvec;
1541 int i;
1542 /* hint all but last page with MSG_MORE */
1543 bio_for_each_segment(bvec, bio, i) {
1544 int err;
1545
1546 err = _drbd_no_send_page(mdev, bvec->bv_page,
1547 bvec->bv_offset, bvec->bv_len,
1548 i == bio->bi_vcnt - 1 ? 0 : MSG_MORE);
1549 if (err)
1550 return err;
1551 }
1552 return 0;
1553 }
1554
1555 static int _drbd_send_zc_bio(struct drbd_conf *mdev, struct bio *bio)
1556 {
1557 struct bio_vec *bvec;
1558 int i;
1559 /* hint all but last page with MSG_MORE */
1560 bio_for_each_segment(bvec, bio, i) {
1561 int err;
1562
1563 err = _drbd_send_page(mdev, bvec->bv_page,
1564 bvec->bv_offset, bvec->bv_len,
1565 i == bio->bi_vcnt - 1 ? 0 : MSG_MORE);
1566 if (err)
1567 return err;
1568 }
1569 return 0;
1570 }
1571
1572 static int _drbd_send_zc_ee(struct drbd_conf *mdev,
1573 struct drbd_peer_request *peer_req)
1574 {
1575 struct page *page = peer_req->pages;
1576 unsigned len = peer_req->i.size;
1577 int err;
1578
1579 /* hint all but last page with MSG_MORE */
1580 page_chain_for_each(page) {
1581 unsigned l = min_t(unsigned, len, PAGE_SIZE);
1582
1583 err = _drbd_send_page(mdev, page, 0, l,
1584 page_chain_next(page) ? MSG_MORE : 0);
1585 if (err)
1586 return err;
1587 len -= l;
1588 }
1589 return 0;
1590 }
1591
1592 static u32 bio_flags_to_wire(struct drbd_conf *mdev, unsigned long bi_rw)
1593 {
1594 if (mdev->tconn->agreed_pro_version >= 95)
1595 return (bi_rw & REQ_SYNC ? DP_RW_SYNC : 0) |
1596 (bi_rw & REQ_FUA ? DP_FUA : 0) |
1597 (bi_rw & REQ_FLUSH ? DP_FLUSH : 0) |
1598 (bi_rw & REQ_DISCARD ? DP_DISCARD : 0);
1599 else
1600 return bi_rw & REQ_SYNC ? DP_RW_SYNC : 0;
1601 }
1602
1603 /* Used to send write requests
1604 * R_PRIMARY -> Peer (P_DATA)
1605 */
1606 int drbd_send_dblock(struct drbd_conf *mdev, struct drbd_request *req)
1607 {
1608 struct drbd_socket *sock;
1609 struct p_data *p;
1610 unsigned int dp_flags = 0;
1611 int dgs;
1612 int err;
1613
1614 sock = &mdev->tconn->data;
1615 p = drbd_prepare_command(mdev, sock);
1616 dgs = mdev->tconn->integrity_tfm ? crypto_hash_digestsize(mdev->tconn->integrity_tfm) : 0;
1617
1618 if (!p)
1619 return -EIO;
1620 p->sector = cpu_to_be64(req->i.sector);
1621 p->block_id = (unsigned long)req;
1622 p->seq_num = cpu_to_be32(atomic_inc_return(&mdev->packet_seq));
1623 dp_flags = bio_flags_to_wire(mdev, req->master_bio->bi_rw);
1624 if (mdev->state.conn >= C_SYNC_SOURCE &&
1625 mdev->state.conn <= C_PAUSED_SYNC_T)
1626 dp_flags |= DP_MAY_SET_IN_SYNC;
1627 if (mdev->tconn->agreed_pro_version >= 100) {
1628 if (req->rq_state & RQ_EXP_RECEIVE_ACK)
1629 dp_flags |= DP_SEND_RECEIVE_ACK;
1630 if (req->rq_state & RQ_EXP_WRITE_ACK)
1631 dp_flags |= DP_SEND_WRITE_ACK;
1632 }
1633 p->dp_flags = cpu_to_be32(dp_flags);
1634 if (dgs)
1635 drbd_csum_bio(mdev, mdev->tconn->integrity_tfm, req->master_bio, p + 1);
1636 err = __send_command(mdev->tconn, mdev->vnr, sock, P_DATA, sizeof(*p) + dgs, NULL, req->i.size);
1637 if (!err) {
1638 /* For protocol A, we have to memcpy the payload into
1639 * socket buffers, as we may complete right away
1640 * as soon as we handed it over to tcp, at which point the data
1641 * pages may become invalid.
1642 *
1643 * For data-integrity enabled, we copy it as well, so we can be
1644 * sure that even if the bio pages may still be modified, it
1645 * won't change the data on the wire, thus if the digest checks
1646 * out ok after sending on this side, but does not fit on the
1647 * receiving side, we sure have detected corruption elsewhere.
1648 */
1649 if (!(req->rq_state & (RQ_EXP_RECEIVE_ACK | RQ_EXP_WRITE_ACK)) || dgs)
1650 err = _drbd_send_bio(mdev, req->master_bio);
1651 else
1652 err = _drbd_send_zc_bio(mdev, req->master_bio);
1653
1654 /* double check digest, sometimes buffers have been modified in flight. */
1655 if (dgs > 0 && dgs <= 64) {
1656 /* 64 byte, 512 bit, is the largest digest size
1657 * currently supported in kernel crypto. */
1658 unsigned char digest[64];
1659 drbd_csum_bio(mdev, mdev->tconn->integrity_tfm, req->master_bio, digest);
1660 if (memcmp(p + 1, digest, dgs)) {
1661 dev_warn(DEV,
1662 "Digest mismatch, buffer modified by upper layers during write: %llus +%u\n",
1663 (unsigned long long)req->i.sector, req->i.size);
1664 }
1665 } /* else if (dgs > 64) {
1666 ... Be noisy about digest too large ...
1667 } */
1668 }
1669 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1670
1671 return err;
1672 }
1673
1674 /* answer packet, used to send data back for read requests:
1675 * Peer -> (diskless) R_PRIMARY (P_DATA_REPLY)
1676 * C_SYNC_SOURCE -> C_SYNC_TARGET (P_RS_DATA_REPLY)
1677 */
1678 int drbd_send_block(struct drbd_conf *mdev, enum drbd_packet cmd,
1679 struct drbd_peer_request *peer_req)
1680 {
1681 struct drbd_socket *sock;
1682 struct p_data *p;
1683 int err;
1684 int dgs;
1685
1686 sock = &mdev->tconn->data;
1687 p = drbd_prepare_command(mdev, sock);
1688
1689 dgs = mdev->tconn->integrity_tfm ? crypto_hash_digestsize(mdev->tconn->integrity_tfm) : 0;
1690
1691 if (!p)
1692 return -EIO;
1693 p->sector = cpu_to_be64(peer_req->i.sector);
1694 p->block_id = peer_req->block_id;
1695 p->seq_num = 0; /* unused */
1696 p->dp_flags = 0;
1697 if (dgs)
1698 drbd_csum_ee(mdev, mdev->tconn->integrity_tfm, peer_req, p + 1);
1699 err = __send_command(mdev->tconn, mdev->vnr, sock, cmd, sizeof(*p) + dgs, NULL, peer_req->i.size);
1700 if (!err)
1701 err = _drbd_send_zc_ee(mdev, peer_req);
1702 mutex_unlock(&sock->mutex); /* locked by drbd_prepare_command() */
1703
1704 return err;
1705 }
1706
1707 int drbd_send_out_of_sync(struct drbd_conf *mdev, struct drbd_request *req)
1708 {
1709 struct drbd_socket *sock;
1710 struct p_block_desc *p;
1711
1712 sock = &mdev->tconn->data;
1713 p = drbd_prepare_command(mdev, sock);
1714 if (!p)
1715 return -EIO;
1716 p->sector = cpu_to_be64(req->i.sector);
1717 p->blksize = cpu_to_be32(req->i.size);
1718 return drbd_send_command(mdev, sock, P_OUT_OF_SYNC, sizeof(*p), NULL, 0);
1719 }
1720
1721 /*
1722 drbd_send distinguishes two cases:
1723
1724 Packets sent via the data socket "sock"
1725 and packets sent via the meta data socket "msock"
1726
1727 sock msock
1728 -----------------+-------------------------+------------------------------
1729 timeout conf.timeout / 2 conf.timeout / 2
1730 timeout action send a ping via msock Abort communication
1731 and close all sockets
1732 */
1733
1734 /*
1735 * you must have down()ed the appropriate [m]sock_mutex elsewhere!
1736 */
1737 int drbd_send(struct drbd_tconn *tconn, struct socket *sock,
1738 void *buf, size_t size, unsigned msg_flags)
1739 {
1740 struct kvec iov;
1741 struct msghdr msg;
1742 int rv, sent = 0;
1743
1744 if (!sock)
1745 return -EBADR;
1746
1747 /* THINK if (signal_pending) return ... ? */
1748
1749 iov.iov_base = buf;
1750 iov.iov_len = size;
1751
1752 msg.msg_name = NULL;
1753 msg.msg_namelen = 0;
1754 msg.msg_control = NULL;
1755 msg.msg_controllen = 0;
1756 msg.msg_flags = msg_flags | MSG_NOSIGNAL;
1757
1758 if (sock == tconn->data.socket) {
1759 rcu_read_lock();
1760 tconn->ko_count = rcu_dereference(tconn->net_conf)->ko_count;
1761 rcu_read_unlock();
1762 drbd_update_congested(tconn);
1763 }
1764 do {
1765 /* STRANGE
1766 * tcp_sendmsg does _not_ use its size parameter at all ?
1767 *
1768 * -EAGAIN on timeout, -EINTR on signal.
1769 */
1770 /* THINK
1771 * do we need to block DRBD_SIG if sock == &meta.socket ??
1772 * otherwise wake_asender() might interrupt some send_*Ack !
1773 */
1774 rv = kernel_sendmsg(sock, &msg, &iov, 1, size);
1775 if (rv == -EAGAIN) {
1776 if (we_should_drop_the_connection(tconn, sock))
1777 break;
1778 else
1779 continue;
1780 }
1781 if (rv == -EINTR) {
1782 flush_signals(current);
1783 rv = 0;
1784 }
1785 if (rv < 0)
1786 break;
1787 sent += rv;
1788 iov.iov_base += rv;
1789 iov.iov_len -= rv;
1790 } while (sent < size);
1791
1792 if (sock == tconn->data.socket)
1793 clear_bit(NET_CONGESTED, &tconn->flags);
1794
1795 if (rv <= 0) {
1796 if (rv != -EAGAIN) {
1797 conn_err(tconn, "%s_sendmsg returned %d\n",
1798 sock == tconn->meta.socket ? "msock" : "sock",
1799 rv);
1800 conn_request_state(tconn, NS(conn, C_BROKEN_PIPE), CS_HARD);
1801 } else
1802 conn_request_state(tconn, NS(conn, C_TIMEOUT), CS_HARD);
1803 }
1804
1805 return sent;
1806 }
1807
1808 /**
1809 * drbd_send_all - Send an entire buffer
1810 *
1811 * Returns 0 upon success and a negative error value otherwise.
1812 */
1813 int drbd_send_all(struct drbd_tconn *tconn, struct socket *sock, void *buffer,
1814 size_t size, unsigned msg_flags)
1815 {
1816 int err;
1817
1818 err = drbd_send(tconn, sock, buffer, size, msg_flags);
1819 if (err < 0)
1820 return err;
1821 if (err != size)
1822 return -EIO;
1823 return 0;
1824 }
1825
1826 static int drbd_open(struct block_device *bdev, fmode_t mode)
1827 {
1828 struct drbd_conf *mdev = bdev->bd_disk->private_data;
1829 unsigned long flags;
1830 int rv = 0;
1831
1832 mutex_lock(&drbd_main_mutex);
1833 spin_lock_irqsave(&mdev->tconn->req_lock, flags);
1834 /* to have a stable mdev->state.role
1835 * and no race with updating open_cnt */
1836
1837 if (mdev->state.role != R_PRIMARY) {
1838 if (mode & FMODE_WRITE)
1839 rv = -EROFS;
1840 else if (!allow_oos)
1841 rv = -EMEDIUMTYPE;
1842 }
1843
1844 if (!rv)
1845 mdev->open_cnt++;
1846 spin_unlock_irqrestore(&mdev->tconn->req_lock, flags);
1847 mutex_unlock(&drbd_main_mutex);
1848
1849 return rv;
1850 }
1851
1852 static void drbd_release(struct gendisk *gd, fmode_t mode)
1853 {
1854 struct drbd_conf *mdev = gd->private_data;
1855 mutex_lock(&drbd_main_mutex);
1856 mdev->open_cnt--;
1857 mutex_unlock(&drbd_main_mutex);
1858 }
1859
1860 static void drbd_set_defaults(struct drbd_conf *mdev)
1861 {
1862 /* Beware! The actual layout differs
1863 * between big endian and little endian */
1864 mdev->state = (union drbd_dev_state) {
1865 { .role = R_SECONDARY,
1866 .peer = R_UNKNOWN,
1867 .conn = C_STANDALONE,
1868 .disk = D_DISKLESS,
1869 .pdsk = D_UNKNOWN,
1870 } };
1871 }
1872
1873 void drbd_init_set_defaults(struct drbd_conf *mdev)
1874 {
1875 /* the memset(,0,) did most of this.
1876 * note: only assignments, no allocation in here */
1877
1878 drbd_set_defaults(mdev);
1879
1880 atomic_set(&mdev->ap_bio_cnt, 0);
1881 atomic_set(&mdev->ap_pending_cnt, 0);
1882 atomic_set(&mdev->rs_pending_cnt, 0);
1883 atomic_set(&mdev->unacked_cnt, 0);
1884 atomic_set(&mdev->local_cnt, 0);
1885 atomic_set(&mdev->pp_in_use_by_net, 0);
1886 atomic_set(&mdev->rs_sect_in, 0);
1887 atomic_set(&mdev->rs_sect_ev, 0);
1888 atomic_set(&mdev->ap_in_flight, 0);
1889 atomic_set(&mdev->md_io_in_use, 0);
1890
1891 mutex_init(&mdev->own_state_mutex);
1892 mdev->state_mutex = &mdev->own_state_mutex;
1893
1894 spin_lock_init(&mdev->al_lock);
1895 spin_lock_init(&mdev->peer_seq_lock);
1896
1897 INIT_LIST_HEAD(&mdev->active_ee);
1898 INIT_LIST_HEAD(&mdev->sync_ee);
1899 INIT_LIST_HEAD(&mdev->done_ee);
1900 INIT_LIST_HEAD(&mdev->read_ee);
1901 INIT_LIST_HEAD(&mdev->net_ee);
1902 INIT_LIST_HEAD(&mdev->resync_reads);
1903 INIT_LIST_HEAD(&mdev->resync_work.list);
1904 INIT_LIST_HEAD(&mdev->unplug_work.list);
1905 INIT_LIST_HEAD(&mdev->go_diskless.list);
1906 INIT_LIST_HEAD(&mdev->md_sync_work.list);
1907 INIT_LIST_HEAD(&mdev->start_resync_work.list);
1908 INIT_LIST_HEAD(&mdev->bm_io_work.w.list);
1909
1910 mdev->resync_work.cb = w_resync_timer;
1911 mdev->unplug_work.cb = w_send_write_hint;
1912 mdev->go_diskless.cb = w_go_diskless;
1913 mdev->md_sync_work.cb = w_md_sync;
1914 mdev->bm_io_work.w.cb = w_bitmap_io;
1915 mdev->start_resync_work.cb = w_start_resync;
1916
1917 mdev->resync_work.mdev = mdev;
1918 mdev->unplug_work.mdev = mdev;
1919 mdev->go_diskless.mdev = mdev;
1920 mdev->md_sync_work.mdev = mdev;
1921 mdev->bm_io_work.w.mdev = mdev;
1922 mdev->start_resync_work.mdev = mdev;
1923
1924 init_timer(&mdev->resync_timer);
1925 init_timer(&mdev->md_sync_timer);
1926 init_timer(&mdev->start_resync_timer);
1927 init_timer(&mdev->request_timer);
1928 mdev->resync_timer.function = resync_timer_fn;
1929 mdev->resync_timer.data = (unsigned long) mdev;
1930 mdev->md_sync_timer.function = md_sync_timer_fn;
1931 mdev->md_sync_timer.data = (unsigned long) mdev;
1932 mdev->start_resync_timer.function = start_resync_timer_fn;
1933 mdev->start_resync_timer.data = (unsigned long) mdev;
1934 mdev->request_timer.function = request_timer_fn;
1935 mdev->request_timer.data = (unsigned long) mdev;
1936
1937 init_waitqueue_head(&mdev->misc_wait);
1938 init_waitqueue_head(&mdev->state_wait);
1939 init_waitqueue_head(&mdev->ee_wait);
1940 init_waitqueue_head(&mdev->al_wait);
1941 init_waitqueue_head(&mdev->seq_wait);
1942
1943 mdev->resync_wenr = LC_FREE;
1944 mdev->peer_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1945 mdev->local_max_bio_size = DRBD_MAX_BIO_SIZE_SAFE;
1946 }
1947
1948 void drbd_mdev_cleanup(struct drbd_conf *mdev)
1949 {
1950 int i;
1951 if (mdev->tconn->receiver.t_state != NONE)
1952 dev_err(DEV, "ASSERT FAILED: receiver t_state == %d expected 0.\n",
1953 mdev->tconn->receiver.t_state);
1954
1955 mdev->al_writ_cnt =
1956 mdev->bm_writ_cnt =
1957 mdev->read_cnt =
1958 mdev->recv_cnt =
1959 mdev->send_cnt =
1960 mdev->writ_cnt =
1961 mdev->p_size =
1962 mdev->rs_start =
1963 mdev->rs_total =
1964 mdev->rs_failed = 0;
1965 mdev->rs_last_events = 0;
1966 mdev->rs_last_sect_ev = 0;
1967 for (i = 0; i < DRBD_SYNC_MARKS; i++) {
1968 mdev->rs_mark_left[i] = 0;
1969 mdev->rs_mark_time[i] = 0;
1970 }
1971 D_ASSERT(mdev->tconn->net_conf == NULL);
1972
1973 drbd_set_my_capacity(mdev, 0);
1974 if (mdev->bitmap) {
1975 /* maybe never allocated. */
1976 drbd_bm_resize(mdev, 0, 1);
1977 drbd_bm_cleanup(mdev);
1978 }
1979
1980 drbd_free_bc(mdev->ldev);
1981 mdev->ldev = NULL;
1982
1983 clear_bit(AL_SUSPENDED, &mdev->flags);
1984
1985 D_ASSERT(list_empty(&mdev->active_ee));
1986 D_ASSERT(list_empty(&mdev->sync_ee));
1987 D_ASSERT(list_empty(&mdev->done_ee));
1988 D_ASSERT(list_empty(&mdev->read_ee));
1989 D_ASSERT(list_empty(&mdev->net_ee));
1990 D_ASSERT(list_empty(&mdev->resync_reads));
1991 D_ASSERT(list_empty(&mdev->tconn->sender_work.q));
1992 D_ASSERT(list_empty(&mdev->resync_work.list));
1993 D_ASSERT(list_empty(&mdev->unplug_work.list));
1994 D_ASSERT(list_empty(&mdev->go_diskless.list));
1995
1996 drbd_set_defaults(mdev);
1997 }
1998
1999
2000 static void drbd_destroy_mempools(void)
2001 {
2002 struct page *page;
2003
2004 while (drbd_pp_pool) {
2005 page = drbd_pp_pool;
2006 drbd_pp_pool = (struct page *)page_private(page);
2007 __free_page(page);
2008 drbd_pp_vacant--;
2009 }
2010
2011 /* D_ASSERT(atomic_read(&drbd_pp_vacant)==0); */
2012
2013 if (drbd_md_io_bio_set)
2014 bioset_free(drbd_md_io_bio_set);
2015 if (drbd_md_io_page_pool)
2016 mempool_destroy(drbd_md_io_page_pool);
2017 if (drbd_ee_mempool)
2018 mempool_destroy(drbd_ee_mempool);
2019 if (drbd_request_mempool)
2020 mempool_destroy(drbd_request_mempool);
2021 if (drbd_ee_cache)
2022 kmem_cache_destroy(drbd_ee_cache);
2023 if (drbd_request_cache)
2024 kmem_cache_destroy(drbd_request_cache);
2025 if (drbd_bm_ext_cache)
2026 kmem_cache_destroy(drbd_bm_ext_cache);
2027 if (drbd_al_ext_cache)
2028 kmem_cache_destroy(drbd_al_ext_cache);
2029
2030 drbd_md_io_bio_set = NULL;
2031 drbd_md_io_page_pool = NULL;
2032 drbd_ee_mempool = NULL;
2033 drbd_request_mempool = NULL;
2034 drbd_ee_cache = NULL;
2035 drbd_request_cache = NULL;
2036 drbd_bm_ext_cache = NULL;
2037 drbd_al_ext_cache = NULL;
2038
2039 return;
2040 }
2041
2042 static int drbd_create_mempools(void)
2043 {
2044 struct page *page;
2045 const int number = (DRBD_MAX_BIO_SIZE/PAGE_SIZE) * minor_count;
2046 int i;
2047
2048 /* prepare our caches and mempools */
2049 drbd_request_mempool = NULL;
2050 drbd_ee_cache = NULL;
2051 drbd_request_cache = NULL;
2052 drbd_bm_ext_cache = NULL;
2053 drbd_al_ext_cache = NULL;
2054 drbd_pp_pool = NULL;
2055 drbd_md_io_page_pool = NULL;
2056 drbd_md_io_bio_set = NULL;
2057
2058 /* caches */
2059 drbd_request_cache = kmem_cache_create(
2060 "drbd_req", sizeof(struct drbd_request), 0, 0, NULL);
2061 if (drbd_request_cache == NULL)
2062 goto Enomem;
2063
2064 drbd_ee_cache = kmem_cache_create(
2065 "drbd_ee", sizeof(struct drbd_peer_request), 0, 0, NULL);
2066 if (drbd_ee_cache == NULL)
2067 goto Enomem;
2068
2069 drbd_bm_ext_cache = kmem_cache_create(
2070 "drbd_bm", sizeof(struct bm_extent), 0, 0, NULL);
2071 if (drbd_bm_ext_cache == NULL)
2072 goto Enomem;
2073
2074 drbd_al_ext_cache = kmem_cache_create(
2075 "drbd_al", sizeof(struct lc_element), 0, 0, NULL);
2076 if (drbd_al_ext_cache == NULL)
2077 goto Enomem;
2078
2079 /* mempools */
2080 drbd_md_io_bio_set = bioset_create(DRBD_MIN_POOL_PAGES, 0);
2081 if (drbd_md_io_bio_set == NULL)
2082 goto Enomem;
2083
2084 drbd_md_io_page_pool = mempool_create_page_pool(DRBD_MIN_POOL_PAGES, 0);
2085 if (drbd_md_io_page_pool == NULL)
2086 goto Enomem;
2087
2088 drbd_request_mempool = mempool_create(number,
2089 mempool_alloc_slab, mempool_free_slab, drbd_request_cache);
2090 if (drbd_request_mempool == NULL)
2091 goto Enomem;
2092
2093 drbd_ee_mempool = mempool_create(number,
2094 mempool_alloc_slab, mempool_free_slab, drbd_ee_cache);
2095 if (drbd_ee_mempool == NULL)
2096 goto Enomem;
2097
2098 /* drbd's page pool */
2099 spin_lock_init(&drbd_pp_lock);
2100
2101 for (i = 0; i < number; i++) {
2102 page = alloc_page(GFP_HIGHUSER);
2103 if (!page)
2104 goto Enomem;
2105 set_page_private(page, (unsigned long)drbd_pp_pool);
2106 drbd_pp_pool = page;
2107 }
2108 drbd_pp_vacant = number;
2109
2110 return 0;
2111
2112 Enomem:
2113 drbd_destroy_mempools(); /* in case we allocated some */
2114 return -ENOMEM;
2115 }
2116
2117 static int drbd_notify_sys(struct notifier_block *this, unsigned long code,
2118 void *unused)
2119 {
2120 /* just so we have it. you never know what interesting things we
2121 * might want to do here some day...
2122 */
2123
2124 return NOTIFY_DONE;
2125 }
2126
2127 static struct notifier_block drbd_notifier = {
2128 .notifier_call = drbd_notify_sys,
2129 };
2130
2131 static void drbd_release_all_peer_reqs(struct drbd_conf *mdev)
2132 {
2133 int rr;
2134
2135 rr = drbd_free_peer_reqs(mdev, &mdev->active_ee);
2136 if (rr)
2137 dev_err(DEV, "%d EEs in active list found!\n", rr);
2138
2139 rr = drbd_free_peer_reqs(mdev, &mdev->sync_ee);
2140 if (rr)
2141 dev_err(DEV, "%d EEs in sync list found!\n", rr);
2142
2143 rr = drbd_free_peer_reqs(mdev, &mdev->read_ee);
2144 if (rr)
2145 dev_err(DEV, "%d EEs in read list found!\n", rr);
2146
2147 rr = drbd_free_peer_reqs(mdev, &mdev->done_ee);
2148 if (rr)
2149 dev_err(DEV, "%d EEs in done list found!\n", rr);
2150
2151 rr = drbd_free_peer_reqs(mdev, &mdev->net_ee);
2152 if (rr)
2153 dev_err(DEV, "%d EEs in net list found!\n", rr);
2154 }
2155
2156 /* caution. no locking. */
2157 void drbd_minor_destroy(struct kref *kref)
2158 {
2159 struct drbd_conf *mdev = container_of(kref, struct drbd_conf, kref);
2160 struct drbd_tconn *tconn = mdev->tconn;
2161
2162 del_timer_sync(&mdev->request_timer);
2163
2164 /* paranoia asserts */
2165 D_ASSERT(mdev->open_cnt == 0);
2166 /* end paranoia asserts */
2167
2168 /* cleanup stuff that may have been allocated during
2169 * device (re-)configuration or state changes */
2170
2171 if (mdev->this_bdev)
2172 bdput(mdev->this_bdev);
2173
2174 drbd_free_bc(mdev->ldev);
2175 mdev->ldev = NULL;
2176
2177 drbd_release_all_peer_reqs(mdev);
2178
2179 lc_destroy(mdev->act_log);
2180 lc_destroy(mdev->resync);
2181
2182 kfree(mdev->p_uuid);
2183 /* mdev->p_uuid = NULL; */
2184
2185 if (mdev->bitmap) /* should no longer be there. */
2186 drbd_bm_cleanup(mdev);
2187 __free_page(mdev->md_io_page);
2188 put_disk(mdev->vdisk);
2189 blk_cleanup_queue(mdev->rq_queue);
2190 kfree(mdev->rs_plan_s);
2191 kfree(mdev);
2192
2193 kref_put(&tconn->kref, &conn_destroy);
2194 }
2195
2196 /* One global retry thread, if we need to push back some bio and have it
2197 * reinserted through our make request function.
2198 */
2199 static struct retry_worker {
2200 struct workqueue_struct *wq;
2201 struct work_struct worker;
2202
2203 spinlock_t lock;
2204 struct list_head writes;
2205 } retry;
2206
2207 static void do_retry(struct work_struct *ws)
2208 {
2209 struct retry_worker *retry = container_of(ws, struct retry_worker, worker);
2210 LIST_HEAD(writes);
2211 struct drbd_request *req, *tmp;
2212
2213 spin_lock_irq(&retry->lock);
2214 list_splice_init(&retry->writes, &writes);
2215 spin_unlock_irq(&retry->lock);
2216
2217 list_for_each_entry_safe(req, tmp, &writes, tl_requests) {
2218 struct drbd_conf *mdev = req->w.mdev;
2219 struct bio *bio = req->master_bio;
2220 unsigned long start_time = req->start_time;
2221 bool expected;
2222
2223 expected =
2224 expect(atomic_read(&req->completion_ref) == 0) &&
2225 expect(req->rq_state & RQ_POSTPONED) &&
2226 expect((req->rq_state & RQ_LOCAL_PENDING) == 0 ||
2227 (req->rq_state & RQ_LOCAL_ABORTED) != 0);
2228
2229 if (!expected)
2230 dev_err(DEV, "req=%p completion_ref=%d rq_state=%x\n",
2231 req, atomic_read(&req->completion_ref),
2232 req->rq_state);
2233
2234 /* We still need to put one kref associated with the
2235 * "completion_ref" going zero in the code path that queued it
2236 * here. The request object may still be referenced by a
2237 * frozen local req->private_bio, in case we force-detached.
2238 */
2239 kref_put(&req->kref, drbd_req_destroy);
2240
2241 /* A single suspended or otherwise blocking device may stall
2242 * all others as well. Fortunately, this code path is to
2243 * recover from a situation that "should not happen":
2244 * concurrent writes in multi-primary setup.
2245 * In a "normal" lifecycle, this workqueue is supposed to be
2246 * destroyed without ever doing anything.
2247 * If it turns out to be an issue anyways, we can do per
2248 * resource (replication group) or per device (minor) retry
2249 * workqueues instead.
2250 */
2251
2252 /* We are not just doing generic_make_request(),
2253 * as we want to keep the start_time information. */
2254 inc_ap_bio(mdev);
2255 __drbd_make_request(mdev, bio, start_time);
2256 }
2257 }
2258
2259 void drbd_restart_request(struct drbd_request *req)
2260 {
2261 unsigned long flags;
2262 spin_lock_irqsave(&retry.lock, flags);
2263 list_move_tail(&req->tl_requests, &retry.writes);
2264 spin_unlock_irqrestore(&retry.lock, flags);
2265
2266 /* Drop the extra reference that would otherwise
2267 * have been dropped by complete_master_bio.
2268 * do_retry() needs to grab a new one. */
2269 dec_ap_bio(req->w.mdev);
2270
2271 queue_work(retry.wq, &retry.worker);
2272 }
2273
2274
2275 static void drbd_cleanup(void)
2276 {
2277 unsigned int i;
2278 struct drbd_conf *mdev;
2279 struct drbd_tconn *tconn, *tmp;
2280
2281 unregister_reboot_notifier(&drbd_notifier);
2282
2283 /* first remove proc,
2284 * drbdsetup uses it's presence to detect
2285 * whether DRBD is loaded.
2286 * If we would get stuck in proc removal,
2287 * but have netlink already deregistered,
2288 * some drbdsetup commands may wait forever
2289 * for an answer.
2290 */
2291 if (drbd_proc)
2292 remove_proc_entry("drbd", NULL);
2293
2294 if (retry.wq)
2295 destroy_workqueue(retry.wq);
2296
2297 drbd_genl_unregister();
2298
2299 idr_for_each_entry(&minors, mdev, i) {
2300 idr_remove(&minors, mdev_to_minor(mdev));
2301 idr_remove(&mdev->tconn->volumes, mdev->vnr);
2302 destroy_workqueue(mdev->submit.wq);
2303 del_gendisk(mdev->vdisk);
2304 /* synchronize_rcu(); No other threads running at this point */
2305 kref_put(&mdev->kref, &drbd_minor_destroy);
2306 }
2307
2308 /* not _rcu since, no other updater anymore. Genl already unregistered */
2309 list_for_each_entry_safe(tconn, tmp, &drbd_tconns, all_tconn) {
2310 list_del(&tconn->all_tconn); /* not _rcu no proc, not other threads */
2311 /* synchronize_rcu(); */
2312 kref_put(&tconn->kref, &conn_destroy);
2313 }
2314
2315 drbd_destroy_mempools();
2316 unregister_blkdev(DRBD_MAJOR, "drbd");
2317
2318 idr_destroy(&minors);
2319
2320 printk(KERN_INFO "drbd: module cleanup done.\n");
2321 }
2322
2323 /**
2324 * drbd_congested() - Callback for the flusher thread
2325 * @congested_data: User data
2326 * @bdi_bits: Bits the BDI flusher thread is currently interested in
2327 *
2328 * Returns 1<<BDI_async_congested and/or 1<<BDI_sync_congested if we are congested.
2329 */
2330 static int drbd_congested(void *congested_data, int bdi_bits)
2331 {
2332 struct drbd_conf *mdev = congested_data;
2333 struct request_queue *q;
2334 char reason = '-';
2335 int r = 0;
2336
2337 if (!may_inc_ap_bio(mdev)) {
2338 /* DRBD has frozen IO */
2339 r = bdi_bits;
2340 reason = 'd';
2341 goto out;
2342 }
2343
2344 if (test_bit(CALLBACK_PENDING, &mdev->tconn->flags)) {
2345 r |= (1 << BDI_async_congested);
2346 /* Without good local data, we would need to read from remote,
2347 * and that would need the worker thread as well, which is
2348 * currently blocked waiting for that usermode helper to
2349 * finish.
2350 */
2351 if (!get_ldev_if_state(mdev, D_UP_TO_DATE))
2352 r |= (1 << BDI_sync_congested);
2353 else
2354 put_ldev(mdev);
2355 r &= bdi_bits;
2356 reason = 'c';
2357 goto out;
2358 }
2359
2360 if (get_ldev(mdev)) {
2361 q = bdev_get_queue(mdev->ldev->backing_bdev);
2362 r = bdi_congested(&q->backing_dev_info, bdi_bits);
2363 put_ldev(mdev);
2364 if (r)
2365 reason = 'b';
2366 }
2367
2368 if (bdi_bits & (1 << BDI_async_congested) && test_bit(NET_CONGESTED, &mdev->tconn->flags)) {
2369 r |= (1 << BDI_async_congested);
2370 reason = reason == 'b' ? 'a' : 'n';
2371 }
2372
2373 out:
2374 mdev->congestion_reason = reason;
2375 return r;
2376 }
2377
2378 static void drbd_init_workqueue(struct drbd_work_queue* wq)
2379 {
2380 spin_lock_init(&wq->q_lock);
2381 INIT_LIST_HEAD(&wq->q);
2382 init_waitqueue_head(&wq->q_wait);
2383 }
2384
2385 struct drbd_tconn *conn_get_by_name(const char *name)
2386 {
2387 struct drbd_tconn *tconn;
2388
2389 if (!name || !name[0])
2390 return NULL;
2391
2392 rcu_read_lock();
2393 list_for_each_entry_rcu(tconn, &drbd_tconns, all_tconn) {
2394 if (!strcmp(tconn->name, name)) {
2395 kref_get(&tconn->kref);
2396 goto found;
2397 }
2398 }
2399 tconn = NULL;
2400 found:
2401 rcu_read_unlock();
2402 return tconn;
2403 }
2404
2405 struct drbd_tconn *conn_get_by_addrs(void *my_addr, int my_addr_len,
2406 void *peer_addr, int peer_addr_len)
2407 {
2408 struct drbd_tconn *tconn;
2409
2410 rcu_read_lock();
2411 list_for_each_entry_rcu(tconn, &drbd_tconns, all_tconn) {
2412 if (tconn->my_addr_len == my_addr_len &&
2413 tconn->peer_addr_len == peer_addr_len &&
2414 !memcmp(&tconn->my_addr, my_addr, my_addr_len) &&
2415 !memcmp(&tconn->peer_addr, peer_addr, peer_addr_len)) {
2416 kref_get(&tconn->kref);
2417 goto found;
2418 }
2419 }
2420 tconn = NULL;
2421 found:
2422 rcu_read_unlock();
2423 return tconn;
2424 }
2425
2426 static int drbd_alloc_socket(struct drbd_socket *socket)
2427 {
2428 socket->rbuf = (void *) __get_free_page(GFP_KERNEL);
2429 if (!socket->rbuf)
2430 return -ENOMEM;
2431 socket->sbuf = (void *) __get_free_page(GFP_KERNEL);
2432 if (!socket->sbuf)
2433 return -ENOMEM;
2434 return 0;
2435 }
2436
2437 static void drbd_free_socket(struct drbd_socket *socket)
2438 {
2439 free_page((unsigned long) socket->sbuf);
2440 free_page((unsigned long) socket->rbuf);
2441 }
2442
2443 void conn_free_crypto(struct drbd_tconn *tconn)
2444 {
2445 drbd_free_sock(tconn);
2446
2447 crypto_free_hash(tconn->csums_tfm);
2448 crypto_free_hash(tconn->verify_tfm);
2449 crypto_free_hash(tconn->cram_hmac_tfm);
2450 crypto_free_hash(tconn->integrity_tfm);
2451 crypto_free_hash(tconn->peer_integrity_tfm);
2452 kfree(tconn->int_dig_in);
2453 kfree(tconn->int_dig_vv);
2454
2455 tconn->csums_tfm = NULL;
2456 tconn->verify_tfm = NULL;
2457 tconn->cram_hmac_tfm = NULL;
2458 tconn->integrity_tfm = NULL;
2459 tconn->peer_integrity_tfm = NULL;
2460 tconn->int_dig_in = NULL;
2461 tconn->int_dig_vv = NULL;
2462 }
2463
2464 int set_resource_options(struct drbd_tconn *tconn, struct res_opts *res_opts)
2465 {
2466 cpumask_var_t new_cpu_mask;
2467 int err;
2468
2469 if (!zalloc_cpumask_var(&new_cpu_mask, GFP_KERNEL))
2470 return -ENOMEM;
2471 /*
2472 retcode = ERR_NOMEM;
2473 drbd_msg_put_info("unable to allocate cpumask");
2474 */
2475
2476 /* silently ignore cpu mask on UP kernel */
2477 if (nr_cpu_ids > 1 && res_opts->cpu_mask[0] != 0) {
2478 /* FIXME: Get rid of constant 32 here */
2479 err = bitmap_parse(res_opts->cpu_mask, 32,
2480 cpumask_bits(new_cpu_mask), nr_cpu_ids);
2481 if (err) {
2482 conn_warn(tconn, "bitmap_parse() failed with %d\n", err);
2483 /* retcode = ERR_CPU_MASK_PARSE; */
2484 goto fail;
2485 }
2486 }
2487 tconn->res_opts = *res_opts;
2488 if (!cpumask_equal(tconn->cpu_mask, new_cpu_mask)) {
2489 cpumask_copy(tconn->cpu_mask, new_cpu_mask);
2490 drbd_calc_cpu_mask(tconn);
2491 tconn->receiver.reset_cpu_mask = 1;
2492 tconn->asender.reset_cpu_mask = 1;
2493 tconn->worker.reset_cpu_mask = 1;
2494 }
2495 err = 0;
2496
2497 fail:
2498 free_cpumask_var(new_cpu_mask);
2499 return err;
2500
2501 }
2502
2503 /* caller must be under genl_lock() */
2504 struct drbd_tconn *conn_create(const char *name, struct res_opts *res_opts)
2505 {
2506 struct drbd_tconn *tconn;
2507
2508 tconn = kzalloc(sizeof(struct drbd_tconn), GFP_KERNEL);
2509 if (!tconn)
2510 return NULL;
2511
2512 tconn->name = kstrdup(name, GFP_KERNEL);
2513 if (!tconn->name)
2514 goto fail;
2515
2516 if (drbd_alloc_socket(&tconn->data))
2517 goto fail;
2518 if (drbd_alloc_socket(&tconn->meta))
2519 goto fail;
2520
2521 if (!zalloc_cpumask_var(&tconn->cpu_mask, GFP_KERNEL))
2522 goto fail;
2523
2524 if (set_resource_options(tconn, res_opts))
2525 goto fail;
2526
2527 tconn->current_epoch = kzalloc(sizeof(struct drbd_epoch), GFP_KERNEL);
2528 if (!tconn->current_epoch)
2529 goto fail;
2530
2531 INIT_LIST_HEAD(&tconn->transfer_log);
2532
2533 INIT_LIST_HEAD(&tconn->current_epoch->list);
2534 tconn->epochs = 1;
2535 spin_lock_init(&tconn->epoch_lock);
2536 tconn->write_ordering = WO_bdev_flush;
2537
2538 tconn->send.seen_any_write_yet = false;
2539 tconn->send.current_epoch_nr = 0;
2540 tconn->send.current_epoch_writes = 0;
2541
2542 tconn->cstate = C_STANDALONE;
2543 mutex_init(&tconn->cstate_mutex);
2544 spin_lock_init(&tconn->req_lock);
2545 mutex_init(&tconn->conf_update);
2546 init_waitqueue_head(&tconn->ping_wait);
2547 idr_init(&tconn->volumes);
2548
2549 drbd_init_workqueue(&tconn->sender_work);
2550 mutex_init(&tconn->data.mutex);
2551 mutex_init(&tconn->meta.mutex);
2552
2553 drbd_thread_init(tconn, &tconn->receiver, drbdd_init, "receiver");
2554 drbd_thread_init(tconn, &tconn->worker, drbd_worker, "worker");
2555 drbd_thread_init(tconn, &tconn->asender, drbd_asender, "asender");
2556
2557 kref_init(&tconn->kref);
2558 list_add_tail_rcu(&tconn->all_tconn, &drbd_tconns);
2559
2560 return tconn;
2561
2562 fail:
2563 kfree(tconn->current_epoch);
2564 free_cpumask_var(tconn->cpu_mask);
2565 drbd_free_socket(&tconn->meta);
2566 drbd_free_socket(&tconn->data);
2567 kfree(tconn->name);
2568 kfree(tconn);
2569
2570 return NULL;
2571 }
2572
2573 void conn_destroy(struct kref *kref)
2574 {
2575 struct drbd_tconn *tconn = container_of(kref, struct drbd_tconn, kref);
2576
2577 if (atomic_read(&tconn->current_epoch->epoch_size) != 0)
2578 conn_err(tconn, "epoch_size:%d\n", atomic_read(&tconn->current_epoch->epoch_size));
2579 kfree(tconn->current_epoch);
2580
2581 idr_destroy(&tconn->volumes);
2582
2583 free_cpumask_var(tconn->cpu_mask);
2584 drbd_free_socket(&tconn->meta);
2585 drbd_free_socket(&tconn->data);
2586 kfree(tconn->name);
2587 kfree(tconn->int_dig_in);
2588 kfree(tconn->int_dig_vv);
2589 kfree(tconn);
2590 }
2591
2592 int init_submitter(struct drbd_conf *mdev)
2593 {
2594 /* opencoded create_singlethread_workqueue(),
2595 * to be able to say "drbd%d", ..., minor */
2596 mdev->submit.wq = alloc_workqueue("drbd%u_submit",
2597 WQ_UNBOUND | WQ_MEM_RECLAIM, 1, mdev->minor);
2598 if (!mdev->submit.wq)
2599 return -ENOMEM;
2600
2601 INIT_WORK(&mdev->submit.worker, do_submit);
2602 spin_lock_init(&mdev->submit.lock);
2603 INIT_LIST_HEAD(&mdev->submit.writes);
2604 return 0;
2605 }
2606
2607 enum drbd_ret_code conn_new_minor(struct drbd_tconn *tconn, unsigned int minor, int vnr)
2608 {
2609 struct drbd_conf *mdev;
2610 struct gendisk *disk;
2611 struct request_queue *q;
2612 int vnr_got = vnr;
2613 int minor_got = minor;
2614 enum drbd_ret_code err = ERR_NOMEM;
2615
2616 mdev = minor_to_mdev(minor);
2617 if (mdev)
2618 return ERR_MINOR_EXISTS;
2619
2620 /* GFP_KERNEL, we are outside of all write-out paths */
2621 mdev = kzalloc(sizeof(struct drbd_conf), GFP_KERNEL);
2622 if (!mdev)
2623 return ERR_NOMEM;
2624
2625 kref_get(&tconn->kref);
2626 mdev->tconn = tconn;
2627
2628 mdev->minor = minor;
2629 mdev->vnr = vnr;
2630
2631 drbd_init_set_defaults(mdev);
2632
2633 q = blk_alloc_queue(GFP_KERNEL);
2634 if (!q)
2635 goto out_no_q;
2636 mdev->rq_queue = q;
2637 q->queuedata = mdev;
2638
2639 disk = alloc_disk(1);
2640 if (!disk)
2641 goto out_no_disk;
2642 mdev->vdisk = disk;
2643
2644 set_disk_ro(disk, true);
2645
2646 disk->queue = q;
2647 disk->major = DRBD_MAJOR;
2648 disk->first_minor = minor;
2649 disk->fops = &drbd_ops;
2650 sprintf(disk->disk_name, "drbd%d", minor);
2651 disk->private_data = mdev;
2652
2653 mdev->this_bdev = bdget(MKDEV(DRBD_MAJOR, minor));
2654 /* we have no partitions. we contain only ourselves. */
2655 mdev->this_bdev->bd_contains = mdev->this_bdev;
2656
2657 q->backing_dev_info.congested_fn = drbd_congested;
2658 q->backing_dev_info.congested_data = mdev;
2659
2660 blk_queue_make_request(q, drbd_make_request);
2661 blk_queue_flush(q, REQ_FLUSH | REQ_FUA);
2662 /* Setting the max_hw_sectors to an odd value of 8kibyte here
2663 This triggers a max_bio_size message upon first attach or connect */
2664 blk_queue_max_hw_sectors(q, DRBD_MAX_BIO_SIZE_SAFE >> 8);
2665 blk_queue_bounce_limit(q, BLK_BOUNCE_ANY);
2666 blk_queue_merge_bvec(q, drbd_merge_bvec);
2667 q->queue_lock = &mdev->tconn->req_lock; /* needed since we use */
2668
2669 mdev->md_io_page = alloc_page(GFP_KERNEL);
2670 if (!mdev->md_io_page)
2671 goto out_no_io_page;
2672
2673 if (drbd_bm_init(mdev))
2674 goto out_no_bitmap;
2675 mdev->read_requests = RB_ROOT;
2676 mdev->write_requests = RB_ROOT;
2677
2678 minor_got = idr_alloc(&minors, mdev, minor, minor + 1, GFP_KERNEL);
2679 if (minor_got < 0) {
2680 if (minor_got == -ENOSPC) {
2681 err = ERR_MINOR_EXISTS;
2682 drbd_msg_put_info("requested minor exists already");
2683 }
2684 goto out_no_minor_idr;
2685 }
2686
2687 vnr_got = idr_alloc(&tconn->volumes, mdev, vnr, vnr + 1, GFP_KERNEL);
2688 if (vnr_got < 0) {
2689 if (vnr_got == -ENOSPC) {
2690 err = ERR_INVALID_REQUEST;
2691 drbd_msg_put_info("requested volume exists already");
2692 }
2693 goto out_idr_remove_minor;
2694 }
2695
2696 if (init_submitter(mdev)) {
2697 err = ERR_NOMEM;
2698 drbd_msg_put_info("unable to create submit workqueue");
2699 goto out_idr_remove_vol;
2700 }
2701
2702 add_disk(disk);
2703 kref_init(&mdev->kref); /* one ref for both idrs and the the add_disk */
2704
2705 /* inherit the connection state */
2706 mdev->state.conn = tconn->cstate;
2707 if (mdev->state.conn == C_WF_REPORT_PARAMS)
2708 drbd_connected(mdev);
2709
2710 return NO_ERROR;
2711
2712 out_idr_remove_vol:
2713 idr_remove(&tconn->volumes, vnr_got);
2714 out_idr_remove_minor:
2715 idr_remove(&minors, minor_got);
2716 synchronize_rcu();
2717 out_no_minor_idr:
2718 drbd_bm_cleanup(mdev);
2719 out_no_bitmap:
2720 __free_page(mdev->md_io_page);
2721 out_no_io_page:
2722 put_disk(disk);
2723 out_no_disk:
2724 blk_cleanup_queue(q);
2725 out_no_q:
2726 kfree(mdev);
2727 kref_put(&tconn->kref, &conn_destroy);
2728 return err;
2729 }
2730
2731 int __init drbd_init(void)
2732 {
2733 int err;
2734
2735 if (minor_count < DRBD_MINOR_COUNT_MIN || minor_count > DRBD_MINOR_COUNT_MAX) {
2736 printk(KERN_ERR
2737 "drbd: invalid minor_count (%d)\n", minor_count);
2738 #ifdef MODULE
2739 return -EINVAL;
2740 #else
2741 minor_count = DRBD_MINOR_COUNT_DEF;
2742 #endif
2743 }
2744
2745 err = register_blkdev(DRBD_MAJOR, "drbd");
2746 if (err) {
2747 printk(KERN_ERR
2748 "drbd: unable to register block device major %d\n",
2749 DRBD_MAJOR);
2750 return err;
2751 }
2752
2753 err = drbd_genl_register();
2754 if (err) {
2755 printk(KERN_ERR "drbd: unable to register generic netlink family\n");
2756 goto fail;
2757 }
2758
2759
2760 register_reboot_notifier(&drbd_notifier);
2761
2762 /*
2763 * allocate all necessary structs
2764 */
2765 err = -ENOMEM;
2766
2767 init_waitqueue_head(&drbd_pp_wait);
2768
2769 drbd_proc = NULL; /* play safe for drbd_cleanup */
2770 idr_init(&minors);
2771
2772 err = drbd_create_mempools();
2773 if (err)
2774 goto fail;
2775
2776 drbd_proc = proc_create_data("drbd", S_IFREG | S_IRUGO , NULL, &drbd_proc_fops, NULL);
2777 if (!drbd_proc) {
2778 printk(KERN_ERR "drbd: unable to register proc file\n");
2779 goto fail;
2780 }
2781
2782 rwlock_init(&global_state_lock);
2783 INIT_LIST_HEAD(&drbd_tconns);
2784
2785 retry.wq = create_singlethread_workqueue("drbd-reissue");
2786 if (!retry.wq) {
2787 printk(KERN_ERR "drbd: unable to create retry workqueue\n");
2788 goto fail;
2789 }
2790 INIT_WORK(&retry.worker, do_retry);
2791 spin_lock_init(&retry.lock);
2792 INIT_LIST_HEAD(&retry.writes);
2793
2794 printk(KERN_INFO "drbd: initialized. "
2795 "Version: " REL_VERSION " (api:%d/proto:%d-%d)\n",
2796 API_VERSION, PRO_VERSION_MIN, PRO_VERSION_MAX);
2797 printk(KERN_INFO "drbd: %s\n", drbd_buildtag());
2798 printk(KERN_INFO "drbd: registered as block device major %d\n",
2799 DRBD_MAJOR);
2800
2801 return 0; /* Success! */
2802
2803 fail:
2804 drbd_cleanup();
2805 if (err == -ENOMEM)
2806 /* currently always the case */
2807 printk(KERN_ERR "drbd: ran out of memory\n");
2808 else
2809 printk(KERN_ERR "drbd: initialization failure\n");
2810 return err;
2811 }
2812
2813 void drbd_free_bc(struct drbd_backing_dev *ldev)
2814 {
2815 if (ldev == NULL)
2816 return;
2817
2818 blkdev_put(ldev->backing_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2819 blkdev_put(ldev->md_bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
2820
2821 kfree(ldev->disk_conf);
2822 kfree(ldev);
2823 }
2824
2825 void drbd_free_sock(struct drbd_tconn *tconn)
2826 {
2827 if (tconn->data.socket) {
2828 mutex_lock(&tconn->data.mutex);
2829 kernel_sock_shutdown(tconn->data.socket, SHUT_RDWR);
2830 sock_release(tconn->data.socket);
2831 tconn->data.socket = NULL;
2832 mutex_unlock(&tconn->data.mutex);
2833 }
2834 if (tconn->meta.socket) {
2835 mutex_lock(&tconn->meta.mutex);
2836 kernel_sock_shutdown(tconn->meta.socket, SHUT_RDWR);
2837 sock_release(tconn->meta.socket);
2838 tconn->meta.socket = NULL;
2839 mutex_unlock(&tconn->meta.mutex);
2840 }
2841 }
2842
2843 /* meta data management */
2844
2845 void conn_md_sync(struct drbd_tconn *tconn)
2846 {
2847 struct drbd_conf *mdev;
2848 int vnr;
2849
2850 rcu_read_lock();
2851 idr_for_each_entry(&tconn->volumes, mdev, vnr) {
2852 kref_get(&mdev->kref);
2853 rcu_read_unlock();
2854 drbd_md_sync(mdev);
2855 kref_put(&mdev->kref, &drbd_minor_destroy);
2856 rcu_read_lock();
2857 }
2858 rcu_read_unlock();
2859 }
2860
2861 /* aligned 4kByte */
2862 struct meta_data_on_disk {
2863 u64 la_size_sect; /* last agreed size. */
2864 u64 uuid[UI_SIZE]; /* UUIDs. */
2865 u64 device_uuid;
2866 u64 reserved_u64_1;
2867 u32 flags; /* MDF */
2868 u32 magic;
2869 u32 md_size_sect;
2870 u32 al_offset; /* offset to this block */
2871 u32 al_nr_extents; /* important for restoring the AL (userspace) */
2872 /* `-- act_log->nr_elements <-- ldev->dc.al_extents */
2873 u32 bm_offset; /* offset to the bitmap, from here */
2874 u32 bm_bytes_per_bit; /* BM_BLOCK_SIZE */
2875 u32 la_peer_max_bio_size; /* last peer max_bio_size */
2876
2877 /* see al_tr_number_to_on_disk_sector() */
2878 u32 al_stripes;
2879 u32 al_stripe_size_4k;
2880
2881 u8 reserved_u8[4096 - (7*8 + 10*4)];
2882 } __packed;
2883
2884 /**
2885 * drbd_md_sync() - Writes the meta data super block if the MD_DIRTY flag bit is set
2886 * @mdev: DRBD device.
2887 */
2888 void drbd_md_sync(struct drbd_conf *mdev)
2889 {
2890 struct meta_data_on_disk *buffer;
2891 sector_t sector;
2892 int i;
2893
2894 /* Don't accidentally change the DRBD meta data layout. */
2895 BUILD_BUG_ON(UI_SIZE != 4);
2896 BUILD_BUG_ON(sizeof(struct meta_data_on_disk) != 4096);
2897
2898 del_timer(&mdev->md_sync_timer);
2899 /* timer may be rearmed by drbd_md_mark_dirty() now. */
2900 if (!test_and_clear_bit(MD_DIRTY, &mdev->flags))
2901 return;
2902
2903 /* We use here D_FAILED and not D_ATTACHING because we try to write
2904 * metadata even if we detach due to a disk failure! */
2905 if (!get_ldev_if_state(mdev, D_FAILED))
2906 return;
2907
2908 buffer = drbd_md_get_buffer(mdev);
2909 if (!buffer)
2910 goto out;
2911
2912 memset(buffer, 0, sizeof(*buffer));
2913
2914 buffer->la_size_sect = cpu_to_be64(drbd_get_capacity(mdev->this_bdev));
2915 for (i = UI_CURRENT; i < UI_SIZE; i++)
2916 buffer->uuid[i] = cpu_to_be64(mdev->ldev->md.uuid[i]);
2917 buffer->flags = cpu_to_be32(mdev->ldev->md.flags);
2918 buffer->magic = cpu_to_be32(DRBD_MD_MAGIC_84_UNCLEAN);
2919
2920 buffer->md_size_sect = cpu_to_be32(mdev->ldev->md.md_size_sect);
2921 buffer->al_offset = cpu_to_be32(mdev->ldev->md.al_offset);
2922 buffer->al_nr_extents = cpu_to_be32(mdev->act_log->nr_elements);
2923 buffer->bm_bytes_per_bit = cpu_to_be32(BM_BLOCK_SIZE);
2924 buffer->device_uuid = cpu_to_be64(mdev->ldev->md.device_uuid);
2925
2926 buffer->bm_offset = cpu_to_be32(mdev->ldev->md.bm_offset);
2927 buffer->la_peer_max_bio_size = cpu_to_be32(mdev->peer_max_bio_size);
2928
2929 buffer->al_stripes = cpu_to_be32(mdev->ldev->md.al_stripes);
2930 buffer->al_stripe_size_4k = cpu_to_be32(mdev->ldev->md.al_stripe_size_4k);
2931
2932 D_ASSERT(drbd_md_ss(mdev->ldev) == mdev->ldev->md.md_offset);
2933 sector = mdev->ldev->md.md_offset;
2934
2935 if (drbd_md_sync_page_io(mdev, mdev->ldev, sector, WRITE)) {
2936 /* this was a try anyways ... */
2937 dev_err(DEV, "meta data update failed!\n");
2938 drbd_chk_io_error(mdev, 1, DRBD_META_IO_ERROR);
2939 }
2940
2941 /* Update mdev->ldev->md.la_size_sect,
2942 * since we updated it on metadata. */
2943 mdev->ldev->md.la_size_sect = drbd_get_capacity(mdev->this_bdev);
2944
2945 drbd_md_put_buffer(mdev);
2946 out:
2947 put_ldev(mdev);
2948 }
2949
2950 static int check_activity_log_stripe_size(struct drbd_conf *mdev,
2951 struct meta_data_on_disk *on_disk,
2952 struct drbd_md *in_core)
2953 {
2954 u32 al_stripes = be32_to_cpu(on_disk->al_stripes);
2955 u32 al_stripe_size_4k = be32_to_cpu(on_disk->al_stripe_size_4k);
2956 u64 al_size_4k;
2957
2958 /* both not set: default to old fixed size activity log */
2959 if (al_stripes == 0 && al_stripe_size_4k == 0) {
2960 al_stripes = 1;
2961 al_stripe_size_4k = MD_32kB_SECT/8;
2962 }
2963
2964 /* some paranoia plausibility checks */
2965
2966 /* we need both values to be set */
2967 if (al_stripes == 0 || al_stripe_size_4k == 0)
2968 goto err;
2969
2970 al_size_4k = (u64)al_stripes * al_stripe_size_4k;
2971
2972 /* Upper limit of activity log area, to avoid potential overflow
2973 * problems in al_tr_number_to_on_disk_sector(). As right now, more
2974 * than 72 * 4k blocks total only increases the amount of history,
2975 * limiting this arbitrarily to 16 GB is not a real limitation ;-) */
2976 if (al_size_4k > (16 * 1024 * 1024/4))
2977 goto err;
2978
2979 /* Lower limit: we need at least 8 transaction slots (32kB)
2980 * to not break existing setups */
2981 if (al_size_4k < MD_32kB_SECT/8)
2982 goto err;
2983
2984 in_core->al_stripe_size_4k = al_stripe_size_4k;
2985 in_core->al_stripes = al_stripes;
2986 in_core->al_size_4k = al_size_4k;
2987
2988 return 0;
2989 err:
2990 dev_err(DEV, "invalid activity log striping: al_stripes=%u, al_stripe_size_4k=%u\n",
2991 al_stripes, al_stripe_size_4k);
2992 return -EINVAL;
2993 }
2994
2995 static int check_offsets_and_sizes(struct drbd_conf *mdev, struct drbd_backing_dev *bdev)
2996 {
2997 sector_t capacity = drbd_get_capacity(bdev->md_bdev);
2998 struct drbd_md *in_core = &bdev->md;
2999 s32 on_disk_al_sect;
3000 s32 on_disk_bm_sect;
3001
3002 /* The on-disk size of the activity log, calculated from offsets, and
3003 * the size of the activity log calculated from the stripe settings,
3004 * should match.
3005 * Though we could relax this a bit: it is ok, if the striped activity log
3006 * fits in the available on-disk activity log size.
3007 * Right now, that would break how resize is implemented.
3008 * TODO: make drbd_determine_dev_size() (and the drbdmeta tool) aware
3009 * of possible unused padding space in the on disk layout. */
3010 if (in_core->al_offset < 0) {
3011 if (in_core->bm_offset > in_core->al_offset)
3012 goto err;
3013 on_disk_al_sect = -in_core->al_offset;
3014 on_disk_bm_sect = in_core->al_offset - in_core->bm_offset;
3015 } else {
3016 if (in_core->al_offset != MD_4kB_SECT)
3017 goto err;
3018 if (in_core->bm_offset < in_core->al_offset + in_core->al_size_4k * MD_4kB_SECT)
3019 goto err;
3020
3021 on_disk_al_sect = in_core->bm_offset - MD_4kB_SECT;
3022 on_disk_bm_sect = in_core->md_size_sect - in_core->bm_offset;
3023 }
3024
3025 /* old fixed size meta data is exactly that: fixed. */
3026 if (in_core->meta_dev_idx >= 0) {
3027 if (in_core->md_size_sect != MD_128MB_SECT
3028 || in_core->al_offset != MD_4kB_SECT
3029 || in_core->bm_offset != MD_4kB_SECT + MD_32kB_SECT
3030 || in_core->al_stripes != 1
3031 || in_core->al_stripe_size_4k != MD_32kB_SECT/8)
3032 goto err;
3033 }
3034
3035 if (capacity < in_core->md_size_sect)
3036 goto err;
3037 if (capacity - in_core->md_size_sect < drbd_md_first_sector(bdev))
3038 goto err;
3039
3040 /* should be aligned, and at least 32k */
3041 if ((on_disk_al_sect & 7) || (on_disk_al_sect < MD_32kB_SECT))
3042 goto err;
3043
3044 /* should fit (for now: exactly) into the available on-disk space;
3045 * overflow prevention is in check_activity_log_stripe_size() above. */
3046 if (on_disk_al_sect != in_core->al_size_4k * MD_4kB_SECT)
3047 goto err;
3048
3049 /* again, should be aligned */
3050 if (in_core->bm_offset & 7)
3051 goto err;
3052
3053 /* FIXME check for device grow with flex external meta data? */
3054
3055 /* can the available bitmap space cover the last agreed device size? */
3056 if (on_disk_bm_sect < (in_core->la_size_sect+7)/MD_4kB_SECT/8/512)
3057 goto err;
3058
3059 return 0;
3060
3061 err:
3062 dev_err(DEV, "meta data offsets don't make sense: idx=%d "
3063 "al_s=%u, al_sz4k=%u, al_offset=%d, bm_offset=%d, "
3064 "md_size_sect=%u, la_size=%llu, md_capacity=%llu\n",
3065 in_core->meta_dev_idx,
3066 in_core->al_stripes, in_core->al_stripe_size_4k,
3067 in_core->al_offset, in_core->bm_offset, in_core->md_size_sect,
3068 (unsigned long long)in_core->la_size_sect,
3069 (unsigned long long)capacity);
3070
3071 return -EINVAL;
3072 }
3073
3074
3075 /**
3076 * drbd_md_read() - Reads in the meta data super block
3077 * @mdev: DRBD device.
3078 * @bdev: Device from which the meta data should be read in.
3079 *
3080 * Return NO_ERROR on success, and an enum drbd_ret_code in case
3081 * something goes wrong.
3082 *
3083 * Called exactly once during drbd_adm_attach(), while still being D_DISKLESS,
3084 * even before @bdev is assigned to @mdev->ldev.
3085 */
3086 int drbd_md_read(struct drbd_conf *mdev, struct drbd_backing_dev *bdev)
3087 {
3088 struct meta_data_on_disk *buffer;
3089 u32 magic, flags;
3090 int i, rv = NO_ERROR;
3091
3092 if (mdev->state.disk != D_DISKLESS)
3093 return ERR_DISK_CONFIGURED;
3094
3095 buffer = drbd_md_get_buffer(mdev);
3096 if (!buffer)
3097 return ERR_NOMEM;
3098
3099 /* First, figure out where our meta data superblock is located,
3100 * and read it. */
3101 bdev->md.meta_dev_idx = bdev->disk_conf->meta_dev_idx;
3102 bdev->md.md_offset = drbd_md_ss(bdev);
3103
3104 if (drbd_md_sync_page_io(mdev, bdev, bdev->md.md_offset, READ)) {
3105 /* NOTE: can't do normal error processing here as this is
3106 called BEFORE disk is attached */
3107 dev_err(DEV, "Error while reading metadata.\n");
3108 rv = ERR_IO_MD_DISK;
3109 goto err;
3110 }
3111
3112 magic = be32_to_cpu(buffer->magic);
3113 flags = be32_to_cpu(buffer->flags);
3114 if (magic == DRBD_MD_MAGIC_84_UNCLEAN ||
3115 (magic == DRBD_MD_MAGIC_08 && !(flags & MDF_AL_CLEAN))) {
3116 /* btw: that's Activity Log clean, not "all" clean. */
3117 dev_err(DEV, "Found unclean meta data. Did you \"drbdadm apply-al\"?\n");
3118 rv = ERR_MD_UNCLEAN;
3119 goto err;
3120 }
3121
3122 rv = ERR_MD_INVALID;
3123 if (magic != DRBD_MD_MAGIC_08) {
3124 if (magic == DRBD_MD_MAGIC_07)
3125 dev_err(DEV, "Found old (0.7) meta data magic. Did you \"drbdadm create-md\"?\n");
3126 else
3127 dev_err(DEV, "Meta data magic not found. Did you \"drbdadm create-md\"?\n");
3128 goto err;
3129 }
3130
3131 if (be32_to_cpu(buffer->bm_bytes_per_bit) != BM_BLOCK_SIZE) {
3132 dev_err(DEV, "unexpected bm_bytes_per_bit: %u (expected %u)\n",
3133 be32_to_cpu(buffer->bm_bytes_per_bit), BM_BLOCK_SIZE);
3134 goto err;
3135 }
3136
3137
3138 /* convert to in_core endian */
3139 bdev->md.la_size_sect = be64_to_cpu(buffer->la_size_sect);
3140 for (i = UI_CURRENT; i < UI_SIZE; i++)
3141 bdev->md.uuid[i] = be64_to_cpu(buffer->uuid[i]);
3142 bdev->md.flags = be32_to_cpu(buffer->flags);
3143 bdev->md.device_uuid = be64_to_cpu(buffer->device_uuid);
3144
3145 bdev->md.md_size_sect = be32_to_cpu(buffer->md_size_sect);
3146 bdev->md.al_offset = be32_to_cpu(buffer->al_offset);
3147 bdev->md.bm_offset = be32_to_cpu(buffer->bm_offset);
3148
3149 if (check_activity_log_stripe_size(mdev, buffer, &bdev->md))
3150 goto err;
3151 if (check_offsets_and_sizes(mdev, bdev))
3152 goto err;
3153
3154 if (be32_to_cpu(buffer->bm_offset) != bdev->md.bm_offset) {
3155 dev_err(DEV, "unexpected bm_offset: %d (expected %d)\n",
3156 be32_to_cpu(buffer->bm_offset), bdev->md.bm_offset);
3157 goto err;
3158 }
3159 if (be32_to_cpu(buffer->md_size_sect) != bdev->md.md_size_sect) {
3160 dev_err(DEV, "unexpected md_size: %u (expected %u)\n",
3161 be32_to_cpu(buffer->md_size_sect), bdev->md.md_size_sect);
3162 goto err;
3163 }
3164
3165 rv = NO_ERROR;
3166
3167 spin_lock_irq(&mdev->tconn->req_lock);
3168 if (mdev->state.conn < C_CONNECTED) {
3169 unsigned int peer;
3170 peer = be32_to_cpu(buffer->la_peer_max_bio_size);
3171 peer = max(peer, DRBD_MAX_BIO_SIZE_SAFE);
3172 mdev->peer_max_bio_size = peer;
3173 }
3174 spin_unlock_irq(&mdev->tconn->req_lock);
3175
3176 err:
3177 drbd_md_put_buffer(mdev);
3178
3179 return rv;
3180 }
3181
3182 /**
3183 * drbd_md_mark_dirty() - Mark meta data super block as dirty
3184 * @mdev: DRBD device.
3185 *
3186 * Call this function if you change anything that should be written to
3187 * the meta-data super block. This function sets MD_DIRTY, and starts a
3188 * timer that ensures that within five seconds you have to call drbd_md_sync().
3189 */
3190 #ifdef DEBUG
3191 void drbd_md_mark_dirty_(struct drbd_conf *mdev, unsigned int line, const char *func)
3192 {
3193 if (!test_and_set_bit(MD_DIRTY, &mdev->flags)) {
3194 mod_timer(&mdev->md_sync_timer, jiffies + HZ);
3195 mdev->last_md_mark_dirty.line = line;
3196 mdev->last_md_mark_dirty.func = func;
3197 }
3198 }
3199 #else
3200 void drbd_md_mark_dirty(struct drbd_conf *mdev)
3201 {
3202 if (!test_and_set_bit(MD_DIRTY, &mdev->flags))
3203 mod_timer(&mdev->md_sync_timer, jiffies + 5*HZ);
3204 }
3205 #endif
3206
3207 void drbd_uuid_move_history(struct drbd_conf *mdev) __must_hold(local)
3208 {
3209 int i;
3210
3211 for (i = UI_HISTORY_START; i < UI_HISTORY_END; i++)
3212 mdev->ldev->md.uuid[i+1] = mdev->ldev->md.uuid[i];
3213 }
3214
3215 void __drbd_uuid_set(struct drbd_conf *mdev, int idx, u64 val) __must_hold(local)
3216 {
3217 if (idx == UI_CURRENT) {
3218 if (mdev->state.role == R_PRIMARY)
3219 val |= 1;
3220 else
3221 val &= ~((u64)1);
3222
3223 drbd_set_ed_uuid(mdev, val);
3224 }
3225
3226 mdev->ldev->md.uuid[idx] = val;
3227 drbd_md_mark_dirty(mdev);
3228 }
3229
3230 void _drbd_uuid_set(struct drbd_conf *mdev, int idx, u64 val) __must_hold(local)
3231 {
3232 unsigned long flags;
3233 spin_lock_irqsave(&mdev->ldev->md.uuid_lock, flags);
3234 __drbd_uuid_set(mdev, idx, val);
3235 spin_unlock_irqrestore(&mdev->ldev->md.uuid_lock, flags);
3236 }
3237
3238 void drbd_uuid_set(struct drbd_conf *mdev, int idx, u64 val) __must_hold(local)
3239 {
3240 unsigned long flags;
3241 spin_lock_irqsave(&mdev->ldev->md.uuid_lock, flags);
3242 if (mdev->ldev->md.uuid[idx]) {
3243 drbd_uuid_move_history(mdev);
3244 mdev->ldev->md.uuid[UI_HISTORY_START] = mdev->ldev->md.uuid[idx];
3245 }
3246 __drbd_uuid_set(mdev, idx, val);
3247 spin_unlock_irqrestore(&mdev->ldev->md.uuid_lock, flags);
3248 }
3249
3250 /**
3251 * drbd_uuid_new_current() - Creates a new current UUID
3252 * @mdev: DRBD device.
3253 *
3254 * Creates a new current UUID, and rotates the old current UUID into
3255 * the bitmap slot. Causes an incremental resync upon next connect.
3256 */
3257 void drbd_uuid_new_current(struct drbd_conf *mdev) __must_hold(local)
3258 {
3259 u64 val;
3260 unsigned long long bm_uuid;
3261
3262 get_random_bytes(&val, sizeof(u64));
3263
3264 spin_lock_irq(&mdev->ldev->md.uuid_lock);
3265 bm_uuid = mdev->ldev->md.uuid[UI_BITMAP];
3266
3267 if (bm_uuid)
3268 dev_warn(DEV, "bm UUID was already set: %llX\n", bm_uuid);
3269
3270 mdev->ldev->md.uuid[UI_BITMAP] = mdev->ldev->md.uuid[UI_CURRENT];
3271 __drbd_uuid_set(mdev, UI_CURRENT, val);
3272 spin_unlock_irq(&mdev->ldev->md.uuid_lock);
3273
3274 drbd_print_uuids(mdev, "new current UUID");
3275 /* get it to stable storage _now_ */
3276 drbd_md_sync(mdev);
3277 }
3278
3279 void drbd_uuid_set_bm(struct drbd_conf *mdev, u64 val) __must_hold(local)
3280 {
3281 unsigned long flags;
3282 if (mdev->ldev->md.uuid[UI_BITMAP] == 0 && val == 0)
3283 return;
3284
3285 spin_lock_irqsave(&mdev->ldev->md.uuid_lock, flags);
3286 if (val == 0) {
3287 drbd_uuid_move_history(mdev);
3288 mdev->ldev->md.uuid[UI_HISTORY_START] = mdev->ldev->md.uuid[UI_BITMAP];
3289 mdev->ldev->md.uuid[UI_BITMAP] = 0;
3290 } else {
3291 unsigned long long bm_uuid = mdev->ldev->md.uuid[UI_BITMAP];
3292 if (bm_uuid)
3293 dev_warn(DEV, "bm UUID was already set: %llX\n", bm_uuid);
3294
3295 mdev->ldev->md.uuid[UI_BITMAP] = val & ~((u64)1);
3296 }
3297 spin_unlock_irqrestore(&mdev->ldev->md.uuid_lock, flags);
3298
3299 drbd_md_mark_dirty(mdev);
3300 }
3301
3302 /**
3303 * drbd_bmio_set_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3304 * @mdev: DRBD device.
3305 *
3306 * Sets all bits in the bitmap and writes the whole bitmap to stable storage.
3307 */
3308 int drbd_bmio_set_n_write(struct drbd_conf *mdev)
3309 {
3310 int rv = -EIO;
3311
3312 if (get_ldev_if_state(mdev, D_ATTACHING)) {
3313 drbd_md_set_flag(mdev, MDF_FULL_SYNC);
3314 drbd_md_sync(mdev);
3315 drbd_bm_set_all(mdev);
3316
3317 rv = drbd_bm_write(mdev);
3318
3319 if (!rv) {
3320 drbd_md_clear_flag(mdev, MDF_FULL_SYNC);
3321 drbd_md_sync(mdev);
3322 }
3323
3324 put_ldev(mdev);
3325 }
3326
3327 return rv;
3328 }
3329
3330 /**
3331 * drbd_bmio_clear_n_write() - io_fn for drbd_queue_bitmap_io() or drbd_bitmap_io()
3332 * @mdev: DRBD device.
3333 *
3334 * Clears all bits in the bitmap and writes the whole bitmap to stable storage.
3335 */
3336 int drbd_bmio_clear_n_write(struct drbd_conf *mdev)
3337 {
3338 int rv = -EIO;
3339
3340 drbd_resume_al(mdev);
3341 if (get_ldev_if_state(mdev, D_ATTACHING)) {
3342 drbd_bm_clear_all(mdev);
3343 rv = drbd_bm_write(mdev);
3344 put_ldev(mdev);
3345 }
3346
3347 return rv;
3348 }
3349
3350 static int w_bitmap_io(struct drbd_work *w, int unused)
3351 {
3352 struct bm_io_work *work = container_of(w, struct bm_io_work, w);
3353 struct drbd_conf *mdev = w->mdev;
3354 int rv = -EIO;
3355
3356 D_ASSERT(atomic_read(&mdev->ap_bio_cnt) == 0);
3357
3358 if (get_ldev(mdev)) {
3359 drbd_bm_lock(mdev, work->why, work->flags);
3360 rv = work->io_fn(mdev);
3361 drbd_bm_unlock(mdev);
3362 put_ldev(mdev);
3363 }
3364
3365 clear_bit_unlock(BITMAP_IO, &mdev->flags);
3366 wake_up(&mdev->misc_wait);
3367
3368 if (work->done)
3369 work->done(mdev, rv);
3370
3371 clear_bit(BITMAP_IO_QUEUED, &mdev->flags);
3372 work->why = NULL;
3373 work->flags = 0;
3374
3375 return 0;
3376 }
3377
3378 void drbd_ldev_destroy(struct drbd_conf *mdev)
3379 {
3380 lc_destroy(mdev->resync);
3381 mdev->resync = NULL;
3382 lc_destroy(mdev->act_log);
3383 mdev->act_log = NULL;
3384 __no_warn(local,
3385 drbd_free_bc(mdev->ldev);
3386 mdev->ldev = NULL;);
3387
3388 clear_bit(GO_DISKLESS, &mdev->flags);
3389 }
3390
3391 static int w_go_diskless(struct drbd_work *w, int unused)
3392 {
3393 struct drbd_conf *mdev = w->mdev;
3394
3395 D_ASSERT(mdev->state.disk == D_FAILED);
3396 /* we cannot assert local_cnt == 0 here, as get_ldev_if_state will
3397 * inc/dec it frequently. Once we are D_DISKLESS, no one will touch
3398 * the protected members anymore, though, so once put_ldev reaches zero
3399 * again, it will be safe to free them. */
3400
3401 /* Try to write changed bitmap pages, read errors may have just
3402 * set some bits outside the area covered by the activity log.
3403 *
3404 * If we have an IO error during the bitmap writeout,
3405 * we will want a full sync next time, just in case.
3406 * (Do we want a specific meta data flag for this?)
3407 *
3408 * If that does not make it to stable storage either,
3409 * we cannot do anything about that anymore.
3410 *
3411 * We still need to check if both bitmap and ldev are present, we may
3412 * end up here after a failed attach, before ldev was even assigned.
3413 */
3414 if (mdev->bitmap && mdev->ldev) {
3415 /* An interrupted resync or similar is allowed to recounts bits
3416 * while we detach.
3417 * Any modifications would not be expected anymore, though.
3418 */
3419 if (drbd_bitmap_io_from_worker(mdev, drbd_bm_write,
3420 "detach", BM_LOCKED_TEST_ALLOWED)) {
3421 if (test_bit(WAS_READ_ERROR, &mdev->flags)) {
3422 drbd_md_set_flag(mdev, MDF_FULL_SYNC);
3423 drbd_md_sync(mdev);
3424 }
3425 }
3426 }
3427
3428 drbd_force_state(mdev, NS(disk, D_DISKLESS));
3429 return 0;
3430 }
3431
3432 /**
3433 * drbd_queue_bitmap_io() - Queues an IO operation on the whole bitmap
3434 * @mdev: DRBD device.
3435 * @io_fn: IO callback to be called when bitmap IO is possible
3436 * @done: callback to be called after the bitmap IO was performed
3437 * @why: Descriptive text of the reason for doing the IO
3438 *
3439 * While IO on the bitmap happens we freeze application IO thus we ensure
3440 * that drbd_set_out_of_sync() can not be called. This function MAY ONLY be
3441 * called from worker context. It MUST NOT be used while a previous such
3442 * work is still pending!
3443 */
3444 void drbd_queue_bitmap_io(struct drbd_conf *mdev,
3445 int (*io_fn)(struct drbd_conf *),
3446 void (*done)(struct drbd_conf *, int),
3447 char *why, enum bm_flag flags)
3448 {
3449 D_ASSERT(current == mdev->tconn->worker.task);
3450
3451 D_ASSERT(!test_bit(BITMAP_IO_QUEUED, &mdev->flags));
3452 D_ASSERT(!test_bit(BITMAP_IO, &mdev->flags));
3453 D_ASSERT(list_empty(&mdev->bm_io_work.w.list));
3454 if (mdev->bm_io_work.why)
3455 dev_err(DEV, "FIXME going to queue '%s' but '%s' still pending?\n",
3456 why, mdev->bm_io_work.why);
3457
3458 mdev->bm_io_work.io_fn = io_fn;
3459 mdev->bm_io_work.done = done;
3460 mdev->bm_io_work.why = why;
3461 mdev->bm_io_work.flags = flags;
3462
3463 spin_lock_irq(&mdev->tconn->req_lock);
3464 set_bit(BITMAP_IO, &mdev->flags);
3465 if (atomic_read(&mdev->ap_bio_cnt) == 0) {
3466 if (!test_and_set_bit(BITMAP_IO_QUEUED, &mdev->flags))
3467 drbd_queue_work(&mdev->tconn->sender_work, &mdev->bm_io_work.w);
3468 }
3469 spin_unlock_irq(&mdev->tconn->req_lock);
3470 }
3471
3472 /**
3473 * drbd_bitmap_io() - Does an IO operation on the whole bitmap
3474 * @mdev: DRBD device.
3475 * @io_fn: IO callback to be called when bitmap IO is possible
3476 * @why: Descriptive text of the reason for doing the IO
3477 *
3478 * freezes application IO while that the actual IO operations runs. This
3479 * functions MAY NOT be called from worker context.
3480 */
3481 int drbd_bitmap_io(struct drbd_conf *mdev, int (*io_fn)(struct drbd_conf *),
3482 char *why, enum bm_flag flags)
3483 {
3484 int rv;
3485
3486 D_ASSERT(current != mdev->tconn->worker.task);
3487
3488 if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3489 drbd_suspend_io(mdev);
3490
3491 drbd_bm_lock(mdev, why, flags);
3492 rv = io_fn(mdev);
3493 drbd_bm_unlock(mdev);
3494
3495 if ((flags & BM_LOCKED_SET_ALLOWED) == 0)
3496 drbd_resume_io(mdev);
3497
3498 return rv;
3499 }
3500
3501 void drbd_md_set_flag(struct drbd_conf *mdev, int flag) __must_hold(local)
3502 {
3503 if ((mdev->ldev->md.flags & flag) != flag) {
3504 drbd_md_mark_dirty(mdev);
3505 mdev->ldev->md.flags |= flag;
3506 }
3507 }
3508
3509 void drbd_md_clear_flag(struct drbd_conf *mdev, int flag) __must_hold(local)
3510 {
3511 if ((mdev->ldev->md.flags & flag) != 0) {
3512 drbd_md_mark_dirty(mdev);
3513 mdev->ldev->md.flags &= ~flag;
3514 }
3515 }
3516 int drbd_md_test_flag(struct drbd_backing_dev *bdev, int flag)
3517 {
3518 return (bdev->md.flags & flag) != 0;
3519 }
3520
3521 static void md_sync_timer_fn(unsigned long data)
3522 {
3523 struct drbd_conf *mdev = (struct drbd_conf *) data;
3524
3525 /* must not double-queue! */
3526 if (list_empty(&mdev->md_sync_work.list))
3527 drbd_queue_work_front(&mdev->tconn->sender_work, &mdev->md_sync_work);
3528 }
3529
3530 static int w_md_sync(struct drbd_work *w, int unused)
3531 {
3532 struct drbd_conf *mdev = w->mdev;
3533
3534 dev_warn(DEV, "md_sync_timer expired! Worker calls drbd_md_sync().\n");
3535 #ifdef DEBUG
3536 dev_warn(DEV, "last md_mark_dirty: %s:%u\n",
3537 mdev->last_md_mark_dirty.func, mdev->last_md_mark_dirty.line);
3538 #endif
3539 drbd_md_sync(mdev);
3540 return 0;
3541 }
3542
3543 const char *cmdname(enum drbd_packet cmd)
3544 {
3545 /* THINK may need to become several global tables
3546 * when we want to support more than
3547 * one PRO_VERSION */
3548 static const char *cmdnames[] = {
3549 [P_DATA] = "Data",
3550 [P_DATA_REPLY] = "DataReply",
3551 [P_RS_DATA_REPLY] = "RSDataReply",
3552 [P_BARRIER] = "Barrier",
3553 [P_BITMAP] = "ReportBitMap",
3554 [P_BECOME_SYNC_TARGET] = "BecomeSyncTarget",
3555 [P_BECOME_SYNC_SOURCE] = "BecomeSyncSource",
3556 [P_UNPLUG_REMOTE] = "UnplugRemote",
3557 [P_DATA_REQUEST] = "DataRequest",
3558 [P_RS_DATA_REQUEST] = "RSDataRequest",
3559 [P_SYNC_PARAM] = "SyncParam",
3560 [P_SYNC_PARAM89] = "SyncParam89",
3561 [P_PROTOCOL] = "ReportProtocol",
3562 [P_UUIDS] = "ReportUUIDs",
3563 [P_SIZES] = "ReportSizes",
3564 [P_STATE] = "ReportState",
3565 [P_SYNC_UUID] = "ReportSyncUUID",
3566 [P_AUTH_CHALLENGE] = "AuthChallenge",
3567 [P_AUTH_RESPONSE] = "AuthResponse",
3568 [P_PING] = "Ping",
3569 [P_PING_ACK] = "PingAck",
3570 [P_RECV_ACK] = "RecvAck",
3571 [P_WRITE_ACK] = "WriteAck",
3572 [P_RS_WRITE_ACK] = "RSWriteAck",
3573 [P_SUPERSEDED] = "Superseded",
3574 [P_NEG_ACK] = "NegAck",
3575 [P_NEG_DREPLY] = "NegDReply",
3576 [P_NEG_RS_DREPLY] = "NegRSDReply",
3577 [P_BARRIER_ACK] = "BarrierAck",
3578 [P_STATE_CHG_REQ] = "StateChgRequest",
3579 [P_STATE_CHG_REPLY] = "StateChgReply",
3580 [P_OV_REQUEST] = "OVRequest",
3581 [P_OV_REPLY] = "OVReply",
3582 [P_OV_RESULT] = "OVResult",
3583 [P_CSUM_RS_REQUEST] = "CsumRSRequest",
3584 [P_RS_IS_IN_SYNC] = "CsumRSIsInSync",
3585 [P_COMPRESSED_BITMAP] = "CBitmap",
3586 [P_DELAY_PROBE] = "DelayProbe",
3587 [P_OUT_OF_SYNC] = "OutOfSync",
3588 [P_RETRY_WRITE] = "RetryWrite",
3589 [P_RS_CANCEL] = "RSCancel",
3590 [P_CONN_ST_CHG_REQ] = "conn_st_chg_req",
3591 [P_CONN_ST_CHG_REPLY] = "conn_st_chg_reply",
3592 [P_RETRY_WRITE] = "retry_write",
3593 [P_PROTOCOL_UPDATE] = "protocol_update",
3594
3595 /* enum drbd_packet, but not commands - obsoleted flags:
3596 * P_MAY_IGNORE
3597 * P_MAX_OPT_CMD
3598 */
3599 };
3600
3601 /* too big for the array: 0xfffX */
3602 if (cmd == P_INITIAL_META)
3603 return "InitialMeta";
3604 if (cmd == P_INITIAL_DATA)
3605 return "InitialData";
3606 if (cmd == P_CONNECTION_FEATURES)
3607 return "ConnectionFeatures";
3608 if (cmd >= ARRAY_SIZE(cmdnames))
3609 return "Unknown";
3610 return cmdnames[cmd];
3611 }
3612
3613 /**
3614 * drbd_wait_misc - wait for a request to make progress
3615 * @mdev: device associated with the request
3616 * @i: the struct drbd_interval embedded in struct drbd_request or
3617 * struct drbd_peer_request
3618 */
3619 int drbd_wait_misc(struct drbd_conf *mdev, struct drbd_interval *i)
3620 {
3621 struct net_conf *nc;
3622 DEFINE_WAIT(wait);
3623 long timeout;
3624
3625 rcu_read_lock();
3626 nc = rcu_dereference(mdev->tconn->net_conf);
3627 if (!nc) {
3628 rcu_read_unlock();
3629 return -ETIMEDOUT;
3630 }
3631 timeout = nc->ko_count ? nc->timeout * HZ / 10 * nc->ko_count : MAX_SCHEDULE_TIMEOUT;
3632 rcu_read_unlock();
3633
3634 /* Indicate to wake up mdev->misc_wait on progress. */
3635 i->waiting = true;
3636 prepare_to_wait(&mdev->misc_wait, &wait, TASK_INTERRUPTIBLE);
3637 spin_unlock_irq(&mdev->tconn->req_lock);
3638 timeout = schedule_timeout(timeout);
3639 finish_wait(&mdev->misc_wait, &wait);
3640 spin_lock_irq(&mdev->tconn->req_lock);
3641 if (!timeout || mdev->state.conn < C_CONNECTED)
3642 return -ETIMEDOUT;
3643 if (signal_pending(current))
3644 return -ERESTARTSYS;
3645 return 0;
3646 }
3647
3648 #ifdef CONFIG_DRBD_FAULT_INJECTION
3649 /* Fault insertion support including random number generator shamelessly
3650 * stolen from kernel/rcutorture.c */
3651 struct fault_random_state {
3652 unsigned long state;
3653 unsigned long count;
3654 };
3655
3656 #define FAULT_RANDOM_MULT 39916801 /* prime */
3657 #define FAULT_RANDOM_ADD 479001701 /* prime */
3658 #define FAULT_RANDOM_REFRESH 10000
3659
3660 /*
3661 * Crude but fast random-number generator. Uses a linear congruential
3662 * generator, with occasional help from get_random_bytes().
3663 */
3664 static unsigned long
3665 _drbd_fault_random(struct fault_random_state *rsp)
3666 {
3667 long refresh;
3668
3669 if (!rsp->count--) {
3670 get_random_bytes(&refresh, sizeof(refresh));
3671 rsp->state += refresh;
3672 rsp->count = FAULT_RANDOM_REFRESH;
3673 }
3674 rsp->state = rsp->state * FAULT_RANDOM_MULT + FAULT_RANDOM_ADD;
3675 return swahw32(rsp->state);
3676 }
3677
3678 static char *
3679 _drbd_fault_str(unsigned int type) {
3680 static char *_faults[] = {
3681 [DRBD_FAULT_MD_WR] = "Meta-data write",
3682 [DRBD_FAULT_MD_RD] = "Meta-data read",
3683 [DRBD_FAULT_RS_WR] = "Resync write",
3684 [DRBD_FAULT_RS_RD] = "Resync read",
3685 [DRBD_FAULT_DT_WR] = "Data write",
3686 [DRBD_FAULT_DT_RD] = "Data read",
3687 [DRBD_FAULT_DT_RA] = "Data read ahead",
3688 [DRBD_FAULT_BM_ALLOC] = "BM allocation",
3689 [DRBD_FAULT_AL_EE] = "EE allocation",
3690 [DRBD_FAULT_RECEIVE] = "receive data corruption",
3691 };
3692
3693 return (type < DRBD_FAULT_MAX) ? _faults[type] : "**Unknown**";
3694 }
3695
3696 unsigned int
3697 _drbd_insert_fault(struct drbd_conf *mdev, unsigned int type)
3698 {
3699 static struct fault_random_state rrs = {0, 0};
3700
3701 unsigned int ret = (
3702 (fault_devs == 0 ||
3703 ((1 << mdev_to_minor(mdev)) & fault_devs) != 0) &&
3704 (((_drbd_fault_random(&rrs) % 100) + 1) <= fault_rate));
3705
3706 if (ret) {
3707 fault_count++;
3708
3709 if (__ratelimit(&drbd_ratelimit_state))
3710 dev_warn(DEV, "***Simulating %s failure\n",
3711 _drbd_fault_str(type));
3712 }
3713
3714 return ret;
3715 }
3716 #endif
3717
3718 const char *drbd_buildtag(void)
3719 {
3720 /* DRBD built from external sources has here a reference to the
3721 git hash of the source code. */
3722
3723 static char buildtag[38] = "\0uilt-in";
3724
3725 if (buildtag[0] == 0) {
3726 #ifdef MODULE
3727 sprintf(buildtag, "srcversion: %-24s", THIS_MODULE->srcversion);
3728 #else
3729 buildtag[0] = 'b';
3730 #endif
3731 }
3732
3733 return buildtag;
3734 }
3735
3736 module_init(drbd_init)
3737 module_exit(drbd_cleanup)
3738
3739 EXPORT_SYMBOL(drbd_conn_str);
3740 EXPORT_SYMBOL(drbd_role_str);
3741 EXPORT_SYMBOL(drbd_disk_str);
3742 EXPORT_SYMBOL(drbd_set_st_err_str);